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Abstract. Ice flow models are now routinely used to forecast the ice-sheets contribution to 21st cen-

tury sea-level rise. For such short term simulations, the model response is greatly affected by the

initial conditions. Data assimilation algorithms have been developed to invert for the friction of the

ice on its bedrock using observed surface velocities. A drawback of these methods is that remaining

uncertainties, especially in the bedrock elevation, lead to non-physical ice flux divergence anoma-5

lies resulting in undesirable transient effects. In this study, we compare two different assimilation

algorithms based on adjoints and nudging to constrain both bedrock friction and elevation. Using

synthetic twin experiments with realistic observation errors, we show that the two algorithms lead to

similar performances in reconstructing both variables and allow the flux divergence anomalies to be

significantly reduced.10

1 Introduction

Robustly reproducing the responsible mechanisms and forecasting the ice-sheets contribution to

21st century sea-level rise is one of the major challenges in ice-sheet and ice flow modelling as high-

lighted by community-organized efforts such as SeaRISE (Sea-level Response to Ice Sheet Evolu-

tion) (Bindschadler et al., 2013; Nowicki et al., 2013a, b) or ice2sea (e.g., Gillet-Chaulet et al., 2012;15

Shannon et al., 2013; Edwards et al., 2014).

Such projections on decadal timescales are sensitive to the model initial state which can account

for an important source of uncertainty in the model response (Aðalgeirsdóttir et al., 2014). Improv-

ing the reliability of the model projections requires the model initial state to be better constrained

from observations. The problem is that observations are often uncertain, sparse in time and space20

and indirect, so that the model state depends on many poorly determined physical parameters and
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boundary conditions. Gradient-based optimisation methods, such as the control method (Macayeal,

1993) or the Robin inverse method (Arthern and Gudmundsson, 2010), are efficient means to con-

strain such model parameters and boundary conditions. These methods have been implemented and

applied with success in ice flow models of different complexity in order to infer the basal drag, one25

of the most uncertain model parameters (e.g., Morlighem et al., 2010; Jay-Allemand et al., 2011;

Schäfer et al., 2012; Gillet-Chaulet et al., 2012).

However, remaining uncertainties lead to non-physical ice flux divergence anomalies (Seroussi

et al., 2011) resulting in undesirable transient effects in the free surface evolution. A solution to dis-

sipate these transients is to conduct a surface relaxation step prior to the projections (Gillet-Chaulet30

et al., 2012). This allows admissible flux divergence rates to be reached but at the expense of the

accuracy of the modelled surface elevation and surface velocities which can then depart significantly

from observations after the relaxation step.

Among the remaining uncertainties, one of the most important is the uncertainty related to the

bedrock elevation. The basal topography is derived from ice thickness measurements, mostly ob-35

tained from airborne ice penetrating radars. These measurements can have large uncertainties and

are usually at a lower resolution than required model grids (Durand et al., 2011). Standard bedrock

elevation maps for Antarctica and Greenland are then produced by interpolation or Kriging and re-

port standard errors ranging from few tens of meters to several hundreds of meters depending on

the distance to observations and local topographic variability (Fretwell et al., 2013; Bamber et al.,40

2013). For comparison the uncertainty on the surface elevation is usually one order of magnitude

lower (Fretwell et al., 2013).

Because of theses large uncertainties, several methods have been proposed to consider the bedrock

elevation as an optimisation variable. For example, Morlighem et al. (2011) derive the adjoint of the

continuity equation for the ice thickness. The depth-averaged velocities and surface mass balance are45

then optimised to minimise the mismatch between modelled and measured ice thicknesses. Surface

velocity measurements are used as initial guess for depth-averaged velocities, and by construction

the flux divergence produced by this approach is in equilibrium with the prescribed surface mass

balance. However, there is no constraint that the optimised velocities are a solution of the stress

equilibrium equations, so that, in general, the above method does not guarantee that the flow di-50

vergence anomalies resulting from an ice flow model initialised with the optimised fields will be

reduced.

van Pelt et al. (2013) developed an iterative algorithm where the discrepancy between the surface

elevation predicted by the model and the observations is used to correct the bedrock elevation. So,

the method does not rely on the accurate computation of the derivative of a cost function as in a55

control method and is then more similar to nudging methods that have been widely studied in the

past decades in meteorology (e.g., Hoke and Anthes, 1976) and later in oceanography (Verron, 1992;
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Blayo et al., 1994). However, the method proposed by van Pelt et al. (2013) does not use observed

surface velocities to control the model parameters.

Several methods have been explored to construct model states where both the basal friction and60

the basal topography are treated as optimisation variables. In a pioneer work, Thorsteinsson et al.

(2003) developed a least-squares inversion using analytical solutions for the transmission of small

scale basal perturbations to the ice surface. This method has been extended in a non-linear Bayesian

framework by Raymond and Gudmundsson (2009) and applied to an Antarctic ice stream by Pralong

and Gudmundsson (2011). Bonan et al. (2014) have tested the performances of an ensemble Kalman65

Filter on twin experiments using a shallow ice flow line model. The adjoint method has been tested

by Goldberg and Heimbach (2013) and Perego et al. (2014) with models of different complexity.

All these methods usually show good performances in reconstructing both basal friction and basal

topography when using observations of both surface elevation and surface velocities, so that mixing

between the two variables does not seem to be too problematic for realistic applications (Gudmunds-70

son and Raymond, 2008). In addition, Pralong and Gudmundsson (2011) and Perego et al. (2014)

show better performance when the rates of surface elevation change are also constrained from ob-

servations.

In this paper, we explore two different algorithms to infer both the basal friction and the basal

topography and initialise the model state using simultaneous observations at a given time. The first75

algorithm is in line with Goldberg and Heimbach (2013) and Perego et al. (2014) since it uses the

adjoint solution of the force balance equation. We use the Shallow Shelf Approximation to facilitate

the derivation of the adjoint. Indeed, in this case the ice thickness appears as a state variable, while it

changes the geometry of the domain for higher order approximations (Perego et al., 2014). In its sim-

plest formulation, the algorithm minimises the misfit between model and observed surface velocities,80

but an additional constraint where the flux divergence is close to a given surface mass balance can

be added. The second method is an algorithm combining inversion of basal friction using the adjoint

method and nudging of the bedrock topography. The control from the surface velocity observations

is imposed by the adjoint step while the nudging step allows to decrease the discrepancy between

the flux divergence and the surface mass balance. The main motivation of this second algorithm is its85

ease of implementation as no inversion of the model with respect to the ice thickness is required. Our

objective is then to illustrate its ability to reconstruct the bedrock topography by comparison with

the results of the more mathematically founded first algorithm. Both algorithms are implemented in

the finite element ice-sheet / ice flow model Elmer/Ice (Gagliardini et al., 2013). The methods and

algorithms are described in details in Sec. 2. To test their performances, we design a twin experiment90

in Sec. 3. The results are discussed in Sec. 4.
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2 Methods

2.1 Direct Model

For the force balance, we use the standard vertically integrated Shallow-Shelf Approximation (SSA)

equations (MacAyeal, 1989). This approximation neglects the effects of vertical shearing and is,95

hence, more adapted to model the flow in areas where the friction is low, resulting in an ice motion

dominated by sliding. The horizontal velocity field (u,v) is a solution of :
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where β is the friction coefficient, ν the vertically averaged effective viscosity, ρi the ice density,100

g the gravity, and H = zs− zb the thickness, with zs and zb the top and bottom surface elevations,

respectively.

Natural boundaries are the calving fronts where the Neumann condition results from the difference

between the ice pressure and the sea water pressure:

4Hν
∂u

∂x
nx + 2Hν

∂v

∂y
nx +Hν(

∂u

∂x
+
∂v

∂x
)ny = (ρigH − ρwgH0)nx105

4Hν
∂v

∂y
ny + 2Hν

∂v

∂x
ny +Hν(

∂u

∂x
+
∂v

∂x
)nx = (ρigH − ρwgH0)ny (2)

where ρw is the water density, H0 the ice thickness below sea level and nx and ny the two com-

ponents of the horizontal unit vector normal to the calving front. Dirichlet boundary conditions are

prescribed for other non-natural boundaries. The continuity equation for the ice thickness is given

by:110

∂H

∂t
+
∂(uH)

∂x
+
∂(vH)

∂y
= a , (3)

where a is the surface mass balance and accumulation/ablation at the bedrock interface is neglected.

2.2 Inverse methods

The objective of the methods is to produce a model state from Eq. (1) that best fits the observations

of surface velocities and the rates of change of ice thickness. To minimise the discrepancy between115

the model and the observations, the optimisation parameter space p contains both the basal friction

coefficient β and the bedrock elevation zb.

2.2.1 Cost Functions

The misfit between the model and the corresponding observations is evaluated using cost functions.

The first cost function measures the difference between modelled (u) and observed (uobs) surface120
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velocities :

Jv =

∫
Γ

1

2
(|u−uobs|)2dΓ , (4)

where Γ is the model domain.

The second cost function measures the misfit between modelled and observed thickness rates of

change:125
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]2

dΓ. (5)

The modelled rate of change of ice thickness ∂H/∂t is evaluated from Eq. (3) as the difference

between the flux divergence solution of Eq. (1) and the prescribed surface mass balance. Observed

rate of change of ice thickness (∂H/∂t)obs can be estimated from surface elevation trends extracted

from radar altimetry measurements (Flament and Rémy, 2012).130

In general, both Eq. (4) and (5) could be weighted with error covariance estimates such as the

one of Flament and Rémy (2012). However, these informations are not often available. In this paper,

observed ice surface velocities (uobs) and observed rate of change of ice thickness (∂H/∂t)obs are

considered perfectly known or perturbed with a Gaussian noise which would make unnecessary the

addition of a covariance term.135

The objective is then to find the parameter vector p that minimises Jv and Jdiv . This can be

achieved in different ways as illustrated in the following sections.

2.2.2 Adjoint method

The two cost functions have an implicit dependence on the parameter space p through the model

surface velocities u which are solution of Eq. (1). The gradient of the cost functions with respect to p140

can be computed efficiently using the adjoint equations of Eq. (1). The derivation of the continuous

adjoint equations and the gradient of Jv with respect to the friction coefficient β can be found in

Macayeal (1993). This can be easily extended for the computation of the gradient with respect to H .

The implementation in Elmer/Ice is carried out in a way that stays as close as possible to the

differentiation of the discrete implementation of the direct equations. This method should lead to145

a better accuracy on the gradient computation than the discretisation of the continuous equations.

Elmer/Ice uses programming features that are not supported by automatic differentiation tools and

the differentiation of the crucial parts of the discrete source code (e.g. cost function computation,

matrix assembly) has been done manually. If the problem is non-linear, as here due to the dependence

of the viscosity to the strain-rate, and the non-linearity solved using a Picard iterative scheme, the150

iterations should be reversed (at least partially) in the adjoint code to achieve a good accuracy of the

computed gradient (Martin and Monnier, 2013). However, as the present direct solver is equipped

with a Newton linearisation of the ice viscosity so that it remains self-adjoint (Petra et al., 2012), the
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newton iterations are not reversed in the adjoint code and we only keep the last iteration. The adjoint

code has been validated on standard test by comparing the gradients with those obtained from a finite155

difference evaluation. The agreement is usually better than 0.1 %.

Inverse problems are often ill-posed leading to instabilities. It is then necessary to add regular-

isation terms to the cost function to avoid over-fitting of data. This can be done in the form of a

Tikhonov regularisation. Here we define two different regularisations. The first one measures the

norm of the first spatial derivative of p, thus allowing to give preference to smooth solutions:160

Jreg =
1

2
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+
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The second forces the optimisation variables to stay close to a certain prior or background infor-

mation pb. This background can be based on observations or on empirical knowledge. This second

regularisation term is written as

Jb =
1

2

∫
Γ

1

σ2
p

(p− pb)2dΓ , (7)165

where σp is a spatial parameter allowing to give more or less weight to the prior information pb.

The computation of the gradients of these two functional with respect to p is trivial. How these

regularisation terms are weighted with respect to the model-data misfit functionals Eqs. (4) and (5)

is described in more details with the description of the algorithms in Sec. 2.3.

This minimisation is achieved using the quasi-Newton routine M1QN3 (Gilbert and Lemaréchal,170

1989) implemented in Elmer/Ice. This method uses an approximation of the second derivatives of

the cost function and is therefore more efficient than a fixed-step gradient descent.

2.2.3 Nudging method

By definition, the steady-state solution of Eq. (3) where a is replaced by the apparent mass balance

a− (∂H/∂t)obs is the minimum for Jdiv . Running the model forward in time with a constant forc-175

ing is then a simple way to minimise Jdiv , equivalent to a relaxation step. Here we assume that

the surface elevation is known so that computed changes in ice thickness are used to correct the

bedrock elevation zb. During this process, the ice thickness can substantially deviate from obser-

vations. Nudging methods, also called Newtonian relaxation, can remedy to this problem by con-

straining the thickness to fit observations through an additional call-back term in Eq. (3), which now180

writes:

∂H

∂t
+
∂(uH)

∂x
+
∂(vH)

∂y
= a−

(
∂H

∂t

)
obs

− k(H −Hobs) , (8)

where the coefficient k defines the amplitude of the call-back at each node of the model. These meth-

ods imply a trade-off, adjustable through k, between model physics and observations. The call-back

term can depend on many different criteria such as observation accuracy or distance to observation185
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(Hoke and Anthes, 1976). Here, we take k as a Gaussian function of the distance to the closest obser-

vation so that the call-back is maximum where an observation is available and decreases to zero far

from all observations. The choice of the variance for the Gaussian function is discussed in Sec. 4.2.

2.3 Algorithms

From the methods presented in the previous section we design two algorithms to infer simultaneously190

the friction coefficient β and the bedrock elevation zb. To ensure that the friction coefficient remains

positive during the inversion we use the following change of variable

β = 10α (9)

2.3.1 Adjoint method with two parameters (ATP )

This algorithm uses the gradients of the cost functions derived using the ajoint method to optimise195

both α and zb. For the regularisation, a constraint on the smoothness is imposed for α using Eq. (6)

while a constraint on the background information is imposed for zb using Eq. (7). The total cost

function then writes

JATP (α,zb) = Jv + γJdiv +λαJregα +λzbJbzb (10)

where γ is a constant fixed to give a similar weight to Jv and Jdiv while λα and λzb are two con-200

stants allowing to adjust the weight given to the regularisation terms. Following Fürst et al. (2015),

several pairs (λα,λzb ) are tested using a L-curve approach, and optimal values are taken from the

combinations that avoid two extremes: overfitting of the observations or excessive regularisation.

2.3.2 Adjoint-nudging coupling (ANC )

In this algorithm, the adjoint method is first used to optimise α only by minimising the following205

total cost function

JANC(α) = Jv + γJdiv +λαJregα . (11)

The bedrock elevation is then updated using the nudging method by solving Eq. (8) for a given time

period T . T should be neither too short nor too long to allow to reduce Jdiv without over-fitting

observations. The sensitivity of the method to T is discussed in the results section.210

These two steps are then repeated iteratively until changes in Jv and Jdiv between two iterations

are less than 1%.

3 Manufactured data sets

A twin experiment is design to investigate the ability of the two methods to reproduce simultaneously

good estimates of the basal friction coefficient and the bedrock elevation. A flowline geometry is215
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preferred to reduce the computational cost and easily test the method, however all the algorithms can

be applied to 2D plane view simulations. A reference experiment for which all the model parameters

are prescribed is produced to generate synthetic observations. These observations are then used to

test the performances of the two algorithms.

3.1 Reference experiment220

A flowline of Jakobshavn Isbrae, Greenland, is used to test the two algorithms with realistic condi-

tions. Jakobshavn Isbrae is one of Greenland’s three largest outlet glaciers and has one of the largest

drainage basin on the ice sheet’s western margin (Bindschadler, 1984). It is also the fastest Greenland

glacier with a terminus velocity greater than 13 km a−1 (Joughin et al., 2008, 2014). The flowline

is 550 km long and runs from the ice divide to the ice front. The surface and bedrock elevations are225

taken from available digital elevation models (Bamber et al., 2013). The basal friction coefficient

field is first adjusted so that the model velocities fit observed velocities (Joughin et al., 2010). To

have realistic thickness rates of change, the free surface is relaxed to steady state. The surface mass

balance a in Eq. (3) has been calibrated so that the steady state is close to the initial geometry, and is

meant to take into account the flow convergence or divergence along the flowline. The steady state230

solution is used as the reference of the twin experiment.

The geometry is discretised through a mesh of 500 linear elements, increasingly refined to the

front of the glacier. The element size decreases from ∼ 2 km in the upper part of the glacier to ∼
400 m down to the front.

Results will only be presented on the first 100 km upstream of the glacier front where velocities235

are above 100 m a−1 and where the SSA is more appropriate but the inversion is done all along the

flowline up to the ridge.

3.2 Synthetic observations

Synthetic observations are generated by sampling and/or adding noise to the reference simulation.

Details for each required field are given below. These synthetic observations and initial fields for the240

inverse methods are compared to the reference in Fig. 1.

3.2.1 Surface velocities

Surface velocities are assumed to be observed at the same resolution as the reference simulation

but with a white Gaussian noise with a mean µ= 0 and a standard deviation σ = 50 m a−1. This

corresponds to a root mean squared error of 47.8 m a−1 for the entire flowline. The reference and245

noisy observed surface velocities are shown in Fig. 1c together with their absolute difference.
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3.2.2 Surface mass balance and thickness rate of change

The surface mass balance, a, and thickness rate of change, (∂H/∂t)obs, in Eq. (5) are assumed to

be perfectly observed. As the reference simulation corresponds to a steady-sate, (∂H/∂t)obs = 0.

However, the methods are also tested in Sec. 4.3 for cases where (∂H/∂t)obs 6= 0 to show their250

ability to initialise the model when the flux divergence is not in equilibrium with the surface mass

balance.

3.2.3 Surface and bedrock elevations

The surface elevation is assumed to be perfectly observed. For the bedrock elevation zb, we simulate

observations representing airbone radar measurements crossing the flowline. Bedrock elevations are255

sampled every 10 km with a Gaussian noise centred on zero and with a standard deviation of σ =

50 m. This leads to a rms error of 62.4 m on the 55 observation points of the entire flowline. This

error is similar to the errors given in practice on recent bedrock elevation maps (Fretwell et al.,

2013; Bamber et al., 2013). For the mesh nodes between the observations, the bedrock is linearly

interpolated as shown in Fig. 1a. This is used as the first guess for the inverse methods and as the260

background information for the regularisation, Eq. (7).

3.2.4 Model parameters

The ice viscosity is assumed to be perfectly known and corresponds to the viscosity used in the

reference experiment.

Assuming that no observation of the friction coefficient is available, an initial solution has to be265

postulated. A good first guess for β is provided by using the driving stress to estimate the basal shear

stress :

βini(x) =
ρigH(x)|θ(x)|
|u(x)|

(12)

where H(x), θ(x), and u(x) are respectively the ice thickness, the surface slope and the surface

velocity at position x. The reference and initial values are shown in Fig. 1b.270

The rms errors on the surface velocities and the rate of change of ice thickness between the initial

state and the synthetic observations are, respectively, 761 m a−1 and 357 m a−1.

The average relative error on the basal shear stress is measured as :

ετb =
1

L

∫
Γ

|τb| − |τb,ref |
|τb,ref |

dΓ, (13)

where τb,ref is the basal shear stress in the reference experiment and L the length of the flowline.275

The relative error on the basal shear stress with our initial estimate of the basal friction βini is 394 %.

The performances of the two algorithms in reducing these initial errors are presented in the following

section and will be compared to these initial errors.
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4 Results

4.1 Adjoint method with two parameters (ATP )280

A set of 255 pairs (λα,λzb ) is tested to adjust the weighting of the regularisation terms of Eq. (10).The

misfits on the different cost functions of Eq. (10) for the different pairs (λα,λzb ) is given in Fig. 2.

Both graphs show that most of the pairs fitting well the observed velocities can also adequately

reproduce the observed rate of change of the ice thickness. Fig. 2b also shows that smaller misfits on

Jzb clearly involve higher rms misfits on the ice surface velocities (rmsu) and on the rate of change285

of the ice thickness (rmsdiv). On the contrary, Fig. 2a does not show a clear relation between the

magnitude of Jregα and the magnitude of rmsu and rmsdiv . Both graphs also show a high density of

pairs for small rmsu and rmsdiv . However, the pair (λα = 1011, λzb = 107) seems to come off the

others, giving a good trade off between data fitting and regularisation. Notice that the constant γ is

fixed to 1 since Jv and Jdiv have the same order of magnitude.290

The optimisation of both α and zb simultaneously allows to reach a rms misfit of 49.7 m a−1 on

velocities, very similar to the observation rms error, showing no overfitting of velocity data. The

rate of change of ice thickness misfit is also largely decreased with a rms value of 19.2 m a−1. The

resulting basal traction τb and zb as well as the misfit for the surface velocities are given in Fig. 3.

The basal traction variability is accurately reproduced with a corresponding average relative misfit295

of only 25 % along the entire flowline with respect to the reference basal shear stress τb,ref , i.e. more

than a tenfold decrease of the initial misfit. We only notice local over-estimations of slipperiness in

bedrock pits without significant impacts on the flow velocities. Indeed, under a defined value of β

corresponding to a nearly perfectly sliding case, an additional reduction in friction has no impact on

the flow. The same reasoning applies to a nearly perfectly sticky case, where an increased friction300

would not involve more decrease of the velocity. The bedrock elevation zb is well reconstructed in

the first 50 km upstream of the glacier front. The discrepancy with respect to the reference bedrock

is larger upstream where the cost function Jv is less sensitive because of lower velocities. This could

possibly be improved by using a cost function measuring the logarithm of the misfit as in Morlighem

et al. (2010), but with a greater risk of fitting noise since the relative observation error is higher in305

these regions.

In order to assess the influence of accounting for Jdiv on the method, the optimisation is repeated

without the Jdiv term in the total cost function Eq. (10). The pair (λα, λzb ) is kept equal to the

previous case since the optimum is hardly affected by the absence of Jdiv in the total cost function.

The result is given and compared to the previous one in Fig. 3. The friction coefficient β is again310

pretty well reconstructed, with a corresponding relative average misfit of 31 % on basal shear stress

τb to be compared to the 25 % obtained with the optimisation of the Jdiv term. However, zb shows

non-consistent high frequencies involving a higher discrepancy with respect to the reference bedrock

elevation that in the case of optimising Jdiv . Therefore, the optimisation Jdiv has a clear regulari-
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sation effect on the parameter zb, by reducing the non-consistent high frequency oscillations of the315

solution.

Introduction of a Gaussian noise on (∂H/∂t)obs has been experienced in order to assess its effect

on the optimisation of Jdiv . Different levels of standard deviation σ have been tested. Experiences

show that the optimisation is little affected by this noise even for standard deviations σ going up

to the same order of magnitude than the surface accumulation a. Introduction of systematic bias320

on (∂H/∂t)obs in a physically acceptable range, i.e. of the same order of magnitude than surface

accumulation a, also have little consequences on the optimisation.

4.2 Adjoint-nudging coupling (ANC )

The steps consisting in the optimisation of α only are conducted with a value λα = 5.109 which

allows a good agreement between the different cost functions and a value γ = 1.325

Additionnaly to the regurlarisation parameters of Eq. (11), ANC algorithm depends on the time

period for the nudging steps T and the variance of the Gaussian k in Eq. (8). The nudging period T

impacts the convergence on Jv and Jdiv after each cycle. The convergence is substantially similar

for T from 1 to 4 years. Longer periods mainly involve a worse minimisation of Jv since there is

no control on velocities during nudging. Shorter relaxation times do not involve sufficient change of330

zb inducing a lower minimisation of Jdiv for a given number of cycles. Therefore, a relaxation time

T = 1 year is adopted, which seems sufficient to allow significant changes of zb without too much

adaptation to the previous intermediate value of the friction coefficient. The algorithm is stopped

after 10 cycles, corresponding to the stopping criterion of Sec. 2.3.2. For a given T period, tests

show that variance values of the Gaussian k in Eq. (8) larger than 1 km are excessive and induce non-335

physical call-back amplitudes when departing from observations. After a few cycles, the resulting

bedrock induces an increase between modelled and observed velocities that cannot be overcome by

the basal drag inversion. Variance smaller than 1 km has little impact on the final result in term of

cost functions. However, among the acceptable values, the 1 km variance gives the best agreement

between misfit on the surface velocities and misfit on the rate of change of the ice thickness.340

The model is in good agreement with observations with a rms misfit of 46.1 m a−1 in the range of

observation noise, for velocities and 15.8 m a−1 for thickness rates of change. The basal shear stress

τb is close to the reference one despite exacerbated variations at some locations. The correspond-

ing relative average misfit with respect to the reference τb,ref is 30 % for the entire flowline. The

reconstructed bedrock elevation zb is also close to the reference on almost 100 km upstream of the345

front of the glacier. This reflects, especially in fast flowing region, a real improvement of the basal

knowledge with respect to the first guess. Moreover, the use of nudging, instead of adjoint method,

does not show the same problem of non-sensitivity in region of slower flow velocities, as mentioned

in Sec. 4.1. Note however that zb significantly departures from the reference bedrock elevation from

80 to 100 km to the front, strongly linked to the poorer fit of β (see Fig. 4).350
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As for ATP, introduction of a Gaussian noise in the observed thickness rate of change (∂H/∂t)obs

has also been tested. Results show no significant impacts on the optimisation. Nevertheless, intro-

duction of systematic bias in (∂H/∂t)obs has direct consequences on the nudging steps inducing an

offset of zb of the range of the systematic bias cumulated on the nudging period T . ANC is therefore

more sensitive to systematic bias than ATP.355

4.3 Further sensitivity experiments

In order to evaluate the efficiency of both algorithms in transient states, we construct new reference

cases where (∂H/∂t)obs 6= 0. This is achieved by multiplying βref by a factor 2, 3, 4, 5 and 10. As a

consequence, increasing the basal friction involves a disequilibrium of the glacier, an ice thickening

and a decrease of ice flow velocities.360

The time period for the glacier to come back to equilibrium, after this change of friction parameter,

depends on the amplitude of the perturbation. Here, the perturbation is only applied during 5 years in

order to keep the five cases in disequilibrium. Resulting thickness rates of change (∂H/∂t)obs 6= 0

are in the same order of magnitude than the tuned surface mass balance a. The five new reference

cases are presented in Fig. 5.365

The results of the optimisations for the five cases of perturbation are shown in Fig. 6 for ATP

and Fig. 7 for ANC . The velocity misfit for ATP increases with the amplitude of perturbation with

rms values between 47.8 m a−1 and 52.3 m a−1 while the rms misfit for thickness rate of change

increase from 12.7 m a−1 to 21.8 m a−1. ANC reaches rms misfits from 45.9 m a−1 to 47.2 m a−1

for velocities and 12.5 m a−1 to 21.5 m a−1 for thickness rate of change. The friction coefficient370

β is well reconstructed for both methods. The corresponding average relative error (with respect to

each reference) on basal basal shear stress varies from 22 to 30 % for ANC and 20 to 28 % for

ATP , still according to the amplitude of the perturbation. Both algorithms also allow to improve

the knowledge of the bedrock elevation zb with regard to the first guess. We notice a tendency to

overestimate the amplitude of bumps and pits in some locations which generally corresponds to an375

under estimation in the amplitude of variations of β. This last behaviour highlights the limits of the

algorithms and the difficulty of distinguishing the effects of two basal parameters as closely linked

as the friction and the bedrock topography. This behaviour had been already highlighted in Goldberg

and Heimbach (2013) and Gudmundsson and Raymond (2008) where a higher ice thickness with

respect to the reference is compensated by a higher basal friction and conversely.380

4.4 Flow divergence in transient model

In this section, we assess the impact of our initialisation algorithms on the prognostic response of

the model forward in time assuming the same constant forcing used to build the reference state. By

doing so, if the initialisation was perfect, one would expect no change of the geometry and ice flow

during this prognostic simulation. The experiment is performed from ATP and ANC initial states.385
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A third initialisation state is constructed for which only the friction coefficient has been optimised,

keeping zb equals to the a priori zbb . This third initialisation, called "β only" involves a rms misfit

on velocities of 43.3 m a−1 and an average relative error ετb,ref of 36 % on basal shear stress,

similar to the ATP and ANC initial states. However, the rms misfit on the thickness rate of change is

significantly higher, 147.8m a−1.390

The prognostic simulations are conducted on a 10 years period in order to see how the initial

thickness rate evolves during this time and how it impacts the final ice thickness and ice surface. The

thickness rate of change after 1 and 10 years of simulation are shown in Figs. 8a and b respectively,

while the mismatch on the surface elevation after 10 years is shown in Fig 8c.

ANC and ATP initial states involve thickness rates of change much closer to zero than the optimi-395

sation of "β only". This also leads to a lower mismatch εs on the surface elevation with respect to the

reference after 10 years of simulation. Indeed, this mismatch is well below 20 m for both ANC and

ATP, except on a few kilometres in the upstream region, whereas the optimisation of β only gives

rise to a mismatch globally above 20 m with some regions exceeding 50 m.

In that way, the two algorithms implemented in this study show substantial improvements com-400

pared to the optimisation of "β only". We especially notice a better reproduction of low scale varia-

tions of the surface elevation due to the transfer of similar variations from the bedrock elevation zb

(Fig. 9). These variations tend to disappear with the optimisation of the friction only, giving rise to

a lower resolution of the surface. However, we should point out that this direct transfer of bedrock

variations to the surface is a consequence of the SSA ice-flow model used and that a full-Stokes405

model would produce a more diffusive transfer response .

5 Conclusions

The presented algorithms allow the reconstruction of two poorly known parameters: the bedrock

topography zb and the friction coefficient β at the same time.

The optimisation of these two parameters mainly relies on the knowledge of some other data410

easier to measure: ice surface velocities and thickness rates of change. Some local measurements of

bedrock elevation and associated errors are necessary in order to define a background zb. The two

algorithms aim to infer the set of parameters which minimises the misfit between the model and the

corresponding observations of ice surface velocities and thickness rates of change. If the optimisation

of ice surface velocities is usually sufficient to infer β, the inference of a second parameter requires415

more information to distinguish the effects of each parameters on the flow. Observations of rates of

change of ice thickness are necessary to allow optimising zb as well.

The two algorithms are based on the optimisation of the friction coefficient β with the adjoint

method. The bedrock geometry zb is reconstructed in two different ways, again with adjoint method
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for the first algorithm (ATP) and with a nudging method based on mass conservation equation for420

the second one (ANC).

We have shown that ATP algorithm reproduces β well and the corresponding basal shear stresses

while zb is particularly well reproduced in high velocities regions but does not depart from the

background when the velocities become lower. The iterative algorithm coupling adjoint method and

nudging (ANC) gives as good results. Moreover, ANC allows a better reconstruction of the bedrock425

geometry zb in most regions. This is a very good sign for an adaptation of the method to non depth-

integrated flow models such as full-Stokes models where the bedrock topography is no more a state

variable but affects the domain geometry making the derivation of the adjoint even more demanding

(Perego et al., 2014).

Furthermore, the transient simulations over 10 years from initial states reconstructed with the two430

algorithms developed give very encouraging results. The model divergence is clearly decreased with

respect to usual inversion methods of the friction coefficient only. The integration of observations

like thickness rates variation through an optimisation of the divergence during inversion or nudging

steps, allows to regularise the solution in a physical way and also clearly improves the results.

Finally, the sensitivity experiments shows that the different algorithms can take into account the435

disequilibrium of mass balance, which is particularly interesting considering that a large amount of

outlet glaciers in both Greenland and Antarctica present this feature.
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Figure 1. Reference (solid lines) and initial (dashed lines) state for (a) the bedrock elevations zb, (b) the esti-

mated basal traction τb = βu and (c) the surface velocities. In (a), synthetic observations every 10 km are the

plain black circles. In (c) the "observed" velocities are depicted by the circles and the shaded green curve is the

absolute difference between observed and reference surface velocities (right axis).
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Figure 2. Mean error on the thickness rate of change (rmsdiv) as a function of the mean error on velocity (rmsu)

for the 255 pairs of regularisation parameters (λα, λzb ). Colors scales show the normalised regularisation terms

(a) Jregα and (b) Jzb (0 corresponds to the lowest value and 1 to the highest value obtained with the 255 pairs).

The chosen value (λα = 1011, λzb = 107) is shown with a black circle.
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Figure 3. Results of the ATP algorithm with (orange) and without (red) optimisation of Jdiv , i.e. γ = 1 or

γ = 0, respectively, in Eq. (10): (a) absolute difference between observed and model velocities, (b) estimated

basal traction and (c) estimated bedrock elevation. The green shaded area is the difference between the noisy

reference velocities and the true velocities. The green solid lines are the reference values and the black dashed

line is the initial guess for the bedrock elevation.
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Figure 4. Results of the ANC algorithm (purple): (a) absolute difference between observed and model veloc-

ities, (b) estimated basal traction and (c) estimated bedrock elevation. The green shaded area is the difference

between the noisy reference velocities and the true velocities. The green solid lines are the reference values and

the black dashed line is the initial guess for the bedrock elevation.
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Figure 5. The five new references build from a 5-years perturbation of the initial reference by an increase of

the friction parameter: β = 2βref (green), β = 3βref (red), β = 4βref (blue lines), β = 5βref (purple) and

β = 10βref (orange). New references for (a) the thickness rate of change for the different perturbations, (b)

velocities (without observation noise) and (c) friction coefficients β.
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Figure 6. Range of values for ATP algorithm for the 5 perturbations of the friction coefficient β. (a) and (b)

minimum (dark orange shade) and maximum (light orange shade) of absolute difference between observed

and model velocities and relative error for τb respectively. (c) range of values for bedrock elevation zb (orange

shade). The green solid line is the reference value and the black dashed line is the initial guess for the bedrock

elevation.
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Figure 7. Same as Fig. 5 but for the ANC algorithm.
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Figure 8. Evolution of ∂H/∂t after 1 year (a) and 10 years (b) of prognostic simulation and the resulting

missmatch after 10 years between surfaces obtained with three different initial states and reference surface (c).

The orange and purple lines give the results for ATP and ANC . The red line gives the result for inversion of β

only.

Figure 9. Ice surface elevation zs after 10 years of prognostic simulation for 3 different initial states : initialisa-

tion with ATP algorithm (orange line), with ANC algorithm (purple line) and with the inversion of β only (red

line). The green line is the reference surface elevation. The figure focuses on the first 50 km next to the front of

the glacier.
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