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Abstract. We present and evaluate several optimizations to a standard flood-fill algorithm in terms of computational 

efficiency. As an example, we determine the land/ocean-mask for a 1 km resolution digital elevation model (DEM) of North 

America and Greenland, a geographical area of roughly 7000 by 5000 km (roughly 35 million elements), about half of which 

is covered by ocean. Determining the land/ocean-mask with our improved flood-fill algorithm reduces computation time by 

90 % relative to using a standard stack-based flood-fill algorithm. In another experiment, we use the bedrock elevation, ice 10 

thickness and geoid perturbation fields from the output of a coupled ice-sheet - sea-level equation model at 30,000 years 

before present and determine the extent of Lake Agassiz, using both the standard and improved versions of the flood-fill 

algorithm. We show that several optimizations to the flood-fill algorithm used for filling a depression up to a water level, 

that is not defined at forehand, decrease the computation time by up to 99 %. The resulting reduction in computation time 

allows determination of the extent and volume of depressions in a DEM over large geographical grids or repeatedly over 15 

long periods of time, where computation time might otherwise be a limiting factor. 

1 Introduction 

The problem of determining lake depth distributions for a given digital elevation model (DEM) is often encountered in 

scientific fields such as hydrology, (palaeo-) climatology and glaciology. 

An important example is the routing of melt-water and the drainage of proglacial lakes that formed at the margins of the 20 

Laurentide ice-sheet. The retreat of the Laurentide ice-sheet during the last deglaciation and the corresponding release of 

large fluxes of fresh water into the Arctic Sea and the northern Atlantic Ocean have been linked to climatic events through 

disrupting the Atlantic Meridional Overturning Circulation (Barber et al., 1999, Clark et al., 2001, Li et al., 2012, Tarasov 

and Peltier, 2005, Teller et al., 2002). Melt-water from the remnants of Northern Hemisphere ice-sheets has also been shown 

to have influenced the climate system during the previous interglacial (Stone et al., 2016). 25 

Many studies have focused on reconstructing the direction and magnitude of the freshwater flux from geological data 

(Broecker et al., 1989, Hillaire-Marcel et al., 2007, LaJeunesse and St.-Onge, 2008, Törnqvist et al., 2004). More recently 

these freshwater fluxes have been estimated by stand-alone ice-sheet models (Goelzer et al., 2012, Marshall et al., 1999, 

Tarasov and Peltier, 2004). 
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Due to the influence of the local topography, part of the melt-water from the retreating ice-sheet was not directly released 

into the ocean system but temporarily stored in proglacial lakes, the largest of which is Lake Agassiz, along the southern 

margin of the ice-sheet. Lake Agassiz is estimated to have covered 7.1×105 km2 and contained approximately 1.4×1014 m3 of 

water or 0.4 m global mean sea-level equivalent around 8.4 kyr BP, immediately prior to its catastrophic drainage (Kendall 

et al., 2008). The size of the flood is however poorly constrained and higher numbers have also been published (e.g. Hijma 5 

and Cohen, 2010). It is therefore important to accurately model the extent and volume of the lake over time, since the 

presence of the lake affects both the timing and location of the melt-water release into the ocean system, as well as the local 

climate (Krinner et al. 2004). Doing this requires an accurate treatment of the large changes in the land/ocean-mask that 

occur where the ice-sheet covers most of the Canadian Arctic Archipelago and blocks the Hudson Strait. This changes the 

location where lake outflow reaches the sea over time. The flood-fill algorithm can be used to determine the land/ocean-10 

mask and account for this effect. 

When applying commonly used algorithms (Arnold, 2010, Doll and Lehner, 2002, Tarboton et al., 1991, Zhu et al., 2006) to 

a problem involving such large geographical grids and long time-scales, computation time can become a limiting factor, 

particularly when the geometry is changing over time and the procedure has to be repeated over many time steps. 

In this study, we describe and evaluate several improvements to a standard algorithm for filling depressions in a DEM in 15 

order to improve the computational efficiency. The improved algorithm is applied to a 1 km resolution DEM, including an 

ice thickness distribution of North America 30,000 years ago. We determine both the land/ocean-mask and the size and 

extent of Lake Agassiz.  

2 Methodology 

2.1 Default algorithm 20 

The problem of filling a depression up to a pre-defined level can be likened to filling a hole in a true/false-mask (whether or 

not the base level is below an a priori chosen water level). There are several algorithms for solving this problem, generally 

known as “flood-fill” algorithms (Zhu et al., 2006). They are commonly known for their use in the “bucket” tool of several 

paint programs. A thorough description of the stack-based flood-fill algorithm is given by Zhu et al. (2006). Here we 

improve on this work, taking code written after their approach as a starting point. The algorithm starts with a “seed”, defined 25 

as a designated element from where neighbouring elements are flooded. In many hydrological applications, the seed will be a 

local minimum in a DEM. Beside the seed element, the algorithm builds a “stack”, which is an array listing the indices of the 

map elements. At each iteration of the algorithm, all stack elements are checked. If the elevation of a stack element is below 

the water level its corresponding map element is filled and it is removed from the stack and all its neighbours are added to 

the stack. If the element does not lie below the water level it is removed from the stack without any further action. The 30 

iterations are continued until the stack is empty and the elements below the water level are identified. 

A pseudo-code example of this algorithm is illustrated below. 
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stack = seed 
 
WHILE (stack is not empty) 
 FOR (all elements in stack) 5 
  IF (stack element lies below water level) 
   remove element from stack 
   FOR (8 neighbours of stack element) 
    IF (neighbour is not filled and is not in stack) 
     add neighbour to stack 10 
    END IF 
   END FOR 
  END IF 
 END FOR 
END WHILE 15 

 

An example of a Matlab implementation of this algorithm is provided in the supplementary material, being script 

“fill_1km.m”. 

The number of operations required for filling a hole with this algorithm is approximately proportional to the number of 

elements of the depression. This means that application to a very large area with a high resolution can result in a long 20 

computation time, since doubling the resolution in the horizontal plane will quadruple the number of operations. 

A second issue is an efficient way to determine the water level. When creating the land/ocean-mask, the water level is known 

and the true/false-mask is created by checking for every single element whether its elevation is above or below the water 

level. In the case of a lake, the water level can either be determined by the water mass balance, with inflow and evaporation 

in equilibrium. Alternatively, in the case of inflow that is not balanced by evaporation, the surrounding topography will limit 25 

the water level. In either case, the general solution to determining the water level is to start at the bottom of the depression 

and incrementally increase the water depth, either until the calculated evaporation becomes large enough to offset the inflow, 

or until the lake overflows.  

A pseudo-code example of this algorithm is illustrated below.  

 30 

water level = 0 
 
WHILE (threshold is not reached) 
 increase water level 
 perform flood-fill 35 
END WHILE 

 

The threshold condition can be the overflowing of the lake into the sea, the total evaporation over the lake balancing total 

water influx, or any other logical condition. 

Depending on the vertical resolution of the DEM and the accuracy required to determine the lake depth, such a calculation 40 

requires dozens to hundreds of iterations. This is not always a restriction for practical applications where one is interested in 
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the water runoff pathways and drainage basins for a given DEM. However, when performing an ensemble of simulations, or 

a simulation where the topography changes over time, reducing the computation time can be crucial for the performance and 

feasibility of the application and optimizations are required. In the next paragraph we present several optimizations to the 

standard flood-fill algorithm, which reduce computation time considerably for map with a large area or a high resolution. 

2.2 Optimizations 5 

2.2.1 Low-resolution block inspection 

When filling a depression to a pre-determined water level, we strongly reduce the number of operations by creating a lower 

resolution “maximum topography” map. For example, any element of a 4 km maximum topography map will contain the 

highest value of the corresponding 4 x 4 block of 1 km elements. Consequently, we apply the flood-fill algorithm to this 

lower resolution map. If the highest element of a 4 km x 4 km square lies below the water level, all sixteen 1 km elements 10 

must do, implying all of them can be flooded at once. This step yields a first coarse filling scheme without testing each 

individual element at the final higher resolution. 

When the algorithm is finished, some elements may not yet be flooded where they should be, but the large majority of them 

will be filled already if the distribution is not too scattered. To identify those elements that still need to be flooded, we take 

this intermediate map and stack from the 4 km fill and use these as a starting point for a 1 km fill. Applied to the 1 km map, 15 

the algorithm will only have to fill in the “fringes” of the depression - a much smaller area than has already been processed 

by the low-resolution fill. Figure 1 illustrates this. 

In Fig.1, the 1 km true/false-mask is shown as a black overlay in all panels. The 4 km stack (light green) is initiated with a 

seed in the lower left corner of the map, panel A. The 4 km algorithm expands from this seed until no more elements can be 

added. The final map (blue) and stack (light green) are shown in panel B. These are then converted to their 1 km equivalent, 20 

shown in panel C. As can be seen, the conversion conserves the filled elements. The 1 km algorithm then continues from this 

map and stack until no more elements can be added. The resulting map and stack coincides with the 1 km true/false-mask in 

panel D. 

The decrease in computation time resulting from using the high-resolution algorithm is larger than the additional 

computation time required to create the low-resolution map and to convert the low-resolution stack to its high-resolution 25 

equivalent. This is shown for an example in Sect. 3.1.  

A further increase in efficiency can be achieved by creating an additional medium-resolution map in between. For example, 

we can start with a 10 km fill, and then convert the resulting map and stack to 5 km resolution. Use the intermediate result 

for a 5 km fill algorithm, run this until completion, convert the resulting map and stack to their 1 km equivalents, and finalize 

with the 1 km fill. Note that this will only work when the different resolutions are integer multiples of each other. 30 

Constructing rules for when this condition is not met is not evident, and will increase computation time, and is beyond the 

scope of this study. 
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A Matlab implementation of the fill algorithm is provided in the supplementary material, being script “Demo_FillSea.m”. 

2.2.2 Shoreline memory 

In the case of a depression that must be filled up to overflow conditions, one small change to the flood-fill algorithm is 

straightforward. Any element that is filled at a certain water depth will also be filled for any higher water depth, meaning the 

lake’s shoreline will only expand outward when the water depth is increased. Hence, in the improved flood-fill algorithm, a 5 

stack element that is found to lie above the water level is not removed from the stack. Instead it is flagged and not inspected 

again in any further loops. This means that when the algorithm is finished, the stack contains all those and only those 

elements, which directly border filled elements but which are not filled, being the shoreline. 

When the water depth is increased during the filling of a depression, the final stack from the previous loop is taken as a 

starting point. This means that all elements of the final, deepest lake have only been inspected once during the iteration 10 

procedure. For a deep lake, which requires many depth increments to be filled, the decrease in the required computation time 

can be large in this way, as will be shown in Sect. 3.3. 

2.2.2 Low-resolution lake depth estimation 

When trying to fill a depression up to the level of overflowing, i.e. with no pre-determined water level, it is generally not 

possible to use the low-resolution block inspection algorithm presented in Sect. 2.2.1. This is because the algorithm needs to 15 

check if overflow is reached for every single depth increment, and must therefore perform a 1 km fill at every depth 

increment. As converting a high-resolution stack and map back to the lower resolution is not possible, we cannot use the 

final high-resolution shoreline to start a new low-resolution fill. 

This issue is solved by performing a fill on a low-resolution average topography map. Although not mathematically 

necessary, the topography of a geographical area is usually smooth enough such that a low-resolution estimate will yield a 20 

water depth relatively close to the “true” water depth that would be calculated with a high-resolution fill. This means that, 

instead of starting at zero depth, we can initiate the algorithm with a depth slightly below the depth yielded by the low-

resolution estimate. The lake at this depth will be close to its maximum extent, so we can use the block inspection method to 

efficiently fill the majority of the lake’s central elements at low resolution, thus reducing the computation time. The lake’s 

fringes are filled with the high-resolution algorithm and the depth is increased incrementally until overflow is reached. 25 

Section 3.4 describes an experiment where this method is implemented. A pseudo-code example of this algorithm is 

illustrated below. 

 

water level = 0 
 30 
WHILE (threshold is not reached) 
 increase water level 
 perform flood-fill on 40 km average topography field 
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END WHILE 
 
decrease water level 
perform flood-fill on 40 km maximum topography field 
convert 40 km map and stack to 1 km equivalent 5 
 
WHILE (threshold is not reached) 
 increase water level 
 perform flood-fill on 1 km topography field 
END WHILE 10 

 

A Matlab implementation of this algorithm is provided in the supplementary material, being script “Demo_FillLake.m”.  

3 Results 

All experiments are performed in Matlab R2014b on a 2013 iMac with a 3.2GHz Intel i5 processor and 8GB 1600MHz 

DDR3 Memory. Note that Matlab is an interpreted language and that the performance of the algorithm in a compiled 15 

language such as Fortran or C will generally be much faster. However, the relative improvements in performance of the 

optimized algorithms should be preserved. 

3.1 Low-resolution block inspection 

As a first example, we use different versions of the flood-fill algorithm to determine the land/ocean-mask for a DEM of 

North America and Greenland (Amante and Eakins, 2009), using an oblique stereographic projection at 1 km resolution. The 20 

region covers an area of roughly 7000 by 5000 km, resulting in approximately 17 million ocean elements to be filled. This 

extremely large size is useful for testing the efficiency of different set-ups and is needed in order to model the pressure 

exerted by lakes in gravitationally consistent calculations during the evolution of ice-sheets in North America. 

Creating the land/ocean mask depicted in Fig. 2 with the standard version of the flood-fill algorithm at a 1 km resolution 

takes approximately 82 seconds. This serves as benchmark to which all subsequent experiments will be compared. 25 

 

We performed two series of experiments with block inspection at different resolutions. The first series considers a sequence 

of 40 km, 8 km, 4 km, 2 km and 1 km resolutions. The second series considers a sequence of 40 km, 20 km, 10 km, 5 km 

and 1 km resolutions. The results in terms of computational efficiency are presented in Table 1 and Table 2, respectively. 

Both the conversion and filling parts of the Tables can be read as “coming from [row] resolution, going to [column] 30 

resolution”. For example (Table 1; highlighted in yellow), converting a 40 km map and stack to their 1 km equivalent takes 

0.20 seconds. A 1 km fill starting with that map and stack will then take 27.54 seconds. The diagonal elements in the filling 

parts of the tables indicate the computation time of a fill at that resolution starting from a single seed element. 
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An overview of several possible resolution schemes is given in Table 3. It shows that the most efficient scheme (40 km - 5 

km - 1 km) is almost an order of magnitude faster than the default algorithm at 1 km resolution. 

3.2 Shape dependence 

The total gain in efficiency from the improvements to the algorithm will of course depend on the details of the problem it is 

applied to. In the optimized algorithm, the number of elements that can be filled at the low resolution roughly scales with the 5 

area of the depression, whereas the number of elements that need to be filled at the high resolution roughly scales with the 

depression’s circumference. The gain in computational efficiency therefore depends largely on the shape of the depression, 

becoming larger when the depression becomes more circular. 

To illustrate this, the improved algorithm with a 40 km - 5 km - 1 km resolution scheme was applied to several versions of 

the same topography field, passed through increasingly strong high-pass filters with a cut-off wavelength of 30km, so that 10 

the remaining topographical features that determine the shape of the depression are all too small to be visible on the low-

resolution map in Fig. 3. 

The results of the experiment are given in Table 4. The area of the ocean basin and therefore the number of elements that 

require filling does not change much. However, the compactness factor C of the ocean basin, which is defined as: 

𝐶 =
𝐴

4𝜋∅!
 

with ∅ the circumference and A the area of the basin, decreases sharply when the small-scale topographical features become 15 

more prominent. 

This illustrates that the gain in computational efficiency from the block inspection depends strongly on the shape of the 

topography in which a depression must be filled. Natural topographical features generally have a vertical scale proportional 

to their horizontal scale, which leads to the relatively circular shapes of most natural lakes. This means that, for most natural 

topographies, the block inspection algorithm will substantially decrease the computation time required for filling 20 

depressions.  

3.3 Shoreline memory 

Similar to the previous experiment, we consider the lake formation in the North American region 30,000 years ago as a 

second example. At this time, large parts of the North American continent were covered by the Laurentide ice-sheet. The 

depression left in the bedrock by the weight of the ice, combined with the mass of ice damming off the Hudson Strait lead to 25 

the formation of a massive proglacial lake over the area of what is now known as the Hudson Bay. The situation is shown in 

Fig. 4. 

We apply the flood-fill algorithm to the same 1 km resolution topographic map, combined with an ice thickness distribution, 

a bedrock deformation field and a geoid perturbation field (all generated by the ANICE-SELEN model - de Boer et al, 2014) 

to determine the size of the lake. These data fields have a 40 km resolution and are used to perturb the 1 km resolution DEM, 30 
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such that the small topographic features are preserved. The 40 km resolution perturbation fields are mapped onto the 1 km 

resolution data fields using bilinear interpolation. The lake is found to cover an area of 3.5×106  km2, with a volume of 

6.0×1014 m3 or about 1.7 meters eustatic sea-level equivalent of water. 

As a benchmark, we apply the standard flood-fill algorithm without any optimizations, using a 5 m depth increment. This 

means that the algorithm fills the depression up to a certain water level, increases the depth by 5 m and fills the depression 5 

up to the new water level from the same seed, until the lake overflows into the sea. This run costs 351 seconds (almost six 

minutes) to complete. This implies that for a 120,000 year period which is resolved every 5 years, which is a time step 

typically used to resolve the last glacial cycle in an ice-sheet model, computational time is excessive relative to the 

approximately 50 hours such a simulation would otherwise require. 

Performing the same test with a depth increment of 10 m takes 179 seconds. This is far less because for each depth interval 10 

the complete lake has to be filled, so the number of fills increases more or less linearly with the requested accuracy. A 5 m 

depth interval leads to an accuracy of about 3 % in the lake’s volume, which is considered to be sufficiently accurate. 

By implementing the “shoreline memory” improvement described in 2.2.2 to the algorithm we improve the performance in 

terms of computation time. As explained earlier, the improved shoreline memory implies that every element will only be 

checked once, yielding a drastic reduction in computation time, which is particular relevant for large lakes. Filling the same 15 

lake at 1 km resolution only takes 23 seconds in the optimized case, a reduction in computation time of about 90 % with 

respect to the benchmark.  

3.4 Low-resolution lake depth estimation 

As a final improvement, we implement the depth estimation method. This method starts by filling the same lake on the 40 

km resolution topography, in order to get a depth estimate. The resulting lake is depicted in Fig. 4. It has a volume of 20 

6.6×1014 m3, overestimating the “true” 1 km volume by about 10 %. The 40 km estimate covers several river valleys visible 

in Fig. 5c, which should drain the lake. Since these valleys are only a few kilometers wide they do not appear on the 

smoothed 40 km resolution topography map. This causes the overestimation of the water level and the lake’s extent and 

volume - hence a high resolution is needed. The resulting depth is reduced by an arbitrary amount of 20 % and a fill to this 

new depth is performed on the 40 km maximum topography field. The resulting lake, which will serve as a starting point for 25 

the final 1 km fill, is depicted in Fig. 5b. 

The water level is then incrementally increased, while using the 1 km fill algorithm, until the lake overflows into the sea. The 

complete process takes 4.4 seconds to complete. This is about 5 times faster than the 1 km fill with shoreline memory and 

about 80 times faster than the default implementation, a reduction in computation time of about 99 % with respect to the 

benchmark experiment. 30 

 

Note that the 20 % reduction in depth from the 40 km estimate is chosen somewhat arbitrarily. Depending on the smoothness 

of the local topography, it is possible that the 40 km estimate will be much more accurate. In such cases, it is justifiable to 
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reduce the depth less, and hence improve efficiency even more. For this reason, it is advisable to check if the depth reduction 

from the 40 km estimate is enough to prevent overflow. If not, the depth needs to be increased even further before starting 

the 40 km maximum topography fill.  

4 Conclusions 

We have presented and evaluated several optimizations to a standard flood-fill algorithm. When determining the land/ocean-5 

mask over a large grid, the optimized algorithm is up to 9 times faster than the default algorithm. When determining the 

extent and depth of Lake Agassiz from a given DEM and ice thickness map, the optimized algorithm is up to 80 times faster 

than the default algorithm. The gain in computational efficiency depends on the smoothness of the topography, with the 

largest reduction in computation time achieved when most of the volume of the depression is contributed by topographical 

features with a horizontal scale larger than the lowest resolution of the block inspection method. 10 

 

In the example given in this study, the ice thickness, bedrock deformation and geoid anomaly all initially had a 40 km 

resolution. In order to do a 1 km lake fill, these fields were interpolated onto a 1 km grid, which is computationally 

expensive. If all input fields are already at high resolution, they only need to be downscaled to a low resolution for the block 

inspection step, which takes considerably less time. For this reason, the computation time for this interpolation step is not 15 

included in the results. 

 

The algorithm presented here can take into account the bedrock deformation and geoid perturbation caused by the mass 

changes of an ice-sheet, if they have been calculated. These effects both influence the volume of a lake by deepening the 

basin and raising the water surface.  20 

 

Any study involving either a very large grid or a large number of repeated simulations will greatly benefit from these 

optimizations. Examples include the modelling of large proglacial lakes, the dynamical modelling of run-off over an 

evolving ice-sheet, changes of water routing by tectonic activity and changes in a large water basin due to sea-level changes 

such as in the Mediterranean.  25 

Code and data availability 

Several	  Matlab	  scripts	  containing	  different	  versions	  of	  the	  flood-‐fill	  algorithm,	  as	  referenced	  in	  this	  manuscript,	  are	  

provided	  as	  supplementary	  material.	  Two	   large	  NetCDF	   files	  containing	  data	   files	  required	   to	  run	   these	  scripts	  are	  

available	  online	  at	  doi:10.5194/gmd-‐2016-‐85-‐supplement. 
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Figure 1: An illustration of the low-resolution block inspection improvement upon the default flood-fill algorithm. Black overlay: 1 
km true/false-mask: dark green: unfilled; light green: stack; blue: filled. A: the 4 km fill is given a seed in the southwest corner of 
the map. B: the 4 km fill is completed. C: The 1 km map and edge created from the intermediate 4 km output. D: the result of the 1 
km fill.  5 

 

Figure 2: The present-day land/ocean-mask and the bedrock topography at 1 km resolution. 
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Figure 3: Land/ocean-mask for the same region, with the topography passed through a high-pass filter. Panel A: 40 % reduction 
in amplitude for wavelengths above 30km. Panel B: 60 % reduction. Panel C: 80 % reduction. Panel D: 90 % reduction. The 
ocean area increases slightly and the length of the coastline increases strongly. 

 5 
Figure 4: North America, the Laurentide ice-sheet and Lake Agassiz, 30ky before present. The red outlined region is shown in 
close-up in Fig. 5. 
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Figure 5: The area around the eastern shore of the lake, outlined in red in Fig. 4. Panel A: The 40 km resolution estimate. Panel B: 
The result of the 40 km maximum topography fill to a water depth 20 % below that of the 40 km estimate. Panel C: The final 1 km 
lake. Note that the algorithm allows for ice to float when the water column is high enough, creating a small ice-shelf along the 
margin, visible in panel C where part of the lake’s shoreline runs beneath the ice.  5 
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Table 1: Computation time in seconds for stack and map conversion between different resolutions and for flood-filling at different 
resolutions with different starting stacks, for the 40 km - 8 km - 4 km - 2 km - 1 km series. The yellow shaded numbers are 
explained in the text. 

Stack and map conversion Flood-fill 

 40 8 4 2 1  40 8 4 2 1 

40 - 0.04 0.04 0.07 0.20 40 0.05 0.19 0.85 3.73 27.54 

8 - - 0.34 0.37 0.56 8 - 0.94 0.16 0.76 11.65 

4 - - - 1.30 31.22 4 - - 4.03 0.40 8.29 

2 - - - - 65.98 2 - - - 16.89 5.64 

1 - - - - - 1 - - - - 82.04 
 

Table 2: Computation time in seconds for stack and map conversion between different resolutions and for flood-filling at different 5 
resolutions with different starting stacks, for the 40 km - 20 km - 10 km - 5 km - 1 km series. 

Stack and map conversion Flood-fill 

 40 20 10 5 1  40 20 10 5 1 

40 - 0.04 0.03 0.05 0.21 40 0.06 0.02 0.05 0.18 13.78 

20 - - 0.08 0.08 0.34 20 - 0.17 0.02 0.12 11.26 

10 - - - 0.24 0.43 10 - - 0.62 0.08 9.28 

5 - - - - 1.07 5 - - - 2.45 7.97 

1 - - - - - 1 - - - - 82.11 
 

Table 3: Total computation time relative to the 1 km benchmark experiment for several resolution schemes, sorted ascending. 

Resolution scheme Computation time reduction (%) 

40 - - 5 1 88.64 

40 8 - - 1 84.79 

- 8 4 - 1 50.13 

- 8 - 2 1 10.25 

- - 4 2 1 5.80 

- - -  1 0.00 
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Table 4: Reduction in computation time for the 40 km - 5 km - 1 km resolution scheme with respect to the 1 km benchmark 
experiment for different bedrock topographies. Also listed are the area and compactness factor of the resulting ocean basin. 

Filter (%) Compactness factor Ocean area (km2) Computation time reduction (%) 

-100* 6.0e-2 1.72e7 95.48 

0 5.1e-3 1.72e7 91.56 

20 2.7e-3 1.76e7 89.37 

40 1.4e-3 1.77e7 74.48 

60 7.4e-4 1.76e7 58.89 

80 2.6e-4 1.79e7 35.35 

90 1.4e-4 1.86e7 18.72 

*30km low-pass filter; “smoothed” topography. 
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