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Author comment replying to the referee comment posted by anonymous referee #2 

 

We like to thank the reviewer for his comments on the manuscript and would hereby like to address the concerns he raised. 

In Italics the comments, below our rebuttal 

 5 

The modifications made by the authors to the Introduction & Methodology are minimal in response to my comments, I do not 

feel that they have improved the clarity of the paper. I assume the authors believe that all the information is there so they 

don’t think it needs modification, however, I find these parts of the paper hard to read and think the authors could be much 

kinder to the reader. I hoped the authors would understand my points and address them, instead I now feel I must detail 

points more explicitly. I leave it to the Editor to decide whether to ask the authors to have another go at clarifying the paper 10 

for the benefit of a non-specialist. 

 

We apologize for having failed to adequately improve the clarity of these sections. Although we have had the manuscript 

read and commented upon by several colleague scientists who were not involved in the research before submission, we do 

recognize that they may have had more relevant background knowledge than the average reader and may therefore not have 15 

picked up on some issues that can be unclear to other non-specialists. We thank the reviewer for pointing out now more 

specifically the difficulties with the manuscript and we have changed the manuscript accordingly. 

 

In the first line of the introduction, the “problem” of determining drainage routes is introduced, and the introduction then 

goes on to explain the importance of the location and magnitude of the lake drainage. This is ok (though could still also be 20 

improved). However, after this, you need to be more clear about the exact problem you are addressing, why it is a problem, 

and how you are addressing it, and exactly what the algorithm does. On line 12, the sentence beginning “Doing this” (try 

and avoid using “this” - reiterate what “this” is) is not clear, and leads to confusion for me over the mask and the filling 

aspects. Here is my understanding of what you are doing, correct me if I am wrong… 

“In order to model the extent and volume of lakes over time, and, hence, where these lakes discharge to the ocean, a 25 

land/ocean mask must first be defined. The land/ocean mask delineates ocean areas below sea level that have an open 

connection to the ocean, using the ice sheet extent and sea level at a given time. Large changes in the land/ocean mask 

occur, for example, where the ice-sheet at times covers most of the Canadian Arctic Archipelago or blocks the Hudson 

Strait. Alterations to the mask change the location where spill-over from the lake and drainage events reach the ocean over 

time. A “flood-fill” algorithm (Zhu et al. 2006) can be used to determine the land/ocean mask with a given sea level, and 30 

then subsequently used to fill depressions that are unconnected to the ocean to a given level, or to overflow level. 

Quantifying the volume of the filled depressions allows the potential volume of the lake to be calculated in order to 

determine how much melt-water is released into the ocean and where.” 
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We agree that the difference between the geophysical “problem” of accounting for proglacial lakes in ice modeling, which 

explains the relevance of our research, and the abstract mathematical “problem” of determining the extent and volume of a 

depression in a DEM, which is what our algorithm solves, should be made more clear. 

We have changed the description of the geophysical problem according to the reviewer’s suggestion, and we have added a 

few lines describing the mathematical problem, and how this is solved by flood-fill algorithms in general. We have also 5 

changed the phrasing of the first paragraph of the Introduction section to avoid confusion between the two stated problems. 

 

Then the following clarifications: “When applying commonly used **what sort of** algorithms (Arnold, 2010, Doll and 

Lehner, 2002, Tarboton et al., 1991, Zhu et al., 2006) to a problem involving such large geographical grids and long time-

scales, computation time **for filling depressions?** can become a limiting factor, particularly when the geometry is 10 

changing over time and the procedure has to be repeated over many time steps. 

In this study, we describe and evaluate several improvements to a standard algorithm for filling depressions in a DEM in 

order to improve the computational efficiency **for calculating lake volumes**.” 

 

We agree that the suggested changes aid in making the distinction between the aforementioned geophysical and 15 

mathematical problems. We have incorporated the suggested changes in the text. 

 

The last two paragraphs are not introduction material – these would be more suited for the methodology section. 

 

We agree that these two paragraphs, which justify our choice of a 1 km resolution, should be described elsewhere. We have 20 

moved them to the beginning of the Results section, after the paragraph describing the details of the ETOPO1 DEM. 

 

My second point: Further there is not much detail on the default algorithm, the reader is left to go and read the paper by 

Zhu et al. (2006), such that it is a bit hard to follow independently. I couldn’t see any modification to the description, beyond 

the addition of a figure, which does not really help to clarify the situation very much. The description of which cells go into 25 

the stack is not written very clearly.  

 

We have added a few lines on the paper by Zhu et al. (2006) and more importantly improved Figure 1 and the caption, which 

is the one mentioned above, explaining the way the default flood-fill algorithm works. We have also changed the phrasing of 

the paragraph explaining the default algorithm in order to make it more readable. 30 

 

What would also help the narrative is a final line stating how you go from delineating a lake to a value for the total volume 

of the depression, given that (I think) that is what you have said you want to calculate in the introduction. I’m a bit confused 
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as to what you are calculating in the paper (just delineating lakes?), and what you want to calculate in the wider studies 

(lake volume?). 

 

We agree that this last step in the calculation process was missing from the explanation. We have added text to describe this. 

 5 

I also notice that in Figs. 1 and 2 that there are three green shades (and perhaps a 4th, but I think the black looks green to 

me!) and only two green shades described in the caption which means I find these figures confusing. 

 

We agree that the mentioned figures can be confusing. The problem here is that there are two “layers” of information: the 

state of the algorithm at a certain point in the iteration process (filled/stack elements), and the boundary conditions (the 10 

true/false-mask) under which it operates. Visualizing all this information in an intuitive way is difficult. We decided to 

display the true/false-mask as a semi-transparent black overlay on top of the colored blocks depicting the map and stack of 

the flood-fill algorithm. Two shades of green (unfilled and stack elements) combined with semi-transparent black overlay 

gives four possible shades of green, which leads to the confusion. 

We have changed the figure, removing the overlay and instead displaying the true shoreline (the border between true and 15 

false in the true/false-mask) as a simple black line. This should improve the clarity of the figure. We have also added three 

additional panels depicting the results of three more full iterations of the flood-fill algorithm. 

 

My third point: There are also a lot of vague statements such as “A second issue is an efficient way to determine the water 

level” on page 3, line 22. Because you don’t introduce your terms, such as “base level” and “water level” it is not always 20 

easy to follow the methods. Be more specific in these statements to help the reader understand what it is going on. Another 

example, on page 4, line 18 and Fig. 1, you talk about a true/false mask but don’t define what this is. In Fig. 2 you talk about 

a land/ocean mask, but all I can see is DEM elevations? Is the deep blue actually a mask and not elevations? In this case, 

this needs to be in the legend.  

Ok, the bit where you had used base level is clearer now, but I think you need to more clearly use and define different terms 25 

for the water level – sea level, lake water level and overflow level. Also, technically, how do you identify the overflow level? 

You use water level for all these terms, so I still find the explanation on p4 difficult to understand. 

 

We agree that the paragraph mentioned here contained some confusing terminology. We have rewritten the paragraph to 

more clearly describe how the water level of a lake is physically constrained by boundary conditions such as topography and 30 

water inflow, and how these mechanisms translate to the mathematical problem described earlier. 
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Based on the comments stated above, we have also made several minor changes to the rest of the Methodology and Results 

sections in order to improve clarity on similar subjects. We have also rewritten the abstract to more clearly place our work in 

its broader scientific context, in line with earlier comments of the same reviewer. 

 

 5 

 

 

 

List of changes 

Page 1, line 6: Rewrote the abstract to more clearly place our work in its broader scientific context, in line with earlier 10 

comments of anonymous referee #2. 

Page 1, line 22: Rewrote the first paragraph of the introduction to remove the confusion between the aforementioned 

geophysical and mathematical problems treated in the manuscript. 

Page 1, line 27: Minor grammatical fix. 

Page 2, line 16: Rewrote the paragraphs of the Introduction outlining the aforementioned geophysical and mathematical 15 

problems to remove confusion and to create an accurate problem statement. 

Page 2, line 27: “flood-fill algorithms”  instead of “algorithms”. 

Page 3, line 2: Moved the two paragraphs justifying the choice of a 1 km resolution to the Results section, where they are 

now following the paragraph describing the ETOPO1 DEM. 

Page 3, line 5: Changed the phrasing of the paragraph describing the default algorithm by Zhu et al., improving the clarity of 20 

the explanation. 

Page 4, line 6: Rewrote the paragraph describing the difference in complexity between filling the sea and filling a lake. 

Page 4, line 31: Added reference “as described above” to the term “default algorithm” to clarify which algorithm is meant. 

Page 5, line 3: Several minor changes in phrasing to the paragraphs describing the low-resolution block inspection method to 

improve clarity along the same lines as for the previous section. 25 

Page 5, line 30: Similar changes to the paragraphs describing the shoreline memory improvement. 

Page 6, line 9: Similar changes to the paragraphs describing the low resolution lake depth estimation. 

Page 7, line 14: Moved the two paragraphs about the 1 km resolution here. 

Page 13, line 1: Changed Figure 1, replacing the semi-transparent overlay depicting the true/false-mask by a solid black line 

depicting the shoreline of said mask. Three additional panels were added. Expanded the caption to give a more 30 

comprehensive explanation of the way the algorithm works. 

Page 14, line 1: Changed Figure 2 in the same manner. 
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A computationally efficient depression-filling algorithm for digital 
elevation models applied to proglacial lake drainage 
Constantijn J. Berends1, Roderik S. W. van de Wal1 
1Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, 3584 CC, The Netherlands 

Correspondence to: Constantijn J. Berends (c.j.berends@uu.nl) 5 

Abstract. Many processes govern the deglaciation of ice sheets. One of the processes that is usually ignored is the calving of 

ice in lakes that temporarily surround the ice sheet. In order to capture this process a flood-fill algorithm is needed. Here we 

present and evaluate several optimizations to a standard flood-fill algorithm in terms of computational efficiency. As an 

example, we determine the land/ocean-mask for a 1 km resolution digital elevation model (DEM) of North America and 

Greenland, a geographical area of roughly 7000 by 5000 km (roughly 35 million elements), about half of which is covered 10 

by ocean. Determining the land/ocean-mask with our improved flood-fill algorithm reduces computation time by 90 % 

relative to using a standard stack-based flood-fill algorithm. This implies that it is now feasible to include the calving of ice 

in lakes as a dynamical process inside an ice sheet model. We demonstrate this by using bedrock elevation, ice thickness and 

geoid perturbation fields from the output of a coupled ice-sheet - sea-level equation model at 30,000 years before present and 

determine the extent of Lake Agassiz, using both the standard and improved versions of the flood-fill algorithm. We show 15 

that several optimizations to the flood-fill algorithm used for filling a depression up to a water level, that is not defined at 

forehand, decrease the computation time by up to 99 %. The resulting reduction in computation time allows determination of 

the extent and volume of depressions in a DEM over large geographical grids or repeatedly over long periods of time, where 

computation time might otherwise be a limiting factor. The algorithm can be used for all glaciological and hydrological 

models, which need to trace the evolution over time of lakes or drainage basins in general. 20 

1 Introduction 

Changes in lake extent over time play an important role in hydrology (Renssen and Knoop, 2000), palaeo climatology 

(Krinner et al., 2004, Goelzer et al., 2012) and glaciology (Marshall et al., 1999, Tarasov and Peltier, 2006). For this reason 

it is important to track such changes in water routing and drainage inside dynamical models, particularly if major changes in 

the boundary conditions (topography, ice extent, ocean volume) take place over time. Several studies have underlined the 25 

importance of accounting for depressions when creating such drainage maps (Zhu et al., 2006, Arnold, 2010). 

An important example is the routing of melt-water and the drainage of proglacial lakes that formed near the margins of the 

Laurentide ice-sheet. The retreat of the Laurentide ice-sheet during the last deglaciation and the corresponding release of 

large fluxes of fresh water into the Arctic Sea and the northern Atlantic Ocean have been linked to climatic events through 

disrupting the Atlantic Meridional Overturning Circulation (Barber et al., 1999, Clark et al., 2001, Li et al., 2012, Tarasov 30 
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and Peltier, 2005, Teller et al., 2002). Melt-water from the remnants of Northern Hemisphere ice-sheets has also shown to 

have influenced the climate system during the previous interglacial (Stone et al., 2016). 

Many studies have focused on reconstructing the direction and magnitude of the freshwater flux from geological data 

(Broecker et al., 1989, Hillaire-Marcel et al., 2007, LaJeunesse and St.-Onge, 2008, Törnqvist et al., 2004). More recently 

these freshwater fluxes have been estimated by stand-alone ice-sheet models (Goelzer et al., 2012, Marshall et al., 1999, 5 

Tarasov and Peltier, 2006). 

Due to the influence of the local topography, part of the melt-water from the retreating ice-sheet was not directly released 

into the ocean system but temporarily stored in proglacial lakes, the largest of which is Lake Agassiz, along the southern 

margin of the ice-sheet. Lake Agassiz is estimated to have covered 7.1×105 km2 and contained approximately 1.4×1014 m3 of 

water or 0.4 m global mean sea-level equivalent around 8.4 kyr BP, immediately prior to its catastrophic drainage (Kendall 10 

et al., 2008). The size of the flood is however poorly constrained and higher numbers have also been published (e.g. Hijma 

and Cohen, 2010). It is therefore important to accurately model the extent and volume of the lake over time, since the 

presence of the lake affects both the timing and location of the melt-water release into the ocean system, as well as the local 

climate (Krinner et al. 2004, Tarasov and Peltier, 2006). 

In order to model the extent and volume of the lake and the drainage water flux and drainage location over time we first need 15 

to define a land/ocean-mask. This mask delineates areas below sea level, which are connected to the open ocean from the 

land points, which may change over time. Large changes occur for example, where the ice-sheet at times covers most of the 

Canadian Archipelago or block the Hudson Strait. Changes in this mask change the location where outflow from the lake 

reaches the sea over time. Besides determining the land/ocean mask we need to fill the depressions in the surface topography 

to determine the extent and volume of the lake(s). Both these problems - determining a land/ocean-mask and determining the 20 

volume of a lake filling a depression - are solved using so-called “flood-fill algorithms”. Given an array of elements that 

individually may or may not satisfy a certain threshold condition, a flood-fill algorithm determines which elements of the set 

have a neighbour-to-neighbour connection to a given “seed element” that passes only through elements that satisfy the 

threshold condition. The land/ocean-mask, for example, consists of the set of elements that have such a connection to the 

open ocean, where the threshold condition is met when the surface elevation of an element lies below sea level. 25 

When applying commonly used flood-fill algorithms (Arnold, 2010, Doll and Lehner, 2002, Tarboton et al., 1991, Zhu et al., 

2006) to a problem involving such large geographical grids and long time-scales, computation time can become a limiting 

factor, particularly when the geometry is changing over time and the procedure has to be repeated over many time steps. 

In this study, we describe and evaluate several improvements to a standard algorithm for filling depressions in a DEM in 

order to improve the computational efficiency. The improved algorithm is applied to a 1 km resolution DEM, including an 30 

ice thickness distribution of North America 30,000 years ago generated by an ice sheet model in such a way as to create 

boundary conditions allowing for the formation of a very large lake. We determine both the land/ocean-mask and the size 

and extent of the proglacial lake for this glacial configuration and compare the required computation time with the default 
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flood-fill algorithm as presented by Zhu et al. (2006) and with the drainage pointer approach presented by Tarasov and 

Peltier (2006). 

2 Methodology 

2.1 Default algorithm 

The problem of filling a depression up to a pre-defined level can be envisioned as filling a hole in a true/false-mask (whether 5 

or not the local topography is below the a priori chosen water level of the lake or ocean. There are several algorithms for 

solving this problem, generally known as “flood-fill” algorithms (Zhu et al., 2006). They are commonly known for their use 

in the “bucket” tool of several paint programs. A thorough description of the stack-based flood-fill algorithm is given by Zhu 

et al. (2006). The default algorithm as used by Zhu et al. (2006) starts with a “seed”, defined as a designated element from 

where neighbouring elements are flooded. In many hydrological applications, the seed will be a local minimum in a DEM. 10 

Beside the seed element, the algorithm builds a “stack”, which is an array listing the indices of the map elements. During 

each iteration of the algorithm, all stack elements are checked. If the elevation of a stack element is below the water level, 

the element is filled with water and it is removed from the stack and consequently all its neighbours are added to the stack, 

thus expanding the filled area outwards. If the element does not lie below the water level it is removed from the stack 

without any further action. The iterations are continued until the stack is empty and the elements below the water level are 15 

identified. 

Once the horizontal extent of the lake has thus been determined, its volume is calculated by integrating the water depth over 

the calculated area. 

A pseudo-code example of this algorithm is illustrated below. A step-by-step illustration of one iteration of the algorithm 

being applied to a simple true/false mask is shown in Figure 1. 20 

 

stack = seed 
 
WHILE (stack is not empty) 
 FOR (all elements in stack) 25 
  IF (stack element lies below water level) 
   remove element from stack 
   FOR (8 neighbours of stack element) 
    IF (neighbour is not filled and is not in stack) 
     add neighbour to stack 30 
    END IF 
   END FOR 
  END IF 
 END FOR 
END WHILE 35 
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An example of a Matlab implementation of this algorithm is provided in the supplementary material, being script 

“fill_1km.m”. 

The number of operations required for filling a hole with this algorithm is approximately proportional to the number of 

elements of the depression. This means that application to a very large area with a high resolution results in a long 

computation time, since doubling the resolution in the horizontal plane will quadruple the number of operations. 5 

Determining the land/ocean-mask of a DEM using this algorithm is straightforward, since the water level (the elevation of 

the water surface with respect to the Earth’s centre) that determines the fill criterion for all elements is, by definition, at sea 

level. For a lake where the water inflow is not balanced by evaporation, the water level depends on the topography 

surrounding the depression. The water level is then equal to the elevation of the “spill-over point” - the origin of the river 

that transports spill-over from the lake to the open ocean. The only way to determine the location of this point, and therefore 10 

the water level of the lake, is to start at the chosen local minimum in the DEM and to iteratively increase the water level until 

this spill-over point is reached. 

In the case where evaporation balances inflow, such as for several large present-day inland seas, the water level should be 

increased iteratively until the integrated evaporation over the lake matches the inflowing water flux. 

A pseudo-code example of this algorithm is illustrated below.  15 

 

water level = 0 
 
WHILE (threshold is not reached) 
 increase water level 20 
 perform flood-fill 
END WHILE 

 

The threshold condition can be the overflowing of the lake into the sea, the total evaporation over the lake balancing total 

water influx, or any other logical condition. 25 

Depending on the vertical resolution of the DEM and the accuracy required to determine the lake depth, such a calculation 

requires dozens to hundreds of iterations. This is not always a restriction for practical applications where one is interested in 

the water runoff pathways and drainage basins for a given DEM. However, when performing an ensemble of simulations, or 

a simulation where the topography changes over time, reducing the computation time can be crucial for the performance and 

feasibility of the application and optimizations are required. In the next paragraph we present several optimizations to the 30 

standard flood-fill algorithm as described above, which reduce computation time considerably for map with a large area or a 

high resolution. 
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2.2 Optimizations 

2.2.1 Low-resolution block inspection 

When filling a depression to a pre-determined water level, we strongly reduce the number of operations by starting with 

creating a lower resolution “maximum topography” map. For example, any element of a 4 km maximum topography map 

will contain the highest value of the corresponding 4 x 4 block of 1 km elements. Consequently, we apply the flood-fill 5 

algorithm to this lower resolution map. If the highest element of a 4 km x 4 km square lies below the water level, all sixteen 

1 km elements must do as well, implying all of them can be flooded at once. This step yields a first coarse filling scheme 

without testing each individual element at the final higher resolution. 

When this part of the algorithm is finished, some elements may not yet be flooded whereas they should be, but the large 

majority of them will be filled already if the distribution is not too scattered. To identify those elements that still need to be 10 

flooded, we take this intermediate map and stack from the 4 km fill, and use these as a starting point for a 1 km fill. Applied 

to the 1 km map, the algorithm will only have to fill in the “fringes” of the depression - a much smaller area than the part 

already processed at low-resolution. Figure 2 illustrates this. 

In Fig. 2, the 1 km true/false-mask is shown as a black overlay in all panels. The 4 km stack (light green) is initiated with a 

seed in the lower left corner of the map, panel A. The 4 km algorithm expands from this seed until no more elements can be 15 

added. The final map (blue) and stack (light green) are shown in panel B. These are then converted to their 1 km equivalent, 

shown in panel C. As can be seen, the conversion conserves the filled elements. The 1 km algorithm then continues from this 

map and stack until no more elements can be added. The resulting map and stack coincides with the 1 km true/false-mask in 

panel D. The decrease in computation time resulting from using the high-resolution algorithm is larger than the additional 

computation time required to create the low-resolution map and to convert the low-resolution stack to its high-resolution 20 

equivalent. This is shown for an example in Sect. 3.1.  

A further increase in efficiency can be achieved by creating an additional medium-resolution map in between. For example, 

we can start with a 10 km fill, and then convert the resulting map and stack to 5 km resolution. Use the intermediate result 

for a 5 km fill algorithm, run this until completion, convert the resulting map and stack to their 1 km equivalents, and finalize 

with the 1 km fill. Note that this will only work when the different resolutions are integer multiples of each other. 25 

Constructing rules for when this condition is not met are not evident, and will increase computation time, and are beyond the 

scope of this study. 

A Matlab implementation of the fill algorithm is provided in the supplementary material, being script “Demo_FillSea.m”. 

2.2.2 Shoreline memory 

In the case of a depression that must be filled up to overflow conditions, one small improvement to the flood-fill algorithm is 30 

straightforward. Any element that is filled at a certain water depth will also be filled for any higher water depth, implying 

that the lake’s shoreline will only expand outward when the water depth is increased. Hence, in the improved flood-fill 
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algorithm, a stack element that is found to lie above the water level is not removed from the stack. Instead it is flagged and 

not inspected again in any further loops. This means that when the algorithm is finished, the stack contains all those and only 

those elements, which directly border filled elements but which are not filled, being the shoreline. 

When the water depth is increased during the filling of a depression, the final stack from the previous loop is taken as a 

starting point. This means that all elements of the final, deepest lake have only been inspected once during the iteration 5 

procedure. For a deep lake, which requires many depth increments to be filled, the decrease in the required computation time 

can be large given this approach, as will be shown in Sect. 3.3. 

2.2.2 Low-resolution lake depth estimation 

When trying to fill a depression up to the level of overflowing, i.e. with no pre-determined water level, it is generally not 

possible to use the low-resolution block inspection algorithm presented in Sect. 2.2.1. This is because the algorithm needs to 10 

check if overflow is reached for every single depth increment, which has to be done at 1 km resolution. Because it is not 

possible to convert the high-resolution stack and map back to the lower resolution, we cannot use the final high-resolution 

shoreline to start a new low-resolution fill. It is therefore necessary to perform all fill iteration at high resolution, which is 

computationally expensive. 

Performing a fill on a low-resolution average topography map solves this issue. Although not mathematically necessary, in 15 

practise the topography of a geographical area is usually smooth enough to yield a low-resolution water depth estimate close 

to the “true” water depth that would be calculated with a high-resolution fill. This means that, instead of starting at zero 

depth, we can initiate the algorithm with a depth slightly below the depth yielded by the low-resolution estimate. The lake at 

this depth will be close to its maximum extent, so we can use the block inspection method to efficiently fill the majority of 

the lake’s central elements at low resolution, thus reducing the computation time. The lake’s fringes are filled with the high-20 

resolution algorithm and the depth is increased incrementally until overflow is reached. Section 3.4 describes an experiment 

where this method is implemented. A pseudo-code example of this algorithm is illustrated below. 

 

water level = 0 
 25 
WHILE (threshold is not reached) 
 increase water level 
 perform flood-fill on 40 km average topography field 
END WHILE 
 30 
decrease water level 
perform flood-fill on 40 km maximum topography field 
convert 40 km map and stack to 1 km equivalent 
 
WHILE (threshold is not reached) 35 
 increase water level 
 perform flood-fill on 1 km topography field 
END WHILE 

I.U. � 17/11/2016 21:14
Deleted: in this way

I.U. � 17/11/2016 21:15
Deleted: and must therefore perform40 
I.U. � 17/11/2016 21:16
Deleted: a

I.U. � 17/11/2016 21:16
Deleted: fill at every depth increment

I.U. � 17/11/2016 21:19
Deleted: such that

I.U. � 17/11/2016 21:19
Deleted: will yield a water depth relatively 
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A Matlab implementation of this algorithm is provided in the supplementary material, being script “Demo_FillLake.m”.  

3 Results 

All experiments are performed in Matlab R2014b on a 2013 iMac with a 3.2GHz Intel i5 processor and 8GB 1600MHz 

DDR3 Memory. Note that Matlab is an interpreted language and that the performance of the algorithm in a compiled 5 

language such as Fortran or C will generally be much faster. However, the relative improvements in performance of the 

optimized algorithms should be preserved. 

3.1 Low-resolution block inspection 

As a first example, we use different versions of the flood-fill algorithm to determine the land/ocean-mask for a DEM of 

North America and Greenland (Amante and Eakins, 2009), using an oblique stereographic projection at 1 km resolution. The 10 

region covers an area of roughly 7000 by 5000 km, resulting in approximately 17 million ocean elements to be filled. This 

extremely large size is useful for testing the efficiency of different set-ups and is needed in order to model the pressure 

exerted by lakes in gravitationally consistent calculations during the evolution of ice-sheets in North America. 

The chosen horizontal resolution of 1 km is very high for such models. However, a lower resolution would overlook 

topographical features, such as small river valleys, that would limit the water level of the lake through drainage. This would 15 

lead to a systematic overestimation of the total water volume unrelated to the uncertainty of the modelled location of the ice 

sheet margin, which is usually not as high as 1 km. A comparison between the calculated water volume of a lake at 1 km 

resolution versus the calculated volume of the same lake at 40 km resolution showed that the difference can be as large as 20 

%. 

 20 

Creating the land/ocean mask depicted in Fig. 3 with the standard version of the flood-fill algorithm at a 1 km resolution 

takes approximately 82 seconds. This serves as benchmark to which all subsequent experiments will be compared. 

 

We performed two series of experiments with block inspection at different resolutions. The first series considers a sequence 

of 40 km, 8 km, 4 km, 2 km and 1 km resolutions. The second series considers a sequence of 40 km, 20 km, 10 km, 5 km 25 

and 1 km resolutions. The results in terms of computational efficiency are presented in Table 1 and Table 2, respectively. 

Both the conversion and filling parts of the Tables can be read as “coming from [row] resolution, going to [column] 

resolution”. For example (Table 1; highlighted in yellow), converting a 40 km map and stack to their 1 km equivalent takes 

0.20 seconds. A 1 km fill starting with that map and stack will then take 27.54 seconds. The diagonal elements in the filling 

parts of the tables indicate the computation time of a fill at that resolution starting from a single seed element. 30 

I.U. � 17/11/2016 21:21
Deleted: 
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An overview of several possible resolution schemes is given in Table 3. It shows that the most efficient scheme (40 km - 5 

km - 1 km) is almost an order of magnitude faster than the default algorithm at 1 km resolution. 

3.2 Shape dependence 

The total gain in efficiency from the improvements to the algorithm will of course depend on the details of the problem it is 

applied to. In the optimized algorithm, the number of elements that can be filled at the low resolution roughly scales with the 5 

area of the depression, whereas the number of elements that need to be filled at the high resolution roughly scales with the 

depression’s circumference. The gain in computational efficiency therefore depends largely on the shape of the depression, 

becoming larger when the depression becomes more circular. 

To illustrate this, the improved algorithm with a 40 km - 5 km - 1 km resolution scheme was applied to several versions of 

the same topography field, passed through increasingly strong high-pass filters with a cut-off wavelength of 30km, so that 10 

the remaining topographical features that determine the shape of the depression are all too small to be visible on the low-

resolution map in Fig. 4. 

The results of the experiment are given in Table 4. The area of the ocean basin and therefore the number of elements that 

require filling does not change much. However, the compactness factor C of the ocean basin, which is defined as: 

𝐶 =
𝐴

4𝜋∅!
 

with ∅ the circumference and A the area of the basin, decreases sharply when the small-scale topographical features become 15 

more prominent. 

This illustrates that the gain in computational efficiency from the block inspection depends strongly on the shape of the 

topography in which a depression must be filled. Natural topographical features generally have a vertical scale proportional 

to their horizontal scale, which leads to the relatively circular shapes of most natural lakes. This means that, for most natural 

topographies, the block inspection algorithm will substantially decrease the computation time required for filling 20 

depressions.  

3.3 Shoreline memory 

Similar to the previous experiment, we consider the lake formation in the North American region 30,000 years ago as a 

second example. At this time, large parts of the North American continent were covered by the Laurentide ice-sheet. The 

depression left in the bedrock by the weight of the ice, combined with the mass of ice damming off the Hudson Strait lead to 25 

the formation of a massive proglacial lake over the area of what is now known as the Hudson Bay. The situation is shown in 

Fig. 5. 

We apply the flood-fill algorithm to the same 1 km resolution topographic map, combined with an ice thickness distribution, 

a bedrock deformation field and a geoid perturbation field (all generated by the ANICE-SELEN model - de Boer et al, 2014) 

to determine the size of the lake. These data fields have a 40 km resolution and are used to perturb the 1 km resolution DEM, 30 
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such that the small topographic features are preserved. The 40 km resolution perturbation fields are mapped onto the 1 km 

resolution data fields using bilinear interpolation. The lake is found to cover an area of 3.5×106 km2, with a volume of 

6.0×1014 m3 or about 1.7 meters eustatic sea-level equivalent of water. 

As a benchmark, we apply the standard flood-fill algorithm without any optimizations, using a 5 m depth increment. This 

means that the algorithm fills the depression up to a certain water level, increases the depth by 5 m and fills the depression 5 

up to the new water level from the same seed, until the lake overflows into the sea. This run costs 351 seconds (almost six 

minutes) to complete. This implies that for a 120,000 year period which is resolved every 5 years, which is a time step 

typically used to resolve the last glacial cycle in an ice-sheet model, computational time is excessive relative to the 

approximately 50 hours such a simulation would otherwise require. 

Performing the same test with a depth increment of 10 m takes 179 seconds. This is far less because for each depth interval 10 

the complete lake has to be filled, so the number of fills increases more or less linearly with the requested accuracy. A 5 m 

depth interval leads to an accuracy of about 3 % in the lake’s volume, which is considered to be sufficiently accurate. 

By implementing the “shoreline memory” improvement described in 2.2.2 to the algorithm we improve the performance in 

terms of computation time. As explained earlier, the improved shoreline memory implies that every element will only be 

checked once, yielding a drastic reduction in computation time, which is particular relevant for large lakes. Filling the same 15 

lake at 1 km resolution only takes 23 seconds in the optimized case, a reduction in computation time of about 90 % with 

respect to the benchmark.  

3.4 Low-resolution lake depth estimation 

As a final improvement, we implement the depth estimation method. This method starts by filling the same lake on the 40 

km resolution topography, in order to get a depth estimate. The resulting lake is depicted in Fig. 5. It has a volume of 20 

6.6×1014 m3, overestimating the “true” 1 km volume by about 10 %. The 40 km estimate covers several river valleys visible 

in Fig. 6c, which should drain the lake. Since these valleys are only a few kilometres wide they do not appear on the 

smoothed 40 km resolution topography map. This causes the overestimation of the water level and the lake’s extent and 

volume - hence a high resolution is needed. The resulting depth is reduced by an arbitrary amount of 20 % and a fill to this 

new depth is performed on the 40 km maximum topography field. The resulting lake, which will serve as a starting point for 25 

the final 1 km fill, is depicted in Fig. 6b. 

The water level is then incrementally increased, while using the 1 km fill algorithm, until the lake overflows into the sea. The 

complete process takes 4.4 seconds to complete. This is about 5 times faster than the 1 km fill with shoreline memory and 

about 80 times faster than the default implementation, a reduction in computation time of about 99 % with respect to the 

benchmark experiment. 30 

 

Note that the 20 % reduction in depth from the 40 km estimate is chosen somewhat arbitrarily. Depending on the smoothness 

of the local topography, it is possible that the 40 km estimate will be much more accurate. In such cases, it is justifiable to 
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reduce the depth less, and hence improve efficiency even more. For this reason, it is advisable to check if the depth reduction 

from the 40 km estimate is enough to prevent overflow. If not, the depth needs to be increased even further before starting 

the 40 km maximum topography fill.  

3.4 Comparison to the drainage-pointer method 

As a benchmark of our method, we compare the computational performance of our optimized algorithm to that of the 5 

commonly used drainage-pointer approach (Tarasov and Peltier, 2006). This method assigns to every map element a 

drainage pointer, indicating which one of its immediate neighbours receives run-off from that element. By following the run-

off from an element until it reaches the sea, elements can be grouped together by the location where run-off reaches the sea, 

thus creating drainage basins. 

 10 

We found that a Matlab implementation of the first step of this approach, where drainage pointers are assigned to all high 

resolution elements, required about five times more computation time than our optimized algorithm when used for 

determining the land/ocean mask as in section 3.1. The reason for this is that the drainage-pointer approach needs to assign 

these pointers to every single high resolution map element in order to work, whereas our method only needs to treat those 

elements that are beneath the water level and then only those near the shoreline at high resolution, thus limiting the number 15 

of operations. 

4 Conclusions 

We have presented and evaluated several optimizations to a standard flood-fill algorithm. When determining the land/ocean-

mask over a large grid, the optimized algorithm is up to 9 times faster than the default algorithm. When determining the 

extent and depth of Lake Agassiz from a given DEM and ice thickness map, the optimized algorithm is even up to 80 times 20 

faster than the default algorithm as proposed by Zhu et al. (2006). The gain in computational efficiency depends on the 

smoothness of the topography, with the largest reduction in computation time achieved when most of the volume of the 

depression is contributed by topographical features with a horizontal scale larger than the lowest resolution of the block 

inspection method, as has been explained in section 2.2.2. 

 25 

In the example given in this study, the ice thickness, bedrock deformation and geoid anomaly all initially have a 40 km 

resolution. In order to do a 1 km lake fill, these fields were interpolated onto a 1 km grid, which is computationally 

expensive (about 11 seconds in our Matlab implementation). If all input fields are already initially available at high 

resolution, they only need to be downscaled to a low resolution for the block inspection step, which takes considerably less 

time. For this reason, the computation time for this interpolation step is not included in the results. 30 
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The algorithm presented takes into account the bedrock deformation and geoid perturbation caused by the mass changes of 

an ice-sheet, if they have been calculated. These effects both influence the volume of a lake by deepening the basin because 

of the vertical water pressure on the landscape and by raising the water surface.  

 

Any study involving either a very large grid or a large number of repeated simulations will greatly benefit from these 5 

optimizations. Examples include the modelling of large proglacial lakes, the dynamical modelling of run-off over an 

evolving ice-sheet, changes of water routing by tectonic activity and changes in a large water basin due to sea-level changes 

such as in the Mediterranean.  

Code and data availability 

Several	
  Matlab	
  scripts	
  containing	
  different	
  versions	
  of	
  the	
  flood-­‐fill	
  algorithm,	
  as	
  referenced	
  in	
  this	
  manuscript,	
  are	
  10 

provided	
  as	
  supplementary	
  material.	
  Two	
   large	
  NetCDF	
   files	
  containing	
  data	
   files	
  required	
   to	
  run	
   these	
  scripts	
  are	
  

available	
  online	
  at	
  doi:10.5194/gmd-­‐2016-­‐85-­‐supplement,	
  or	
  directly	
  at	
  https://zenodo.org/record/49614. 
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Figure 1: An illustration of the default flood-fill algorithm. Dark green: unfilled; light green: stack; blue: filled. Black line: 
shoreline. A: the algorithm starts at the first element in the stack (marked with X). B: the element is found to meet the fill criterion 
and is filled. Its immediate neighbours (marked 1 to 5) are now inspected. Neighbours 1 and 2 are not yet in the stack and so they 
are added. Neighbour 3 is already in the stack and neighbours 4 and 5 are already filled. C: result of checking the five neighbours. 5 
D: The algorithm now moves on the next element in the stack (marked with X), which is consequently filled and its top-right 
neighbour is added to the stack. E: The next element in the stack is found not to meet the fill criterion (since it lies above sea level) 
and so it is removed from the stack. F: The result after inspecting the whole stack once. G: The result after inspecting the whole 
stack again. H: The result after inspecting the whole stack again. I: The final result. 
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Figure 2: An illustration of the low-resolution block inspection improvement upon the default flood-fill algorithm. Dark green: 
unfilled; light green: stack; blue: filled. Black line: shoreline at 1 km resolution. A: the 4 km fill is given a seed in the southwest 
corner of the map. B: the 4 km fill is completed. C: The 1 km map and edge created from the intermediate 4 km output. D: the 
result of the 1 km fill.  5 
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Figure 3: The present-day land/ocean-mask (uniform deep blue) and the bedrock topography at 1 km resolution. 

 
Figure 4: Land/ocean-mask for the same region, with the topography passed through a high-pass filter. Panel A: 40 % reduction 
in amplitude for wavelengths above 30km. Panel B: 60 % reduction. Panel C: 80 % reduction. Panel D: 90 % reduction. The 5 
ocean area increases slightly and the length of the coastline increases strongly. 
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Figure 5: North America, the Laurentide ice-sheet and Lake Agassiz, 30ky before present. The red outlined region is shown in 
close-up in Fig. 6. 

 
Figure 6: The area around the eastern shore of the lake, outlined in red in Fig. 5. Panel A: The 40 km resolution estimate. Panel B: 5 
The result of the 40 km maximum topography fill to a water depth 20 % below that of the 40 km estimate. Panel C: The final 1 km 
lake. Note that the algorithm allows for ice to float when the water column is high enough, creating a small ice-shelf along the 
margin, visible in panel C where part of the lake’s shoreline runs beneath the ice.  
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Table 1: Computation time in seconds for stack and map conversion between different resolutions and for flood-filling at different 
resolutions with different starting stacks, for the 40 km - 8 km - 4 km - 2 km - 1 km series. The yellow shaded numbers are 
explained in the text. 

Stack and map conversion Flood-fill 

 40 8 4 2 1  40 8 4 2 1 

40 - 0.04 0.04 0.07 0.20 40 0.05 0.19 0.85 3.73 27.54 

8 - - 0.34 0.37 0.56 8 - 0.94 0.16 0.76 11.65 

4 - - - 1.30 31.22 4 - - 4.03 0.40 8.29 

2 - - - - 65.98 2 - - - 16.89 5.64 

1 - - - - - 1 - - - - 82.04 
 

Table 2: Computation time in seconds for stack and map conversion between different resolutions and for flood-filling at different 5 
resolutions with different starting stacks, for the 40 km - 20 km - 10 km - 5 km - 1 km series. 

Stack and map conversion Flood-fill 

 40 20 10 5 1  40 20 10 5 1 

40 - 0.04 0.03 0.05 0.21 40 0.06 0.02 0.05 0.18 13.78 

20 - - 0.08 0.08 0.34 20 - 0.17 0.02 0.12 11.26 

10 - - - 0.24 0.43 10 - - 0.62 0.08 9.28 

5 - - - - 1.07 5 - - - 2.45 7.97 

1 - - - - - 1 - - - - 82.11 
 

Table 3: Total computation time relative to the 1 km benchmark experiment for several resolution schemes, sorted ascending. 

Resolution scheme Computation time reduction (%) 

40 - - 5 1 88.64 

40 8 - - 1 84.79 

- 8 4 - 1 50.13 

- 8 - 2 1 10.25 

- - 4 2 1 5.80 

- - -  1 0.00 
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Table 4: Reduction in computation time for the 40 km - 5 km - 1 km resolution scheme with respect to the 1 km benchmark 
experiment for different bedrock topographies. Also listed are the area and compactness factor of the resulting ocean basin. 

Filter (%) Compactness factor Ocean area (km2) Computation time reduction (%) 

-100* 6.0e-2 1.72e7 95.48 

0 5.1e-3 1.72e7 91.56 

20 2.7e-3 1.76e7 89.37 

40 1.4e-3 1.77e7 74.48 

60 7.4e-4 1.76e7 58.89 

80 2.6e-4 1.79e7 35.35 

90 1.4e-4 1.86e7 18.72 

*30km low-pass filter; “smoothed” topography. 

 


