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Abstract. We compare two optimized chemical data assimilation systems, one based on the ensemble Kalman filter (EnKF)

and the other based on four-dimensional variational (4D-Var), using a comprehensive stratospheric chemistry transport model

(CTM). The work is an extension of the Belgian Assimilation System for Chemical ObsErvations (BASCOE), initially designed

to work with a 4D-Var data assimilation. A strict comparison of both methods in the case of chemical tracer transport was done

in a previous study and indicated that both methods provide essentially similar results. In the present work, we assimilate5

observations of ozone, HCl, HNO3, H2O and N2O from EOS Aura-MLS data into the BASCOE CTM with a full description

of stratospheric chemistry. Two new issues related to the use of full chemistry model with EnKF are taken into account. One

issue is a large number of error variance parameters that need to be optimized. We estimate an observation error variance

parameter as function of pressure level for each observed species using the Desroziers’ method. For comparison purposes, we

apply the same estimate procedure in the 4D-Var data assimilation, where both scale factors of the background and observation10

error covariance matrices are estimated using the Desroziers’ method. However in EnKF, the background error covariance is

modelled using the full chemistry model and a model error term which is tuned using an adjustable parameter. We found that

it is adequate to have the same value of this parameter based on the chemical tracer formulation that is applied for all observed

species. This is an indication that the main source of model error in chemical transport model is due to the transport. The second

issue in EnKF with comprehensive atmospheric chemistry models is is the noise in the cross-covariance between species, that15

occurs when species are weakly chemically related at the same location. These errors need to be filtered out, in addition to

a localization based on distance. The performance of two data assimilation methods was assessed through an eight-month

long assimilation of limb sounding observations from EOS Aura-MLS. The paper discusses the differences in results and their

relation to stratospheric chemical processes. Generally speaking, EnKF and 4D-Var provide results of comparable quality but

differ substantially in presence of model error or observation biases. If the erroneous chemical modelling is associated with20

moderately fast chemical processes, but whose life-times are longer than the model time step, then EnKF performs better,

while 4D-Var develops spurious increments in the chemically related species. If, on the other hand, the observation biases are

significant, then 4D-Var is more robust and is able to reject erroneous observations, while EnKF does not.

1



1 Introduction

The Ensemble Kalman Filter (EnKF) and the four-Dimensional Variational algorithm (4D-Var) are widely used data assimila-

tion methods that utilize the model to propagate observational information in time and space into an estimate of the state. Each

method is built around different assumptions and has its own merits. But to some extent, the relative merits are application de-

pendent. In the context of meteorological data assimilation, the relative advantages of these two methods have been discussed5

by Lorenc (2003); Kalnay et al. (2007); Buehner et al. (2010a, b) to name a few, and it has promoted the development of new

hybrid methods such as 4DEnVar (Lorenc et al., 2015) and En4DVar (Liu et al., 2008; Poterjoy and Zhang, 2015). In atmo-

spheric chemistry there are, however, very few comparison studies. The purpose of this paper is to compare carefully optimized

EnKF and 4D-Var chemical data assimilation systems for an extended time period using the same Chemistry-Transport Model

(CTM) and same observations.10

A short literature review discussing the Chemical Data Assimilation (CDA) problems related to EnKF and 4D-Var, their

inter-comparison and application to the atmospheric chemistry modelling is already given in Skachko et al. (2014, hereafter

denoted S14). More recent review including future prospects for coupled chemistry-meteorology models is given by Bocquet

et al. (2015).

As in S14, here we use BASCOE (Belgian Assimilation System for Chemical ObsErvations) environment. BASCOE was15

designed to assimilate satellite observations of chemical composition into a stratospheric CTM originally using the 4D-Var

assimilation method (Errera et al., 2008; Errera and Ménard, 2012). S14 described the implementation of the EnKF as an

alternative assimilation method in BASCOE and compared it with the original 4D-Var approach, using carefully calibrated

error variances for both methods and applying them to observations of ozone which was considered as a passive tracer. Indeed

this preliminary paper performed the comparison in a chemical tracer transport framework, i.e. taking only transport into20

account while neglecting chemical reactions. Our results showed that in this framework the two methods give nearly identical

performance. This outcome can be interpreted as a consequence of the dynamics of tracer error covariances: as noted early

on by Cohn (1993) and Ménard and Daley (1996), such error covariances follow the characteristics of the flow. Hence in the

absence of model error, there is thus no distinction between a filtering (EnKF) and a smoothing (4D-Var) algorithm.

But how do the EnKF and the 4DVar methods compare when photochemical reactions are taken into account? Do the25

results depend on the assimilated chemical species? Using actual satellite datasets and operational configurations, what are

their respective performances in terms of precision, accuracy and computational efficiency? What is the role of the practical

implementation of each method, when the full description of the stratospheric chemistry is taken into account in the CTM.

These are the main questions addressed in this paper.

The application of the multi-variate EnKF method to an assimilation system with the full chemistry should in principle30

address two important issues: the estimation of a large number of input error statistics; and the problem of localization between

chemical species.

The first issue is the large number of input error statistics that is needed (e.g. the observation error variances for each

species at each vertical levels). Clearly, an online estimation of error statistics is desirable to accomplish this task. In an
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idealized framework, Mitchell and Houtekamer (2000) proposed an adaptive EnKF where the model error parameters were

estimated using innovation statistics within a maximum likelihood method. In the same line of thought, the Desroziers’ method

(Desroziers et al., 2005) was also used to simultaneously estimate the covariance inflation factor and the observation error

variance (Li et al., 2009; Gaubert et al., 2014). Ménard (2016) also showed that the Desroziers’ observation variance estimates

converge to the truth if the background error covariance is close to the truth, which seems to be a reasonable assumption for5

EnKF background error covariances, when the χ2 condition (Ménard and Chang, 2000) is respected. Contrary to the EnKF, the

4D-Var is much more tolerant to the parametrization of the error statistics, as it was shown in S14. Hence, the online estimation

of the error statistics is of great importance only for EnKF.

The second issue related to the implementation of a multi-species EnKF is the localization between species. It is well known

in EnKF applications that a tapering of the sampling error correlations is needed when the true error correlation is not close to10

+1 or -1 (e.g. Anderson, 2012). For correlations that depend on distance, a widely used sampling error correction is provided by

the Schur product of a compact support correlation function (Gaspari and Cohn, 1999) to the sample covariance. However, in

comprehensive atmospheric chemistry models that have many prognostic chemical species, sampling errors between species at

the same location are also expected to occur. Long-lived species for instance which are the best candidates for such correlations

show in some cases complicated correlations patterns that depend on latitude and height and vary in time (e.g. Sankey and15

Shepherd, 2003). Besides, preliminary experiments with BASCOE-4D-Var system showed that the cross-covariance between

innovations of long-lived species is rather noisy and assimilation experiments that accounts for cross-covariance between

long-lived species in the background error term do not show in practice significant improvements in the analysis quality. The

approach to the cross-species sampling correlation noise within a sequential data assimilation has not been fully explored yet.

Several studies in EnKF chemical data assimilation use a brute force species localization that consists in zeroing-out cross-20

species covariances. This is the case for example for Tang et al. (2011) and Gaubert et al. (2014) where only O3 is observed

and where all cross-covariances between ozone and other species are zeroed-out in order to reduce the noise in the analysis.

In an ozone assimilation study, Curier et al. (2012) kept the cross-covariances between O3 and some other strongly coupled

species, in particular NO, NO2 and VOC’s, as well as the error covariances with the boundary conditions (O3 dry deposition

and model top boundary condition). They showed that each of these kept cross-covariances give rather similar impact on the25

ozone analysis. Eben et al. (2005) in an multi-species air quality EnKF assimilation of surface O3, NO and NO2 measurements

indicated that in order to reduce the sampling noise they kept the cross-covariances between these species only at the surface.

In another study, Miyazaki et al. (2012) assimilated simultaneously NO2, O3 CO, and HNO3 tropospheric chemical species

along with the estimation of surface emissions. Using verification against satellite observations, such as innovation variance,

they found that cross-covariance between chemical species need to be set to zero unless they are strongly chemically related.30

Examples of strongly chemically related species are members of the NOy family, or CO with VOC’s. Miyazaki et al. (2012)

also allowed the coupling between NO2 and emissions of NO2, or the CO with the emissions of CO, but set to zero the cross-

covariance between emissions of NOx and CO. Keeping the cross-covariance with the boundary conditions (surface emissions

and lateral boundary conditions) was also argued in Constantinescu et al. (2007). Overall, these studies indicate that when there
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is a believed strong correlation between observed and modelled species (or boundary condition) then these can be kept in the

EnKF, but otherwise to reduce noise, all other cross-covariances are better be zeroed-out.

In this paper we perform an assimilation with EnKF and 4D-Var of several species in the stratosphere that are not necessarily

directly chemically linked and with real-life constraints. The lifetimes of the assimilated species are quite diversified and vary

with altitude. We use a state-of-the-art CTM that is in fact in constant improvement, but also has some deficiencies. We use5

limb sounding observations that give vertically resolved measurements, and thus there is a need to have vertically resolved

error statistics. As it was shown in S14, the EnKF is more sensitive to the observation error statistics than 4D-Var assimilation.

Yet, to provide a consistency between the two assimilation systems, the observation error statistics of 4D-Var will be subject

to the same Desroziers’ estimation procedure. Localization between species, that is needed in EnKF, is in fact not applied to

4D-Var, since the cross-covariance between species are taken into account automatically using the 4D-Var adjoint model.10

The paper is organized as follows. The next section describes the main components of the BASCOE Data Assimilation

System (version 5.8): the common CTM, the 4D-Var system and the EnKF system. It also describes the implementation of

Desroziers’ method and the tuning of the error covariances in each system. The assimilated observations and independent data

used to validate the results are given in Sect. 3. Section 4 describes the results of our assimilation and model experiments.

And Sect. 5 discusses a separate EnKF experiment where the cross-species correlations are taken into account. Finally, some15

conclusions are given in Sect. 6.

2 The BASCOE Data Assimilation System

2.1 The Chemistry-Transport Model

In this study, all numerical experiments are performed with the Belgian Assimilation System for Chemical ObsErvations

(BASCOE) and its underlying Chemistry Transport Model (CTM). The BASCOE CTM computes the temporal evolution of20

58 stratospheric chemical species accounting for the advection, photochemical reactions and a parametrization of PSC (Polar

Stratospheric Clouds) microphysics. We used a CTM configuration nearly identical to the one described by (Lefever et al.,

2015) for Near Real-Time production of 4D-Var analyses as part of the MACC (Monitoring Atmospheric Composition and

Climate) project. Here we provide a brief reminder of its most salient features.

All species are advected by the Flux-Form Semi-Lagrangian scheme (Lin and Rood, 1996), here driven by ERA-Interim25

wind fields (Dee et al., 2011). The horizontal resolution is set at 3.75◦ longitude by 2.5◦ latitude. The model considers 37

levels from the surface to 0.1 hPa, which is a subset of the 60 levels of ERA-Interim that excludes most tropospheric levels.

Hence The CTM state is described by the vector x ∈Rn of length n= 96× 73× 37× 58≈ 1.5× 107. The model time step is

set to 30 minutes.

The photochemical scheme of BASCOE account for 208 stratospheric chemical reactions: 146 gas-phase, 53 photolysis, 930

heterogeneous. Photolysis rates are provided by the Jet Propulsion Laboratory (JPL) recommendations (Sander et al., 2006).

The computation of the photolysis rates is based on the Tropospheric Ultraviolet and Visible (TUV) radiative transfer package

(Madronich and Flocke, 1999).
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2.2 Setting up the time windows

In order to describe the practical implementations of the 4D-Var and EnKF algorithms in BASCOE, we must first explain

the different set-up of their assimilation windows with respect to time. This is schematically shown by Fig. 1. The 4D-Var

assimilation window is set to 24 h, i.e. this is the duration of the forward and backward integrations of the CTM and its adjoint.

Each 4D-Var iteration is followed by a minimizing procedure (see Sect. 2.3 for more details). In this 4D-Var implementation, the5

24 h forecast is defined as the first forward model simulation starting from the analysis of the previous assimilation window. All

4D-Var assimilation cycles save the model state in observation space during these forecasts, in order to compute Observation-

minus-Forecast (OmF) statistics discussed below.

The EnKF initializes its ensemble of model states from one given state using a procedure described in Sect. 2.4. The EnKF

assimilation is then based on ensembles of short model forecasts which have the same duration as the CTM time step, i.e. 3010

minutes, followed by the observational update of each ensemble member. The updated ensemble states (analyses) are used then

as initial states for the next ensemble forecast. Hence, there is no practical need to compute the 24 h forecast (green line) as in

the 4D-Var approach. However we have introduced this option in the EnKF in order to allow a consistent comparison with the

4D-Var forecasts. Hence in the EnKF approach, the 24 h forecast is defined as a model simulation started from the ensemble

mean analysis at 0 h UTC. As in the 4D-Var system, the 24 h forecast of the EnKF stores the OmF statistics.15

2.3 The 4D-Var system

The BASCOE 4D-Var of this study was already used by S14 and is described in detail by Errera and Ménard (2012). The

4D-Var data assimilation is carried out by minimizing the so-called cost function which measures the discrepancy between the

model state and observations (Talagrand and Courtier, 1987). Here, the model state vector contains 58 prognostic variables,

where only 7 chemical species are observed among them, see Sect. 3.20

The background error covariance matrix B0 is parametrized using a control variable transform

Lξ = x0−xb
0 ≡ δx0, (1)

where ξ is a new control variable, x0 the first guess field, δx0 is the analysis increment and L is the square root of B0:

B0 = LT L. (2)

As in S14, the error covariance of the first guess field expresses spatial correlations on a spherical harmonic basis (Courtier25

et al., 1998), allowing a representation of homogeneous and isotropic horizontal correlations by a diagonal matrix with diagonal

values repeated for the same zonal wave number. The operator L is defined by

L = ΣSΛ1/2, (3)

where Σ is the (diagonal) background error standard deviation matrix with sb(l)σb(l) values on its diagonal, sb(l) is an

adjustable background error scaling factor on the level l; Λ1/2 is the spatial correlation matrix, identical for each chemical30
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species, defined on a spherical harmonic basis hence diagonal; and S is the spectral transform operator from the spectral space

to the model space. The spatial correlation matrix considers Gaussian correlations in the horizontal and in the vertical directions

with length scales Lh
0 and Lv

0 in horizontal and vertical directions, respectively. The between-species covariances are assumed

to be zero in the background error covariance matrix B0.

The observation errors are assumed to be uncorrelated both horizontally and vertically. The observation error covariance5

matrix Rk is thus defined diagonal:

Rk(i, j) =

 (so(i) σy(i)|tk
)2, if i= j

0, if i 6= j,
(4)

where so(i) is an adjustable observation error variance scaling factor and σy(i)|tk
is the measurement error at level i and

time tk. The observations and their errors are described in Sect. 3. The adjustment of sb and so scaling factors is performed in

observation space for every observed species separately, where they are functions of vertical pressure level (see Sect. 2.5).10

Finally, the BASCOE 4D-Var implementation includes the background quality control procedure (BgQC, Anderson and Järvinen, 1999).

This procedure rejects observations when:

(yi,l−Hi,l(xb))2 > γ2(diag(R)i,l +Hi,l(diag(B))) (5)

where the operator diag(A) is a diagonal matrix of A and i, l are the data indices of profile and level, respectively. The value

of γ is set to 5 in BASCOE, so that BgQC rejects only obviously wrong observations.15

2.4 The EnKF system

The BASCOE EnKF of this study is similar to the system used in S14. An ensemble of initial states x̃i(t0) is generated by

adding to the model state x0 a set of spatially correlated perturbations according to the prescribed initial error covariance. This

procedure is schematically represented on Fig. 1 on the left-hand side. The ensemble of model states is propagated forward in

time using the same CTM as used in the 4D-Var (see Sect. 2.1). The background error covariance is represented by the addition20

of a stochastic noise ηi to each ensemble member at each model time step. In the current implementation, the model error term

is added to observed species only. The non-observed model species evolve with ensemble and are influenced by the analysis

increments only implicitly through the chemistry scheme of BASCOE CTM.

The operator L described in Sect. 2.3 is used to generate the initial deviation x̃i(t0) and the model error ηi(tk) of the EnKF

system. This ensures that at the initial time, both EnKF and 4D-Var systems have identical error statistics. Initial deviation is25

defined as

x̃i(t0) = Lζi(t0), i ∈ [1,N ], (6)

whereas the model error term is written as

ηi(tk) = αLψi(tk), i ∈ [1,N ], (7)
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where ζi(t0) and ψi(tk) are vectors of independent normally distributed random numbers with zero mean and variance equal

to 1 defined in the spectral space, N is the ensemble size; and where α is an empirical model error parameter. The definition of

this parameter is explained in Sect. 2.6.

The observation error covariance matrix R is defined by Eq. 4, where the adjustable scaling factor so(i) is estimated using the

method described in Sect. 2.5. The fact that the matrix R is calibrated automatically without using a trial and error procedure5

for every observed species makes EnKF essentially easier to parametrize than in our previous study. Besides, the current

version of EnKF allows for more accurate observation error variance estimation with respect to S14 because it computes so(i)

as a function of observation vertical pressure level. It should be noted that EnKF uses the same background quality control

procedure described in Sect. 2.3.

As in our previous study with a chemical tracer model, BASCOE EnKF uses the Schur (element-wise) product of the10

ensemble covariance matrix with a compact support correlation function. This function is the 5th-order piecewise rational

function of Gaspari and Cohn (1999) which is isotropic and decreases monotonically with distance depending on the correlation

length scale Lloc. The function is positive only for distances that are less than 2Lloc and zero otherwise. We applied this

procedure to both horizontal and vertical correlations, using the compact support correlation functions with correlation length

scales Lh
loc and Lv

loc, respectively. The choice of these parameters is discussed in Sect. 2.6. In order to make feasible the15

computation of much more expensive EnKF in the framework of full-chemistry model, the analyses are computed locally,

around the area where current satellite observations are situated. To this end, the EnKF algorithm accounts now for a procedure

to find a current local sub domain in the model space using the K-D tree, which is a binary search tree where the comparison

key is cycled between K components (K = 3 in our case, because the observation location is a 3-dimensional vector). More

information on the method can be found on the Web or in any textbook on data structures (e.g. Gonnet and Baeza-Yates, 1991).20

The EnKF analyses of this study are performed in parallel for every observed species in its own space. Thus, such analysis

increments of every species do not account for cross-correlations between different chemical observations, which is not the case

for the 4D-Var system. However, it is technically possible to keep all observations from multiple species in one observation

space, introducing thus the cross correlations between species. An example of such EnKF data assimilation is discussed in

Sect. 5.25

2.5 The Desroziers’ method

We use the Desroziers et al. (2005) method to estimate error variance scaling factors for each observed species and each vertical

levels. The diagnosis relies on linear estimation theory where the statistics is computed using observation-minus-background,

observations-minus-analysis, and analysis-minus-background differences. The estimation of the background error variance is

written as30

sb(l)2σb(l)2 = 〈(da
b )T do

b〉, (8)

and the observation error variance is then

so(l)2σo(l)2 = 〈(do
a)T do

b〉, (9)
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where the vector da
b is the difference between analysis and background, do

b , the difference between observations and back-

ground, do
a, the difference between observations and analysis in observation space, and 〈〉 denote the mathematical expectation.

Note that in practical implementation, the expectation is replaced by a horizontal mean and time mean of a day.

The BASCOE data assimilation is initialized using sb(l) = 1 and sb(l) = 1 for both, EnKF and 4D-Var. These initial values

are kept in the system for the first 24h of system integration. The analysis increment and model innovation statistics are5

accumulated during this time. Then the estimation of the scaling factors is performed using expressions 8 and 9. The following

24h analyses (on day 2), both EnKF and 4D-Var use the day 1 estimated error variance scaling factors. The procedure is

sequentially updated every 24h assimilation cycle using the statistics accumulated during the previous cycle. Note that we

could have used an estimated sb(l) in EnKF to tune the model error, but we decided not to apply it and use the χ2 tendency to

this end (see next section, Sect. 2.6).10

The Desroziers’ estimates appear to be asymptotically stable after only one day. That means that changing the initial param-

eter value has little to no effect on the resulting time series of estimated parameter values. Figure 2, shows examples of the

observation error standard deviation for O3, H2O and HCl (at each vertical levels) when we perturb the initial parameter value

by a factor 1.5. The dashed curves represent the initial values and the solid curves the values estimated after one day using the

Desroziers’ method.15

2.6 Tuning of error covariances in the two systems

Each assimilation system (i.e. EnKF and 4D-Var) has its own optimized error variances but shares a common error correlation

for the prescribed B0 in 4D-Var and the prescribed model and initial condition error correlations in EnKF. As in S14, our

starting point is the calibration of the error covariance matrix B0 used by the 4D-Var system. This is realized through a

calibration of the spatial correlation associated with the operator L described in Sect. 2.3. The operator L has similar parameters20

as in S14: Lh
0 = 800 km and Lv

0 = 1 model level, σb(l) = 0.2 (with scaling factor sb(l) = 1 ) at all levels. Then, we take into

account the fact that the use of the Schur product results in shorter correlation length scales (See S14 for more details).

Similarly to our previous work, EnKF uses an effective correlation length scales of Lh
e = 872 km and Lv

e = 1.3 in model level

coordinates, given that Lh
loc = 2000 km and Lv

loc = 1.5 are chosen a priori. The calibrated operator L is then used in the EnKF

system.25

The observation error variance scaling factor so (see Sect. 2.4) is estimated for both systems using the Desroziers’ method

described in Sect. 2.5. The background error covariance scaling factor sb used in 4D-Var is also estimated using the Desroziers’

method. In EnKF, the background error covariance is evolved using CTM where we add a model error term that uses a

calibration parameter α. The value of α equal to 0.025 was found in S14 in the case study of O3 tracer. This value is based

on the property that the time tendency (over periods of weeks and months) of the χ2 diagnostic should be nearly zero as30

argued in Ménard and Chang (2000). In general, we have found (in S14) that the value of α changes the slope of the O3 χ
2

distribution, whereas the observation error variance scaling factor so is responsible for the mean value of it. In the absence of

better knowledge, we use the value α= 0.025 for all observed species described in Sect. 3.
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The performance of each data assimilation system of BASCOE can be monitored by the χ2 diagnostic. During the whole

period of our experiments, 〈χ2
k〉/mk values remain close to 1 (result not shown). This is achieved by using the error variances

estimated by the Desroziers’ method. In the case of 4D-Var where both observation and the background error variances are

estimated, the Desroziers’ method gives estimates that achieve the innovation variance consistency (Ménard, 2016). For EnKF

where only the observation error variance is estimated, the fact that 〈χ2
k〉/mk values remain close to 1 is an indirect confirmation5

that the model error is tuned appropriately. Figure 3 shows the evolution of the adjustable parameters for both systems. The

solid lines show the vertically mean values of the observation variance parameter so and the dashed lines, the vertically mean

values of the 4D-Var background error variances. The time evolution of the error variance scaling factors at individual levels is,

as in Figure 3, (result not shown) generally consistent over time, especially for the EnKF estimates. Furthermore, we note that

for the EnKF results, the scaling factors of any species show no drift in time. We argue from this result that there is apparently10

no need to have a different model error α for different species. Thus we conclude that for a chemical transport models, the

main source of model error can be attributed to transport errors primarily.

Finally, we wish to remark that to keep comparable CPU costs in both data assimilation systems, and that can be carried

out in a reasonable time, 4D-Var is run with 10 iterations (including 10 adjoint iterations) and the EnKF uses 20 ensemble

members. As in S14, the computation of the EnKF Kalman gain is performed using Cholesky decomposition where the full15

observation vector is considered at a given time step for a given species. No simplification is used to compute the inversion

of the innovation matrix [HBeHT + R] or the matrix BeHT (see S14 for more details). The actual use of local domain

decomposition and integration of the ensemble members on different processors in parallel decreases essentially the CPU costs

as compared to the previous version of BASCOE EnKF.

3 Observations20

The dataset assimilated in this study is the version 4.2 of the retrievals from the Microwave Limb Sounder (MLS) on-board the

EOS (Earth Observing System) Aura satellite (Livesey et al., 2015). The EOS Aura-MLS data cover the latitude range between

82◦S and 82◦N with an along-track separation of around 165 km between consecutive scans. Around 3500 vertical scans are

performed every day. The vertical resolution varies for different species. Here we assimilate the retrievals of five species which

are listed in Table 1 along with some key parameters of the dataset and the validation reference for each species.25

Some results of the data assimilation will be validated against independent observations. This will be the case for N2O

because the Aura MLS N2O precision is 24-14 ppbv (9-38%, relative to the observation mean at given altitude) and its accuracy

is 70-3 ppbv (9-25%) in the pressure range 100-4.6 hPa but its precision drops to 14 ppbv (250%) at 1 hPa, where the accuracy

is estimated to 16% (Livesey et al., 2015). Hence we will validate the BASCOE N2O. with observations retrieved from the

Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS) satellite instrument (Bernath et al., 2005)30

which uses solar occultation to provide around 28 profiles per day. Strong et al. (2008) validated N2O retrievals from ACE-FTS

(version 2.2) and found a bias of ±15% between 6-30 km and a bias of ±4 ppbv between 30-60 km . Here we use the retrieval

version 3.5.
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Table 1. List of species retrieved in Aura-MLS v4.2 and assimilated for this paper.

Name
Resolution (km)

Vertical x Horizontal

Vertical range

of assimilation (hPa)
Accuracy Precision

Validation paper

(for Aura-MLS v2.2)

O3 3 - 6 x 200 - 300 0.1 - 261 3 - 20% 2 - 40% Froidevaux et al. (2008a)

N2O 4 - 6 x 300 - 620 4.64 (1) - 100 9 - 25% (12%) 7 - 38% (250%) Lambert et al. (2007)

H2O 3 - 4 x 220 - 440 0.1 - 316 4 - 11% 4 - 9% Lambert et al. (2007)

HNO3 3 - 5 x 300 - 500 1.5 - 215 ±0.5 - 2 ppbv ±0.7 ppbv Santee et al. (2007)

HCl 3 - 6 x 200 - 400 0.32 - 100 5 -50% 10 - 50% Froidevaux et al. (2008b)

We will also use the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) retrievals by the IMK/IAA

(Institut für Meteorologie und Klimaforschung, Karlsruhe/Instituto de Astrofisica de Andalucia, Grenada) to validate the un-

constrained distributions of CH4 and NOx (NOx= NO + NO2). The MIPAS IMK/IAA retrievals of CH4were validated by

Laeng et al. (2015) and the retrievals of NOx were described by Funke et al. (2005).

4 Numerical experiments5

This section reports the numerical experiments performed in this study: the control run, i.e. an unconstrained simulation by the

BASCOE CTM including photochemistry; the “EnKF” and “EnKF tracer“ experiments, the first one including photochemistry

and the second one neglecting it (i.e. assimilation in chemical tracer mode as done in S14); and the two corresponding ”4D-

Var“ and ”4D-Var tracer“ experiments. All experiments start on 1 April 2008 from the same initial condition, i.e. a 4D-Var

analysis of Aura-MLS retrievals (Lefever et al., 2015), and end on 1 November 2008 i.e. after 7 months.10

The results of our model and data assimilation experiments will be assessed using Observations-minus-Forecast (OmF)

statistics, relative bias and standard deviation, computed in the observation space. In the case of N2O the relative bias and

standard deviation are not good diagnostics because its volume mixing ratio decreases by two orders of magnitude between

100 and 1 hPa. Hence we will simply compare the mean profiles of N2O by the five numerical experiments with assimilated

and independent measurements. The statistics are computed in three different latitude bands covering the globe: South Pole15

(90◦S-60◦S), middle latitudes and Tropics (60◦S-60◦N) and North Pole (60◦N-90◦N). The analyses of the assimilated species

are verified by comparison with the assimilated observations (sections 4.1–4.5). Section 4.6 evaluates the results for methane

and nitrogen oxides which are not assimilated.

4.1 Verification of ozone

Figure 4 shows the OmF statistics for ozone over the period September 2008-October 2008, i.e. during the period of the20

Antarctic ozone hole. The results of the tracer experiments are not shown above 1 hPa because the tracer approximation is not
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valid in this region. The CTM experiment delivers rather large biases (10 to 30%) in the lower and upper stratosphere and at

all levels above the South Pole region.

All data assimilation experiments succeed in eliminating these biases nearly completely in the lower and middle strato-

sphere. The resulting biases are smaller than 2%, except for the 4D-Var experiment which overestimates ozone depletion in the

Antarctic ozone hole region (around 50 hPa) by up to 5%. Compared with the CTM results, the 4D-Var and EnKF experiments5

also reduce significantly the OmF standard deviation in the lowest levels. The smallest OmF standard deviations are delivered

by the 4D-Var experiment, with results about 1% smaller than those delivered by the EnKF in pressure range 30-2 hPa.

The experiments 4D-Var tracer and EnKF tracer allow us to assess the impact of stratospheric chemistry. Neglecting this

process results in larger biases and OmF standard deviations above the South Pole in the region 10-2 hPa, where both tracer

data assimilation systems overestimate ozone by ∼5% and deliver OmF standard deviations reaching 10%.10

The photochemical lifetime of ozone decreases rapidly in the upper stratosphere and reaches values as short as a few minutes

(Brasseur and Solomon, 2005) in the lower mesosphere. In these regions, our CTM experiment has a significant ozone deficit

reaching about 20% at the stratopause (1 hPa). The sources of this model bias are out of scope of the present paper. However,

its presence helps to assess the behaviour of our assimilation algorithms. It is found that both data assimilation algorithms fail

to correct this model bias: ozone is still underestimated by∼15% at the Stratopause. In the upper stratosphere and mesosphere,15

data assimilation does not improve OmF standard deviations either: these remain nearly identical to those obtained by the

CTM. These results indicate that when the photochemical lifetime is short (e.g. smaller than the time step of the model) and

the model error is important, both data assimilation systems fail to improve the representation of the model state. Since this

issue also involves species that have strong chemical interactions with ozone, it will be further discussed in Sections 4.2, 4.4

and 4.6.20

4.2 Verification of HCl

During the largest part of the CTM simulation, the HCl distribution is in agreement with the Aura-MLS observations. And

the EnKF and 4D-Var experiments deliver nearly identical results where the small CTM biases are completely corrected (not

shown). The only exception is in the South Pole latitude band, during the period May-June 2008 which is shown on figure 5.

During this period the chemical lifetime of HCl is much shorter than at other latitudes, because the heterogeneous removal due25

to the formation of Polar Stratospheric Clouds has already started. This loss process is currently overestimated in the BASCOE

CTM, due to a crude cold-point temperature parametrisation (section 2.2.2 in Lefever et al., 2015). As a result, the CTM

experiment underestimates HCl by up to 45% at 30 hPa in the Antarctic polar vortex region and its OmF standard deviation

also reaches ∼ 45% . While the 4D-Var approach essentially fails to correct this large disagreement, the bias is nearly halved

in the EnKF experiment and the OmF standard deviation is significantly reduced as well.30

Staying in the lower stratosphere (100-10 hPa), the outcome of the experiments is different than above the South Pole.

Northward of 60◦S, the CTM biases do not exceed 15% and they are nearly eliminated by both data assimilation experiments.

The OmF standard deviations of both data assimilations are also quite similar in these regions.
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In the middle stratosphere, the chemical lifetime of HCl decreases from about one week at 10 hPa to about one day at 1

hPa (Brasseur and Solomon, 2005). The CTM experiment delivers quite accurate results in this region: the OmF biases do not

exceed 3% and the standard deviations are less than 10%, in every latitude band for the pressure range 10-0.46 hPa. The EnKF

and 4D-Var experiments both succeed in correcting these small CTM biases and reducing the OmF standard deviations, except

at the 1 hPa level where the 4D-Var does not correct the CTM deficit of 3% for HCl.5

4.3 Verification of HNO3

Figure 6 shows the HNO3 OmF statistics between the assimilated Aura MLS data and the CTM, EnKF and 4D-Var experiments

for the period September-October 2008. For all three latitude bands, the CTM shows a significant underestimation reaching

20-25% around 30 hPa. This model bias nearly disappears at 10 hPa but grows again above this level. In the lower stratosphere,

the OmF standard deviations of the CTM experiment reach minimum values of 10-15% but at the lowermost levels the standard10

deviation is much larger in the Antarctic polar vortex region than at other latitudes.

Both data assimilation experiments correct the OmF model bias at all latitudes and at all pressure levels between 100

and 10 hPa. Above that level, the quickly increasing model OmF bias is not corrected by either assimilation algorithm. The

explanation for this different behaviour in the upper stratosphere is twofold. First, the observation error grows quickly with

altitude, reducing the weight of observations in the assimilation experiments. Second, a large discrepancy between the model15

and the observed data leads to rejection of most measurements above 10 hPa by the background quality control procedure (see

Sect. 2.3 for more details).

The 4D-Var OmF bias is generally less than 3% in the pressure range 100-7 hPa, except for an 8% OmF bias at 70 hPa in the

Tropics. The EnKF delivers even smaller OmF biases in the whole pressure range and at all latitudes. Both data assimilations

results in almost identical OmF standard deviations, except in the Antarctic polar vortex region where the EnKF errors are20

slightly larger below 20 hPa.

4.4 Verification of water vapour

Water vapour is a long-lived tracer in the whole stratosphere, with a photochemical lifetime still longer than one month at the

stratopause (Brasseur and Solomon, 2005). The OmF statistics for H2O are shown on Fig. 7. The CTM provides OmF biases

smaller than 10% in the whole pressure range and at all latitudes, except in the Antarctic polar vortex between 100 and 10 hPa,25

where H2Ounderestimation reaches 30%. The OmF standard deviation by the CTM is also largest in this region, reaching 23%

while it does not exceed 15% elsewhere.

Both data assimilations mostly correct the OmF bias and standard deviation errors with respect to the CTM. Their OmF

biases do not exceed 2%, except for the OmF bias by the 4D-Var which reaches 3% at 1 hPa, i.e. the level where the ozone

deficit described in Sect. 4.1 is maximum. The OmF standard deviation errors resulting from the two assimilation experiments30

are also quite similar, with slightly larger EnKF errors in the Antarctic polar vortex below 10 hPa.

12



4.5 Verification of N2O

The relative error statistics shown for other species are difficult to interpret in the case of N2O because its volume mixing ratio

decreases by two orders of magnitude between 100 and 1 hPa. Hence figure 8 simply compares mean profiles of forecasts and

observations. We display the assimilated Aura MLS observations along with their validation uncertainties (grey filled region

as reported by Lambert et al., 2007). Since these uncertainties are very large in the upper stratosphere, we also compare with5

independent observations by the ACE-FTS solar occultation instrument (see Sect. 3).

In the lower stratosphere the two satellite datasets and the CTM experiment are in good agreement. Above 10 hPa the mixing

ratios retrieved from Aura-MLS are much larger than those from ACE-FTS, and above 5 hPa they become pressure-independent

which is not realistic. As expected, the CTM experiment agrees much better with the ACE-FTS N2O retrievals since they are

much more precise in the upper stratosphere.10

How do the 4D-Var and EnKF treat the Aura-MLS N2O dataset containing a bias? To answer this question we inhibited

any a priori filtering of the Aura MLS observations of N2O above 5 hPa, and we used both the full chemistry CTM and

its transport-only version. Figure 8 shows that both EnKF experiments follow the assimilated Aura MLS data in the upper

stratosphere, whereas the mean profile delivered by the 4D-Var experiment remains closer to the CTM. This is due to the

automatic rejection by the 4D-Var of most Aura-MLS observations of N2O above 5 hPa. However, 4D-Var assimilation with15

a chemical tracer transport model (cyan dashed curve) assimilates more Aura MLS data keeping the model closer to the

assimilated observations. This episode reveals the role of chemistry in the multivariate assimilation: it acts as a strong constraint

within 4D-Var, preventing it from assimilating erroneous observations.

4.6 Evaluation of non-observed species

Finally, the forecasts of two non-observed species issued from both data assimilation systems will be validated, CH4 and NOx,20

the sum of NO2 and NO, (Fig. 9). CH4 CTM forecasts agree well with the MIPAS IMK/IAA data. And both data assimilation

system keep generally this agreement, except the region around 2-1 hPa where 4D-Var develops an artificial bias related to the

presence of O3 model bias and the fact that O3 data were assimilated in the upper stratosphere. As we saw this before, 4D-Var

tends to develop such biases in many assimilated and non-assimilated species to compensate the O3 bias. The problem of model

O3 bias is out of scope of the present article. We should only note that it can not be solved directly by data assimilation without25

an improved version of CTM. NOx CTM forecasts are essentially different with data due to absent NOx sources in the model.

As for CH4, both data assimilation keep the model state unperturbed, except the region around 2-1 hPa where 4D-Var develops

a bias for the same reason as stated above. Incidentally, this bias provides better agreement between the model and data in this

region.
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5 EnKF with cross correlations between species

All the EnKF experiments done so far used a brute force species localization, in other words, the sample covariance between

species is set to zero. This type of localization should not be confused with the localization based on distance for the same

species, which we keep. Now let us see what happens when we keep the sample cross-covariance intact.

To this end, we conducted an experiment where we assimilate O3 and N2O, two species that are not strongly related via5

the chemistry system. We will call this experiment the EnKF-CC, standing for EnKF with Cross-Covariances. In principle,

we would expect that an observation of O3 does not change significantly N2O and vice versa. In EnKF-CC, O3 and N2O

are put into a common observation space, defined by the observation vector y and the observation error covariance matrix

R. The ensemble of model vectors in observation space Hxi contain thus two blocks of O3 and N2O. This provides the

cross-correlation terms in the background error covariance matrix in observation space HBHT computed as10

HBHT =
N∑
i

H(xi− x̄)H(xi− x̄)T
, (10)

where i ∈ [1,N ] is the number of ensemble member,N is the ensemble size, x̄ is the ensemble mean (see S14 for more details).

The cross correlation terms between species remain after the localization of the error covariance via the Schur product, because

it filters out only the spurious spatial correlations.

Figure 10 shows an example of such EnKF-CC data assimilation comparing its results with EnKF discussed in the previous15

sections where the sample covariance between species was set to zero. The figure shows the O3 OmF bias and standard

deviation for EnKF (red) and EnKF-CC (yellow) analyses during 24h of September 15 2008. We observe that the EnKF-

CC has noisy bias and an increased and noisy error standard deviations in the OmF correlations compared with the EnKF

experiment. A similar kind of impact is also obtained when we assimilate only one species and examine the OmF of the

other non-observed species (results not shown). We thus conclude, as other studies have indicated, that the sample cross-20

covariance between weakly chemically related species, give rise to spurious analysis increments with a deterioration of the

overall performance of the assimilation system.

6 Conclusions

We have conducted a comparison of an EnKF and 4DVar data assimilation system using a comprehensive stratospheric chem-

ical transport model. We considered 4D-Var and EnKF configurations that are normally used for chemical data assimilation25

applications. Both data assimilation systems have online estimation of error variances based on the Desroziers’ method and

share the same correlation model for all prescribed error correlations (i.e. the background error covariance for 4D-Var, initial

error and model error for EnKF) so that each data assimilation system is nearly optimal and can also be compared to each other.

A previous comparison study by Skachko et al. (2014) showed that for chemical tracer transport only both assimilation system

provide results of essentially similar quality despite the difference in practical implementation of each method: the 4D-Var was30

applied in its strong constraint formulation with a 24 h assimilation window with the assumption of no model error over this
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period, whereas the EnKF was used to sequentially assimilate observations every 30 minutes with model error perturbations

added every 30 minutes. This study examines in what way the inclusion of chemistry changes the performance of the assimila-

tion systems, but perhaps more importantly how an EnKF and a 4D-Var chemical data assimilations can be implemented in a

real-life situation with several modelled and assimilated species. In this study we assimilate ozone, HCl, HNO3, H2O and N2O

observations from EOS Aura-MLS.5

In the context of atmospheric chemistry, EnKF and 4D-Var differ in a number of ways. While 4D-Var, built on the assumption

of a perfect model, tries to find a strong constraint solution that fits observations over a 24h window, EnKF on the other

hand provides estimates at each model time step but allows for modelling error (mainly as a background error covariance).

Furthermore, while 4D-Var infers information based on error correlation between observed and non-observed species, EnKF,

on the other hand, introduces noise between weakly chemically-related species, and so far in practice, these cross-species10

error covariances are set to zero. So the question is: to which extent the chemical modelling is an important component of the

analysis? The implementation of a multi-species sequential chemical data assimilation is challenging by the need to properly

tune and automate the estimation of a large number of input error parameters.

The comparison done in this paper shows that, in general, there is not a significant improvement in the OmF statistics of

the system when the cross-correlation between species is kept (4D-Var) versus the EnKF system where the cross-species error15

correlation has been filtered out. Differences do occur, however, when there is an important chemical modelling error or when

there are large biases between model and observed values.

For example, the BASCOE CTM has an important model O3 deficit near or above 1 hPa. The source of this model bias is

unclear and is not discussed in this paper. The experiments show however that assimilating O3 at these altitudes gives a poor

agreement with observations. At these altitudes the chemical life-time of O3 is smaller than the time step of the model and20

consequently, any correction on the O3 concentrations by the assimilation of O3 measurements simply cannot correct for the

model error. For the other species, such as HCl and HNO3, the OmF statistics for EnKF are always better than for the 4D-

Var. Two main reasons are responsible for this better performance. First, EnKF has a short-time forecast followed by frequent

observational updates that is possibly more adequate for moderately fast chemical processes (but not for processes of life-time

smaller than the model time step). Second, the ensemble of CTM’s provides better representation of the model variance. On25

the other hand, the cross-species covariances, implicit to a 4D-Var assimilation system, have a negative effect in the presence

of strong model O3 bias. The 4D-Var system tries to compensate the bias and thus develops small artificial biases in many

chemically related with O3 species, observed and non-observed. This is shown using OmF statistics for two observed species,

HCl and H2O, and two non-observed, CH4 and the NOx family.

The effect of large observation biases has a very different impact. For example, the EOS Aura MLS N2O has significant30

biases above 4 hPa. In this case, EnKF reaches the state close to observations from the first observation updates during the

spin up phase, and keeps model close to observations afterwards because of short ensemble model forecasts and frequent

observational updates. On the other hand, 4D-Var appears to be robust to erroneous observations. A significant number of

observations are rejected by the quality control, and in the end, 4D-Var provides analyses with more weight given to the model

forecast rather than to the observations.35
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We have also examined the need to have cross-species localisation in an EnKF. Our study shows that the simultaneous

assimilation of O3 and N2O, two species that are only weakly chemically related, gives rise to spurious cross-species error

correlations that deteriorates the performance of EnKF, and it is then better to simply ignore those error correlations. To have

a more sensible approach to species localization could be the object of future work.

An important aspect of this study is the implementation of an online estimation of error variance parameters. The estimation5

of observation error variance and, in addition the background error variance for 4D-Var is done at each observation vertical

level, using the Desroziers’ method. The variance parameters being estimated are in fact very robust over time, showing little

variability one day to the next. Finally all the experiments were done with comparable wall clock time for EnKF and 4D-Var

settings.

The study has also some limitations. An acknowledged difficulty often encountered in chemical data assimilation is the10

situation where both the model and the observations suffer from significant biases. This is the case for example with the

BASCOE CTM CO and ClO when using the Aura MLS datasets. Solving this problem represents a challenging task that we

have not conducted here, and would necessitate a dedicated study. Another limiting factor is the correlation length used in

this study. We have not attempted to estimate it, but rather have used what appears to be a reasonable value from past 4D-Var

experiments. The estimated error variances and thus the weight given to the observations are also linked to the correctness of15

the error correlation, and this issue could also be investigated further. A future development of the BASCOE chemical data

assimilation system would be a hybrid 4D-EnKF approach using the ensemble of models to construct a 4D background error

covariance matrix.

Other possibilities may be considered to properly compare two essentially different data assimilation systems. For example,

the 4DEnKF (Hunt et al., 2004) approach could be used that computes 4D error covariances from the ensemble of forecasts20

at several times within the assimilation window. This would allow a longer assimilation window to be used in the EnKF

experiment, making it more comparable to the configuration of 4D-Var. In this case, the EnKF analysis would be forced to

simultaneously fit all of the observations distributed over a longer window, while still satisfying the model equations, as in

4D-Var. Applying the model error in this 4DEnKF only at the beginning of each assimilation window would make it similar to

the strong-constraint version of the 4D-Var that was used.25

7 Code availability

Readers interested in the BASCOE code can contact the developers through http://bascoe.oma.be
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Figure 1. Schematic representation of the practical implementation of the 4D-VAR (top) and EnKF (bottom) assimilation methods in BAS-

COE. Black dots represent model state and observational information is depicted in blue. The black arrows represent model integrations by

one time step, vertical red arrows represent model state optimization (4D-VAR) or Kalman filter (EnKF). Green dots represent the analyses

at 0h which are used as initial conditions for the diagnostic 24-h forecasts (green arrows). For clarity, the number of 4D-VAR iterations has

been limited to 2 and the number of EnKF members has been limited to 3.
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Figure 2. Initial (INI) observation error covariance matrix of experiment A (dashed red), starting with R = (σo)
2, and B (dashed blue),

starting with R = (1.5 σo)
2 and their Desroziers’ (DRS) estimations (solid red and blue lines, respectively) using statistics of the first 24h.

The statistics is shown for O3, H2O and HCl.
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30 20 10 0 10 20 30
[%]

0.1

1

10

100

P
re

ss
u
re

 [
h
P
a
]

Mean [90 ◦ S,60 ◦ S]

30 20 10 0 10 20 30
[%]

0.1

1

10

100

Mean [60 ◦ S,60 ◦ N]

30 20 10 0 10 20 30
[%]

0.1

1

10

100

Mean [60 ◦ N,90 ◦ N]

0 10 20 30 40 50
[%]

0.1

1

10

100

P
re

ss
u
re

 [
h
P
a
]

Std Dev

0 10 20 30 40 50
[%]

0.1

1

10

100

Std Dev

0 10 20 30 40 50
[%]

0.1

1

10

100

Std Dev

CTM

EnKF

4D-Var

EnKF tracer

4D-var tracer

Figure 4. O3 OmF bias (top) and standard deviation (bottom) computed for the full chemistry CTM (green), EnKF (red), 4D-Var (blue)

based on the same model. The chemical tracer EnKF (dashed yellow) and 4D-Var (cyan) are also shown. OmF statistics is computed in

percent with respect to the assimilated EOS Aura MLS data for the period September-October 2008 and for three latitude bands (from left to

right: South Pole, Tropics - middle latitudes and North Pole).

25



45 30 15 0 15 30 45
[%]

1

10

100

P
re

ss
u
re

 [
h
P
a
]

Mean [90 ◦ S,60 ◦ S]

45 30 15 0 15 30 45
[%]

1

10

100

Mean [60 ◦ S,60 ◦ N]

45 30 15 0 15 30 45
[%]

1

10

100

Mean [60 ◦ N,90 ◦ N]

0 10 20 30 40 50
[%]

1

10

100

P
re

ss
u
re

 [
h
P
a
]

Std Dev

0 10 20 30 40 50
[%]

1

10

100

Std Dev

0 10 20 30 40 50
[%]

1

10

100

Std Dev

CTM

EnKF

4D-Var

Figure 5. HCl OmF bias (top) and standard deviation (bottom) computed for the full chemistry CTM (green), EnKF (red) and 4D-Var (blue).

OmF statistics is computed in percent with respect to the assimilated EOS Aura MLS data for the period May-June 2008 and for three latitude

bands (from left to right: South Pole, Tropics - middle latitudes and North Pole).
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Figure 6. HNO3 OmF bias (top) and standard deviation (bottom) computed for CTM (green), EnKF (red) and 4D-Var (blue). OmF statistics

is computed in percent with respect to the assimilated EOS Aura MLS data for the period September-October 2008 and for three latitude

bands (from left to right: South Pole, Tropics - middle latitudes and North Pole).
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Figure 7. H2O OmF bias (top) and standard deviation (bottom) computed for the full chemistry CTM (green), EnKF (red) and 4D-Var (blue).

OmF statistics is computed in percent with respect to the assimilated EOS Aura MLS data for the period September-October 2008 and for
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Figure 8. Mean N2O from the full chemistry CTM (green), 24 h forecasts from EnKF (red) and 4D-Var (blue), based on the same model,

and Aura MLS (black dots) and ACE-FTS data (triangles). 24 h forecast from chemical tracer EnKF (dashed yellow) and 4D-Var (cyan)

assimilation are also shown. The grey area shows the precision of Aura MLS data. The statistics are computed for September-October 2008

and for three latitude bands (from left to right: South Pole, Tropics - middle latitudes and North Pole).
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Figure 9. Verification of non-observed species from CTM (green), 24 h forecasts from EnKF (red) and 4D-Var (blue) assimilation against

MIPAS IMK data (black dots): mean CH4 (top) and mean NOx (bottom) profiles. The statistics are computed for September-October 2008

and for three latitude bands (from left to right: South Pole, Tropics - middle latitudes and North Pole).
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Figure 10. OmF bias (top) and standard deviation (bottom) between Aura MLS data and O3 analyses of EnKF (red), EnKF-CC (yellow) and

CTM (green), see text for acronym definition. The statistics are computed during 24h on September 15 2008.
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