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Abstract. The enhancement of the stratospheric aerosal lgyeolcanic eruptions induces a complex set
of responses causing global and regional climdee&sfon a broad range of timescales. Uncertaiptiest
regarding the climatic response to strong volcémicing identified in coupled climate simulatioreat

35 contributed to the fifth phase of the Climate Mobiercomparison Project (CMIP5). In order to bette
understand the sources of these model diversitiesnodel intercomparison project on the climate
response to volcanic forcing (VoIMIP) has definecbardinated set of idealized volcanic perturbation
experiments to be carried out in alignment with@&IP6 protocol. VoIMIP provides a common
stratospheric aerosol dataset for each experiregiinhinate differences in the applied volcaniacfog,

40 and defines a set of initial conditions to detemmiow internal climate variability contributes to
determining the response. VoIMIP will assess totvexéent volcanically-forced responses of the cedpl
ocean-atmosphere system are robustly simulatethtsrsf-the-art coupled climate models and ideritify
causes that limit robust simulated behavior, eglgdiifferences in the treatment of physical pisses.
This paper illustrates the design of the idealizeldanic perturbation experiments in the VolMIP ool

45  and describes the common aerosol forcing inputsdégdo be used.
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1. Introduction

Volcanic eruptions that eject substantial amooftulfur dioxide (SQ) into the atmosphere have
been the dominant natural cause of externally-tbesenual to multidecadal climate variability duritig
last millennium (Hegerl et al., 2003; Myhre et @013; Schurer et al., 2014). Significant advarizes
been made in recent years in our understandingeofdre microphysical, physical, and chemical psses
that determine the radiative forcing resulting freatcanic sulfur emissions and the consequent djcem
responses of the coupled ocean-atmosphere systgmlienmreck, 2012). However, the fifth phasetsf t
Climate Model Intercomparison Project (CMIP5) hasndnstrated that climate models’ capability to
accurately and robustly simulate observed and stoaeted volcanically-forced climate behavior remsai
poor.

For instance, the largest uncertainties in raggaforcings (Driscoll et al., 2012) and in lower
troposphere temperature trends (Santer et al.,)Z0dm historical CMIP5 simulations occur during
periods of strong volcanic activity. CMIP5 modedad to overestimate the observed post-eruptioragjlob
surface cooling and warming during the decay plislsgotzke and Forster, 2015), although the
discrepancy decreases if accounting for the paegitien phase of the El Nifio-Southern Oscillation
(ENSO) (Lehner et al., 2016). There is also langeettainty across CMIP5 models concerning the short
term dynamical atmospheric response, especiallpdiseeruption strengthening of the Northern
Hemisphere’s winter polar vortex and its troposjgzhgignature (Driscoll et al., 2012; Charlton-Pee¢al.,
2013).

Climate models reproduce the main features ofrekdeprecipitation response to volcanic forcing,
but significantly underestimate the magnitude eftdgional responses in particular seasons (llés an
Hegerl, 2014). Volcanic events during the instrutakperiod are, however, few and of limited magaéy
and their associated dynamical climate respongerisnoisy (e.g., Hegerl et al., 2011). Furthermtinere
is inter-model disagreement about post-eruptiomiceevolutions, particularly concerning the resgmoof
the thermohaline circulation (e.g., Mignot et 2011; Hofer et al., 2011; Zanchettin et al., 2(bizig et
al., 2014). Substantial uncertainties still exlsbat decadal-scale climate variability during pdsof
strong volcanic forcing and in the role of the at@adetermining the surface air temperature respoo
volcanic eruptions. Discrepancies also exist betvgaulated and reconstructed climate variabilityirg
periods of the last millennium characterized bgmgyvolcanic activity, concerning, for instancee th
magnitude of post-eruption surface cooling (e.canklet al., 2012, 2013; Anchukaitis et al., 2012ff8l
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et al., 2015) and the interdecadal response t@aua@alusters of tropical precipitation (Winteratt, 2015)
and large-scale modes of atmospheric variabilign@hettin et al., 2015a).

The lack of robust behavior in climate simulatidikely depends on various reasons. First, inter-
model spread can be caused by differences in tlidelsiacharacteristics, such as the spatial resmiyind
the imposed volcanic forcing. The latter stems fidmices about the employed dataset describing
climatically relevant parameters related to thggam source — especially the mass of emitted -Sé@nd
about the stratospheric aerosol properties suspattal extent of the cloud, optical depth, andseirsize
distribution (e.g., Timmreck, 2012). For eruptidhat occurred prior to the instrumental periodciiog
characteristics must often be reconstructed baseddirect evidence such as ice-core measuremegs (
Devine et al., 1984, Sigl et al., 2014). These mstictions rely on a simplified hypothesis of sual
between ice-core sulfate concentrations and aeopsial depths based on the relation observethfor
1991 eruption of Mt Pinatubo (Crowley and Unterni201.3). The consideration of aerosol microphysical
processes also produces substantial inconsistdmeie®en available volcanological datasets (Timikgrec
2012). Furthermore, even when the same volcanasakforcing is prescribed to different models sthe
may generate different radiative forcing due torttael-specific implementation of the volcanic forg
(Timmreck, 2012; Toohey et al., 2014).

The simulated climatic response to individual aolic eruptions also critically depends on the
background climate, including the mean climatees(Berdahl and Robock, 2013), the ongoing internal
climate variability (e.g., Thomas et al., 2009; &ata et al., 2015a; Swingedouw et al., 2015; Zatinhet
al., 2013a, Lehner et al., 2016) and the presehadditional forcing factors such as variationsahar
irradiance (Zanchettin et al., 2013a). As a reslifferent models, forcing inputs and internal cim
variability similarly contribute to simulation-ermséle spread. This can be seen, for instance, byaony
hemispheric temperature evolutions from a multi-el@hsemble and a single-model ensemble of last-
millennium simulations during the early 19th cemt(fFigure 1), a period characterized by the close
succession of two strong tropical volcanic eruion1809 and 1815.

The individual impact of these sources of uncetyacan hardly be distinguished in transient clienat
simulations. Therefore, the Model Intercomparisonjdtt on the climatic response to Volcanic forcing
(VoIMIP) — an endorsed contribution to CMIP6 (Eyiet al., 2015, this issue) — provides the basia fo
coordinated multi-model assessment of climate nsgelrformances under strong volcanic forcing
conditions. It defines a set of idealized volcapésturbation experiments where volcanic forcingefirted
in terms of volcanic aerosol optical properties well constrained across participating models MIBI

will therefore assess to what extent responsdseofdupled ocean-atmosphere system to the samedppl
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strong volcanic forcing are robustly simulated asrstate-of-the-art coupled climate models andtifyen
the causes that limit robust simulated behavigreeslly differences in their treatment of physical
processes. Ensemble simulations sampling apprepniial conditions and using the same volcanic
forcing dataset accounting for aerosol microphygcacesses can help increase the signal-to-natse r
and reduce uncertainties regarding the magnitugesiferuption surface cooling (Stoffel et al., 2D1
Careful sampling of initial climate conditions atie possibility to consider volcanic eruptions dfedent
strengths will allow VoIMIP to better assess thiatiee role of internally generated and externétisced
climate variability during periods of strong voléamactivity. VoIMIP also contributes toward mordiable
climate models by helping to identify the origimgdaconsequences of systematic model biases afjeibin
dynamical climate response to volcanic forcing.aAnsequence, VolMIP will improve our confidenae i
the attribution and dynamical interpretation ofaestructed post-eruption regional features andigeov
insights into regional climate predictability dugiperiods of strong volcanic forcing.

VoIMIP experiments will provide context to CMIPEBHTK AMIP and historical simulations (Eyring
et al., 2015) and theast1000 simulations of the Paleoclimate MIP (PMIP) wheodcanic forcing is
among the dominant sources of climate variabilitgt anter-model spread. The importance of VoIMIP is
enhanced as the specification of the volcanicagteric aerosol for the CMIRdistorical experiment is
based on “time-dependent observations” (Eyrind.e2@15), and some modeling groups may therefore
perform the simulations using online calculatiorvolcanic radiative forcing based on S€mnissions.

This paper is organized as follows. First, in #&c® we provide a general description of the
individual experiments included in the VoIMIP protb. Then, Section 3 provides details about the
volcanic forcing for each experiment, including ieypentation and the forcing input data to be emgipy
for which this paper also serves as a referencedigéeiss the limitations of VoIMIP and potentialldov-
up research in Section 4, before summarizing th&t mbevant aspects of this initiative in Section 5

2. Experiments: rationale and general aspects

The VoIMIP protocol consists of a set of idealizedcanic perturbation experiments based on
historical eruptions. In this context, “idealizemieans that the volcanic forcing is derived fromatdn or
source parameters of documented eruptions buixiierienents generally do not include information atbo
the actual climate conditions when these eventaroed. The experiments are designed as ensemble
simulations, with sets of initial climate statesngded from the CMIP6-DECHIControl (i.e., preindustrial
control) simulation describing unperturbed preintdakclimate conditions (Eyring et al., 2015), es$

specified otherwise.
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VoIMIP experiments are designed based on a twafolitegy. A first set of experimeniga{cShort)
focuses on the systematical assessment of undgréaid inter-model differences in the seasonal-to-
interannual climatic response to an idealized 1P@atubo-like eruption, chosen as representatitbheof
magnitude of volcanic events that occurred durirggdbservational periofolcShort experiments
highlight the role of internal interannual variatyilfor volcanic events characterized by a ratlogr signal-
to-noise ratio in the response of global-averagtase temperature. The short-term dynamical respns
sensitive to the particular structure of the agpfrcing (Toohey et al., 2014). Using carefullynstructed
forcing fields and sufficiently large simulationsambles, VoIMIP allows us to investigate the interdel
robustness of the short-term dynamical responseltanic forcing, and elucidate the mechanismsugino
which volcanic forcing leads to changes in atmosphdy/namics. The proposed set\aflcShort
experiments includes sensitivity experiments desigio determine the different contributions to such
uncertainty that are due to the direct radiative (surface cooling) and to the dynamical (igtsspheric
warming) response

A second set of experimenigo{cLong) is designed to systematically investigate inteded
differences in the long-term (up to the decadaktsoale) dynamical climate response to volcaniptems
that are characterized by a high signal-to-noitie na the response of global-average surface teatpe.
The main goal o¥/olcLong experiments is to assess how volcanic perturbafigmals propagate within the
simulated climates, e.g., into the deep oceanasseciated determinant processes and their repaésan
across models.

The VoIMIP protocol defines criteria for samplidgsired initial conditions whenever this is
necessary to ensure comparability across differiémaite models. Desired initial conditions and kenc
ensemble size are determined based on the stdterofant modes of climate variability, which are
specifically defined for each experiment. The endersize must be sufficiently large to accounttfer
states are determined for each given mode basead owlex describing its temporal evolution.
Specifically, the predetermined ranges for the dagpre: the lower tercile (i.e., the range ofued
between the minimum and the'8Bercentile) for the negative/cold state, the neidite (i.e., the range of
values between the 33nd 6@ percentiles) for the neutral state, and the upgeile (i.e., the range of
values between the B@ercentile and the maximum) for the positive/watate. Ifn modes are sampled
concomitantly, this yields an ensemble witm@&mbers. For instance, in the case of two moates, a
ensemble of nine simulations is requested. Thecehafi the climate modes to be considered for
initialization essentially depends on the timesgaikinterest: seasonal to interannual mode¥dbcShort
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experiments, interannual and decadal mode¥dtniong experiments. The sampled years refer to the
second integration year of the VoIMIP experimertiew the volcanic forcing is generally strongest.
Therefore, if, for instance, year Y of the conirgkgration matches the desired conditions for the
sampling, then the corresponding VolMIP simulatstiould start with restart data from year Y-1 of the
195 control, for the day of the year specified for thxgeriment. Restart files from PiControl must be
accordingly selected and documented in the metadatach simulation. If no restart data is avaédiolr
the day of the year when the experiment startscoinérol simulation must be re-run based on trs fir
(backward in time) available restart file until thimart date of the VolMIP experiment. All experirtgen
except the decadal prediction experiment (secti@riPand the millennium cluster experiment (sectio
200 2.4.4) maintain the same constant boundary foragthe PiControl integration, except for the voican
forcing.
An overview of the experimental design of the g experiments is provided in Tables 1, 2 and 3,
where they are summarized according to their gidation: Tier 1 experiments are mandatory; Tiema
Tier 3 experiments have decreasing priority. Thaeeixnents are individually described in the follogi
205 sub-sections. Figure 2 sketches how the differepéements tackle different aspects of the climate

response to volcanic forcing. The codes for thming conventions of the experiments are in Tabi8s 1

2.1 VolcShort
2.1.1VolcShort-Eqg-full
210 Tier 1 experiment based on a large ensemble of-séron “Pinatubo” climate simulations aimed at
accurately estimating simulated responses to vadarcing that may be comparable to the amplitafle
internal interannual climate variability (Table Djitialization is based on equally-distributed geéned
states of ENSO (cold/neutral/warm states) and@fNabrth Atlantic Oscillation (NAO,
negative/neutral/positive states). Sampling of astern phase of the Quasi Biennial Oscillation (QBEG
215 observed after the 1991 Pinatubo eruption, is pedefor those models that spontaneously geneuvate s
mode of stratospheric variability. A minimum lengthintegration of three years is requested.

The recommended ENSO index is the winter (DJH) dd@inuary as reference for the year) Nino3.4
sea-surface temperature index, defined as theafipatveraged, winter-average sea-surface temperatu
over the region bounded by 120°W-170°W and 5°S- 3 recommended NAO index is the principal

220 component associated to the first empirical ortmadéunction of winter-average geopotential heigiits
500 hPa over the North Atlantic-European regionnaiead by 90°W—-40°E and 20-70°N.



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-68, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 5 April 2016

(© Author(s) 2016. CC-BY 3.0 License.

225

230

235

240

245

250

2.1.2VolcShort-Eg-surf and VolcShort-Eq-strat

Tier 1 simulations aimed at investigating the natsm(s) connecting volcanic forcing and short-
term climate anomalies (Table 1). These experima&nmgo disentangle the dynamical responses tbabe
primary thermodynamic consequences of aerosolrgratratospheric heatingydlcShort-Eg-strat) and
surface cooling\{olcShort-Eg-surf). Both experiments are built updolcShort-Eg-full and designed in
cooperation with the Dynamics and Variability o tBtratosphere—Troposphere System (DynVar) project.
Therefore, DynVar diagnostics must be calculated/@bcShort-Eq-full/surf/strat.

2.1.3VolcShort-Eqg-slab

Non-mandatory slab-ocean experiment, which is gseg to clarify the role of coupled atmosphere-
ocean processes (most prominently linked to EN&@gtermining the dynamical response (Table 3). A
minimum length of integration of three years antkast 25 ensemble members are requested.

2.1.4VolcShort-Eqg-ini

Non-mandatory experiment to address the impaeblefnic forcing on seasonal and decadal climate
predictability (Table 3). The experiment will adgisethe climatic implication of a future Pinatubleeli
eruption. The experiment is designed in cooperatiitih the decadal climate prediction panel (DCPP)
(Boer et al., 2016). It complies with the VolMIPopocol about the forcing and its implementatione Th
experiment is initialized onsINovember 2015, or any other date in November aebber for which
initialized hindcasts are available (dependinglenrhodeling centerY.en decadal simulations are

requested for this experiment.

2.2 VolcLong
2.2.1VolcLong-Single-Eq

Tier 1 experiment designed to understand the teng-response to a single volcanic eruption with
radiative forcing comparable to that estimatedlfier 1815 eruption of Mt Tambora, Indonesia (Table 1
Initialization spans cold/neutral/warm states ofS¥Nand weak/neutral/strong states of the Atlantic
Meridional Overturning Circulation (AMOC), resulgrin a 9-member ensemble. A minimum length of
integration of 20 years is requested to coverypial duration of the simulated initial post-eriopt
AMOC anomaly (e.g., Zanchettin et al., 2012). Larigéegration times are recommended to capture the
later AMOC evolution (Swingedouw et al., 2015; Rea<t al., 2015b) and related climate anomalibs. T
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recommended AMOC index is defined as the annualagectime series of the maximum value of the

zonally-integrated meridional streamfunction in Narth Atlantic Ocean in the latitude band 20°N-8§0°

2.2.2VolcLong-Single-HL

Non-mandatory experiment that applies the sameoaph as/olcLong-Sngle-Eq and extends the
investigation to the case of an idealized stromgpfiatitude volcanic eruption (Table 2). This expemt is
designed as a Northern Hemisphere extra-tropicgitien with SQ injection equal to half the total amount
injected for thev/olcLong-Sngle-Eq experiment. This choice was based on the assumiptad for an
equatorial eruption the injected mass is roughbnév distributed between the two hemispheres, asing
comparability betweekolcLong-Single-Eq andVolcLong-Single-HL as both should yield similar forcing
over the Northern Hemisphere (but see Section BI8).initialization procedure and required inteignat
length are the same as folcLong-Single-Eq. Both experiments are expected to contribute tetanding
guestions about the magnitude of the climatic ihpabigh-latitude eruptions, especially concerniing
inter-hemispheric response.

The eruption strength is about 4 times strongen that estimated for the Mt Katmai/Novarupta
eruption in 1912 (Oman et al., 2005). The eruptised inVolcLong-Sngle-HL should not be considered
directly comparable to the 1783-84 Laki eruptioone of the strongest high-latitude eruptions that
occurred in historical times — since the experinta@s not try to reproduce the very specific
characteristics of Laki, including multistage redea of large S©mass paced at short temporal intervals
(e.g., Thordarson and Self, 2003; Oman et al., 2866midt et al., 2010; Pausata et al., 2015b).

2.2.3VolcLong-Cluster-Ctrl

A “volcanic cluster” experiment to investigate ttlamatic response to a close succession of strong
volcanic eruptions (Table 2). The experiment isiwaied by the large uncertainties in the multidedad
and longer-term climate repercussions of prolormgribds of strong volcanic activity (e.g., Millera.,
2012; Schleussner and Feulner, 2013; Zanchettih,2013a). The proposed experiment is designed to
realistically reproduce the volcanic forcing genedsby the early 19th century volcanic cluster,chihi
included the 1809 eruption of unknown location #rel1815 Tambora and 1835 Cosiglina eruptions. The
early 19th century is the coldest period in the pa@® years (Cole-Dai et al., 2009) and therefdrgpecial
interest for interdecadal climate variability (Zaettin et al., 2015a; Winter et al., 2015). In diddi, long-

term repercussions may be relevant for the intgion of CMIP6 historical simulations.
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At least an ensemble of three 50-year long siroratis requested. Due to the long-term focus ef th
experiment, selection of initialization states fisecond-order importance. Nonetheless, it is renenmded
to sample initial states pacing them at a minimuy®&ar intervals. Initial states should be samjilech

the PiControl for consistency with tMelcLong-Single experiments.

2.2.4 VolcLong-Cluster-Mill

A parallel experiment tdolcLong-Cluster-Ctrl using restart files from PMIP-past1000 instead of
from PiControl (see Table 2). Starting from a clienstate that experienced realistic past volcanicirig,
this experiment allows to explore the sensitivitypoean response to the initial state, which hanbe
highlighted to be significant particularly for pnefustrial controls that do not include backgrouottanic
aerosols [Gregory, 2010¥olcLong-Cluster- Mill is more suitable for a direct comparison with yarl
instrumental data and paleoclimate reconstructiang,allows one to explore the role of ocean ihitia
conditions on sea ice response, ocean responsgugade temperature response by comparison with
VolcLong-Cluster-Citrl.

This non-mandatory experiment requires that atleae PMIPpast1000 realization has been
performed. One simulation is requested, but anmebkeof three simulations is recommended. The prope
experiment starts in year 1809\&gcLong-Cluster-Ctrl. However, the simulation must be initialized in
January 1790 to avoid interferences due to the decada dfsolar activity associated with the Dalton
Minimum. Hence, the experiment proper lasts 50-@a¥olcLong-Cluster-Ctrl, but a total of 69 years for
each ensemble member are actually requested. &iffenembers of theéol cLong-Cluster-Mill ensemble
can be obtained by either using restart files fdifierent ensemble members of PMIP-past1000, if
available, or through introducing small perturbatido the same restart file. All external forcingscept
volcanic forcing, are set as a perpetual repetitiotne year 1790 for the full duration of the esipent.

3. Forcing
3.1 Implementation: general aspects

VoIMIP identifies a volcanic forcing dataset faah experiment included in the protocol. The
forcing parameters can either be provided in tesfreerosol optical properties and distributionsirime
and space, as for the case when available datais@iified as consensus reference, or calculaasdd
on the tool and guidelines described in the prdtddue latter is the case for experiments usingifar

input data specifically created for VoIMIP.

10
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In addition, the implementation of the forcinggie spectral interpolation) is constrained to easur
that the imposed radiative forcing is consistembsg the participating models. Surface albedo cbadge
to tephra deposition and indirect cloud radiatiffeats are neglected in all the experiments.

VoIMIP has defined a new group of variables (Voicdnstantaneous Radiative Forcing, or VIRF,
see Table 4), which includes additional variablheg tvere not in the original set provided by CMitel are
necessary to generate the volcanic forcing in sexperiments. In particular, all VIRF diagnosticed$or
VolcShort-Eg-full/surf/strat are instantaneous 6h data, so some interpolatiome may be required. The
data request is dbttps://www.earthsystemcog.org/projects/wip/CMIP&Request

3.2 VolcShort

VolcShort-Eg-full will use the CMIP6 stratospheric aerosol datg Bebmason et al., 2016) for the
volcanic forcing of the 1991 Pinatubo eruption, efhis set up for the CMIP6 historical simulation.
VolcShort-Eg-surf andVolcShort-Eg-strat will not account for forcing based on imposed aetmptical
properties as is the usual approach in VolMIP .dadt they will use output from the corresponding
VolcShort-Eg-full experiment. Specifically/olcShort-Eqg-surf will specify a prescribed perturbation to the
shortwave flux to mimic the attenuation of solatiation by volcanic aerosols, and therefore thdingmf
the surface. The goal is to isolate the impactoftsvave reflection from the impact of aerosol reatn
the stratosphere. The changes must be prescriltied #tp of atmosphere under clear sky conditions
(variable swtoafluxaerocs of VIRF). SimilarifolcShort-Eg-strat will specify a prescribed perturbation to
the total (long-wave plus short-wave) radiativethmegrates, seeking to mimic the local impact ofcanic
aerosol (variables zmlwaero and zmswaero of VIRR)s must be implemented by adding an additional
temperature tendency. VoIMIP does not enforce dimeesperturbation across all modeld/oicShort-Eg-
surf andVolcShort-Eg-strat, as for both mechanistic experiments priorityiieg to the consistency with
the correspondingolcShort-Eqg-full experiment.

3.3 VolcLong

These experiments are based on pre-industriahm@@vents for which no direct observation is
available. VoIMIP recognizes the need to overcomeeuncertainties and the limitations of currently
available volcanic forcing datasets for the predstdal period (see Figure 1a), which poses the hee
identify a single, consensus forcing dataset foheamne of the&/olcLong experiments. Therefore, for the
VolcLong-Single-Eq experiment, coordinated climate simulations of XB&5 eruption of Mt. Tambora (see

Table 5) were performed with different climate misdacluding modules for stratospheric chemistrg an

11
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aerosol microphysics (chemistry climate modelsk thposed Seinjection of 60 Tg at the equator used
in these simulations is deduced from reanalyskimslar ice-core data used in recent volcanic fagci
reconstructions (Stoffel et al., 2015; Gao et20)Q8) and calculations based on geological dath éSal.,
2004). The easterly QBO phase and altitude of figp@re based on satellite and lidar observatidns
QBO, SQ, and sulfate after the Pinatubo eruption (McCoknaind Veiga, 1992; Read et al., 1993; Herzog
and Graf, 2010). The results show large uncer&sriti the estimate of volcanic forcing parametersved
from different state-of-the-art chemistry climatedels perturbed with the same sulfur injectiongFe
3a). How these results are traced back to therdiffdareatment of aerosol microphysics and climate
physical processes in the different models is thgest of a dedicated study. Here, we only conclidé
existing uncertainties prevent the identificatiatithin the time constraints of the CMIP6 schedofiea
single consensus forcing estimate for a given votcaruption based on a multi-model ensemble with
current chemistry climate models.

Therefore, VolMIP proposes for tialcLong experiments forcing data sets constructed with the
Easy Volcanic Aerosol (EVA) module (Toohey et 2016). EVA provides an analytic representation of
volcanic stratospheric aerosol forcing, prescriliimgaerosol’s radiative properties and primary esoaf
spatial and temporal variability. It creates volcaorcing from given eruption sulfur injection atatitude
with idealized spatial and temporal structure, tesed so as to produce good agreement with
observations of the aerosol evolution following 891 Pinatubo eruption. Scaling to larger eruption
magnitudes is performed in a manner consistent tétforcing reconstruction of Crowley and Unterman
(2013). EVA is also used to construct the volcdoicing dataset used for the last-millennium experit
of the Paleoclimate MIP (PMIP-past1000) (Kageyairel.e2016). This augments the comparability
between PMIP and VoIMIP results concerning thos@tasns that are featured by both MIPs. The EVA
module outputs data resolved for given latitudesglits and wavelength bands. It therefore is an
improvement compared to previously available valcéorcing datasets for the pre-observational perio
Toohey et al. (2016) provide technical details dalEWA.

VoIMIP requests that all modeling groups use EdAyénerate the specific forcing input dataset for
their model, using the same sulfur emission estmtd be specified for use in the PMi&t1000
experiment. Figure 3 provides an overview of theAHEbrcing for an estimated SGnjection for the 1815
Tambora eruption of 56.2 Tg to be used&/ohcLong-Sngle-Eq. VolcLong-Cluster-Ctrl andVolcLong-
Cluster-Mill include all eruptions represented in the PMIP42@® experiment for the overlapping period.

The reference S£emission for th&/olcLong-Sngle-HL experiment is equal to one-half the Tambora
value. The evolution of aerosol optical depth (ACQIY)EVA for a high-latitude injection of 28.1 Tg 8>
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380 s illustrated in Figure 4. The Northern Hemisphaverage AOD for th®¥olcLong-Sngle-HL and
VolcLong-Single-Eq experiments are quite similar in magnitude ando@ml structure. Differences occur
due mainly to the seasonal dependence of the &lsfmeextratropical transport parameterized in ETAe
reduced stratospheric transport into the Northegmidphere in the summer months after the April
eruptions leads to a time lag in the peak Nortt&Emisphere mean AOD f&folcLong-Single-Eq

385 compared td/olcLong-Single-HL. It also leads to generally somewhat less aetomasported to the
Northern compared to the Southern Hemispher&dsiong-Sngle-Eq, which explains the lower peak

AOQOD for this experiment than fdfolcLong-Sngle-HL.

4. Follow-up research and synergies with other modiag activities
390 We expect the VoIMIP experiments not only to gateebroad interest within the climate modeling
community but also to stimulate research acrossyrddferent branches of climate sciences.
Cooperation between VoIMIP and other ongoing clemaodeling initiatives and MIPs increases
VoIMIP’s relevance for climate model evaluation.particular, synergies between VoIMIP and the
Stratospheric Sulfur and its Role in Climate (SSiR@ordinated multi-model initiative (Timmreck dt,a
395 2016b) as well as between VoIMIP and the Radidfimeing MIP (RFMIP) will help to building a
scientific basis to distinguish between differenicegolcanic radiative forcing data and differenaes
climate model response to volcanic forcing. VolMifdvides a well-defined set of forcing parametars i
terms of aerosol optical properties and is thusglementary to SSiRC, which uses global aerosol isode
to investigate radiative forcing uncertainties assed with given S@emissions. Precise quantification of
400 the forcing to which models are subject is cerfsaboth RFMIP and VolMIP: RFMIP has planned
transient volcanic and solar forcing experimenthiked preindustrial sea-surface temperature to
diagnose volcanic and solar effective forcing,ansaneous forcing and adjustments, which is
complementary to thg&hort experiments of VolMIP.
VoIMIP has synergies with the Geoengineering Mddidrcomparison Project (GeoMIP; Kravitz et
405 al., 2015), which includes proposals to simulaleng-duration stratospheric aerosol cloud to cowatte
global warming. Furthermore, PMIP and VolMIP pravicbmplementary perspectives on one of the most
important and less understood factors affectingate variability during the last millennium. Spécly,
VoIMIP systematically assesses uncertainties irclineatic response to volcanic forcing associatétt w
different initial conditions and structural moddfferences. In contrast, the PMIP-past1000 expantme
410 describes the climatic response to volcanic for@mnigng transient simulations where related uraieties
are due to the reconstruction of past volcanicifigrcthe implementation of volcanic forcing witktime
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440

models, initial conditions, the presence and stten§additional forcings, and structural model
differences. Modeling groups who participate infb@bIMIP and PMIP are encouraged to output the
VIRF diagnostics for the following tropical erupti® simulated in the past1000 experiment: 1257 Smsmnal
1453 Kuwae, 1600 Huaynaputina, 1809 Unidentified, 8815 Tambora. VIRF diagnostic s should be
calculated for a period of five years starting frtima eruption year, and would be useful for fusiredies

to expand the investigation based\hcShort-Eg-strat andVolcShort-Eg-surf.

VoIMIP and the Detection and Attribution MIP (DAM) share the CMIP6 science theme of
characterizing forcing. The experimehtstALL, histNAT, histVLC andhistALL_aerconc of DAMIP
include the 1991 Pinatubo eruption within transi@imate situations and therefore provide contexhe
VolcShort set of VoIMIP experiments.

VoIMIP and DCPP are closely working together omithpact of volcanic eruptions on seasonal and
decadal predictions, and have designed a commariengnt {/olcShort-Eg-ini and the DCPP experiment
C2 are different labels for the same experiment). DigeVar activity puts a particular emphasis on the
two-way coupling between the troposphere and tfaostphere, and it is therefore deeply involvethe

design and analysis of thelcShort mechanistic experiments.

We envisage follow-up research stimulated by VétMIlinks to the Grand Challenges of the World

Climate Research Program (Brasseur and Carlsoi) 20it

e  “Clouds and atmospheric circulation,” in particullarough improved characterization of volcanic
forcing and improved understanding of how the hialyizal cycle and the large-scale circulation
respond to volcanic forcing. VoIMIP further contuiles to the initiative on leveraging the past rdcor
through planned experiments describing the climedponse, in an idealized context, to historical
eruptions that are not (or not sufficiently) coxeelyy CMIP6-DECK, -historical or other MIPs.

) “Climate extremes,” in particular through a morstsynatical assessment of regional climate
variability — and associated predictability anddicéon — during periods of strong volcanic forcing
at both intraseasonal-to-seasonal (e.g., postierupiorthern Hemisphere's winter warming) and
interannual-to-decadal (e.g., post-eruption delayder warming, Zanchettin et al., 2013b;
Timmreck et al., 2016b) time scales.

e  “Water availability,” in particular through the &ssment of how strong volcanic eruptions affect the

monsoon systems and the occurrence of extensivpratmhged droughts.
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e  “Rapid cryosphere changes,” in particular concegnive onset of volcanically forced long-term
feedbacks involving the cryosphere which is suggkby recent studies (e.qg., Miller et al., 2012,
Berdahl and Robock, 2013; Zanchettin et al., 2014).

445 Ocean heating and circulation, annual to deca@iscales, and short-lived climate forcers were
identified among those areas where the WCRP’s grhatlenges seem most in need of broadened or
expanded research (Brasseur and Carlson, 2019)1IFa$ expected to advance knowledge in all such
areas.

Follow-up research must take also into accountdhewing considerations.

450 The design of the simulations reflects necessangttains on the overall resources required to
perform the whole set of mandatory experimentss Thplies limitations such as the possibly insusfixt
representation of the whole range of variabiliticliinate modes not explicitly accounted in the gesi
This includes, for instance, the Southern Hemisplamular mode (e.qg., Karpechko et al., 2010;
Zanchettin et al., 2014) and modes of internatasgzheric variability like the QBO. VoIMIP’s exparents

455 are designed based on observed or reconstructdddarharacteristics of historical volcanic erupgo
(1815 Tambora and 1991 Pinatubo for the Tier 1 ex@nts). Comparison with observational or
reconstructed evidence must, however, take intowatddhe idealized character of VoIMIP’s experinggnt
including the simplified setting for generating eahic forcing parameters provided by the EVA module
Specifically, the evolution of the volcanic aerosldud in EVA does not account for the meteorolabic

460 conditions at the time of the eruption, and camaptesent the aerosol properties at anything oltfzer the
largest scales. Eccentricities of the aerosol gimiudue to variations in stratospheric transgagh as the
QBO, mid-latitude mixing, and the polar vortex, nahbe reliably included in any reconstruction of
aerosol forcing which relies only on sparse pragords. Observations-simulations assessments cannot
also leave aside the identification of the origingl consequences of systematic model biases afiebe

465 dynamical climate response to volcanic forcing.

5. Summary
VoIMIP is a coordinated climate modeling activityadvance our understanding of how the climate
system responds to volcanic forcing. VoIMIP conités to identifying the causes that limit robussnies
470 simulated volcanically-forced climate variabiligspecially concerning differences in models' trestinof
physical processes. It further allows for the eatibn of key climate feedbacks in coupled climate

simulations following relatively well-observed etigms.
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The protocol detailed in this paper aims at imprgwcomparability across the participating climate
models by (i) constraining the applied radiativechog, proposing for each experiment a consensusf se
forcing parameters to be employed, and (ii) coirstrg the background climate conditions upon wthitoh
volcanic forcing is applied. The protocol entaistmain sets of experiments: the first focusingtan
short-term (seasonal to interannual) atmosphesigarse, and the second focusing on the long-term
(interannual to decadal) response of the coupledro@atmosphere system. Both are further prioritintxl
three tiers of experiments. Careful sampling diahclimate conditions and the opportunity to ddes
volcanic eruptions of different strengths will alla better understanding of the relative role térimal and
externally-forced climate variability during per®df strong volcanic activity, hence both improvthg
evaluation of climate models and enhancing ouiitshid accurately simulate past and future climates

Data Availability

The model output from the all simulations desdibethis paper will be distributed through the
Earth System Grid Federation (ESGF) with digitgkcbidentifiers (DOIs) assigned. As in CMIP5, the
model output will be freely accessible through dadeals after registration. In order to documemIB6’s
scientific impact and enable ongoing support of eMlsers are obligated to acknowledge CMIP6, the
participating modelling groups, and the ESGF cenfsee details on the CMIP Panel website at
http://www.wcrp-climate.org/index.php/wgcm-cmip/atbemip). Further information about the
infrastructure supporting CMIP6, the metadata desay the model output, and the terms governingiés
are provided by the WGCM Infrastructure Panel (WiPtheir invited contribution to this Special Issu
Along with the data itself, the provenance of tlgadwill be recorded, and DOI's will be assigned to
collections of output so that they can be approgigiecited. This information will be made readily
available so that published research results careliied and credit can be given to the modellmgups
providing the data. The WIP is coordinating andoemaging the development of the infrastructure eded
to archive and deliver this information. In ordertin the experiments, datasets for volcanic fgreire
required, which are described in the present pdjer forcing datasets or, alternatively, dedicateds to

derive them will be made available through the ES@F version control and DOIs assigned.
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Figure 1. Uncertainty in radiative forcing and climate respe for the early-9century eruptionsaj two
estimates of annual-average global aerosol odigath at 550 nm (AOD)pj top-of-atmosphere annual-
average net clear-sky radiative flux anomaliesafamulti-model ensemble of last-millennium simulago
(PMIP3; see: Braconnot et al., 2012); ¢omparison between simulated (PMIP3, 11-year $shiog,

colors) and reconstructed (black line: mean; shadif-95" percentile range) Northern Hemisphere
average summer temperature anomalies (relativé38-1808); ¢) same asd, but for a pre-PMIP3
single-model ensemble (ECHAM5/MPIOM; Zanchettirakt2013a,b). Reconstructed data are the full raw
calibration ensemble by Frank et al. [2010].
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Figure 2: lllustrating the dominant processes linking vaicaeruptions and climate response, with an

overview of VoIMIP experiments: 1: VolcLong-Sindtg, 2: VolcShort-Eq-full, 3: VolcShort-Eqg-surf, 4:
VolcShort-Eg-strat, 5: VolcLong-Single-HL, 6: Volohg-Cluster-Ctrl, 7: VolcShort-Eg-slab, 8: VolcStor
Eg-ini, 9: VolcLong-Cluster-Mill. The red box encpasses the processes related to the climatic resgon

755 volcanic forcing that are accounted for in VolMig green box encompasses the processes regarding

volcanic forcing that are neglected by VoIMIP.
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Figure 3: (a) Uncertainty in estimates of radiative forcinggraeters for the 1815 eruption of Mt
Tambora: global-average aerosol optical depth (ADDQhe visible band from an ensemble of simulation
with chemistry climate models forced with a 60 T@.®quatorial eruption, from the Easy Volcanic
Aerosol module (EVA) with 56.2 Tg S@quatorial eruptions (magenta thick dashed liinejn Stoffel et

al. (2015), from Crowley and Unterman (2013), amhf Gao et al. (2008)b) Time-latitude plot of the
AOD in the visible band produced by EVA for a 56@ SQ equatorial eruption, illustrating the consensus
forcing for theVolcLong-Sngle-Eq experiment. The black triangle shows latitudinasion and timing of
the eruption.

Chemistry climate models are CESM (WACCM) (Millsadt, 2016), MAECHAM5-HAM (Niemeier et al.,
2009), SOCOL (Sheng et al., 2015), UM-UKCA (Dhoresal., 2014), CAMB-UPMC-M2D (Bekki et al.,
1995, 1996). For models producing an ensemblenafilsitions, the line and shading are the ensembéame

and ensemble standard deviation, respectively.
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780 aerosol optical depth (AOD) at 550 nm producedneyEasy Volcanic Aerosol module (EVA) for a 56.2
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Tables

Table 1 — Tier 1 VoIMIP experiments

heating rates

Name Description Parent ns. | Years per | Total Gaps of knowledge being addressed with this
experiment,| Size | simulation | years experiment
start date (minimum)
VolcLong-Single-| Idealized equatorial eruption correspond|ng PiControl, 9 20 180 | Uncertainty in the climate response to strong wmitc@ruptions,
Eq to an initial emission of 56.2 Tg of 3O'he April 18 with focus on coupled ocean -atmosphere feedbaakd
eruption magnitude corresponds to recent interannual to decadal global as well as regicesponses.
estimates for the 1815 Tambora eruption The mismatch between reconstructed and simulatédatel
(Sigl et al., 2015), the largest historigal responses to historical strong volcanic eruptiavith focus on the
tropical eruption, which was linked to the role of simulated background internal climate Vaitity.
so-called “year without a summer” in 181p.
VolcShort-Eqg-full [ 1991 Pinatubo forcing as used in the CMIP6 PiControl, 25 3 75 Uncertainty in the climate response to strong vatca&ruptions
historical - simulations. Requires specipl ~ Junelst with focus on short-term response.
diagnostics of parameterized and resolyed Robustness of volcanic imprints on Northern Hemispls winter
wave forcings, radiative and latent heating climate and of associated dynamics.
rates. A large number of ensemble membiers
is required to address internal atmosphgric
variability
VolcShort-Eqg-sur| As VolcShort-Eq-full, but with prescribefl  PiControl, 25 3 75 Mechanism(s) underlying the dynamical atmosphezéponse to
perturbation to the shortwave flux to minfic ~ June 1% large volcanic eruptions, in particular in Northéfemisphere’s
the attenuation of solar radiation by volcafic winters. The experiment considers only the efféataicanically
aerosols induced surface cooling.
Complimentary experiment to VolcShort-Eg-strat.
VolcShort-Eg- As VolcShort-Eq-full, but with prescribe] PiControl 25 3 75 Mechanism(s) underlying the dynamical atmosphezgponse to
strat perturbation to the total (LW+SW) radiatife ~ June 1% large volcanic eruptions, in particular in Northédemisphere's

winter. The experiment considers only the effecvaitanically-
induced stratospheric heating.

Complimentary experiment to VolcShort-Eq-surf.

Volc = Volcano, Long = long-term simulation, Shershort-term simulation, Eq = equator, full = fédkcing simulation, surf = short-wave forcing onyrat = stratospheric thermal (long-wave)

790

forcing only

795
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Table 2 — Tier 2 VoIMIP experiments

Name Description Parent Ens. | Years per| Total| Gaps of knowledge being addressed with this
experime[ Size | simulation| years| experiment
nt, start
date
VolcLong-Single-| Idealized high-latitude eruption emittijg PiControl 9 20 180 | Uncertainty in climate response to strong hightdal volcanic
HL 28.1Tg of S@ April 1st eruptions (focus on coupled ocean-atmosphere).
Outstanding questions about the magnitude of tineatt impact
of high-latitude eruptions.
VolcLong-Clustert Early 19th century cluster of strofjg PiControl 3 50 150 | Uncertainty in the multi-decadal climate respomssitong volcanid|
Ctrl tropical volcanic eruptions, including the January 1% eruptions (focus on long-term climatic implicatipns
1809 event of unknown location, and the 1809 Contribution of volcanic forcing to the climate tife early 19th|
1815. Tambora and 1835 Cosigiipa century, the coldest period in the past 500 years.
eruptions. Discrepancies between simulated and reconstrutitedtes of the|
early 19th century.

Volc = Volcano, Long = long-term simulation, HL #gh latitude, Ctrl = initial state from control siration

800

805

810

815
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Table 3 — Tier 3 VoIMIP experiments

e

Mill Ctrl, but with initial conditions taken Past1000,
from last millennium simulation in order] January 1%
to avoid ocean drifts due to a climate ngt 1809

in equilibrium with volcanic forcing

Name Description Parent Ens. Years per| Total [Gaps of knowledge being addressed with th
experime[ Size | simulation| years|experiment
nt, start
date
VolcShort-Eg-slalf As VolcShort-Eg-full, but with a slab PiControl 25 3 75 |Effects of volcanic eruptions on ENSO dynamics.
ocean June 1%
VolcShort-Eg-ini/ | As VolcShort-Eqg-full, but as decadal 2015 10(5) 5 50 |Influence of large volcanic eruptions in futurendite.
DCPP C2 prediction runs joint experiment with Influence of large volcanic eruptions on seasondldecadal climat
DCPP. Forcing input and implementatign predictability
of the forcing fully comply with the
VolMIP protocol
VolcLong-Cluster| Parallel experiment to VolcLong-Cluste[- ~ PMIP- 3(1) 69 207 [Contribution of volcanic forcing to the climate tfe early 19th

century, the coldest period in the past 500 years.
Discrepancies between simulated and reconstrutitedtes of the
early 19th century.

Effect of history of volcanic forcing on the resgerto volcanic
eruptions.

Volc = Volcano, Long = long-term simulation, Shershort-term simulation, Eq = equator, slab = sledan simulation, ini = simulation initialized fdecadal prediction, Mill = initial conditions

820 from full forcing transient simulation of the lasillennium

825

830

835
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Table 4 -Definition of new variables requested by VolMIP. Ttese have not been previously used in CMIP5, CCMI,@GRDEX or SPECS. Shape is
longitude (X), latitude (Y) ad height (2)

defined as time (T)

Short name Standard name units description/comments Shape Levels Time
stratosphere optical thickness dup aerosol optical thickness at 550 nm due to YZT all instantaneous

aod550volso4 to volcanic aerosol particles stratospheric volcanic aerosols
tendency of air temperature due {o shortwave heating rate due to volcanic aeros¢l¥ ZT all instantaneous
shortwave heating from volcanic to be diagnosed through double radiation call

zZmswaer aerosol particle Kst zonal average values requi
tendency of air temperature due {o longwave heating rate due to volcanic aeroso|sXYT 1 instantaneous
longwave heating from volcanic to be diagnosed through double radiation call

zmlwaero aerosol particles K% zonal average values required
surface downwelling shortwave downwelling shortwave flux due to volcanic | XYT 1 instantaneous
flux in air due to volcanic aerosolg aerosols at the surface to be diagnosed throggh

swsffluxaero W m? double radiation call
surface downwelling longwave downwelling longwave flux due to volcanic | XYT 1 instantaneous
flux in air due to volcanic aerosolg aerosols at the surface to be diagnosed through

Iwsffluxaerc W m? double radiation ce
toa outgoing shortwave flux due fo downwelling shortwave flux due to volcanic | XYT 1 instantaneous
volcanic aerosols assuming cleal aerosols at TOA under clear sky to be diagnoped

swtoafluxaeroc sky W m? through double radiation ¢
toa outgoing longwave flux due t downwelling longwave flux due to volcanic XYT 1 daily mean
volcanic aerosols assuming cleal aerosols at TOA under clear sky to be diagnoped

Iwtoafluxaerocs sky W m? through double radiation call

840

845

850
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855

Table 5 - Protocol for the chemistry climate modeéxperiment to assess volcanic forcing uncertaintyf the

VolcLong-Single-Eq experiment

max at 24 km, and then
decreasing linearly to zero g
26 km.

specified)

SO, Eruption Latitude QBO phase at SO, height injection SST Other Duration Ens. size
emiss length time of radiative
ion eruption forcing
60 Tg 24 hours Centered af Easterly phase Same as Pinatubo. Climatological Preindustrial C@ 5-years long 5 members
SO, the equator (as for Pinatubo an 100% of the mass between 22 from other greenhouse
El Chichén) and 26 km, increasing linear preindustrial gases, tropospheri
with height from zero at 22 tx control run aerosols (and £f
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