
1

A computationally efficient depression-filling algorithm for digital
elevation models applied to proglacial lake drainage
Constantijn J. Berends1, Roderik S. W. van de Wal1
1Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, 3584 CC, The Netherlands

Correspondence to: Constantijn J. Berends (c.j.berends@uu.nl) 5

Abstract. We present and evaluate several optimizations to a standard flood-fill algorithm in terms of computational

efficiency. As an example, we determine the land/ocean-mask for a 1 km resolution digital elevation model (DEM) of North

America and Greenland, a geographical area of roughly 7000 by 5000 km (roughly 35 million elements), about half of which

is covered by ocean. Determining the land/ocean-mask with our improved flood-fill algorithm reduces computation time by

90 % relative to using a standard stack-based flood-fill algorithm. In another experiment, we use the bedrock elevation, ice 10

thickness and geoid perturbation fields from the output of a coupled ice-sheet - sea-level equation model at 30,000 years

before present and determine the extent of Lake Agassiz, using both the standard and improved versions of the flood-fill

algorithm. We show that several optimizations to the flood-fill algorithm used for filling a depression up to a water level,

that is not defined at forehand, decrease the computation time by up to 99 %. The resulting reduction in computation time

allows determination of the extent and volume of depressions in a DEM over large geographical grids or repeatedly over 15

long periods of time, where computation time might otherwise be a limiting factor.

1 Introduction

The problem of determining lake depth distributions for a given digital elevation model (DEM) is often encountered in

scientific fields such as hydrology, (palaeo-) climatology and glaciology.

An important example is the routing of melt-water and the drainage of proglacial lakes that formed at the margins of the 20

Laurentide ice-sheet. The retreat of the Laurentide ice-sheet during the last deglaciation and the corresponding release of

large fluxes of fresh water into the Arctic Sea and the northern Atlantic Ocean have been linked to climatic events through

disrupting the Atlantic Meridional Overturning Circulation (Barber et al., 1999, Clark et al., 2001, Li et al., 2012, Tarasov

and Peltier, 2005, Teller et al., 2002). Melt-water from the remnants of Northern Hemisphere ice-sheets has also been shown

to have influenced the climate system during the previous interglacial (Stone et al., 2016). 25

Many studies have focused on reconstructing the direction and magnitude of the freshwater flux from geological data

(Broecker et al., 1989, Hillaire-Marcel et al., 2007, LaJeunesse and St.-Onge, 2008, Törnqvist et al., 2004). More recently

these freshwater fluxes have been estimated by stand-alone ice-sheet models (Goelzer et al., 2012, Marshall et al., 1999,

Tarasov and Peltier, 2004).

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

2

Due to the influence of the local topography, part of the melt-water from the retreating ice-sheet was not directly released

into the ocean system but temporarily stored in proglacial lakes, the largest of which is Lake Agassiz, along the southern

margin of the ice-sheet. Lake Agassiz is estimated to have covered 7.1×105 km2 and contained approximately 1.4×1014 m3 of

water or 0.4 m global mean sea-level equivalent around 8.4 kyr BP, immediately prior to its catastrophic drainage (Kendall

et al., 2008). The size of the flood is however poorly constrained and higher numbers have also been published (e.g. Hijma 5

and Cohen, 2010). It is therefore important to accurately model the extent and volume of the lake over time, since the

presence of the lake affects both the timing and location of the melt-water release into the ocean system, as well as the local

climate (Krinner et al. 2004). Doing this requires an accurate treatment of the large changes in the land/ocean-mask that

occur where the ice-sheet covers most of the Canadian Arctic Archipelago and blocks the Hudson Strait. This changes the

location where lake outflow reaches the sea over time. The flood-fill algorithm can be used to determine the land/ocean-10

mask and account for this effect.

When applying commonly used algorithms (Arnold, 2010, Doll and Lehner, 2002, Tarboton et al., 1991, Zhu et al., 2006) to

a problem involving such large geographical grids and long time-scales, computation time can become a limiting factor,

particularly when the geometry is changing over time and the procedure has to be repeated over many time steps.

In this study, we describe and evaluate several improvements to a standard algorithm for filling depressions in a DEM in 15

order to improve the computational efficiency. The improved algorithm is applied to a 1 km resolution DEM, including an

ice thickness distribution of North America 30,000 years ago. We determine both the land/ocean-mask and the size and

extent of Lake Agassiz.

2 Methodology

2.1 Default algorithm 20

The problem of filling a depression up to a pre-defined level can be likened to filling a hole in a true/false-mask (whether or

not the base level is below an a priori chosen water level). There are several algorithms for solving this problem, generally

known as “flood-fill” algorithms (Zhu et al., 2006). They are commonly known for their use in the “bucket” tool of several

paint programs. A thorough description of the stack-based flood-fill algorithm is given by Zhu et al. (2006). Here we

improve on this work, taking code written after their approach as a starting point. The algorithm starts with a “seed”, defined 25

as a designated element from where neighbouring elements are flooded. In many hydrological applications, the seed will be a

local minimum in a DEM. Beside the seed element, the algorithm builds a “stack”, which is an array listing the indices of the

map elements. At each iteration of the algorithm, all stack elements are checked. If the elevation of a stack element is below

the water level its corresponding map element is filled and it is removed from the stack and all its neighbours are added to

the stack. If the element does not lie below the water level it is removed from the stack without any further action. The 30

iterations are continued until the stack is empty and the elements below the water level are identified.

A pseudo-code example of this algorithm is illustrated below.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

3

stack = seed

WHILE (stack is not empty)
 FOR (all elements in stack) 5
 IF (stack element lies below water level)
 remove element from stack
 FOR (8 neighbours of stack element)
 IF (neighbour is not filled and is not in stack)
 add neighbour to stack 10
 END IF
 END FOR
 END IF
 END FOR
END WHILE 15

An example of a Matlab implementation of this algorithm is provided in the supplementary material, being script

“fill_1km.m”.

The number of operations required for filling a hole with this algorithm is approximately proportional to the number of

elements of the depression. This means that application to a very large area with a high resolution can result in a long 20

computation time, since doubling the resolution in the horizontal plane will quadruple the number of operations.

A second issue is an efficient way to determine the water level. When creating the land/ocean-mask, the water level is known

and the true/false-mask is created by checking for every single element whether its elevation is above or below the water

level. In the case of a lake, the water level can either be determined by the water mass balance, with inflow and evaporation

in equilibrium. Alternatively, in the case of inflow that is not balanced by evaporation, the surrounding topography will limit 25

the water level. In either case, the general solution to determining the water level is to start at the bottom of the depression

and incrementally increase the water depth, either until the calculated evaporation becomes large enough to offset the inflow,

or until the lake overflows.

A pseudo-code example of this algorithm is illustrated below.

 30

water level = 0

WHILE (threshold is not reached)
 increase water level
 perform flood-fill 35
END WHILE

The threshold condition can be the overflowing of the lake into the sea, the total evaporation over the lake balancing total

water influx, or any other logical condition.

Depending on the vertical resolution of the DEM and the accuracy required to determine the lake depth, such a calculation 40

requires dozens to hundreds of iterations. This is not always a restriction for practical applications where one is interested in

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

4

the water runoff pathways and drainage basins for a given DEM. However, when performing an ensemble of simulations, or

a simulation where the topography changes over time, reducing the computation time can be crucial for the performance and

feasibility of the application and optimizations are required. In the next paragraph we present several optimizations to the

standard flood-fill algorithm, which reduce computation time considerably for map with a large area or a high resolution.

2.2 Optimizations 5

2.2.1 Low-resolution block inspection

When filling a depression to a pre-determined water level, we strongly reduce the number of operations by creating a lower

resolution “maximum topography” map. For example, any element of a 4 km maximum topography map will contain the

highest value of the corresponding 4 x 4 block of 1 km elements. Consequently, we apply the flood-fill algorithm to this

lower resolution map. If the highest element of a 4 km x 4 km square lies below the water level, all sixteen 1 km elements 10

must do, implying all of them can be flooded at once. This step yields a first coarse filling scheme without testing each

individual element at the final higher resolution.

When the algorithm is finished, some elements may not yet be flooded where they should be, but the large majority of them

will be filled already if the distribution is not too scattered. To identify those elements that still need to be flooded, we take

this intermediate map and stack from the 4 km fill and use these as a starting point for a 1 km fill. Applied to the 1 km map, 15

the algorithm will only have to fill in the “fringes” of the depression - a much smaller area than has already been processed

by the low-resolution fill. Figure 1 illustrates this.

In Fig.1, the 1 km true/false-mask is shown as a black overlay in all panels. The 4 km stack (light green) is initiated with a

seed in the lower left corner of the map, panel A. The 4 km algorithm expands from this seed until no more elements can be

added. The final map (blue) and stack (light green) are shown in panel B. These are then converted to their 1 km equivalent, 20

shown in panel C. As can be seen, the conversion conserves the filled elements. The 1 km algorithm then continues from this

map and stack until no more elements can be added. The resulting map and stack coincides with the 1 km true/false-mask in

panel D.

The decrease in computation time resulting from using the high-resolution algorithm is larger than the additional

computation time required to create the low-resolution map and to convert the low-resolution stack to its high-resolution 25

equivalent. This is shown for an example in Sect. 3.1.

A further increase in efficiency can be achieved by creating an additional medium-resolution map in between. For example,

we can start with a 10 km fill, and then convert the resulting map and stack to 5 km resolution. Use the intermediate result

for a 5 km fill algorithm, run this until completion, convert the resulting map and stack to their 1 km equivalents, and finalize

with the 1 km fill. Note that this will only work when the different resolutions are integer multiples of each other. 30

Constructing rules for when this condition is not met is not evident, and will increase computation time, and is beyond the

scope of this study.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

5

A Matlab implementation of the fill algorithm is provided in the supplementary material, being script “Demo_FillSea.m”.

2.2.2 Shoreline memory

In the case of a depression that must be filled up to overflow conditions, one small change to the flood-fill algorithm is

straightforward. Any element that is filled at a certain water depth will also be filled for any higher water depth, meaning the

lake’s shoreline will only expand outward when the water depth is increased. Hence, in the improved flood-fill algorithm, a 5

stack element that is found to lie above the water level is not removed from the stack. Instead it is flagged and not inspected

again in any further loops. This means that when the algorithm is finished, the stack contains all those and only those

elements, which directly border filled elements but which are not filled, being the shoreline.

When the water depth is increased during the filling of a depression, the final stack from the previous loop is taken as a

starting point. This means that all elements of the final, deepest lake have only been inspected once during the iteration 10

procedure. For a deep lake, which requires many depth increments to be filled, the decrease in the required computation time

can be large in this way, as will be shown in Sect. 3.3.

2.2.2 Low-resolution lake depth estimation

When trying to fill a depression up to the level of overflowing, i.e. with no pre-determined water level, it is generally not

possible to use the low-resolution block inspection algorithm presented in Sect. 2.2.1. This is because the algorithm needs to 15

check if overflow is reached for every single depth increment, and must therefore perform a 1 km fill at every depth

increment. As converting a high-resolution stack and map back to the lower resolution is not possible, we cannot use the

final high-resolution shoreline to start a new low-resolution fill.

This issue is solved by performing a fill on a low-resolution average topography map. Although not mathematically

necessary, the topography of a geographical area is usually smooth enough such that a low-resolution estimate will yield a 20

water depth relatively close to the “true” water depth that would be calculated with a high-resolution fill. This means that,

instead of starting at zero depth, we can initiate the algorithm with a depth slightly below the depth yielded by the low-

resolution estimate. The lake at this depth will be close to its maximum extent, so we can use the block inspection method to

efficiently fill the majority of the lake’s central elements at low resolution, thus reducing the computation time. The lake’s

fringes are filled with the high-resolution algorithm and the depth is increased incrementally until overflow is reached. 25

Section 3.4 describes an experiment where this method is implemented. A pseudo-code example of this algorithm is

illustrated below.

water level = 0
 30
WHILE (threshold is not reached)
 increase water level
 perform flood-fill on 40 km average topography field

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

6

END WHILE

decrease water level
perform flood-fill on 40 km maximum topography field
convert 40 km map and stack to 1 km equivalent 5

WHILE (threshold is not reached)
 increase water level
 perform flood-fill on 1 km topography field
END WHILE 10

A Matlab implementation of this algorithm is provided in the supplementary material, being script “Demo_FillLake.m”.

3 Results

All experiments are performed in Matlab R2014b on a 2013 iMac with a 3.2GHz Intel i5 processor and 8GB 1600MHz

DDR3 Memory. Note that Matlab is an interpreted language and that the performance of the algorithm in a compiled 15

language such as Fortran or C will generally be much faster. However, the relative improvements in performance of the

optimized algorithms should be preserved.

3.1 Low-resolution block inspection

As a first example, we use different versions of the flood-fill algorithm to determine the land/ocean-mask for a DEM of

North America and Greenland (Amante and Eakins, 2009), using an oblique stereographic projection at 1 km resolution. The 20

region covers an area of roughly 7000 by 5000 km, resulting in approximately 17 million ocean elements to be filled. This

extremely large size is useful for testing the efficiency of different set-ups and is needed in order to model the pressure

exerted by lakes in gravitationally consistent calculations during the evolution of ice-sheets in North America.

Creating the land/ocean mask depicted in Fig. 2 with the standard version of the flood-fill algorithm at a 1 km resolution

takes approximately 82 seconds. This serves as benchmark to which all subsequent experiments will be compared. 25

We performed two series of experiments with block inspection at different resolutions. The first series considers a sequence

of 40 km, 8 km, 4 km, 2 km and 1 km resolutions. The second series considers a sequence of 40 km, 20 km, 10 km, 5 km

and 1 km resolutions. The results in terms of computational efficiency are presented in Table 1 and Table 2, respectively.

Both the conversion and filling parts of the Tables can be read as “coming from [row] resolution, going to [column] 30

resolution”. For example (Table 1; highlighted in yellow), converting a 40 km map and stack to their 1 km equivalent takes

0.20 seconds. A 1 km fill starting with that map and stack will then take 27.54 seconds. The diagonal elements in the filling

parts of the tables indicate the computation time of a fill at that resolution starting from a single seed element.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

7

An overview of several possible resolution schemes is given in Table 3. It shows that the most efficient scheme (40 km - 5

km - 1 km) is almost an order of magnitude faster than the default algorithm at 1 km resolution.

3.2 Shape dependence

The total gain in efficiency from the improvements to the algorithm will of course depend on the details of the problem it is

applied to. In the optimized algorithm, the number of elements that can be filled at the low resolution roughly scales with the 5

area of the depression, whereas the number of elements that need to be filled at the high resolution roughly scales with the

depression’s circumference. The gain in computational efficiency therefore depends largely on the shape of the depression,

becoming larger when the depression becomes more circular.

To illustrate this, the improved algorithm with a 40 km - 5 km - 1 km resolution scheme was applied to several versions of

the same topography field, passed through increasingly strong high-pass filters with a cut-off wavelength of 30km, so that 10

the remaining topographical features that determine the shape of the depression are all too small to be visible on the low-

resolution map in Fig. 3.

The results of the experiment are given in Table 4. The area of the ocean basin and therefore the number of elements that

require filling does not change much. However, the compactness factor C of the ocean basin, which is defined as:

𝐶 =
𝐴

4𝜋∅!

with ∅ the circumference and A the area of the basin, decreases sharply when the small-scale topographical features become 15

more prominent.

This illustrates that the gain in computational efficiency from the block inspection depends strongly on the shape of the

topography in which a depression must be filled. Natural topographical features generally have a vertical scale proportional

to their horizontal scale, which leads to the relatively circular shapes of most natural lakes. This means that, for most natural

topographies, the block inspection algorithm will substantially decrease the computation time required for filling 20

depressions.

3.3 Shoreline memory

Similar to the previous experiment, we consider the lake formation in the North American region 30,000 years ago as a

second example. At this time, large parts of the North American continent were covered by the Laurentide ice-sheet. The

depression left in the bedrock by the weight of the ice, combined with the mass of ice damming off the Hudson Strait lead to 25

the formation of a massive proglacial lake over the area of what is now known as the Hudson Bay. The situation is shown in

Fig. 4.

We apply the flood-fill algorithm to the same 1 km resolution topographic map, combined with an ice thickness distribution,

a bedrock deformation field and a geoid perturbation field (all generated by the ANICE-SELEN model - de Boer et al, 2014)

to determine the size of the lake. These data fields have a 40 km resolution and are used to perturb the 1 km resolution DEM, 30

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

8

such that the small topographic features are preserved. The 40 km resolution perturbation fields are mapped onto the 1 km

resolution data fields using bilinear interpolation. The lake is found to cover an area of 3.5×106 km2, with a volume of

6.0×1014 m3 or about 1.7 meters eustatic sea-level equivalent of water.

As a benchmark, we apply the standard flood-fill algorithm without any optimizations, using a 5 m depth increment. This

means that the algorithm fills the depression up to a certain water level, increases the depth by 5 m and fills the depression 5

up to the new water level from the same seed, until the lake overflows into the sea. This run costs 351 seconds (almost six

minutes) to complete. This implies that for a 120,000 year period which is resolved every 5 years, which is a time step

typically used to resolve the last glacial cycle in an ice-sheet model, computational time is excessive relative to the

approximately 50 hours such a simulation would otherwise require.

Performing the same test with a depth increment of 10 m takes 179 seconds. This is far less because for each depth interval 10

the complete lake has to be filled, so the number of fills increases more or less linearly with the requested accuracy. A 5 m

depth interval leads to an accuracy of about 3 % in the lake’s volume, which is considered to be sufficiently accurate.

By implementing the “shoreline memory” improvement described in 2.2.2 to the algorithm we improve the performance in

terms of computation time. As explained earlier, the improved shoreline memory implies that every element will only be

checked once, yielding a drastic reduction in computation time, which is particular relevant for large lakes. Filling the same 15

lake at 1 km resolution only takes 23 seconds in the optimized case, a reduction in computation time of about 90 % with

respect to the benchmark.

3.4 Low-resolution lake depth estimation

As a final improvement, we implement the depth estimation method. This method starts by filling the same lake on the 40

km resolution topography, in order to get a depth estimate. The resulting lake is depicted in Fig. 4. It has a volume of 20

6.6×1014 m3, overestimating the “true” 1 km volume by about 10 %. The 40 km estimate covers several river valleys visible

in Fig. 5c, which should drain the lake. Since these valleys are only a few kilometers wide they do not appear on the

smoothed 40 km resolution topography map. This causes the overestimation of the water level and the lake’s extent and

volume - hence a high resolution is needed. The resulting depth is reduced by an arbitrary amount of 20 % and a fill to this

new depth is performed on the 40 km maximum topography field. The resulting lake, which will serve as a starting point for 25

the final 1 km fill, is depicted in Fig. 5b.

The water level is then incrementally increased, while using the 1 km fill algorithm, until the lake overflows into the sea. The

complete process takes 4.4 seconds to complete. This is about 5 times faster than the 1 km fill with shoreline memory and

about 80 times faster than the default implementation, a reduction in computation time of about 99 % with respect to the

benchmark experiment. 30

Note that the 20 % reduction in depth from the 40 km estimate is chosen somewhat arbitrarily. Depending on the smoothness

of the local topography, it is possible that the 40 km estimate will be much more accurate. In such cases, it is justifiable to

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

9

reduce the depth less, and hence improve efficiency even more. For this reason, it is advisable to check if the depth reduction

from the 40 km estimate is enough to prevent overflow. If not, the depth needs to be increased even further before starting

the 40 km maximum topography fill.

4 Conclusions

We have presented and evaluated several optimizations to a standard flood-fill algorithm. When determining the land/ocean-5

mask over a large grid, the optimized algorithm is up to 9 times faster than the default algorithm. When determining the

extent and depth of Lake Agassiz from a given DEM and ice thickness map, the optimized algorithm is up to 80 times faster

than the default algorithm. The gain in computational efficiency depends on the smoothness of the topography, with the

largest reduction in computation time achieved when most of the volume of the depression is contributed by topographical

features with a horizontal scale larger than the lowest resolution of the block inspection method. 10

In the example given in this study, the ice thickness, bedrock deformation and geoid anomaly all initially had a 40 km

resolution. In order to do a 1 km lake fill, these fields were interpolated onto a 1 km grid, which is computationally

expensive. If all input fields are already at high resolution, they only need to be downscaled to a low resolution for the block

inspection step, which takes considerably less time. For this reason, the computation time for this interpolation step is not 15

included in the results.

The algorithm presented here can take into account the bedrock deformation and geoid perturbation caused by the mass

changes of an ice-sheet, if they have been calculated. These effects both influence the volume of a lake by deepening the

basin and raising the water surface. 20

Any study involving either a very large grid or a large number of repeated simulations will greatly benefit from these

optimizations. Examples include the modelling of large proglacial lakes, the dynamical modelling of run-off over an

evolving ice-sheet, changes of water routing by tectonic activity and changes in a large water basin due to sea-level changes

such as in the Mediterranean. 25

Code and data availability

Several	 Matlab	 scripts	 containing	 different	 versions	 of	 the	 flood-‐fill	 algorithm,	 as	 referenced	 in	 this	 manuscript,	 are	

provided	 as	 supplementary	 material.	 Two	 large	 NetCDF	 files	 containing	 data	 files	 required	 to	 run	 these	 scripts	 are	

available	 online	 at	 doi:10.5194/gmd-‐2016-‐85-‐supplement.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

10

Acknowledgements

Financial	 support	 for	 this	 study	 was	 provided	 via	 the	 program	 of	 the	 Netherlands	 Earth	 System	 Science	 Centre	

(NESSC),	 by	 the	 Ministry	 of	 Education,	 Culture	 and	 Science	 (OCW),	 in	 the	 Netherlands.	 Heiko	 Goelzer,	 Lennert	 Stap	

and	 Sarah	 Bradley	 commented	 on	 an	 earlier	 draft	 of	 this	 paper.

References 5

Amante, C. and Eakins, B. W.: ETOPO1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, National

Oceanic and Atmospheric Administration Technical Memorandum NESDIS NGDC-24, doi: 10.7289/V5C8276M, 2009.

Arnold, N.: A new approach for dealing with depressions in digital elevation models when calculating flow accumulation

values, Prog. Phys. Geog., 34, 781-809, doi: 10.1177/0309133310384542, 2010.

Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., 10

Southon, J., Morehead, M. D. and Gagnon, J.-M.: Forcing of the cold event of 8,200 years ago by catastrophic drainage of

Laurentide lakes, Nature, 34, 781-809, doi: 10.1038/22504, 1999.

Broecker, W. S., Kenett, J. P., Flower, B. P., Teller, J., Trumbore, S., Bonani, G. and Wolfli, W.: Routing of meltwater from

the Laurentide Ice Sheet during the Younger Dryas cold episode, Nature, 341, 318-321, doi: 10.1038/341318a0, 1989.

Clark, P. U., Marshall, S. J., Clarke, G., Hostetler, S. W., Licciardi, J. M. and Teller, J.: Freshwater Forcing of Abrupt 15

Climate Change During the Last Glaciation, Science, 293, 283-287, doi: 10.1038/341318a0, 2001.

de Boer, B., Stocchi, P. and van de Wal, R. S. W.: A fully coupled 3-D ice-sheet-sea-level model: algorithm and

applications, Geosci. Model Dev., 7, 2141-2156, doi: 10.5194/gmd-7-2141-2014, 2014.

Döll, P. and Lehner, B.: Validation of a new global 30-min drainage direction map, J. Hydrol., 258, 214-231, doi:

doi:10.1016/S0022-1694(01)00565-0, 2002. 20

Goelzer, H., Janssens, I., Nemec, J. and Huybrechts, P.: A dynamic continental run-off routing model applied to the last

Northern Hemisphere deglaciation, Geosci. Model Dev., 5, 599-609, doi:10.5194/gmd-5-599-2012, 2012.

Hijma, M. P. and Cohen, K. M.: Timing and magnitude of the sea-level jump preluding the 8200 yr event, Geology, 38, 275-

278, doi: 10.1130/G30439.1, 2010.

Hillaire-Marcel, C., deVernal, A. and Piper, D. J.: Lake Agassiz final drainage event in the northwest North Atlantic, 25

Geophys. Res. Lett., 34, 1-5, doi: 10.1029/2007GL030396, 2007.

Kendall, R., Mitrovica, J. X., Milne, G. A., Törnqvist, T. E., and Li, Y.-X.: The sea-level fingerprint of the 8.2 ka climate

event, Geology, 36, 423-426, doi: 10.1130/G24550A.1, 2008.

Krinner, G., Mangerud, J., Jakobsson, M., Crucifix, M., Ritz, C. and Svendsen, J. I.: Enhanced ice sheet growth in Eurasia

owing to adjacent ice-dammed lakes, Nature, 427, 429-432, doi: 10.1038/nature02233, 2004. 30

Lajeunesse, P. and St-Onge, G.: The subglacial origin of the Lake Agassiz-Ojibway final outburst flood, Nat. Geosci., 1,

184-188, doi: 10.1038/ngeo130, 2008.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

11

Li, Y.-X., Törnqvist, T. E., Nevitt, J. M. and Kohl, B.: Synchronizing a sea-level jump, final Lake Agassiz drainage and

abrupt cooling 8200 years ago, Earth Planet. Sc. Lett., 315, 41-50, doi: 10.1016/j.epsl.2011.05.034, 2012.

Marshall, S. J. and Clarke, G.: Modelling North American Freshwater Runoff through the Last Glacial Cycle, Quaternary

Res., 52, 300-315, doi: 10.1006/qres.1999.2079, 1999.

Stone, E. J., Capron, E., Lunt, D. J., Payne, A. J., Singarayer, J. S., Valdes, P. J. and Wolff, E. W.: Impact of melt water on 5

high latitude early Last Interglacial climate, Clim. Past., 11, doi:10.5194/cp-2016-11, 2016.

Tarasov, L. and Peltier, W. R.: A geophysically constrained large ensemble analysis of the deglacial history of the North

American ice-sheet complex, Quaternary Sci. Rev., 23, 359-388, doi:10.1016/j.quascirev.2003.08.004, 2004.

Tarasov, L. and Peltier, W.R.: A calibrated deglacial chronology for the North American continent: evidence of an Arctic

trigger for the Younger Dryas, Quaternary Sci. Rev., 25, 659-688, doi:10.1016/j.quascirev.2005.12.006, 2006. 10

Tarboton, D. G., Bras, R. L. and Rodriguez-Iturbe, I.: On the extraction of channel networks from digital elevation data,

Hydrol. Process., 5, 81-100, 1991.

Teller, J., Leverington, D. and Mann, J.D.: Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in

climate change during the last deglaciation, Quaternary Sci. Rev., 21, 879-887, doi:10.1016/S0277-3791(01)00145-7, 2002.

Törnqvist, T. E., Bick, S. J., Gonzalez, J. L., van der Borg, K. and de Jong, A. F.: Tracking the sea-level signature of the 8.2 15

ka cooling event: New constraints from the Mississippi Delta, Geophys. Res. Lett., 31, doi: 10.1029/2004GL021429, 2004.

Zhu, Q., Tian, Y. and Zhao, J.: An efficient depression processing algorithm for hydrologic analysis, Computers and

Geosciences, 32, 615-623, doi:10.1016/j.cageo.2005.09.001, 2006.

 20

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

12

Figure 1: An illustration of the low-resolution block inspection improvement upon the default flood-fill algorithm. Black overlay: 1
km true/false-mask: dark green: unfilled; light green: stack; blue: filled. A: the 4 km fill is given a seed in the southwest corner of
the map. B: the 4 km fill is completed. C: The 1 km map and edge created from the intermediate 4 km output. D: the result of the 1
km fill. 5

Figure 2: The present-day land/ocean-mask and the bedrock topography at 1 km resolution.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

13

Figure 3: Land/ocean-mask for the same region, with the topography passed through a high-pass filter. Panel A: 40 % reduction
in amplitude for wavelengths above 30km. Panel B: 60 % reduction. Panel C: 80 % reduction. Panel D: 90 % reduction. The
ocean area increases slightly and the length of the coastline increases strongly.

 5
Figure 4: North America, the Laurentide ice-sheet and Lake Agassiz, 30ky before present. The red outlined region is shown in
close-up in Fig. 5.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

14

Figure 5: The area around the eastern shore of the lake, outlined in red in Fig. 4. Panel A: The 40 km resolution estimate. Panel B:
The result of the 40 km maximum topography fill to a water depth 20 % below that of the 40 km estimate. Panel C: The final 1 km
lake. Note that the algorithm allows for ice to float when the water column is high enough, creating a small ice-shelf along the
margin, visible in panel C where part of the lake’s shoreline runs beneath the ice. 5

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

15

Table 1: Computation time in seconds for stack and map conversion between different resolutions and for flood-filling at different
resolutions with different starting stacks, for the 40 km - 8 km - 4 km - 2 km - 1 km series. The yellow shaded numbers are
explained in the text.

Stack and map conversion Flood-fill

 40 8 4 2 1 40 8 4 2 1

40 - 0.04 0.04 0.07 0.20 40 0.05 0.19 0.85 3.73 27.54

8 - - 0.34 0.37 0.56 8 - 0.94 0.16 0.76 11.65

4 - - - 1.30 31.22 4 - - 4.03 0.40 8.29

2 - - - - 65.98 2 - - - 16.89 5.64

1 - - - - - 1 - - - - 82.04

Table 2: Computation time in seconds for stack and map conversion between different resolutions and for flood-filling at different 5
resolutions with different starting stacks, for the 40 km - 20 km - 10 km - 5 km - 1 km series.

Stack and map conversion Flood-fill

 40 20 10 5 1 40 20 10 5 1

40 - 0.04 0.03 0.05 0.21 40 0.06 0.02 0.05 0.18 13.78

20 - - 0.08 0.08 0.34 20 - 0.17 0.02 0.12 11.26

10 - - - 0.24 0.43 10 - - 0.62 0.08 9.28

5 - - - - 1.07 5 - - - 2.45 7.97

1 - - - - - 1 - - - - 82.11

Table 3: Total computation time relative to the 1 km benchmark experiment for several resolution schemes, sorted ascending.

Resolution scheme Computation time reduction (%)

40 - - 5 1 88.64

40 8 - - 1 84.79

- 8 4 - 1 50.13

- 8 - 2 1 10.25

- - 4 2 1 5.80

- - - 1 0.00

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

16

Table 4: Reduction in computation time for the 40 km - 5 km - 1 km resolution scheme with respect to the 1 km benchmark
experiment for different bedrock topographies. Also listed are the area and compactness factor of the resulting ocean basin.

Filter (%) Compactness factor Ocean area (km2) Computation time reduction (%)

-100* 6.0e-2 1.72e7 95.48

0 5.1e-3 1.72e7 91.56

20 2.7e-3 1.76e7 89.37

40 1.4e-3 1.77e7 74.48

60 7.4e-4 1.76e7 58.89

80 2.6e-4 1.79e7 35.35

90 1.4e-4 1.86e7 18.72

*30km low-pass filter; “smoothed” topography.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-85, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 May 2016
c© Author(s) 2016. CC-BY 3.0 License.

