Final Response to the Anonymous Referees

July 11, 2016

We thank all the referees for the detailed revision of the paper. The
author’s responses are marked in blue.

1 Response to the Referee 1

General

This paper represents a unique contribution on the comparison of EnKF
and 4D-Var approaches for the assimilation of chemical species. It provides
much insight, notably on issues related to inter-species error correlations
and localization. I congratulate the authors. I provide here only minor
suggested corrections.

Minor corrections:

L16: Change to: “one issue is the large number of ”

Done.

L19: Change “comparison reason ” to “comparison purposes ”

Done.

L182: Change “ will be a subject to ” to “will be subject to ”

Done.

L208: Define PSC

Done.

L211 Do not refer to MACC or define it

The MACC acronym has been defined.

L303 Change “has the background quality” to “includes a background
quality ”

Done.

L 501 -504 Apparent contradiction where precision level 14 ppbv seems
first to correspond to 38% error at L 501 while at line 503 it corresponds to
250%. This is likely because in the first case it corresponds to 4.6 hPa level
while in the other it corresponds to 1 hPa level. Sentence could be clearer.

We have modified the sentence as follows: “...the Aura MLS NoO preci-
sion is 24-14 ppbv (9-38%, relative to the observation mean at given altitude)
and its accuracy is 70-3 ppbv (9-25%) in the pressure range 100-4.6 hPa but
its precision drops to 14 ppbv (250%) at 1 hPa...”



L 698: why qualify as “tricky ” the Aura-MLS dataset?

We modified the phrase with “the Aura-MLS N5O dataset containing a
bias”

L707 End of sentence point needed after 5 hPa.

Done.

L709 “ approaching to them”, define what “them” represents. Not clear
as is.

Replaced with “keeping the model closer to the assimilated observations”

L727 Drop the reference to paper in preparation!

Done.

LL733: Suggest to change “accidentally ” by “incidentally ”

Done.

L826 Life time of ozone is that small, lower than a model time step
presumably of order 15 min?

Indeed.

Conclusion: Perhaps add as comment that an hybrid approach such
as popular 4D-EnVar approach could emerge as a good way forward for
chemical data assimilation.

The following sentence is added to the last paragraph of the conclusions:
“A future development of the BASCOE chemical data assimilation system
would be a hybrid 4D-EnKF approach using the ensemble of models to
construct a 4D background error covariance matrix.”

2 Responses to the Referee 2

This paper presents a comparison of the EnKF and 4D-Var data assimila-
tion methods applied to a chemistry transport model. These two methods
have been used extensively in applications to numerical weather prediction
(NWP), a field with which I am more familiar. It is interesting to see such
an intercomparison for an atmospheric chemistry model for simultaneously
assimilating observations of the concentrations of several chemical species.
General Comments:

1 Set up of assimilation windows

One major concern I have is related to the basic setup of the experiments.
Whereas intercomparisons in the context of NWP have generally used the
same data assimilation window length for the two approaches (typically 6h),
this study uses a different window length: 4D-Var is applied in its strong
constraint formulation with a 24h window, whereas the EnKF is used to
sequentially assimilate observations every 30 minutes (the time step length
of the forecast model). In addition, model error perturbations are added
every 30 minutes in the EnKF experiment, in contrast with the assumption
of no model error over the 24h assimilation window in the 4D-Var setup.
This difference in the configurations of the two methods seems to affect the



conclusions of the study, as acknowledged by the authors near the end of
the paper.

Alternative configurations could have possibly been chosen that would
have reduced these differences. For example, the 4D-Var could have been
implemented in its weak-constraint formulation, employing a model error
term every 30 minutes based on the same covariance matrix as used for
model error in the EnKF experiment. Alternatively, a 4D-EnKF approach
could have been used with the EnKF in which ensembles of model solutions
over a longer assimilation window are used to construct a 4D background
error covariance matrix (as is done in most current implementations of both
EnVar and the EnKF for NWP). In this case a window shorter than 24h (say
6h) would likely be preferable (and used for both EnKF and 4D-Var) to avoid
problems with horizontal localization when a chemical species is advected
within the time window by a distance comparable to the localization length
scale. The authors should mention these two alternative approaches and
discuss how they could have reduced the differences seen in some of their
results.

As a consequence, the difference in window length also likely has a direct
impact on the quality of the forecasts, since the 4D-Var forecasts are started
from a state that may not be in as good agreement with the most recent
observations as in the case of the EnKF. It would be useful to show the fit of
the state used to initialize the 24h forecasts with respect to the observations
valid at the same time for the EnKF and 4D-Var experiments, or at least
mention in the text how this fit differs between the two. I wonder if this
explains some of the differences in results for HCL.

We appreciate the concern raised by the referee to mention alternative
4D-EnVar approach (and it was done), however the purpose of this paper
is not to try to develop a hybrid method, but first to compare two data
assimilation approaches in the set-up that is usually found in chemical ap-
plications. It is current practice to use a 24 h window in stratospheric 4D-Var
chemistry because of diurnal cycles with many chemical species and because
of the polar orbiter limb sounder whose spatial coverage is far too limited
in 6h, whereas a 24 h does provide an acceptable complete spatial coverage.
The BASCOE 4D-Var system has been running in near-real time since the
early 2000’s using the 24 h assimilation window. On the other hand, since
the early 2000’s sequential methods, such as simplified KF and later with
the EnKF, have been running with model error and with a time window of
1 hour. In our previous work, we did compare 4D-Var and EnKF but for
chemical transport with no chemistry (Skachko et al 2014), referred as S14,
and found nearly identical results, despite the fact that BASCOE EnKF used
0.5 h ensemble model forecasts and 4D-Var, the 24 h assimilation window.
From a dynamical system point of view, chemical transport and NWP are
quite different. We do not find growth of error in chemical transport. And
adding chemistry produces a system with a rather dissipative behaviour.



This is corroborated by the fact that chemical transport model simulation
(without chemical data assimilation) shows stable differences with chemical
observations over periods of months and even years. So we disagree that the
difference in window length has such an impact in the context of chemical
transport. What we did here is to add chemistry to this problem and see
what are the implications due to chemistry. In particular we acknowledge
that the window length and having model error or not does have an impact
on certain species. However, in the context where the chemistry would be
directly coupled with an NWP model, a 6hr time window would need to
be considred. The cost of operational implementation of such an approach
would be nevertheless prohibitive. Lower resolution, one way coupling or
simplified chemistry (which displays very different characteristics in terms
of model error) are most likely to be considered for such set-up.

2 Inter-species background error covariances The discussion regarding
the estimation and treatment of inter-species background error covariances
is somewhat unclear. The authors state that because it seems suitable to use
the same model error covariances for each species it follows that the main
source of error is from the transport. However, then the authors claim that
the cross-species background error covariances are weak and not sufficiently
well estimated with the EnKF ensemble and therefore should be set to zero
when assimilating the observations. It seems to me that if the errors of the
different species are dominantly affected by the same common source (i.e.
the transport), then their errors should be correlated. Or maybe this is not
the case due to the dependence of the concentration errors from transport
on the concentration spatial gradients, which may be very different for each
chemical species. Please provide some comment on this. Also, I think the
authors need to stress how the relatively small size of the ensemble (20 mem-
bers versus the usual size for NWP of O(100)) could affect their conclusions
regarding the utility of the cross-species covariances. Presumably with a
much larger ensemble they would be better estimated and therefore could
be more useful.

Although it is the same transport that acts on all species, the resulting
distribution of species are not necessarily correlated. Long-lived species for
instance which are the best candidates for such correlations show in some
cases complicated correlations patterns that depend on latitude and height
and vary in time (e.g. Sankey and Shepherd 2003). Besides, preliminary
experiments with BASCOE-4D-Var system showed that the cross-covariance
between innovations of long-lived species is rather noisy and assimilation
experiments that accounts for cross-covariance between long-lived species in
the background error term do not show in practice significant improvements
in the analysis quality. This additional information is added in the article
text.

An example of weakly related chemical species is considered in the article:
the ozone and NoO are assimilated taking into account the cross-correlation



terms in the background error covariance matrix. The spurious errors, that
arise from the use of a rather small ensemble, can be reduced by using larger
ensemble, however the NWP ensemble of O(100) would not be sufficient to
solve the problem. And the computation cost of such ensemble data as-
similation becomes unreasonably expensive. To our knowledge, all groups
working on chemical data assimilation simply put the cross-correlations be-
tween weakly chemically related species to zero. We don’t try to solve this
problem, but only provide an illustration. The solving of the automatic
localization procedure between species would be a subject of another study
which is out of scope of the current paper.

Specific comments:

In several places the term “observation errors” is used where I believe
“observation error variances” or covariance or statistics is really what is
meant.

Done.

Similarly, on page 3, line 2 I am guessing that “the covariance inflation”
refers to the inflation of the “background error covariance”, please be more
precise.

The sentence is rewritten as: “In the same line of thought, the Desroziers’
method (Desroziers, 2005) was also used to simultaneously estimate the
covariance inflation factor and the observation error variance(Li et al. 2009,
Gaubert et al. 2014).”

page 1, line 10 “where we keep both estimates:” This is not clear. Is it
meant that you keep both estimates fixed in time? Please clarify.

We wanted to say that in the 4D-Var experiments, both background and
observation error covariance matrices were estimated using the Desroziers’
method. To be more clear on this, I reformulated the sentence as follows:
“For comparison purposes, we apply the same estimate procedure in the 4D-
Var data assimilation, where both, the background and observation error
covariance matrices are estimated using the Desroziers’ method.”

page 1, line 12 “a single model error based” It is difficult to decipher
what is meant. I suppose this refers to using the same specified model error
covariance matrix for each chemical species. Please make this more clear.

This part is reformulated as: “However in EnKF, the background error
covariance is modelled using the full chemistry model and a model error
term which is tuned using an adjustable parameter. We found that it is
adequate to have the same value of this parameter based on the chemical
tracer formulation that is applied for all observed species.”

page 1, line 15 “sampling noise errors” and “These errors need to be
filtered out”. This is awkward wording. Better to talk about “sampling
error due to the use of a small ensemble leading to spurious covariances”
and “setting these spurious covariance to zero”.

This is rewritten in one sentence as: “The second issue in EnKF with
comprehensive atmospheric chemistry models is the spurious error, that oc-



curs when species are weakly chemically related at the same location.”

page 1, line 20 “not too small chemical life times” This does not sound
sufficiently quantitative. Could you instead say something like “chemical
lifetimes longer than” where you compare the lifetimes to some relevant
time scale, e.g. the model time-step or assimilation window length.

This is rewritten as: “If the erroneous chemical modelling is associated
with moderately fast chemical processes, but whose life-times are longer
than the model time step, then EnKF performs better,...”

page 2, line 6-7: It would make sense to also refer here to one of the first
EnKF /4D-Var comparisons performed with real NWP systems done at the
same center as one of the coauthors: Buehner et al. 2010 (2-part paper in
MWR).

Done.

page 2, line 29-34: It is not clear why the issue of estimating error
statistics for many chemical species is specific to the EnKF, as the text now
seems to imply. Clearly this is equally important and challenging for the
application of 4D-Var? Please clarify.

Our previous work, S14, based on a chemical tracer version of the CTM
showed that the EnKF is much more sensitive to the parametrization of the
error statistics than the 4D-Var. In order to make it more clear, I put the
following text at the end of the next paragraph: “Contrary to the EnKF, the
4D-Var is much more tolerant to the parametrization of the error statistics,
as it was shown in S14. Hence, the online estimation of the error statistics
is of great importance only for EnKF.”

page 3, line 4 “background error” should be “background error covari-
ance”.

Done.

page 4, line 13, 15: Define the acronyms PSC and MACC.

Done.

page 5, line 15: It would help to state here that the same background
error correlations are used for each chemical species and that the between-
species covariances are assumed to be zero.

The sentence of line 24-25: “...A'/2 is the spatial correlation matrix
defined on a spherical harmonic basis hence diagonal;” is modified as follows:
“...AY? is the spatial correlation matrix, identical for each chemical species,
defined on a spherical harmonic basis hence diagonal;” And a new sentence is
added at the end of the same paragraph: “The between-species covariances
are assumed to be zero in the background error covariance matrix By.”

page 6, line 8: gamma is really set to 57 According to equation 5 this
means an observation is rejected if its innovation is larger than 2.2 stddev
(i.e. sqrt(5) = 2.2). Maybe equation 5 should have 72 instead of just ?

Yes, 72 is written now in the equation.

page 6, line 20: the parameter N (ensemble size) needs to be defined
here, since this is where it first appears.



The parameter N is now defined here.

page 6, line 23: “are normally distributed random numbers” should prob-
ably be “are vectors of independent normally distributed random numbers”
otherwise equations 6 and 7 do not make sense.

Done.

page 6, lines 26-29: The two sentences about the application of the
Desroziers method seems out of place here, since the method has not yet
been introduced. Considering moving this to section 2.5.

The text is modified: “...where the adjustable scaling factor s,(i) is es-
timated using the method described in Sect.2.5”. And the second sentence
is written as: “Besides, the current version of EnKF allows for more accu-
rate observation error covariance estimation with respect to S14 because it
computes s,(i) as a function of observation vertical pressure level.”

page 7, lines 8-9: “To this end, the EnKF algorithm accounts now for
a new effective procedure to find a current local sub domain in the model
space.” It is not at all clear what this sentence means. It must be better
explained. Is the algorithm similar to that described by Houtekamer et al.
(2014, MWR - “Parallel implementation of an EnKF”)?

The sentence is now written as: “To this end, the EnKF algorithm
accounts now for a procedure to find a current local sub domain in the
model space using the K-D tree, which is a binary search tree where the
comparison key is cycled between K components (K = 3 in our case, because
the observation location is a 3-dimensional vector). More information on the
method can be found on the Web or in any textbook on data structures (e.g.
Gonnet and Baeza-Yates 1991).”

page 8, line 3: I believe “variance” should be “standard deviation”.
Please also check the entire paper to ensure standard deviation and variance
are used correctly. Also, as already mentioned, ensure the word “error” is
not used in places where “error standard deviation” or “error statistics” or
“error covariance” is actually what is meant. This is a common mistake that
can be very confusing for some readers.

Done.

page 8, lines 32: “and thus goes along in arguing that they represent
some true error statistics.” This does not sound very solid as a logical
argument. Consider improving. Similarly for the following 2 sentences. It
is probably not necessary to make this assertion at this point in the text.

The text is modified as: “The time evolution of the error variance scaling
factors at individual levels is, as in Figure 3, (result not shown) generally
consistent over time, especially for the EnKF estimates. Furthermore, we
note that for the EnKF results, the scaling factors of any species show no
drift in time. We argue from this result that there is apparently no need
to have a different model error « for different species. Thus we conclude
that for a chemical transport models, the main source of model error can be
attributed to transport errors primarily.”



page 9, line 4: “10 iterations” Is this enough to obtain a substantial
reduction in the amplitude of the cost function gradient (i.e. at least a
factor of 10)7

The reduction in the gradient of the cost function depends on the assimi-
lated observations. In the case of EOS Aura-MLS data, the reduction varies
between the factor of 6 to 10. The reduction is more important when the
number of iteration is doubled, however it does not lead to any significant
improvement in the OmkF statistics. For the practical purposes, the near-
operational BASCOE 4D-Var system used in the MACC project is run with
10 iterations, because the chemical modelling is essentially time-consuming
task. In a similar data assimilation case, Elbern et al. (2010) utilize between
12 and 16 iterations.

page 9, section 3: Please provide some additional general information
about the observations assimilated: how much of the globe is observed dur-
ing 24h? what is the horizontal and vertical spatial resolution?

The 24h of the 4D-Var assimilation window is chosen because within
this period, Aura-MLS data provide near-global coverage with gaps that are
dispersed regularly within the correlation length of the data assimilation,
i.e. 800km. The following text is added: “The EOS Aura-MLS data cover
the latitude range between 82°S and 82°N with an along-track separation of
around 165 km between consecutive scans. Around 3500 vertical scans are
performed every day. The vertical resolution varies for different species.”

page 10, section 4.1 and verification in general: What observations are
used for verification? For example, are all observations with a valid time
within 1h or 3h or 7h of the valid time of the forecast used? Since you are
always verifying 24h forecasts valid at 0000UTC each day (if I understood
correctly), does this tend to focus the verification in only certain geograph-
ical regions due to the orbit of the satellite?

At every 0.5 h model time step of the 24 h forecast, the BASCOE system
computes the OmF statistics. Thus, figures 4-10 show the statistics where all
observations between 0 h and 24 h UTC, distributed within a given latitude
band and chosen period, are taken into account.

page 11, line 16-17: related to the first general comment above, I think
the difference seen here between the 4D-Var and EnKF results may be due
to the difference in assimilation window lengths, please add a comment here.

In the context of chemistry, the difference in data assimilation window
lengths really has implications, as pointed out by the referee. Our conclu-
sions, page 14, line 32-32 and page 15 line 1: “T'wo main reasons are respon-
sible for this better performance. First, EnKF has a short-time forecast
followed by frequent observational updates that is possibly more adequate
for moderately fast chemical processes (but not for processes of life-time
smaller than the model time step). Second, the ensemble of CTM’s provides
better representation of the model variance.”

page 12, line 32: “This is due to the automatic rejection by the 4D-Var



of most observations..” What does this mean? Is it because the 4D-Var
cannot make the forecast model solution fit the observations over the 24h
assimilation window (due to model error) or is it referring to some quality
control procedure (which I though was deactivated for this chemical species
at the pressures considered here)?

Yes, the background quality check (BgQC) procedure rejects the observa-
tions. BgQC is active for both EnKF and 4D-Var data assimilation systems,
though it works differently for each systems when their background states
differ.

page 13, line 23: “..model error covariance..” should be “..background
error covariance in observation space..”

Done.

page 13, line 26: “..localization of the error variance..” should be “..lo-
calization of the error covariance..”

Done.

page 15, last paragraph: Another limitation is that much fewer ensem-
ble members were used as compared with typical NWP applications. This
should be mentioned.

The ensemble used in this study is typical for chemical data assimilation.
Here, we don’t aim to compare BASCOE system with NWP applications.

General comments:

I am confused by the authors’ response to my main concern, related to
the difference in the window length used for the 4D-Var and EnKF exper-
iments. In response to my first general comment, the authors’ response is:
”So we disagree that the difference in window length has such an impact in
the context of chemical transport.” Then, when I later bring up the same
point again in relation to the discussion of the results, the authors’ response
is: ”In the context of chemistry, the difference in data assimilation window
lengths really has implications, as pointed out by the referee.”

We should be more clear on this. The first mentioned sentence means
that in the context of chemical tracer transport only (without chemistry
system), there is no difference in using an EnKF with 30 min ensemble
model forecasts and a model error term or a 4D-Var with 24 h assimilation
window without model error term. This was shown in our previous article
(Skachko et al 2014). The purpose of the present work is to reveal the role
of the chemistry system (including interactions between chemical species)
in the context of our two data assimilations that are configured as they
are normally used in chemical data assimilation applications: one model
time step ensemble model forecasts within EnKF, and 12 - 24 h of 4D-Var
assimilation window.

Also, I believe the authors’ misinterpreted part of my first general com-
ment. I made no suggestion that a hybrid 4D-EnVar experiment be per-
formed, or even mentioned. What I did suggest was that a 4D-EnKF ap-
proach (with model error perturbations only applied at the beginning of each
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window to be equivalent with strong-constraint 4D-Var) should be consid-
ered and mentioned, since this would allow a longer window to be used for
the EnKF. In this case, the analysis would be forced to simultaneously fit all
of the observations distributed over a longer window, while still satisfying
the model equations, as in 4D-Var.

I appreciate that the authors have tested two data assimilation methods
in configurations as they are usually used for chemical applications. This
point should be emphasized in the paper to justify the choice. However, it
would be helpful to inform the reader that other configurations are possible
that would reduce the differences between the two approaches (i.e. including
model error in weakconstraint 4D-Var and using 4D covariances with a longer
window in the EnKF). Otherwise, readers will conclude that one approach
(i.e. EnKF or 4D-Var) is fundamentally better or worse than the other in
some respects, whereas it is more likely the choice of how each approach was
implemented that is more important.

The fourth paragraph of the introduction is modified as follows: “But
how do the EnKF and the 4DVar methods compare when photochemical
reactions are taken into account? Do the results depend on the assimilated
chemical species? Using actual satellite datasets and operational configura-
tions, what are their respective performances in terms of precision, accuracy
and computational efficiency? What is the role of the practical implementa-
tion of each method, when the full description of the stratospheric chemistry
is taken into account in the CTM. These are the main questions addressed
in this paper.”

The conclusions start with: “We have conducted a comparison of an
EnKF and 4DVar data assimilation system using a comprehensive strato-
spheric chemical transport model. We considered 4D-Var and EnKF config-
urations that are normally used for chemical data assimilation applications.
Both data assimilation systems have online estimation of error variances
based on the Desroziers’ method and share the same correlation model for
all prescribed error correlations (i.e. the background error covariance for 4D-
Var, initial error and model error for EnKF) so that each data assimilation
system is nearly optimal and can also be compared to each other. A pre-
vious comparison study by (Skachko et al. 2014) showed that for chemical
tracer transport only both assimilation system provide results of essentially
similar quality despite the difference in practical implementation of each
method: the 4D-Var was applied in its strong constraint formulation with a
24 h assimilation window with the assumption of no model error over this
period, whereas the EnKF was used to sequentially assimilate observations
every 30 minutes with model error perturbations added every 30 minutes.”

Then the following text is added at the end of our conclusions: “Another
possibilities may be considered to properly compare two essentially different
data assimilation systems. First, a 4D-EnKF approach, where model er-
ror perturbations only applied at the beginning of each 4D-Var assimilation
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window to be equivalent with a strong-constraint 4D-Var, may be consid-
ered. This would allow a longer assimilation window to be used for the
EnKF. In this case, the analysis would be forced to simultaneously fit all
of the observations distributed over a longer window, while still satisfying
the model equations, as in 4D-Var. Second, the use of a weak-constraint
4D-Var including model error would also reduce the differences between two
considered approaches. ”

Specific comments:

In response to the third specific comment, your revised sentence seems
imprecise: ”For comparison purposes, we apply the same estimate procedure
in the 4D-Var data assimilation, where both, the background and observa-
tion error covariance matrices are estimated using the Desroziers method.”
I presume it is only the scale factors for both covariance matrices that are
estimated and not the full matrices? Please improve the wording.

The sentence is now written as: ”For comparison purposes, we apply
the same estimate procedure in the 4D-Var data assimilation, where both
scale factors of the background and observation error covariance matrices
are estimated using the Desroziers method.”

In response to the fifth specific comment, your revised sentence does
not clear up my concern: ”The second issue in EnKF with comprehensive
atmospheric chemistry models is the spurious error, that occurs when species
are weakly chemically related at the same location.” The term ”spurious
error” is very ambiguous how can error be spurious? I believe this is again
where ”error” is used in place of "error covariance”. Only the ”estimated
error covariance” is spurious. [The word ”error” on its own really should be
reserved for the difference between an estimate and the truth and I don’t
think this is what is meant in this case. I realize that some published papers
have used ”error” to mean ”error standard deviation” or ”error covariance”,
but I believe this has needlessly caused confusion for some people in the DA
community.|

The sentence is rewritten as follows: ”The second issue in EnKF with
comprehensive atmospheric chemistry models is the noise in the cross-covariance
between species, that occurs when species are weakly chemically related at
the same location.”

I am satisfied with the authors responses. I only suggest the following
text be used instead of the added text on page C4 of the authors latest re-
sponse (which incorrectly referred to the ”4D-Var” window when describing
the 4ADEnKF approach): ”Other possibilities may be considered to properly
compare two essentially different data assimilation systems. For example,
the 4DEnKF (Hunt et al., 2004) approach could be used that computes
4D error covariances from the ensemble of forecasts at several times within
the assimilation window. This would allow a longer assimilation window to
be used in the EnKF experiment, making it more comparable to the con-
figuration of 4D-Var. In this case, the EnKF analysis would be forced to
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simultaneously fit all of the observations distributed over a longer window,
while still satisfying the model equations, as in 4D-Var. Applying the model
error in this 4DEnKF only at the beginning of each assimilation window
would make it similar to the strong-constraint version of the 4D-Var that
was used.

We thank the referee for the fruitful discussion of the paper. The pro-
posed text has been taken into account as is.

3 Response to the Referee 3

This study compares EnKF and 4D-Var data assimilation methods applied
to a chemistry transport model. The purpose is to compare relative merits
of the two methods on long time (short windows) atmospheric chemistry
data assimilation with prescribed flow fields.

Major comments:

1 EnKF Experimental setup: Page 6: ”the model error term is added to
observed species only.” What is the rationale for this?

Perturbing all 58 species of the model state vector results in the noisy
cross-species error covariances. A simplified example of such set-up (where
the cross-covariances between the ozone and NO only) is shown in the ex-
periment EnKF-CC. When non-observed species are not (or weakly) chem-
ically related with the observed species, the noise introduced to the EnKF
error covariances essentially

The same L operator seems to be used both for 4D-Var and EnKF, but
at lest in the definition of n in (7), and (1) or (2), L lives in different spaces.

The operator L is defined by Eq. (3) for both, 4D-Var and EnKF systems
in the spectral space. The algorithm to generate EnKF state perturbations
is then identical to the algorithm of the 4D-Var background error covariance
generation. However, the operator L is applied to the normally distributed
random deviate (; (Eq. (6)) rather than to the control variable £ (Eq. (1))

The authors claim that the same error covariances are used in both cases
[page 14: ”the same correlation model for all prescribed error correlations
(i.e. the background error for 4D-Var, initial error and model error for
EnKF)”]; however, on page 8 around line 10, they seem to indicate different
localization operators that come in to build B. This should be clarified.

We have given in the manuscript a reference to our previous study, where
it had been explained in more details: ”The EnKF uses as localization
method a Schur product with a compact support correlation function. The
use of Schur product reduces the resulting correlation length scales. In order
to maintain the correlations of the EnKF analysis comparable to those of the
4D-Var system, a different setting of the correlation length scales is adopted
to generate the model error. Let C be a matrix resulting from the Schur
product of two matrices A and B: C = A o B. If the correlation length
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scales of A and B are, respectively L4 and Lp, the correlation length scale
of C is given by Gaspari and Cohn, (1999):

1 1 1
oI W
In our case, L4 corresponds to the correlation length scale L. of the com-
pact support correlation function p and Lp corresponds to the correlation
length scale of the forecast ensemble covariance matrix B., denoted in the
following by L.. Similarly, Lo corresponds to the correlation length scale
of the analysis ensemble covariance matrix, denoted in the following by the
effective correlation length scale L.rr. As we would like to maintain the
Lery equal to the Gaussian correlation length scales used in the 4D-Var
(i.e. L6L:8OO km and Lg=1 level), we need to set Lj,. and L. such that
Lepp=1Lo. "

Cross species localization: In Section 5 the authors discuss the effects of
interspecies localization. It is unclear to me what is done here. Is ENFK-CC
the same as EnKF except that in EnKF-CC the O3 and NO2 are localized?
If that is the case, then this is problematic because one cannot choose to
localize some species and not localize the others because it introduces tran-
sients that may lead to spurious bias oscillations. This should be clarified
as well.

The experiment, denoted as EnKF-CC, involves the cross-species error
covariance between two weakly chemically related species, the ozone and
N5O. In other words, we consider the assimilation test, where the observa-
tional updates of ozone are obtained using both the ozone and NoO mea-
surements, and the updates of NoO are also computed using both datasets.
This is done in addition to the procedure of spatial localization that has
been applied to all observed species.

Minor comment:

Page 4 line 2: ”cross-covariance between species are taken into account
automatically using the 4D-Var adjoint mode” is not clear to me. How is
this achieved?

In the 4D-Var approach, we have a direct and an adjoint chemistry
model. The chemistry model includes all possible chemical interactions
between species. Hence, the 4D-Var computes the observational updates
of all model state variables (observed and non-observed) from all available
observations.
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Abstract. We compare two optimized chemical data assimilation systems, one based on the ensemble Kalman filter (EnKF)
and the other based on four-dimensional variational (4D-Var), using a comprehensive stratospheric chemistry transport model
(CTM). The work is an extension of the Belgian Assimilation System for Chemical ObsErvations (BASCOE), initially designed
to work with a 4D-Var data assimilation. A strict comparison of both methods in the case of chemical tracer transport was done
in a previous study and indicated that both methods provide essentially similar results. In the present work, we assimilate
observations of ozone, HCI, HNO3, H>O and N5O from EOS Aura-MLS data into the BASCOE CTM with a full description
of stratospheric chemistry. Two new issues related to the use of full chemistry model with EnKF are taken into account. One
issue eoneerns-to-is a large number of error variance parameters that need to be optimized. We estimate an observation error
variance parameter as function of pressure level for each observed species using the Desroziers’ method. For comparison
reasenspurposes, we apply the same estimate procedure in the 4D-Var data assimilation, where we-keep-both-estimates:-both
scale factors of the background and observation error varianeescovariance matrices are estimated using the Desroziers’ method.
However in EnKF, the background error covariance is modelled using the full chemistry model and a model error term which is
tuned using an adjustable parameter. We found that it is adequate to have a-single-medel-error-the same value of this parameter
based on the chemical tracer formulation that is applied for all observed species. This is an indication that the main source of
model error in chemical transport model is due to the transport. The second issue in EnKF with comprehensive atmospheric

chemistry models is fh%samp}mgeffef&befwee&speetes—\&%e& s the noise in the cross-covariance between species, that occurs

when species are weakly chemically related at the same location. These errors need

to be filtered out, in addition to a localization based on distance. The performance of two data assimilation methods was
assessed through an eight-month long assimilation of limb sounding observations from EOS Aura-MLS. The paper discusses
the differences in results and their relation to stratospheric chemical processes. Generally speaking, EnKF and 4D-Var provide
results of comparable quality but differ substantially in presence of model error or observation biases. If the erroneous chemical
modelling is associated with nettee-small-chemical-moderately fast chemical processes, but whose life-times are longer than the
model time step, then EnKF performs better, while 4D-Var develops spurious increments in the chemically related species. If,
on the other hand, the observation biases are significant, then 4D-Var is more robust and is able to reject erroneous observations,

while EnKF does not.
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1 Introduction

The Ensemble Kalman Filter (EnKF) and the four-Dimensional Variational algorithm (4D-Var) are widely used data assimila-
tion methods that utilize the model to propagate observational information in time and space into an estimate of the state. Each
method is built around different assumptions and has its own merits. But to some extent, the relative merits are application de-
pendent. In the context of meteorological data assimilation, the relative advantages of these two methods have been discussed
by Lerene{(2003)-and-Kalnay-et-al<2007)-Lorenc (2003); Kalnay et al. (2007); Buehner et al. (2010a, b) to name a few, and it
has promoted the development of new hybrid methods such as 4DEnVar (Lorenc et al., 2015) and En4DVar (Liu et al., 2008;
Poterjoy and Zhang, 2015). In atmospheric chemistry there are, however, very few comparison studies. The purpose of this
paper is to compare carefully optimized EnKF and 4D-Var chemical data assimilation systems for an extended time period
using the same Chemistry-Transport Model (CTM) and same observations.

A short literature review discussing the Chemical Data Assimilation (CDA) problems related to EnKF and 4D-Var, their
inter-comparison and application to the atmospheric chemistry modelling is already given in Skachko et al. (2014, hereafter
denoted S14). More recent review including future prospects for coupled chemistry-meteorology models is given by Bocquet
et al. (2015).

As in S14, here we use BASCOE (Belgian Assimilation System for Chemical ObsErvations) environment. BASCOE was
designed to assimilate satellite observations of chemical composition into a stratospheric CTM originally using the 4D-Var
assimilation method (Errera et al., 2008; Errera and Ménard, 2012). S14 described the implementation of the EnKF as an
alternative assimilation method in BASCOE and compared it with the original 4D-Var approach, using carefully calibrated
error variances for both methods and applying them to observations of ozone which was considered as a passive tracer. Indeed
this preliminary paper performed the comparison in a chemical tracer transport framework, i.e. taking only transport into
account while neglecting chemical reactions. Our results showed that in this framework the two methods give nearly identical
performance. This outcome can be interpreted as a consequence of the dynamics of tracer error covariances: as noted early
on by Cohn (1993) and Ménard and Daley (1996), such error covariances follow the characteristics of the flow. Hence in the
absence of model error, there is thus no distinction between a filtering (EnKF) and a smoothing (4D-Var) algorithm.

But how do the EnKF and the 4DVar methods compare when photochemical reactions are taken into account? Do the
results depend on the assimilated chemical species? Using actual satellite datasets and operational configurations, what are
their respective performances in terms of precision, accuracy and computational efficiency? What is the role of the practical
These are the main questions addressed in this paper.

The application of the multi-variate EnKF method to an assimilation system with the full chemistry should in principle
address two important issues: the estimation of a large number of input error statistics; and the problem of localization between
chemical species.

The first issue is the large number of input error statistics that is needed (e.g. the observation error variances for each

species at each vertical levels). Clearly, an online estimation of error statistics is desirable to accomplish this task. In an
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idealized framework, Mitchell and Houtekamer (2000) proposed an adaptive EnKF where the model error parameters were
estimated using innovation statistics within a maximum likelihood method. In the same line of thought, the Desroziers’ method
(Desroziers et al., 2005) was also used to simultaneously estimate the covariance inflation factor and the observation errors-error
variance (Li et al., 2009; Gaubert et al., 2014). Ménard (2016) also showed that the Desroziers’ observation variance estimates
converge to the truth if the background error covariance is close to the truth, which seems to be a reasonable assumption for

EnKF background error covariances, when the x? condition (Ménard and Chang, 2000) is respected. Contrary to the EnKF, the

4D-Var is much more tolerant to the parametrization of the error statistics, as it was shown in S14. Hence, the online estimation

of the error statistics is of great importance only for EnKF.
The second issue related to the implementation of a multi-species EnKF is the localization between species. It is well

known in EnKF applications that a tapering of the sampling error correlations is needed when the true error correlation is
not close to +1 or -1 (e.g. Anderson, 2012). For correlations that depend on distance, a widely used sampling error correc-
tion is provided by the Schur product of a compact support correlation function (Gaspari and Cohn, 1999) to the sample
covariance. However, in comprehensive atmospheric chemistry models that have many prognostic chemical species, sampling
errors between species at the same location are also expected to occur. Long-lived species for instance which are the best
candidates for such correlations show in some cases complicated correlations patterns that depend on latitude and height and
in time (e.g. Sankey and Shepherd, 2003) . Besides experiments with BASCOE-4D-Var system showed that
the cross-covariance between innovations of long-lived species is rather noisy and assimilation experiments that accounts for
cross-covariance between long-lived species in the background error term do not show in practice significant improvements
in the analysis quality. The approach to this-the cross-species sampling correlation noise within a sequential data assimilation

has not been fully explored yet. Several studies in EnKF chemical data assimilation use a brute force species localization that

relimina

consists in zeroing-out cross-species covariances. This is the case for example for Tang et al. (2011) and Gaubert et al. (2014)
where only O3 is observed and where all cross-covariances between ozone and other species are zeroed-out in order to reduce
the noise in the analysis. In an ozone assimilation study, Curier et al. (2012) kept the cross-covariances between Oz and
some other strongly coupled species, in particular NO, NOy and VOC'’s, as well as the error covariances with the boundary
conditions (O3 dry deposition and model top boundary condition). They showed that each of these kept cross-covariances give
rather similar impact on the ozone analysis. Eben et al. (2005) in an multi-species air quality EnKF assimilation of surface
O3, NO and NO; measurements indicated that in order to reduce the sampling noise they kept the cross-covariances between
these species only at the surface. In another study, Miyazaki et al. (2012) assimilated simultaneously NO5, O3 CO, and HNOj3
tropospheric chemical species along with the estimation of surface emissions. Using verification against satellite observations,
such as innovation variance, they found that cross-covariance between chemical species need to be set to zero unless they are
strongly chemically related. Examples of strongly chemically related species are members of the NOy family, or CO with
VOC'’s. Miyazaki et al. (2012) also allowed the coupling between NOs and emissions of NOs, or the CO with the emissions of
CO, but set to zero the cross-covariance between emissions of NO,, and CO. Keeping the cross-covariance with the boundary

conditions (surface emissions and lateral boundary conditions) was also argued in Constantinescu et al. (2007). Overall, these
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studies indicate that when there is a believed strong correlation between observed and modelled species (or boundary condition)
then these can be kept in the EnKF, but otherwise to reduce noise, all other cross-covariances are better be zeroed-out.

In this paper we perform an assimilation with EnKF and 4D-Var of several species in the stratosphere that are not necessarily
directly chemically linked and with real-life constraints. The lifetimes of the assimilated species are quite diversified and vary
with altitude. We use a state-of-the-art CTM that is in fact in constant improvement, but also has some deficiencies. We use
limb sounding observations that give vertically resolved measurements, and thus there is a need to have vertically resolved
error statistics. As it was shown in S14, the EnKF is more sensitive to the observation error statistics than 4D-Var assimilation.
Yet, to provide a consistency between the two assimilation systems, the observation error statistics of 4D-Var will be a-subject
to the same Desroziers’ estimation procedure. Localization between species, that is needed in EnKgF, is in fact not applied to
4D-Var, since the cross-covariance between species are taken into account automatically using the 4D-Var adjoint model.

The paper is organized as follows. The next section describes the main components of the BASCOE Data Assimilation
System (version 5.8): the common CTM, the 4D-Var system and the EnKF system. It also describes the implementation of
Desroziers’ method and the tuning of the error covariances in each system. The assimilated observations and independent data
used to validate the results are given in Sect. 3. Section 4 describes the results of our assimilation and model experiments.
And Sect. 5 discusses a separate EnKF experiment where the cross-species correlations are taken into account. Finally, some

conclusions are given in Sect. 6.

2 The BASCOE Data Assimilation System
2.1 The Chemistry-Transport Model

In this study, all numerical experiments are performed with the Belgian Assimilation System for Chemical ObsErvations
(BASCOE) and its underlying Chemistry Transport Model (CTM). The BASCOE CTM computes the temporal evolution of
58 stratospheric chemical species accounting for the advection, photochemical reactions and a parametrization of PSC (Polar
Stratospheric Clouds) microphysics. We used a CTM configuration nearly identical to the one described by (Lefever et al.,
2015) for Near Real-Time production of 4D-Var analyses as part of the MACC (Monitoring Atmospheric Composition and
Climate) project. Here we provide a brief reminder of its most salient features.

All species are advected by the Flux-Form Semi-Lagrangian scheme (Lin and Rood, 1996), here driven by ERA-Interim
wind fields (Dee et al., 2011). The horizontal resolution is set at 3.75° longitude by 2.5° latitude. The model considers 37
levels from the surface to 0.1 hPa, which is a subset of the 60 levels of ERA-Interim that excludes most tropospheric levels.
Hence The CTM state is described by the vector x € R™ of length n = 96 x 73 x 37 x 58 ~ 1.5 x 10”. The model time step is
set to 30 minutes.

The photochemical scheme of BASCOE account for 208 stratospheric chemical reactions: 146 gas-phase, 53 photolysis, 9
heterogeneous. Photolysis rates are provided by the Jet Propulsion Laboratory (JPL) recommendations (Sander et al., 2006).
The computation of the photolysis rates is based on the Tropospheric Ultraviolet and Visible (TUV) radiative transfer package
(Madronich and Flocke, 1999).
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2.2 Setting up the time windows

In order to describe the practical implementations of the 4D-Var and EnKF algorithms in BASCOE, we must first explain
the different set-up of their assimilation windows with respect to time. This is schematically shown by Fig. 1. The 4D-Var
assimilation window is set to 24 h, i.e. this is the duration of the forward and backward integrations of the CTM and its adjoint.
Each 4D-Var iteration is followed by a minimizing procedure (see Sect. 2.3 for more details). In this 4D-Var implementation, the
24 h forecast is defined as the first forward model simulation starting from the analysis of the previous assimilation window. All
4D-Var assimilation cycles save the model state in observation space during these forecasts, in order to compute Observation-
minus-Forecast (OmF) statistics discussed below.

The EnKF initializes its ensemble of model states from one given state using a procedure described in Sect. 2.4. The EnKF
assimilation is then based on ensembles of short model forecasts which have the same duration as the CTM time step, i.e. 30
minutes, followed by the observational update of each ensemble member. The updated ensemble states (analyses) are used then
as initial states for the next ensemble forecast. Hence, there is no practical need to compute the 24 h forecast (green line) as in
the 4D-Var approach. However we have introduced this option in the EnKF in order to allow a consistent comparison with the
4D-Var forecasts. Hence in the EnKF approach, the 24 h forecast is defined as a model simulation started from the ensemble

mean analysis at 0 h UTC. As in the 4D-Var system, the 24 h forecast of the EnKF stores the OmF statistics.
2.3 The 4D-Var system

The BASCOE 4D-Var of this study was already used by S14 and is described in detail by Errera and Ménard (2012). The
4D-Var data assimilation is carried out by minimizing the so-called cost function which measures the discrepancy between the
model state and observations (Talagrand and Courtier, 1987). Here, the model state vector contains 58 prognostic variables,
where only 7 chemical species are observed among them, see Sect. 3.

The background error covariance matrix B is parametrized using a control variable transform
LE:XO—XSE(SXO, (1)
where £ is a new control variable, x the first guess field, dx( is the analysis increment and L is the square root of By:
By =L"L. 2

As in S14, the error covariance of the first guess field expresses spatial correlations on a spherical harmonic basis (Courtier
etal., 1998), allowing a representation of homogeneous and isotropic horizontal correlations by a diagonal matrix with diagonal

values repeated for the same zonal wave number. The operator L is defined by
L=XSAY2 (3)

where ¥ is the (diagonal) background error standard deviation matrix with s,({)o}(l) values on its diagonal, sp(l) is an

adjustable background error scaling factor on the level I; A'/? is the spatial correlation matrix, identical for each chemical
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species, defined on a spherical harmonic basis hence diagonal; and S is the spectral transform operator from the spectral space
to the model space. The spatial correlation matrix considers Gaussian correlations in the horizontal and in the vertical directions
with length scales L and LY in horizontal and vertical directions, respectively. The between-species covariances are assumed
to be zero in the background error covariance matrix Bo.

The observation errors are assumed to be uncorrelated both horizontally and vertically. The observation error covariance
matrix Ry, is thus defined diagonal:
Ry — | @Rl i “

0, if i # 4,

where s, (%) is an adjustable observation error variance scaling factor and o, (i)|, is the measurement error at level ¢ and

Lo
time t5. The observations and their errors are described in Sect. 3. The adjustment of s, and s, scaling factors is performed in

observation space for every observed species separately, where they are functions of vertical pressure level (see Sect. 2.5).

Finally, the BASCOE 4D- Var implementation has-includes the background quality control procedure (BgQC, Anderson and Jérvinen, 19!

This procedure rejects observations when:
(yii — Hig(xp))? > ~*(diag(R), + Hi(diag(B))) )

where the operator diag(A) is a diagonal matrix of A and 4,[ are the data indices of profile and level, respectively. The value

of 7y is set to 5 in BASCOE, so that BgQC rejects only obviously wrong observations.
2.4 The EnKF system

The BASCOE EnKEF of this study is similar to the system used in S14. An ensemble of initial states X;(to) is generated by
adding to the model state x a set of spatially correlated perturbations according to the prescribed initial error covariance. This
procedure is schematically represented on Fig. 1 on the left-hand side. The ensemble of model states is propagated forward in
time using the same CTM as used in the 4D-Var (see Sect. 2.1). The medel-background error covariance is represented by the
addition of a stochastic noise 7; to each ensemble member at each model time step. In the current implementation, the model
error term is added to observed species only. The non-observed model species evolve with ensemble and are influenced by the
analysis increments only implicitly through the chemistry scheme of BASCOE CTM.

The operator L described in Sect. 2.3 is used to generate the initial deviation X;(¢() and the model error n; (¢ ) of the EnKF
system. This ensures that at the initial time, both EnKF and 4D-Var systems have identical error statistics. Initial deviation is
defined as

Xi(to) = Li(to), i€ [L,N], (6)
whereas the model error term is written as
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where {;(to) and 1p; (1) are vectors of independent normally distributed random numbers with zero mean and variance equal
to 1 --defined in the spectral space, N is the ensemble size; and where « is an empirical model error parameter. The definition
of this parameter is explained in Sect. 2.6.

The observation error covariance matrix R is defined by Eq. 4, where the adjustable scaling factor s, (i) is alse-estimated
using the DPesroziersmethod described in Sect. 2.5. The fact that the matrix R is calibrated automatically without using a
trial and error procedure for every observed species makes EnKF essentially easier to parametrize than in our previous study.
Besides, the Desroziers—metheds—current version of EnKF allows for more accurate observation error estimation-variance
estimation with respect to S14 because it computes s, () as a function of observation vertical pressure level. It should be noted
that EnKF uses the same background quality control procedure described in Sect. 2.3.

As in our previous study with a chemical tracer model, BASCOE EnKF uses the Schur (element-wise) product of the
ensemble covariance matrix with a compact support correlation function. This function is the Sth-order piecewise rational
function of Gaspari and Cohn (1999) which is isotropic and decreases monotonically with distance depending on the correlation
length scale L;,.. The function is positive only for distances that are less than 2L;,. and zero otherwise. We applied this
procedure to both horizontal and vertical correlations, using the compact support correlation functions with correlation length
and L}

h
scales L oes

e respectively. The choice of these parameters is discussed in Sect. 2.6. In order to make feasible the

computation of much more expensive EnKF in the framework of full-chemistry model, the analyses are computed locally,
around the area where current satellite observations are situated. To this end, the EnKF algorithm accounts now for a new
effeetive—procedure to find a current local sub domain in the model space —using the K-D tree, which is a binary search

tree where the comparison key is cycled between K components (K = 3 in our case, because the observation location is

a 3-dimensional vector). More information on the method can be found on the Web or in any textbook on data structures
(e.g. Gonnet and Baeza-Yates, 1991) .

The EnKF analyses of this study are performed in parallel for every observed species in its own space. Thus, such analysis
increments of every species do not account for cross-correlations between different chemical observations, which is not the case
for the 4D-Var system. However, it is technically possible to keep all observations from multiple species in one observation
space, introducing thus the cross correlations between species. An example of such EnKF data assimilation is discussed in
Sect. 5.

2.5 The Desroziers’ method

We use the Desroziers et al. (2005) method to estimate error variance scaling factors for each observed species and each vertical
levels. The diagnosis relies on linear estimation theory where the statistics is computed using observation-minus-background,
observations-minus-analysis, and analysis-minus-background differences. The estimation of the background error variance is

written as

sp(D)*ou(1)* = ((d)"dp), ®
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and the observation error variance is then
so(l)?0,(1)* = ((d2)"dy), )

where the vector dj is the difference between analysis and background, dy, the difference between observations and back-
ground, d?, the difference between observations and analysis in observation space, and () denote the mathematical expectation.
Note that in practical implementation, the expectation is replaced by a horizontal mean and time mean of a day.

The BASCOE data assimilation is initialized using s, () = 1 and s, (1) = 1 for both, EnKF and 4D-Var. These initial values
are kept in the system for the first 24h of system integration. The analysis increment and model innovation statistics are
accumulated during this time. Then the estimation of the scaling factors is performed using expressions 8 and 9. The following
24h analyses (on day 2), both EnKF and 4D-Var use the day 1 estimated error variance scaling factors. The procedure is
sequentially updated every 24h assimilation cycle using the statistics accumulated during the previous cycle. Note that we
could have used an estimated s, (/) in EnKF to tune the model error, but we decided not to apply it and use the x? tendency to
this end (see next section, Sect. 2.6).

The Desroziers’ estimates appear to be asymptotically stable after only one day. That means that changing the initial pa-
rameter value has little to no effect on the resulting time series of estimated parameter values. Figure 2, shows examples of
the observation error varianee-standard deviation for O3, HoO and HCI (at each vertical levels) when we perturb the initial
parameter value by a factor 1.5. The dashed curves represent the initial values and the solid curves the values estimated after

one day using the Desroziers’ method.
2.6 Tuning of error covariances in the two systems

Each assimilation system (i.e. EnKF and 4D-Var) has its own optimized error variances but shares a common error correlation
for the prescribed By in 4D-Var and the prescribed model and initial condition error correlations in EnKF. As in S14, our
starting point is the calibration of the error covariance matrix By used by the 4D-Var system. This is realized through a
calibration of the spatial correlation associated with the operator L described in Sect. 2.3. The operator L has similar parameters
as in S14: L} = 800 km and L§ = 1 model level, o3,(1) = 0.2 (with scaling factor s;(I) = 1) at all levels. Then, we take into
account the fact that the use of the Schur product results in shorter correlation length scales (See S14 for more details).
Similarly to our previous work, EnKF uses an effective correlation length scales of L" = 872 km and L? = 1.3 in model level

coordinates, given that L = 2000 km and L?

Ioc 1oe = 1.5 are chosen a priori. The calibrated operator L is then used in the EnKF

system.

The observation error variance scaling factor s, (see Sect. 2.4) is estimated for both systems using the Desroziers’ method
described in Sect. 2.5. The background error sealing-factor—ss—covariance scaling factor s, used in 4D-Var is also estimated
using the Desroziers’ method. In EnKF, the background error covariance is evolved using CTM where we add a model error
term that uses a calibration parameter «.. The value of o equal to 0.025 was found in S14 in the case study of Og tracer. This
value is based on the property that the time tendency (over periods of weeks and months) of the x? diagnostic should be nearly

zero as argued in Ménard and Chang (2000). In general, we have found (in S14) that the value of a changes the slope of the O3



10

15

20

25

30

X2 distribution, whereas the observation error variance scaling factor s, is responsible for the mean value of it. In the absence
of better knowledge, we use the value a = 0.025 for all observed species described in Sect. 3.

The performance of each data assimilation system of BASCOE can be monitored by the x? diagnostic. During the whole
period of our experiments, ()ﬁ) /my, values remain close to 1 (result not shown). This is achieved by using the error variances
estimated by the Desroziers’ method. In the case of 4D-Var where both observation and the background error variances are
estimated, the Desroziers’ method gives estimates that achieve the innovation variance consistency (Ménard, 2016). For EnKF
where only the observation error variance is estimated, the fact that (%) /my, values remain close to 1 is an indirect confirmation
that the model error is tuned appropriately. Figure 3 shows the evolution of the adjustable parameters for both systems. The
solid lines show the vertically mean values of the observation variance parameter s, and the dashed lines, the vertically mean
values of the 4D-Var background error variances. The time evolution of the error variance scaling factors at individual levels
is, as in Figure 3, (result not shown) generally consistent over time, especially for the EnKF estimates;-and-thus-goes-along-in
arguing-that-theyrepresent-some-true-error-statisties—, Furthermore, we note that for the EnKF results, the scaling factors of
any species show no drift in time. We argue from this result that there is apparently no need to have a different model error o
for different species. Thus we conclude that for a chemical transport models, the main source of model error can be attributed
to transport errors primarily.

Finally, we wish to remark that to keep comparable CPU costs in both data assimilation systems, and that can be carried
out in a reasonable time, 4D-Var is run with 10 iterations (including 10 adjoint iterations) and the EnKF uses 20 ensemble
members. As in S14, the computation of the EnKF Kalman gain is performed using Cholesky decomposition where the full
observation vector is considered at a given time step for a given species. No simplification is used to compute the inversion
of the innovation matrix [HB.H” + R] or the matrix B.H” (see S14 for more details). The actual use of local domain
decomposition and integration of the ensemble members on different processors in parallel decreases essentially the CPU costs

as compared to the previous version of BASCOE EnKF.

3 Observations

The dataset assimilated in this study is the version 4.2 of the retrievals from the Microwave Limb Sounder (MLS) on-board the

EOS (Earth Observing System) Aura satellite (Livesey et al., 2015). The EOS Aura-MLS data cover the latitude range between

8208 and 820N with an along-track separation of around 165 km between consecutive scans. Around 3500 vertical scans are

erformed every day. The vertical resolution varies for different species. Here we assimilate the retrievals of five species which
are listed in Table 1 along with some key parameters of the dataset and the validation reference for each species.

Some results of the data assimilation will be validated against independent observations. This will be the case for NoO
because the Aura MLS N, O precision is 24-14 ppbv (9-38%, relative to the observation mean at given altitude) and its accuracy
is 70-3 ppbv (9-25%) in the pressure range 100-4.6 hPa but its precision drops to 14 ppbv (250%) at 1 hPa, where the accuracy
is estimated to 16% (Livesey et al., 2015). Hence we will validate the BASCOE N5O. with observations retrieved from the

Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS) satellite instrument (Bernath et al., 2005)
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Table 1. List of species retrieved in Aura-MLS v4.2 and assimilated for this paper.

Resolution (km) Vertical range o Validation paper

Name Accuracy Precision
Vertical x Horizontal of assimilation (hPa) (for Aura-MLS v2.2)

O3 3-6x200-300 0.1-261 3-20% 2 -40% Froidevaux et al. (2008a)
N>O 4-6x300-620 4.64 (1) - 100 9-25% (12%) 7-38% (250%) Lambert et al. (2007)
H20 3-4x220-440 0.1-316 4-11% 4-9% Lambert et al. (2007)
HNO3 3-5x300-500 1.5-215 +0.5 - 2 ppbv +0.7 ppbv Santee et al. (2007)
HCl 3-6x200-400 0.32-100 5-50% 10 - 50% Froidevaux et al. (2008b)

which uses solar occultation to provide around 28 profiles per day. Strong et al. (2008) validated N2 O retrievals from ACE-FTS
(version 2.2) and found a bias of +15% between 6-30 km and a bias of =4 ppbv between 30-60 km . Here we use the retrieval
version 3.5.

We will also use the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) retrievals by the IMK/IAA
(Institut fiir Meteorologie und Klimaforschung, Karlsruhe/Instituto de Astrofisica de Andalucia, Grenada) to validate the un-
constrained distributions of CH4 and NO, (NO,= NO + NOy). The MIPAS IMK/TAA retrievals of CH,were validated by
Laeng et al. (2015) and the retrievals of NO,, were described by Funke et al. (2005).

4 Numerical experiments

This section reports the numerical experiments performed in this study: the control run, i.e. an unconstrained simulation by the
BASCOE CTM including photochemistry; the “EnKF” and “EnKF tracer experiments, the first one including photochemistry
and the second one neglecting it (i.e. assimilation in chemical tracer mode as done in S14); and the two corresponding ~4D-
Var* and ”4D-Var tracer experiments. All experiments start on 1 April 2008 from the same initial condition, i.e. a 4D-Var
analysis of Aura-MLS retrievals (Lefever et al., 2015), and end on 1 November 2008 i.e. after 7 months.

The results of our model and data assimilation experiments will be assessed using Observations-minus-Forecast (OmF)
statistics, relative bias and standard deviation, computed in the observation space. In the case of NoO the relative bias and
standard deviation are not good diagnostics because its volume mixing ratio decreases by two orders of magnitude between
100 and 1 hPa. Hence we will simply compare the mean profiles of NoO by the five numerical experiments with assimilated
and independent measurements. The statistics are computed in three different latitude bands covering the globe: South Pole
(90°S-60°S), middle latitudes and Tropics (60°S-60°N) and North Pole (60°N-90°N). The analyses of the assimilated species
are verified by comparison with the assimilated observations (sections 4.1-4.5). Section 4.6 evaluates the results for methane

and nitrogen oxides which are not assimilated.
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4.1 Verification of ozone

Figure 4 shows the OmF statistics for ozone over the period September 2008-October 2008, i.e. during the period of the
Antarctic ozone hole. The results of the tracer experiments are not shown above 1 hPa because the tracer approximation is not
valid in this region. The CTM experiment delivers rather large biases (10 to 30%) in the lower and upper stratosphere and at
all levels above the South Pole region.

All data assimilation experiments succeed in eliminating these biases nearly completely in the lower and middle strato-
sphere. The resulting biases are smaller than 2%, except for the 4D-Var experiment which overestimates ozone depletion in the
Antarctic ozone hole region (around 50 hPa) by up to 5%. Compared with the CTM results, the 4D-Var and EnKF experiments
also reduce significantly the OmF standard deviation in the lowest levels. The smallest OmF standard deviations are delivered
by the 4D-Var experiment, with results about 1% smaller than those delivered by the EnKF in pressure range 30-2 hPa.

The experiments 4D-Var tracer and EnKF tracer allow us to assess the impact of stratospheric chemistry. Neglecting this
process results in larger biases and OmF standard deviations above the South Pole in the region 10-2 hPa, where both tracer
data assimilation systems overestimate ozone by ~5% and deliver OmF standard deviations reaching 10%.

The photochemical lifetime of ozone decreases rapidly in the upper stratosphere and reaches values as short as a few minutes
(Brasseur and Solomon, 2005) in the lower mesosphere. In these regions, our CTM experiment has a significant ozone deficit
reaching about 20% at the stratopause (1 hPa). The sources of this model bias are out of scope of the present paper. However,
its presence helps to assess the behaviour of our assimilation algorithms. It is found that both data assimilation algorithms fail
to correct this model bias: ozone is still underestimated by ~15% at the Stratopause. In the upper stratosphere and mesosphere,
data assimilation does not improve OmF standard deviations either: these remain nearly identical to those obtained by the
CTM. These results indicate that when the photochemical lifetime is short (e.g. smaller than the time step of the model) and
the model error is important, both data assimilation systems fail to improve the representation of the model state. Since this
issue also involves species that have strong chemical interactions with ozone, it will be further discussed in Sections 4.2, 4.4

and 4.6.
4.2 Verification of HCI

During the largest part of the CTM simulation, the HCI distribution is in agreement with the Aura-MLS observations. And
the EnKF and 4D-Var experiments deliver nearly identical results where the small CTM biases are completely corrected (not
shown). The only exception is in the South Pole latitude band, during the period May-June 2008 which is shown on figure 5.
During this period the chemical lifetime of HCI is much shorter than at other latitudes, because the heterogeneous removal due
to the formation of Polar Stratospheric Clouds has already started. This loss process is currently overestimated in the BASCOE
CTM, due to a crude cold-point temperature parametrisation (section 2.2.2 in Lefever et al., 2015). As a result, the CTM
experiment underestimates HCI by up to 45% at 30 hPa in the Antarctic polar vortex region and its OmF standard deviation
also reaches ~ 45% . While the 4D-Var approach essentially fails to correct this large disagreement, the bias is nearly halved

in the EnKF experiment and the OmF standard deviation is significantly reduced as well.
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Staying in the lower stratosphere (100-10 hPa), the outcome of the experiments is different than above the South Pole.
Northward of 60°S, the CTM biases do not exceed 15% and they are nearly eliminated by both data assimilation experiments.
The OmF standard deviations of both data assimilations are also quite similar in these regions.

In the middle stratosphere, the chemical lifetime of HCI decreases from about one week at 10 hPa to about one day at 1
hPa (Brasseur and Solomon, 2005). The CTM experiment delivers quite accurate results in this region: the OmF biases do not
exceed 3% and the standard deviations are less than 10%, in every latitude band for the pressure range 10-0.46 hPa. The EnKF
and 4D-Var experiments both succeed in correcting these small CTM biases and reducing the OmF standard deviations, except

at the 1 hPa level where the 4D-Var does not correct the CTM deficit of 3% for HCI.
4.3 Verification of HNO3

Figure 6 shows the HNO3 OmF statistics between the assimilated Aura MLS data and the CTM, EnKF and 4D-Var experiments
for the period September-October 2008. For all three latitude bands, the CTM shows a significant underestimation reaching
20-25% around 30 hPa. This model bias nearly disappears at 10 hPa but grows again above this level. In the lower stratosphere,
the OmF standard deviations of the CTM experiment reach minimum values of 10-15% but at the lowermost levels the standard
deviation is much larger in the Antarctic polar vortex region than at other latitudes.

Both data assimilation experiments correct the OmF model bias at all latitudes and at all pressure levels between 100
and 10 hPa. Above that level, the quickly increasing model OmF bias is not corrected by either assimilation algorithm. The
explanation for this different behaviour in the upper stratosphere is twofold. First, the observation error grows quickly with
altitude, reducing the weight of observations in the assimilation experiments. Second, a large discrepancy between the model
and the observed data leads to rejection of most measurements above 10 hPa by the background quality control procedure (see
Sect. 2.3 for more details).

The 4D-Var OmF bias is generally less than 3% in the pressure range 100-7 hPa, except for an 8% OmF bias at 70 hPa in the
Tropics. The EnKF delivers even smaller OmF biases in the whole pressure range and at all latitudes. Both data assimilations
results in almost identical OmF standard deviations, except in the Antarctic polar vortex region where the EnKF errors are

slightly larger below 20 hPa.
4.4 Verification of water vapour

Water vapour is a long-lived tracer in the whole stratosphere, with a photochemical lifetime still longer than one month at the
stratopause (Brasseur and Solomon, 2005). The OmPF statistics for HoO are shown on Fig. 7. The CTM provides OmF biases
smaller than 10% in the whole pressure range and at all latitudes, except in the Antarctic polar vortex between 100 and 10 hPa,
where HyOunderestimation reaches 30%. The OmF standard deviation by the CTM is also largest in this region, reaching 23%
while it does not exceed 15% elsewhere.

Both data assimilations mostly correct the OmF bias and standard deviation errors with respect to the CTM. Their OmF

biases do not exceed 2%, except for the OmF bias by the 4D-Var which reaches 3% at 1 hPa, i.e. the level where the ozone
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deficit described in Sect. 4.1 is maximum. The OmF standard deviation errors resulting from the two assimilation experiments

are also quite similar, with slightly larger EnKF errors in the Antarctic polar vortex below 10 hPa.
4.5 Verification of NoO

The relative error statistics shown for other species are difficult to interpret in the case of NoO because its volume mixing ratio
decreases by two orders of magnitude between 100 and 1 hPa. Hence figure 8 simply compares mean profiles of forecasts and
observations. We display the assimilated Aura MLS observations along with their validation uncertainties (grey filled region
as reported by Lambert et al., 2007). Since these uncertainties are very large in the upper stratosphere, we also compare with
independent observations by the ACE-FTS solar occultation instrument (see Sect. 3).

In the lower stratosphere the two satellite datasets and the CTM experiment are in good agreement. Above 10 hPa the mixing
ratios retrieved from Aura-MLS are much larger than those from ACE-FTS, and above 5 hPa they become pressure-independent
which is not realistic. As expected, the CTM experiment agrees much better with the ACE-FTS N,O retrievals since they are
much more precise in the upper stratosphere.

How do the 4D-Var and EnKF treat the tricky-Aura-MLS datasetN,O dataset containing a bias? To answer this question
we inhibited any a priori filtering of the Aura MLS observations of NoO above 5 hPa, and we used both the full chemistry
CTM and its transport-only version. Figure 8 shows that both EnKF experiments follow the assimilated Aura MLS data in the
upper stratosphere, whereas the mean profile delivered by the 4D-Var experiment remains closer to the CTM. This is due to the
automatic rejection by the 4D-Var of most Aura-MLS observations of N,O above 5 hPa. However, 4D-Var assimilation with a

chemical tracer transport model (cyan dashed curve) assimilates more Aura MLS data approaching-closer-to-themkeeping the

model closer to the assimilated observations. This episode reveals the role of chemistry in the multivariate assimilation: it acts

as a strong constraint within 4D-Var, preventing it from assimilating erroneous observations.
4.6 Evaluation of non-observed species

Finally, the forecasts of two non-observed species issued from both data assimilation systems will be validated, CH4 and
NO,, the sum of NOg and NO, (Fig. 9). CHy; CTM forecasts agree well with the MIPAS IMK/IAA data. And both data
assimilation system keep generally this agreement, except the region around 2-1 hPa where 4D-Var develops an artificial bias
related to the presence of O3 model bias and the fact that O3 data were assimilated in the upper stratosphere. As we saw this
before, 4D-Var tends to develop such biases in many assimilated and non-assimilated species to compensate the O3 bias. The
problem of model O3 bias is out of scope of the present article. We should only note that it can not be solved directly by data
.NO,,

CTM forecasts are essentially different with data due to absent NO,, sources in the model. As for CHy, both data assimilation

assimilation without an improved version of CTM¢s

keep the model state unperturbed, except the region around 2-1 hPa where 4D-Var develops a bias for the same reason as stated

above. Aceidentallylncidentally, this bias provides better agreement between the model and data in this region.
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5 EnKF with cross correlations between species

All the EnKF experiments done so far used a brute force species localization, in other words, the sample covariance between
species is set to zero. This type of localization should not be confused with the localization based on distance for the same
species, which we keep. Now let us see what happens when we keep the sample cross-covariance intact.

To this end, we conducted an experiment where we assimilate Oz and N»2O, two species that are not strongly related via
the chemistry system. We will call this experiment the EnKF-CC, standing for EnKF with Cross-Covariances. In principle,
we would expect that an observation of O3 does not change significantly NoO and vice versa. In EnKF-CC, O3 and N5O
are put into a common observation space, defined by the observation vector y and the observation error covariance matrix
R. The ensemble of model vectors in observation space Hx; contain thus two blocks of O3 and N2O. This provides the

cross-correlation terms in the medel-background error covariance matrix in observation space HBH' computed as

N
HBH" = H(x; —%)H(x; — %), (10)

where i € [1, N] is the number of ensemble member, IV is the ensemble size, X is the ensemble mean (see S 14 for more details).
The cross correlation terms between species remain after the localization of the error varianee-covariance via the Schur product,
because it filters out only the spurious spatial correlations.

Figure 10 shows an example of such EnKF-CC data assimilation comparing its results with EnKF discussed in the previous
sections where the sample covariance between species was set to zero. The figure shows the O3 OmF bias and standard
deviation for EnKF (red) and EnKF-CC (yellow) analyses during 24h of September 15 2008. We observe that the EnKF-
CC has noisy bias and an increased and noisy error standard deviations in the OmF correlations compared with the EnKF
experiment. A similar kind of impact is also obtained when we assimilate only one species and examine the OmF of the
other non-observed species (results not shown). We thus conclude, as other studies have indicated, that the sample cross-
covariance between weakly chemically related species, give rise to spurious analysis increments with a deterioration of the

overall performance of the assimilation system.

6 Conclusions

We have conducted a comparison of an EnKF and 4DVar data assimilation system using a comprehensive stratospheric chem-
ical transport model. We considered 4D-Var and EnKF configurations that are normally used for chemical data assimilation
applications. Both data assimilation systems have online estimation of error variances based on the Desroziers’ method and
share the same correlation model for all prescribed error correlations (i.e. the background error covariance for 4D-Var, initial
error and model error for EnKF) so that each data assimilation system is nearly optimal and can also be compared to each

other. A previous comparison study by Skachko et al. (2014) showed that for chemical tracer transport only both assimilation

system provide results of essentially similar quality despite the difference in practical implementation of each method: the
4D-Var was applied in its strong constraint formulation with a 24 h assimilation window with the assumption of no model
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error over this period, whereas the EnKF was used to sequentially assimilate observations every 30 minutes with model error
erturbations added every 30 minutes. This study examines in what way the inclusion of chemistry changes the performance

of the assimilation systemsystems, but perhaps more importantly how an EnKF and a 4D-Var chemical data assimilations can
be implemented in a real-life situation with several modelled and assimilated species. In this study we assimilate ozone, HCI,
HNO3, H>O and N>O observations from EOS Aura-MLS.

In the context of atmospheric chemistry, EnKF and 4D-Var differ in a number of ways. While 4D-Var, built on the assumption
of a perfect model, tries to find a strong constraint solution that fits observations over a 24h window, EnKF on the other hand
provides estimates at each model time step but allows for modelling error (mainly as a medel-background error covariance).
Furthermore, while 4D-Var infers information based on error correlation between observed and non-observed species, EnKF,
on the other hand, introduces noise between weakly chemically-related species, and so far in practice, these cross-species
error covariances are set to zero. So the question is: to which extent the chemical modelling is an important component of the
analysis? The implementation of a multi-species sequential chemical data assimilation is challenging by the need to properly
tune and automate the estimation of a large number of input error parameters.

The comparison done in this paper shows that, in general, there is not a significant improvement in the OmF statistics of
the system when the cross-correlation between species is kept (4D-Var) versus the EnKF system where the cross-species error
correlation has been filtered out. Differences do occur, however, when there is an important chemical modelling error or when
there are large biases between model and observed values.

For example, the BASCOE CTM has an important model O3 deficit near or above 1 hPa. The source of this model bias is
unclear and is not discussed in this paper. The experiments show however that assimilating O3 at these altitudes gives a poor
agreement with observations. At these altitudes the chemical life-time of O3 is smaller than the time step of the model and
consequently, any correction on the O3 concentrations by the assimilation of O3 measurements simply cannot correct for the
model error. For the other species, such as HCI and HNOg, the OmF statistics for EnKF are always better than for the 4D-
Var. Two main reasons are responsible for this better performance. First, EnKF has a short-time forecast followed by frequent
observational updates that is possibly more adequate for moderately fast chemical processes (but not for processes of life-time
smaller than the model time step). Second, the ensemble of CTM’s provides better representation of the model variance. On
the other hand, the cross-species covariances, implicit to a 4D-Var assimilation system, have a negative effect in the presence
of strong model O3 bias. The 4D-Var system tries to compensate the bias and thus develops small artificial biases in many
chemically related with O3 species, observed and non-observed. This is shown using OmF statistics for two observed species,
HCI and H,0, and two non-observed, CH,4 and the NO,, family.

The effect of large observation biases has a very different impact. For example, the EOS Aura MLS N»O has significant
biases above 4 hPa. In this case, EnKF reaches the state close to observations from the first observation updates during the
spin up phase, and keeps model close to observations afterwards because of short ensemble model forecasts and frequent
observational updates. On the other hand, 4D-Var appears to be robust to erroneous observations. A significant number of
observations are rejected by the quality control, and in the end, 4D-Var provides analyses with more weight given to the model

forecast rather than to the observations.
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We have also examined the need to have cross-species localisation in an EnKF. Our study shows that the simultaneous
assimilation of O3 and N-O, two species that are only weakly chemically related, gives rise to spurious cross-species error
correlations that deteriorates the performance of EnKF, and it is then better to simply ignore those error correlations. To have
a more sensible approach to species localization could be the object of future work.

An important aspect of this study is the implementation of an online estimation of error variance parameters. The estimation
of observation error variance and, in addition the background error variance for 4D-Var is done at each observation vertical
level, using the Desroziers’ method. The variance parameters being estimated are in fact very robust over time, showing little
variability one day to the next.

Finally all the experiments were done with comparable wall clock time for EnKF and 4D-Var settings.

The study has also some limitations. An acknowledged difficulty often encountered in chemical data assimilation is the
situation where both the model and the observations suffer from significant biases. This is the case for example with the
BASCOE CTM CO and CIO when using the Aura MLS datasets. Solving this problem represents a challenging task that we
have not conducted here, and would necessitate a dedicated study. Another limiting factor is the correlation length used in
this study. We have not attempted to estimate it, but rather have used what appears to be a reasonable value from past 4D-Var
experiments. The estimated error variances and thus the weight given to the observations are also linked to the correctness of
the error correlation, and this issue could also be investigated further. A future development of the BASCOE chemical data
assimilation system would be a hybrid 4D-EnKF approach using the ensemble of models to construct a 4D background error

covariance matrix.

Other possibilities may be considered to properly compare two essentially different data assimilation systems. For example,
the 4DEnKF (Hunt et al., 2004) approach could be used that computes 4D error covariances from the ensemble of forecasts
at several times within the assimilation window. This would allow a longer assimilation window to be used in the EnKF
experiment, making it more comparable to the configuration of 4D-Var. In this case, the EnKF analysis would be forced to
simultaneously fit all of the observations distributed over a longer window, while still satisfying the model equations, as in
4D-Var. Applying the model error in this 4DEnKF only at the beginning of each assimilation window would make it similar to
the strong-constraint version of the 4D-Var that was used.

7 Code availabilit

ematl-request-to-the-authers Readers interested in the BASCOE code can contact the developers through http://bascoe.oma.be
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the CTM code. S. Skachko prepared the manuscript with contributions from all co-authors.
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Figure 1. Schematic representation of the practical implementation of the 4D-VAR (top) and EnKF (bottom) assimilation methods in BAS-

COE. Black dots represent model state and observational information is depicted in blue. The black arrows represent model integrations by

one time step, vertical red arrows represent model state optimization (4

at Oh which are used as initial conditions for the diagnostic 24-h forecasts (green arrows). For clarity, the number of 4D-VAR iterations has

D-VAR) or Kalman filter (EnKF). Green dots represent the analyses

been limited to 2 and the number of EnKF members has been limited to 3.
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Figure 2. Initial (INI) observation error covariance matrix of experiment A (dashed red), starting with R = (00)2, and B (dashed blue),

starting with R = (1.5 ¢,)? and their Desroziers’ (DRS) estimations (solid red and blue lines, respectively) using statistics of the first 24h.
The statistics is shown for Oz, HoO and HCI.
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4D-Var: Error scaling factors for Aura MLS assimilation
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Figure 3. Estimated error scale factors within 4D-Var (left) and EnK@qright) for the period April-November 2008.
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Figure 4. O3 OmF bias (top) and standard deviation (bottom) computed for the full chemistry CTM (green), EnKF (red), 4D-Var (blue)

based on the same model. The chemical tracer EnKF (dashed yellow) and 4D-Var (cyan) are also shown. OmF statistics is computed in

percent with respect to the assimilated EOS Aura MLS data for the period September-October 2008 and for three latitude bands (from left to

right: South Pole, Tropics - middle latitudes and North Pole).
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Figure 9. Verification of non-observed species from CTM (green), 24 h forecasts from EnKF (red) and 4D-Var (blue) assimilation against

MIPAS IMK data (black dots): mean CH4 (top) and mean NO_, (bottom) profiles. The statistics are computed for September-October 2008

and for three latitude bands (from left to right: South Pole, Tropics - middle latitudes and North Pole).
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Figure 10. OmF bias (top) and standard deviation (bottom) between Aura MLS data and O3 analyses of EnKF (red), EnKF-CC (yellow) and
CTM (green), see text for acronym definition. The statistics are computed during 24h on September 15 2008.
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