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Abstract. Ground-based microwave radiometers (MWR) offer a new capability to provide continuous 12 

observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential 13 

candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) 14 

models through a variational assimilation of their data. However in order to assimilate MWR observations a fast 15 

radiative transfer model is required and such a model is not currently available. This is necessary for going from 16 

the model state vector space to the observation space at every observation point. The fast radiative transfer 17 

model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite 18 

observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based 19 

upward looking microwave sensors. In addition, the Tangent Linear, Adjoint, and K-modules of RTTOV have 20 

been adapted to provide Jacobians (i.e. the sensitivity of observations to the atmospheric thermodynamical state) 21 

for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a 22 

variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been 23 

validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range 24 

commonly used for temperature and humidity profiling (22-60 GHz), root-mean-square brightness temperature 25 

differences are smaller than typical MWR uncertainties (0.5 K) at all channels used in this analysis. Brightness 26 

temperatures (TB) computed with RTTOV-gb from radiosonde profiles have been compared with nearly 27 

simultaneous and colocated ground-based MWR observations. Differences between simulated and measured TB 28 

are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from 29 

instrumental errors. The Jacobians calculated with the K-module of RTTOV-gb have been compared with those 30 

calculated with the brute force technique and those from the line-by-line model ARTS. Jacobians are found to be 31 

almost identical, except for liquid water content Jacobians for which a 10% difference between ARTS and 32 

RTTOV-gb at transparent channels around 450hPa is attributed to differences in liquid water absorption models. 33 

Finally, RTTOV-gb has been applied as the forward model operator within a 1-Dimensional Variational (1D-34 

Var) software tool in an Observing-System Simulation Experiment (OSSE). For both temperature and humidity 35 

profiles, the 1D-Var with RTTOV-gb improves the retrievals with respect to NWP model in the first few 36 

kilometers from the ground.  37 
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1 Introduction 2 

The planetary boundary layer (PBL) is the single most important under-sampled part of the atmosphere (National 3 

Research Council, 2008). While the thermodynamical state of the atmosphere is well measured at the surface by 4 

ground in-situ sensors and in the upper troposphere by satellite sounders, there is currently an observational gap 5 

in the PBL. According to the WMO Statement Of Guidance For Global Numerical Weather Prediction (WMO, 6 

2014), there are four priorities for atmospheric variables not adequately measured in the PBL: wind profiles, 7 

temperature and humidity profiles in cloudy areas, precipitation, and snow mass. Ground-based microwave 8 

radiometers (MWR) provide temperature and humidity profiles in both clear- and cloudy-sky conditions with 9 

high temporal resolution and low-to-moderate vertical resolution, with information mostly residing in the PBL 10 

(Cimini et al., 2006). Ground-based MWR offer to bridge the current observational gap by providing continuous 11 

temperature and humidity profiles in the PBL. When combined with satellite observations, the total information 12 

content of the derived atmospheric profiles can be significantly enhanced (Ebell et al., 2013). The data 13 

assimilation (DA) of MWR observations into numerical weather prediction (NWP) models may be particularly 14 

important in nowcasting and severe weather (fog, convection, turbulence, etc.) initiation. The assimilation of 15 

MWR data has been recently investigated (Cimini et al., 2014; Caumont et al 2015), assimilating temperature 16 

and humidity profile retrievals from a network of 13 MWR members from the international MWRnet network 17 

(Cimini et al., 2012). Results showed neutral-to-positive impact. However, these experiments used retrieved 18 

variables (temperature and humidity profiles) whereas the assimilation of raw measurement (TBs) is found more 19 

performing in the case of satellite data (Geer et al., 2008). 20 

Accordingly, a potential way to increase the impact of MWR DA is to assimilate measured radiances (or 21 

brightness temperatures, TB) directly instead of retrieved profiles. With this type of assimilation, all the degrees 22 

of freedom for signal of MWR (Löhnert et al., 2009) can be used to improve the NWP model forecast in the 23 

PBL. In order to assimilate TB, a radiative transfer (RT) forward model is needed. The RT model allows to 24 

compute the TB for selected radiometer channels based on the NWP model state vector. TB differences between 25 

the modeled and measured observations can be used within a variational scheme (Courtier et al., 1998) that takes 26 

the corresponding uncertainties into account to retrieve temperature and humidity profiles in the first few 27 

kilometers from the ground, where MWR provide the maximum information content. In addition, the Jacobians 28 

(i.e. partial derivatives with respect to the state vector) of the radiative transfer model are required to minimize 29 

the distances of the atmospheric state from both the first guess and the observations in a variational data 30 

assimilation process. These Jacobians represent the sensitivities of observations to the atmospheric 31 

thermodynamical state.  32 

The fast RT model RTTOV (Radiative Transfer for the TIROS Operational Vertical Sounder (TOVS)) is widely 33 

used to simulate radiances from space-borne passive sensors. RTTOV has already been used for many years by 34 

many national meteorological services for assimilating down-looking observations from visible, infrared, and 35 

microwave radiometers, spectrometers and interferometers (Hocking et al., 2015 and references therein) aboard 36 

satellite platforms. The FORTRAN-90 code originally developed at ECMWF in the early 90's (Eyre, 1991) was 37 

intended for TOVS direct radiance assimilation within 3- and 4-dimentional variational analysis schemes 38 

(3DVAR, 4DVAR). Subsequently the original code has gone through several developments (e.g. Saunders et al., 39 
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1999; Matricardi et al., 2001), more recently within the EUMETSAT NWPSAF, of which RTTOV v11.3 is the 1 

latest version available. Since its first implementation and throughout its current version, RTTOV has been 2 

developed and exploited for satellite observation perspective only. The model allows rapid simulations of 3 

radiances for a suite of passive sensors given the atmospheric state vector, i.e. profiles of temperature, gas 4 

concentration, cloud liquid water content and surface properties. The only one variable gas needed for RTTOV 5 

v11 in the microwave band is water vapor. An important feature of RTTOV is that, in addition to the forward (or 6 

direct) radiative transfer, it also computes the Jacobians, i.e. the gradient of the radiances with respect to the state 7 

vector at the location in state space specified by the input state vector values. The Jacobians are calculated in 8 

Tangent Linear (TL), Adjoint (AD) and K-modules of RTTOV. 9 

There are other fast RT models used by NWP community for satellite data assimilation, like the Community 10 

Radiative Transfer Model (CRTM - Ding et al., 2011). However, to our knowledge no fast RT model is currently 11 

available to simulate ground-based radiometric observations. In this work, the version 11.2 of RTTOV has been 12 

modified to handle ground-based microwave radiometer observations. The efforts for adapting RTTOV to 13 

ground-based observations started within the COST action ES1202 (EG-CLIMET) and have been continued 14 

within COST action ES1303 (TOPROF). The ground-based version of RTTOV developed here, called RTTOV-15 

gb, is able to simulate brightness temperatures from ground-based upward-looking microwave radiometers. In 16 

addition, the TL, AD, and K-modules of RTTOV have been adapted to provide Jacobians for ground-based 17 

geometry. We believe that the availability of RTTOV-gb with its K-module will enable more widespread and 18 

better use of MWR observations in NWP models. 19 

This paper introduces RTTOV-gb, the ground-based version of the fast radiative transfer model RTTOV. In 20 

section 2 we describe the modifications made to the original RTTOV code for the ground-based radiative 21 

transfer calculation. Section 3 discusses the performance of RTTOV-gb by evaluating its simulations against 22 

those from accurate line-by-line RT models (3.1), against ground-based real MWR observations (3.2), against 23 

analytic Jacobian calculations (3.3), and finally within an 1-dimentional variational (1D-Var) assimilation 24 

scheme (3.4). Section 4 summarizes the findings and draws the final conclusions. 25 

 26 

2 The formulation of the radiative transfer model 27 

2.1 Radiative transfer model 28 

Given a state vector x (the atmospheric thermodynamical state profile in radiative transfer problem), the radiance 29 

vector (or brightness temperature) y is computed as: 30 

y = H(x)                                                                                   (1) 31 

where H is the radiative transfer model (also referred to as the observation operator).  32 

The core of RTTOV-gb simulates ground-based radiometer radiances using an approximated form of the 33 

radiative transfer equation (RTE) for ground-based (upward-looking) observation geometry: 34 

 LATM,i = τi,toa ∗ Bi(TBKG) + ∫ Bi(T)dτ
1

τi,toa
                             (2) 35 

where LATM,i is the radiance at the ground for channel i, neglecting scattering effects, Bi is the Planck radiance at 36 

channel i for a scene temperature T, τi,toa is the transmittance from the surface to the top-of-the-atmosphere and 37 
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TBKG is the microwave cosmic background temperature (2.728 K). Note that in the spectral range under 1 

consideration (20-60 GHz), scattering is negligible for particles of the size of atmospheric molecules and cloud 2 

droplets, and even for larger ice and snow particles (Kneifel et al., 2010).  From a ground-based perspective, the 3 

transmittances and optical depths are accumulated from the surface to the space instead of from the space to the 4 

surface as in the original RTTOV satellite perspective. Consequently, several subroutines have been modified to 5 

reverse the accumulation of transmittances and optical depths through the atmospheric path (see Section 6). 6 

The RTE (2) is valid for both clear- and cloudy-sky conditions because in the microwave band RTTOV takes 7 

into account the liquid water as an absorbing species and its effects are included through a contribution to the 8 

transmittance profile. The first term of the right-hand side of the RTE (2) is the cosmic background radiation, the 9 

second term is the atmospheric contribution.  10 

The RTE (2) has been numerically solved over N atmospheric levels which are numbered from the top of the 11 

atmosphere as follow: 12 

- level j = 1, pressure Pj = 0.005hPa, temperature Tj = T1 , transmittance τij = τi,toa for channel i; 13 

- levels from j = 2 to j  = N-1, Pj are pressures of the fixed-pressure levels, τij is the surface-to-level transmittance 14 

for channel i; 15 

- level j = M, the first level which lies strictly above the input 2 m pressure (i.e. M <= N and PM < P2m),  τij = τi,M  16 

for channel i; 17 

- level j = N, PN = 1050hPa, surface air temperature TN = TS,  τiN = 1  for all channels; 18 

For the ground-based perspective and each channel (omitting the i index for convenience), we define: 19 

{

∆τj = τj+1 − τj

∆Bj = Bj − Bj+1

 ∆dj = dj − dj+1

                   (3) 20 

where Δdj is the optical depth of the single layer j, dj is the level-to-surface optical depth. 21 

The contribution of the cosmic background radiation is: 22 

 LCOSMIC = τ1 ∗ B(TBKG)     with τ1 = τtoa                                         (4) 23 

The atmospheric contribution is: 24 

LA =  ∫ B(T)dτ + ST
τM

τLEV=1
= ∑ (∫ Bdτ

τj+1

τj

1
j=M ) + ST             (5) 25 

where:                                                           26 

∫ Bdτ = τj+1Bj+1 − τjBj +
1

∆dj
∆Bj∆τj =

τj+1

τj
∆τj ∗ [Bj+1 + ∆Bj

1

∆dj
] − τj∆Bj                   (6) 27 

and ST is the contribution of the first layer above the surface: 28 

ST = BS(1 − τM) − (BM − BS) + (BM − BS) ∗ (1 − τM) ∗
1

dM
           (7) 29 

with BS the Planck function evaluated at the input 2 m temperature. 30 

In equation (6) we have used a parameterization of the Planck function (i.e. the so-called linear-in-tau 31 

assumption, where tau means the optical depth of the single layer, corresponding to Δd in the notation used in 32 

this study). In the linear-in-tau assumption the source function throughout the layer is linear with the optical 33 

depth of the layer (Saunders et al., 2010): 34 

B[T(∆d)] =  Bj+1 + (Bj − Bj+1)
∆d

∆dj
                                                    (8) 35 
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where Bj is the Planck function for the top of the layer, Bj+1 is the Planck function at the bottom of the layer and 1 

Δdj is the optical depth of the layer. In ground-based perspective Δd goes from 0 to Δdj from the bottom to the 2 

top of the layer. 3 

The radiance for each channel i is then converted to an equivalent black-body temperature which is usually 4 

called Brightness Temperature (TB) using the inverse Planck function. 5 

2.2 The input atmospheric profiles and near-surface variables 6 

The input profile data may be supplied on an arbitrary set of pressure levels. These consist of vertical profiles of 7 

temperature (K) and humidity (ppmv) for clear-sky, and additional cloud liquid water content (CLW in kg/kg) 8 

profiles for simulating cloudy conditions. In addition, pressure, temperature and humidity values at 2 m altitude 9 

are required. The transmittance calculations described below are performed using atmospheric layers bounded by 10 

a number of fixed pressure levels. RTTOV-gb interpolates the input profiles to the fixed pressure levels for the 11 

transmittance calculation, but note that the RTE is integrated on the pressure levels supplied by the user 12 

(Hocking, 2014).  13 

Currently RTTOV-gb uses fixed 101 pressure levels from 0.005hPa to 1050hPa for the transmittance calculation. 14 

These levels have been specifically selected for ground-based perspective to be denser close to ground (34 levels 15 

below 2km) than those usually used for the satellite perspective. Moreover they were chosen to improve the 16 

accuracy of the optical depth prediction scheme used by RTTOV-gb compared to that obtained with the levels 17 

used for satellite simulations. The vertical levels spacing is shown in Figure 1 in terms of level altitude 18 

differences.  19 

2.3 Transmittance model 20 

The main variable computed in the radiative transfer model is the atmospheric optical depth for each channel i 21 

and for each atmospheric layer j. The optical depths depend on the viewing angle of the instrument, pressure, 22 

temperature, and concentrations of the absorbing species. The optical depth differences between adjacent 23 

pressure levels are obtained through a linear combination in Xkj, the so-called predictors (j being the level and k 24 

the number of predictors, from 1 to P). The predictors are derived from the input state vector profile and depend 25 

on temperature T and specific humidity q at and above the considered levels. The optical depth from the surface 26 

to the level j in channel i along a path at an angle θ from the vertical, dij, is obtained as follow: 27 

dij = di,j+1 + ∑ aijkXkj
P
k=1                                  (9) 28 

with aijk the regression coefficients between optical depths and predictors.  29 

The contribution of the water vapor on the optical depth is treated separately from that of uniformly-mixed gases 30 

although they are calculated with two algorithms of the same form. There are three types of predictors for 31 

satellite perspective, predictors 7 (Matricardi et al., 2001), 8 (Matricardi, 2005) and 9 (Saunders, 2010), each of 32 

which is better suited for a specific application. The functional dependence of the predictors used in RTTOV to 33 

parameterize the optical depths depends on factors such as the absorbing gas, the angle θ, the reference 34 

temperature and specific humidity profiles (the average of the training profile set, respectively Tj
ref 

and qj
ref

). 35 

Also the number of predictors depends on the selected gas. 36 
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We found the predictors 7 to give the best results for the ground-based geometry and thus they are used herewith 1 

to train RTTOV-gb. The predictors 7 and the profile variables involved in the predictors calculation are listed in 2 

Appendix A. Note that predictors 7 were originally developed for satellite simulations up to 60° zenith angles 3 

and as such, the errors in the optical depth prediction increase for zenith angles above ~75º (i.e. for elevation 4 

angles below ~15º). For MWR observations of the PBL thermodynamics, these scanning angles turn out to be 5 

crucial, because of the information carried by opaque channels on the PBL temperature profile. Thus, it is 6 

foreseen that an alternative set of predictors, specific for low elevation angles in the ground-based geometry, 7 

may be worth investigating and developing in the future, though it is beyond the scope of this study.  8 

The coefficients aikj are calculated by linear regression of {di,j – di,j+1 } against Xkj. For the regression, dik are 9 

calculated using a line-by-line (LBL) model for a set of atmospheric profiles. LBL RT models provide accurate 10 

calculation of the atmospheric transmittances and radiances, given the atmospheric profile of gas concentrations, 11 

and predefined spectral frequency grid. The LBL optical depths must cover the full spectral range of all the 12 

radiometer channels of interest and provide a sufficient resolution to represent accurately the transmittances in 13 

the channel spectral bands. The LBL model described by Rosenkranz (1998; R98 herewith) has been used for 14 

gas absorption to calculate the clear-sky transmittances needed in the RTTOV-gb regression coefficients 15 

computation. Here we use 83 profiles from a NWPSAF profile dataset interpolated on 101 pressure levels, 16 

already used for training RTTOV. It is important to emphasise that this profile set was carefully chosen from a 17 

set of more than 100 million profiles to represent a wide range of physically realistic atmospheric states 18 

(Matricardi, 2008). Transmittances are computed for 6 selected scanning angles which are discussed in Section 19 

3.1. We limit the lowest elevation angle used in the training phase to 10° because of the already mentioned 20 

limitation of the predictors 7.  21 

If the optical depth for uniformly-mixed gases and water vapor are dij
M

 and dij
W

 respectively, the total optical 22 

depth is: 23 

 dij = dij
M + dij

W                                                                                                                                                     (10) 24 

Then, optical depths are converted to transmittances: 25 

 τij = exp (−dij)                                                  (11) 26 

Finally, RTTOV-gb computes the output radiances and TB from the derived transmittances and the input vertical 27 

temperature profile using the radiative transfer equation (2). 28 

2.4 Jacobians: Tangent Linear, Adjoint and gradient matrix models 29 

The Jacobian matrix K gives the change in radiance δy for a change in any element of the state vector δx 30 

assuming a linear relationship about a given atmospheric state x0: 31 

δy = K(x0) δx                                                         (12) 32 

The elements of K contain the partial derivatives δyi/δxj, where the subscript i refers to channel and j to layer 33 

number. The Jacobian provides the radiance sensitivity for each channel given unit perturbations at each level of 34 

the state vector and in each of the surface parameters. It shows clearly, for a given profile, which layers in the 35 

atmosphere are most sensitive to changes in temperature and variable gas concentrations for each channel. The 36 

K-module of RTTOV computes the K(x0) matrix for each input profile. Alternatively, the Jacobians can be 37 

computed with the so-called brute force (BF) method where K is estimated by perturbing each element of the 38 
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atmospheric state vector, repeating the RTTOV direct module iteratively. However, the calculations of the 1 

Jacobians with the BF method are slower and less rigorous than with the K-module of RTTOV. 2 

It is not always necessary to store and access the full matrix K; thus, the RTTOV package has routines to 3 

compute the tangent linear only, i.e. the change in radiances yi for a given change in atmospheric profile δx 4 

around an initial atmospheric state x0. 5 

𝛅𝐲(𝐱𝟎) = [𝛅𝐱
𝛛y1

𝛛𝐱
, 𝛅𝐱

𝛛y2

𝛛𝐱
, 𝛅𝐱

𝛛y3

𝛛𝐱
… . . 𝛅𝐱

𝛛ynchan

𝛛𝐱
]           with 

𝛛

𝛛𝐱
= 𝛁𝐱 = [

∂

∂x1
,

∂

∂x2
, … ,

∂

∂xN
]                       (13) 6 

Similarly, the adjoint routines compute the change in any quantity of the state vector (e.g. T, q, surface variables 7 

etc) δx around an assumed atmospheric state x0, given a change in the radiances δy. 8 

𝛁𝐱 = 𝛁𝐱𝐲 ∙ 𝛁𝐲 = K(𝐱𝟎) T ∙ 𝛁𝐲                                      (14) 9 

𝛅𝐱(𝐱𝟎) = [𝛅𝐲
𝛛x1

𝛛𝐲
, 𝛅𝐲

𝛛x2

𝛛𝐲
, 𝛅𝐲

𝛛x3

𝛛𝐲
… . . 𝛅𝐲

𝛛xN

𝛛𝐲
]                   (15) 10 

For very large systems, it may be not feasible to calculate the full Jacobian matrix K and the tangent linear and 11 

adjoint operations are computed instead. 12 

The TL code is derived directly from the forward model because it represents the analytic derivative of the 13 

radiance (forward model outputs) with respect to the atmospheric state vector x. The AD code is derived from 14 

the TL code. Finally, the K code is obtained from the AD code distributing the AD level derivatives through the 15 

number of channels. Before running TL, AD, and K models, the direct model needs to be run, because many of 16 

the intermediate variables calculated by the direct model are needed by the TL, AD and K-modules. 17 

 18 

3 Performance of RTTOV-gb 19 

The performance of RTTOV-gb has been tested in four different ways, reported in the following sub-sections: 20 

validation against the LBL RT model used as reference for the training and against another independent 21 

reference LBL RT model (3.1); a comparison of TB simulated with RTTOV-gb from a radiosonde profile dataset 22 

with nearly-colocated MWR measurements (3.2); a comparison of Jacobians calculated with the RTTOV-gb K-23 

module and the brute force method, and also with Jacobians computed with an analytical model (3.3); 24 

exploitation of RTTOV-gb as forward model operator within a 1-dimensional variational scheme (3.4). 25 

3.1 Comparison with line-by-line model computed radiances 26 

To compare RTTOV-gb against the LBL model adopted for the regression training, we computed clear-sky TB 27 

with both RTTOV-gb and R98 at selected channels from the set of 83 atmospheric profiles used in the training 28 

phase. Resulting TB differences are a measure of the regression error. Here we focus on the sistematic (bias) and 29 

root-mean-square (RMS) TB differences. We consider 14 channels commonly used by commercial MWR, in 30 

particular the Humidity And Temperature PROfiler (HATPRO, Rose et al., 2005): 22.24, 23.04, 23.84, 25.44, 31 

26.24, 27.84, 31.40, 51.26, 52.28, 53.86, 54.94, 56.66, 57.30, and 58.00 GHz. Channels from 22 to 31 GHz are 32 

in the so-called K-band while channels from 51 to 58 GHz are in the so-called V-band. 33 

Table 1 shows bias and RMS at 4 elevation angles (90, 30, 19 and 10°) and 4 elevation angle combinations used 34 

for regression training (predictors 7 are used). This to investigate the best performing combination. The 4 sets of 35 

elevation angles are 90-53-42-35-30-26°; 90-42-30-24-19-16°; 90-42-30-24-19-10°; and 90-42-30-19-10-5°.  36 
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Bias and RMS are lower than the manufacturer error specification for HATPRO channels (0.5 K - Rose et al., 1 

2005) for all the considered training sets and elevation angles, with the exception of 22-31 GHz channels at 10° 2 

elevation angle with the training sets 90-26°, 90-10° and 90-5°. This result seems to confirm that predictors 7 are 3 

not ideal for elevation angles lower than 15°. However, it is encouraging to note that even at 10°, bias and RMS 4 

are within the instrumental error for all the channels when the training set 90-16° is adopted. Note that the 5 

agreement at low elevation angles is better for the V-band opaque channels, which are most important for PBL 6 

temperature retrieval. Table 1 shows that the best among the considered training configurations is the set of 7 

elevation angles from 90° to 16°. Somewhat surprising, this configuration gives acceptable results even at 10°, 8 

despite this elevation angle is outside the training angle range. 9 

Figure 2 shows two spectra computed at HATPRO channels by RTTOV-gb and LBL R98 for the same 10 

atmospheric profile belonging to the dependent set. For this particular case, TB differences between the two 11 

models are within 0.1 K for all channels.  12 

For the whole 83-profile dataset, Figure 3 shows statistics (bias, RMS and maximum value) of the LBL R98 13 

minus RTTOV-gb TB difference at four elevation angles (90, 30, 19 and 10°). The best training configuration 14 

determined above (elevation angles from 90° to 16°) is used. At 90° elevation, bias and RMS are respectively 15 

less than 0.030 K and 0.060 K for K-band (22-31GHz), while 0.003 K and 0.025 K for the V-band opaque 16 

channels (54-58GHz). For these channels the maximum difference does not exceed 0.15 K. The agreement is 17 

slightly worse at transparent V-band channels (51-54 GHz), with bias, RMS, and maximum difference 18 

respectively within 0.03 K, 0.2 K, and 0.6 K. The larger discrepancies at transparent V-band channels are 19 

probably due to the combined influence of temperature and water vapor, which likely decreases the correlation 20 

of layer opacity with the two thermodynamical variables. Similar results are found for other elevation angles, 21 

such as 30 and 19°. Note that the error statistics at 90° elevation (i.e. zenith) are about one order of magnitude 22 

larger than the analogous statistics of the original nadir-looking RTTOV (Saunders, 2002; Saunders, 2010). We 23 

believe the reason is the behaviour of the two terms contributing to the total radiance (Eq.2), i.e. the background 24 

and the atmospheric contributions. Uncertainty in atmospheric optical depth, as those induced by regression, will 25 

influence the total radiance through the effects on these two terms. For the satellite (down-looking) case, these 26 

effects tend to compensate due to a warmer background (e.g. overestimated optical depths cause more emission 27 

from the atmosphere but less contribution from the relative warmer background). Conversely, for the ground-28 

based perspective there is no compensation of the two terms because of the cold cosmic background (e.g. 29 

overestimated optical depths causes more emission from the atmosphere and less contribution from the relative 30 

colder background). 31 

Figure 3 shows bias, RMS, and maximum difference respectively up to -0.3, 0.4, 1.5 K for K-band channels at 32 

10° elevation. These are significantly larger compared to higher elevation angles. This is attributed to the use of 33 

predictors 7, which are not designed for elevation angles lower than 15°. This may also be due to the fact that 34 

10° is outside the elevation angle range used in the training configuration (90°-16°). However, Table 1 shows 35 

that extending the range of training elevation angles to 10° or less generally degrades statistics. In any case, we 36 

highlight that the RMSs in Figure 3 are smaller than the uncertainty associated with TB observations (0.5 K) 37 

for all channels and all elevation angles.  38 
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Similarly, RTTOV-gb has been compared with the reference LBL model using an independent set of 52 profiles 1 

(i.e. not used for training). The same 101 pressure levels described earlier are used. Bias, RMS and maximum of 2 

LBL R98 minus RTTOV-gb TB differences are shown in Figure 4. Results are for the best training configuration 3 

and for elevation angles 90, 30, 19 and 10°. Statistics are similar to those obtained with the dependent profile set. 4 

In this case however, the error statistics are of the same order of magnitude than the analogous performance of 5 

the original nadir-looking RTTOV with an independent profile set (Saunders, 2002; Saunders, 2010). For 6 

elevation angles down to 19°, biases range from less than 0.002 K for the opaque channels to 0.020 K for K-7 

band, while RMS is less than 0.060 K for K-band and 0.025 K for the opaque channels. The maximum TB 8 

differences do not exceed 0.5 K. Similarly to the test with the dependent profile set, larger discrepancies are 9 

found in the transparent V-band channels (51-54 GHz) and for K-band channels at 10° elevation. All the 10 

statistics obtained with the independent profile set and the best training configuration are summarized in Table 2. 11 

Consistently with the dependent test, the independent test in Figure 4 and Table 2 confirms that the RMSs are 12 

smaller than the uncertainty associated with TB observations for all channels and all elevation angles.  13 

The previous tests against the reference LBL R98 model have been performed also at the 22 frequency channels 14 

(22-60 GHz) used by another commercial microwave radiometer, the MP-3000A (Cimini et al., 2011; 2015). 15 

Statistics, reported in Table 3 in terms of bias and RMS, are similar to those obtained for HATPRO channels, at 16 

both K- and V-band.  17 

Note that LBL R98 is the model used to train the regression scheme. In order to perform a completely 18 

independent test, we compare RTTOV-gb with an independent reference radiative transfer model, the 19 

Atmospheric Radiative Transfer Simulator (ARTS, Buehler et al. 2005; Eriksson et al., 2011; Eriksson et al., 20 

2015) and a completely different profile dataset. In this test, HATPRO observations are simulated using 21 

RTTOV-gb and ARTS from a set of 1327 thermodynamic profiles from the AROME analysis over Bordeaux 22 

from April to October 2014. AROME is the French convective scale NWP model with a 2.5 km horizontal grid 23 

mesh developed by Météo-France (Seity et al., 2010). Both clear- and cloudy-sky conditions are considered. This 24 

dataset, which is limited in space, time, and thus in atmospheric conditions, was chosen to demonstrate the 25 

performance of RTTOV-gb in typical deployment environment. Since the goal of this analysis is to test the fast 26 

RT modeling (RTTOV-gb) with respect to accurate LBL calculation, all other settings being equal, ARTS 27 

settings for absorption model have been selected to adopt as much as possible the same absorption model as 28 

RTTOV-gb: R98 for oxygen and water vapor absorption, and the model described in Liebe et al. (1993) for 29 

cloud liquid water (referred as MPM93 within ARTS). Note that MPM93 is the only option for liquid water 30 

absorption available in ARTS. Conversely RTTOV-gb is consistent with the original RTTOV, which adopts a 31 

combination of Liebe et al. (1991) and Lamkaouchy et al. (1997) models (English et al., 1999).  32 

This comparison is presented in Figure 5 in terms of bias, standard deviation (std), and RMS of ARTS minus 33 

RTTOV-gb TB differences at 90° elevation angle. Here we have discarded TB differences that are larger than 3 34 

std from the mean (21 profiles out of 1327). Bias less than 0.18 K for K-band and less than 0.08 K for opaque V-35 

band channels are found. RMS and standard deviation are close, ranging from 0.1-0.25 K for K-band channels, 36 

and within 0.1 K for V-band opaque channels (55-58 GHz). Similar to previous tests, larger discrepancies are 37 

found in the more transparent V-band channels (51-54 GHz) with a RMS error up to 0.5 K at 51 GHz in cloudy-38 

sky. But here the RMS is dominated by a bias contribution induced by systematic differences found between 39 

LBL and ARTS at these three channels (~0.3-0.5 K, not shown). This may be caused by small differences in the 40 
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implementation of the R98 gas absorption and/or the radiative transfer code. This issue is currently under 1 

investigation, though its understanding goes beyond the scope of this paper. Comparing Figures 4 and 5, we 2 

notice slightly larger statistics (by 0.1-0.2 K) in the RTTOV-gb vs. ARTS than in the RTTOV-gb vs. R98 tests. 3 

We attribute this to the fact that RTTOV-gb is totally independent of ARTS and moreover to the specific profile 4 

dataset, which likely introduces biases with respect to the RTTOV-gb training climatology. Note that TB 5 

differences for all the channels are of the same order of magnitude of those found between ARTS and the 6 

original nadir-looking RTTOV (Buehler et al., 2006). This demonstrates comparable capabilities between 7 

RTTOV-gb and the original version of RTTOV. RMS TB differences between RTTOV-gb and ARTS at 90° 8 

elevation are within 0.5 K, thus below the uncertainty associated with TB observations. From the three tests 9 

above, we can conclude that in the elevation angle range from 90 to 10° the forward model error due to the use 10 

of the fast RT with respect to the reference LBL model is within the instrument uncertainty. This confirms that 11 

RTTOV-gb can be safely deployed in place of a LBL model into variational assimilation schemes. 12 

3.2 Comparison with real observations 13 

Another way to evaluate RTTOV-gb is to compare TB simulated from radiosonde profiles with TB measured by 14 

a nearly colocated microwave radiometer. This comparison provides an end-to-end evaluation of the model, 15 

though radiosonde drift, MWR calibration, finite beamwidth, discretization, and instrumental noise all contribute 16 

to the total uncertainty. Nevertheless, observations minus background model (O-B) differences are the primary 17 

input for direct radiance assimilation into a NWP model and thus need to be investigated and understood. For 18 

this analysis, we exploit a dataset of 365 radiosonde profiles collected over Bordeaux from April to October 19 

2014, together with the nearly simultaneous TB observed by a ground-based microwave radiometer (HATPRO) 20 

operated at the radiosonde launching site. The dataset was first reduced to clear-sky conditions. To be 21 

conservative, clear-sky conditions have been selected using a three-fold screening, based on (i) ceilomenter 22 

Cloud Base Height (CBH), (ii) sky infrared temperature (TIR), and (iii) 20-minute standard deviation of liquid 23 

water path (LWP) from HATPRO. Thus, periods with CBH below maximum range (8000m), TIR>-30°C, or LWP 24 

>10
-2

 kg/m
3
 were rejected. Moreover, cases with integrated water vapor differences between microwave 25 

radiometer and radiosonde profiles larger than 1 mm have been discarded in order to reduce instrumental 26 

uncertainties involved in the comparison. After this screening, only 23 profiles remained for the analysis. Bias, 27 

standard deviation, and RMS differences between TB observed by the microwave radiometer and simulated with 28 

both RTTOV-gb and ARTS are shown in Figure 6. With respect to the MWR observations, RTTOV-gb shows 29 

bias from 0.02 K at 22.24 GHz to 0.5 K at 23.84 GHz in the K-band and from 0.16 K to 0.31 K in the V-band 30 

opaque channels. RMS range from 0.90 K to 0.47 K in the K-band and from 0.41K to 0.64K in the V-band 31 

opaque channels. Larger bias is found at V-band transparent channels: 1-2 K at 51.26 GHz and 4-5 K at at 32 

52.28GHz with either RTTOV-gb or ARTS simulations. Note that RTTOV-gb and ARTS show similar statistics 33 

with respect to MWR observations. This result is very important as it suggests that forward model errors due to 34 

the fast model approximation are not dominant. Note that bias values of the same order of magnitude for the 51-35 

54 GHz range were previously reported (Hewison et al. 2006; Löhnert and Maier, 2012, Martinet et al. 2015, 36 

Blumberg et al., 2015), employing MWR of different types and manufacturers. This may be attributed to a 37 

combination of uncertainties from instrument calibration and gas absorption models. In fact, semi-transparent 38 
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channels (as in the 51-54 GHz range) suffer from larger calibration uncertainties due to the lack of a close 1 

reference-temperature calibration point. In addition, their response is influenced by the water vapour continuum 2 

and oxygen line coupling, which contribute significantly to the uncertainties because their parametrization is 3 

extrapolated from laboratory measurements to typical atmospheric conditions. It is beyond the scope of this 4 

paper to investigate spectroscopy issues, but our results support previous evidence and point to the need for 5 

further lab measurements (Boukabara et al., 2005; Cadeddu et al., 2007). Considering that O-B systematic 6 

differences are usually evaluated and removed before assimilating data into NWP, we believe that statistics in 7 

Figure 6 support the safe use of RTTOV-gb for direct radiance assimilation of MWR TB into NWP models.  8 

3.3 Comparison of Jacobians 9 

After testing the RTTOV-gb direct module, the RTTOV-gb Jacobians calculation needs to be tested in order to 10 

provide a complete tool for a fast and safe MWR data assimilation. First, a consistency test of the Jacobians 11 

calculated with TL-, AD- and K-modules of RTTOV-gb has been performed to ensure the correctness of the 12 

TL/AD/K coding modified for ground-based perspective. The test resulted in nearly the same Jacobians for TL, 13 

AD- and K-modules. Subsequently, the temperature and humidity Jacobians calculated with RTTOV-gb K-14 

module have been compared with those computed with the brute force (BF) method for a specific cloudy sky 15 

profile. The BF method calculates the Jacobian by finite differences by calling the direct module multiple times 16 

after perturbing each individual input profile variable. The consistency of K-module with BF was confirmed 17 

using the RTTOV test suite (Brunel et al., 2014), bearing in mind that some small differences between the 18 

Jacobians are expected. Figure 7 shows the temperature and absolute humidity Jacobians for the V- and K-bands 19 

channels. The Jacobians computed with RTTOV-gb BF and K-module are almost identical with differences 20 

smaller than 1%. As expected, the TB sensitivity to atmospheric temperature is higher in the low troposphere, 21 

especially in the PBL, and it increases with frequency in the spectral range between 51 and 58 GHz. Between 22 22 

and 31 GHz, the sensitivity of the TBs to water vapor is almost independent of altitude and decreases with 23 

increasing frequency.  24 

The Jacobians for cloud liquid water (CLW) are needed when cloudy-sky conditions are considered. Figure 8 25 

shows a comparison of CLW Jacobians calculated with RTTOV-gb K-module and BF method. Similar to 26 

temperature and humidity, they are found to be almost identical (differences smaller than 0.1%, likely due to 27 

truncation errors). As expected, the TB sensitivity to CLW increases with frequency in the K-band, while it 28 

decreases with frequency in the V-band due to the increasingly dominant oxygen absorption. TB are sensitive to 29 

CLW at all levels up to 322hPa (about 10km), where RTTOV, and thus also RTTOV-gb, have set their upper 30 

limit for non-zero CLW.  31 

For a completely independent test, Jacobians calculated with RTTOV K-module have been compared with those 32 

computed with the reference radiative transfer model ARTS. ARTS Jacobians are derived from a semi-analytical 33 

expression described in Eriksson and Buehler, 2015. As shown in Figure 9, temperature and humidity Jacobians 34 

from ARTS and RTTOV-gb are found to be almost identical, either for K-band and V-band channels, with 35 

differences smaller than 3% for temperature and 5% for humidity. Figure 10 shows the comparison of CLW 36 

Jacobians from ARTS and RTTOV-gb. These are similar to each other, both in shape and order of magnitude, 37 

from surface up to 322 hPa (RTTOV cloud limit). However, differences of about 10% occur around 450 hPa, 38 
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particularly at transparent channels (31, 51 and 52 GHz). These are likely due to small differences in the liquid 1 

water absorption models in ARTS and in RTTOV-gb, as mentioned above in Section 3.1. However, for a typical 2 

CLW profile, these model differences lead to small TB differences (order of 0.1 K) and are thus deemed as 3 

negligible. 4 

3.4 1D-Var application 5 

Finally, RTTOV-gb has been tested as forward model within a 1-dimensional variational (1D-Var) scheme. For 6 

this purpose, the 1D-Var software package provided by the NWPSAF (Weston, 2014) has been adapted in the 7 

framework of the COST Action TOPROF to exploit RTTOV-gb. Among other modifications, the 1D-Var tool 8 

has been modified to allow the assimilation of observations at different elevation angles for the same instrument. 9 

The 1D-Var approach searches the atmospheric state x that minimizes both the distance to the background xb and 10 

the observation y. The cost function J needs to be minimized modifying the different variables defined in the 11 

control vector x (Cimini et al., 2010): 12 

J =
1

2
[𝐲 − H(𝐱)]TR−1[𝐲 − H(𝐱)] +

1

2
[𝐱 − 𝐱𝐛]TB−1[𝐱 − 𝐱𝐛]                                                                                         (16)13 

       14 
Here B represents the background-error covariance matrix and R the observation error covariance matrix. H 15 

represents the observation operator, in our case RTTOV-gb. The background profile comes from a short-range 16 

forecast of a NWP model or from a colocated radiosonde. Here, xb is a 3-hour forecast from the French 17 

convective scale model AROME. The Jacobians needed to minimize the cost function J are calculated with the 18 

RTTOV-gb K-module.  19 

The aim is to retrieve temperature and humidity profiles and column-integrated liquid water path from MWR 20 

observations through a 1D-Var retrieval approach exploting RTTOV-gb. To this aim, an Observing-System 21 

Simulation Experiment (OSSE) was set up with 224 AROME analyses profiles in February 2015 over the Alps 22 

with the new horizontal grid mesh of 1.3 km. These analyses are made of 90-level pressure, temperature, specific 23 

humidity and liquid water content profiles, typical of an alpine valley and mountainous region in winter. Both 24 

clear- and cloudy-sky conditions are considered. Starting from the AROME unperturbed profiles (the “truth“), 25 

background profiles are created by perturbing the initial AROME profiles according to the background error 26 

covariance matrix B. In this study, the B matrix was computed from an AROME ensemble assimilation system 27 

following the approach used to derive this matrix operationally at Météo-France (Brousseau et al., 2011). By 28 

applying RTTOV-gb to the unperturbed AROME, observations are created by adding synthetic observation 29 

errors to the RTTOV-gb simulations. The synthetic random errors are assumed to follow a diagonal R matrix 30 

with reasonable standard deviations, i.e. ~ 0.2-1.0 K depending on channels (Hewison, 2007).  31 

In clear-sky conditions, temperature and specific humidity are used as control variables in the 1D-Var. A 32 

comparison between temperature and humidity retrievals obtained with 1D-Var, the corresponding unperturbed 33 

and background profiles for two retrieval examples are shown in Figure 11. As expected, the 1D-Var retrievals 34 

are closer to the “truth” than the background profiles. In this case 1-D-Var provides an improvement with respect 35 

to the background in the first 2 km for temperature and in the first 4 km for humidity, which is encouraging for 36 

future data assimilation experiments. A comprehensive evaluation of RTTOV-gb plus 1D-Var for data 37 

assimilation using real MWR observations will be subject of future work. 38 
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Here, we just underline that the main advantage of RTTOV-gb with respect to LBL models is the considerably 1 

lower computation time. Of course the priority of LBL models is more accuracy than speed, though settings may 2 

be tuned to improve the computation performances. Although a detailed analysis on computation speed goes 3 

beyond the scope of this paper, we found that RTTOV-gb is faster than our implementation of ARTS (Martinet 4 

et al. 2015) for both the direct and Jacobian calculations. Moreover, our tests demonstrate that the computation 5 

time for Jacobians is shorter by a factor of 8 for RTTOV-gb K-module than for direct module with brute force 6 

method.  7 

 8 

4 Summary 9 

The version 11.2 of the fast radiative transfer model RTTOV, developed for space-borne sensors, has been 10 

successfully modified to simulate ground-based microwave radiometer observations. In addition to the direct 11 

module, which allows to simulate ground-based MWR observations, the TL-, AD- and K-modules of RTTOV 12 

have been modified in order to provide temperature, humidity and cloud liquid water Jacobians for the ground-13 

based perspective. We introduced the ground-based version of RTTOV, called RTTOV-gb, and demonstrated its 14 

potential for fast MWR TB simulations from thermodynamic profiles. RTTOV-gb has been validated against 15 

accurate, but less time-efficient, reference line-by-line models and real MWR observations. Results demonstrate 16 

its applicability as a forward model within a variational scheme for fast and safe MWR data assimilation into 17 

NWP models. It is believed that the direct assimilation of TB, instead of retrieved profiles, may improve the 18 

impact of MWR observations for temperature and humidity profiles analysis in the first few kilometers from the 19 

ground, where MWR provide the maximum information content.  20 

The performance of RTTOV-gb has been validated by comparison with TB simulated with the line-by-line 21 

model R98 (Rosenkranz, 1998), the same model as used for the RTTOV training phase. For both dependent and 22 

independent profile sets, RMS are below the typical TB uncertainty of ground-based MWR (0.5 K) ranging 23 

from a maximum of 0.06 K for the water vapor band to 0.025 K for the V-band opaque channels. Larger 24 

discrepancies are observed at the transparent V-band channels (51 and 52 GHz), with RMS within 0.20 K, and at 25 

elevation angle 10°. TB simulated with RTTOV-gb from AROME analyses have also been compared with those 26 

simulated with the reference line-by-line model ARTS. At 90° elevation, for both clear- and cloudy-sky 27 

conditions TB differences do not exceed 0.25 K in terms of biases and RMS at all HATPRO channels except for 28 

the transparent V-band channels 51-52 GHz (up to 0.5 K in cloudy-sky conditions). Finally, RTTOV-gb has 29 

been validated by radiosonde-derived TB with real nearly collocated MWR observations. In this case RMS 30 

increases with respect to the RTTOV-gb/LBL comparisons ranging from 0.90 K to 0.47 K in the K-band and 31 

from 0.41 K to 0.64 K in the V-band opaque channels. Larger discrepancies were found at V-band transparent 32 

channels, which may be explained by calibration and gas absorption uncertainties. However, the statistics of 33 

RTTOV-gb and ARTS simulations with respect to MWR observations are similar for each channel, suggesting 34 

that forward model errors due to the fast model approximation are not dominant. Temperature, humidity and 35 

cloud liquid water Jacobians computed with RTTOV-gb K-modules were found to be similar in shape and 36 

magnitude with those calculated with the brute force method or with the ARTS model.  37 

Finally, RTTOV-gb has been tested as a forward model within a 1D-Var software package in an OSSE to 38 

improve AROME thermodynamic profiles estimated by directly assimilating synthetic MWR TB. For both 39 



 14 

temperature and humidity profiles the 1D-Var considerably improves the retrievals with respect to the 1 

background, in the first few kilometers from the ground. Concerning the computation speed, RTTOV-gb with K-2 

module is found to be 8 times faster in computing Jacobians than the brute force method. As expected, RTTOV-3 

gb demonstrates to be faster than the line-by-line models such as ARTS for both the direct and the Jacobians 4 

calculation. 5 

Ultimately, this analysis confirms that RTTOV-gb is able to correctly simulate ground-based MWR radiances 6 

and to reproduce reasonable temperature, humidity and cloud liquid water Jacobians. In conclusion RTTOV-gb 7 

is well suited for serving as forward model in a variational data assimilation scheme for a direct, safe, and fast 8 

NWP data assimilation of real MWR radiance observations. As from the user perspective RTTOV-gb works 9 

exactly the same as RTTOV, its implementation and maintenance shall require minimal technical overheads at 10 

those NWP centers already using RTTOV. This shall facilitate the road towards the data assimilation of ground-11 

based MWR worldwide. 12 
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5 Code and data availability  14 

The original RTTOV v11.2 can be obtained via the request form in the NWPSAF web site 15 

(http://nwpsaf.eu/site/software/rttov/rttov-v11/). 16 

The efforts for adapting RTTOV to ground-based observations started within the COST (http://www.cost.eu/) 17 

action ES1202 (EG-CLIMET) and have been continued within COST action ES1303 (TOPROF, 18 

http://www.toprof.eu/). The modifications needed to adapt the radiative transfer equation from satellite to the 19 

ground-based perspective have been made in the subroutine src/main/rttov_integrate.F90. The RTTOV 20 

subroutines that have been modified in RTTOV-gb to reverse the way to initialize and accumulate transmittances 21 

and optical depths are respectively src/main/rttov_transmit.F90 and src/main/rttov_opdep.F90. The calculation of 22 

the predictors 7 for the ground-based perspective have been adapted in the subroutine 23 

src/main/rttov_profaux.F90. Modifications made in the direct module of RTTOV v11.2 code have been imported 24 

in the corresponding TL-, AD- and K-modules subroutines (i.e. rttov_integrate_tl.F90, rttov_integrate_ad.F90, 25 

rttov_integrate_k.F90; rttov_transmit_tl.F90, rttov_transmit_ad.F90, rttov_transmit_k.F90; rttov_opdep_tl.F90, 26 

rttov_opdep_ad.F90, rttov_opdep_k.F90). The conditions of release of RTTOV-gb are currently under 27 

discussion among NWPSAF and COST action TOPROF. This may happen through an integration of RTTOV-gb 28 

into future RTTOV releases or as a stand-alone package disseminated through the TOPROF website. 29 

All the informations needed to download the ARTS code can be found in the web site 30 

http://www.radiativetransfer.org/. 31 

The NWPSAF profiles, from which we interpolated the profile sets used for the RTTOV-gb training and 32 

independent test, are available at https://nwpsaf.eu/deliverables/rtm/profile_datasets.html. 33 

The AROME analyses used for ARTS/RTTOV-gb comparison and 1D-Var application, and the 34 

MWR/radiosondes dataset used for the validation against real MWR measurement can be obtained by email to 35 

pauline.martinet@meteo.fr. 36 

 37 

http://nwpsaf.eu/site/software/rttov/rttov-v11/
http://www.toprof.eu/
http://www.radiativetransfer.org/
https://nwpsaf.eu/deliverables/rtm/profile_datasets.html
mailto:pauline.martinet@meteo.fr
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Appendix A 8 

The predictors Xkj introduced in Section 2 are functions of the absorbing gas, the zenith angle θ, the pressure, 9 

temperature  and water vapor mixing ratio profiles, and finally the reference temperature and water vapor mixing 10 

ratio profiles (i.e. the average of the training profile set). These are defined in Matricardi et al. (2001) and briefly 11 

summarized below. Introducing at each fixed level j the pressure Pprof(j), the temperature and the water vapor 12 

mixing ratio Tprof(j) and Wprof(j), and the corresponding reference Tref(j) and Wref(j), the following variables 13 

are defined: 14 

 15 

T(j) = [Tprof(j) + Tprof(j + 1)]/2                          16 

T∗(j) = [Tref(j) +  Tref(j + 1)]/2      17 

W(j) = [Wprof(j) +  Wprof(j + 1)]/2 

W∗(j) = [Wref(j) + Wref(j + 1)]/2 

P(j) = [Pprof(j) + Pprof(j + 1)]/2 

Tr(j) = T(j)/T∗(j)   18 

δT(j) = T(j) − T∗(j)   19 

Wr(j) = W(j)/W∗(j) 

Tw(j) = ∑ P(l + 1)[P(l + 1) − P(l)]Tr(l + 1)
j
l=N−1   with Tw(j = N) = 0 at the surface. 20 

Ww(j) = { ∑ P(l + 1)[P(l + 1) − P(l)]W(l)

j

l=N−1

} / { ∑ P(l + 1)[P(l + 1) − P(l)]W∗(l)

j

l=N−1

} 

 21 

The RTTOV predictors 7  are derived from the variables above as listed in Table A1. 22 

 23 

Predictor 7 Mixed Gases Water Vapor 

X1,j sin (θ) sin2(θ)Wr
2(j) 

X2,j sin2(θ) (sin (θ)Ww(j))2 

X3,j sin (θ)Tr(j) (sin (θ)Ww(j))4 

X4,j sin (θ)Tr
2(j) sin (θ)Wr(j)δT(j) 

X5,j Tr(j) √sin (θ)Wr(j) 

X6,j Tr
2(j) √sin (θ)Wr(j) 4

 

X7,j sin (θ)Tw(j) sin (θ)Wr(j) 

X8,j sin (θ)
Tw(j)

Tr(j)
 (sin (θ)Wr(j))3 

X9,j √sin (θ) (sin (θ)Wr(j))4 
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X10,j √sin (θ) √Tw(j) 4
 sin(θ) Wr(j)δT(j)|δT(j)| 

X11,j 0 (√sin (θ)Wr(j))δT(j) 

X12,j 0 
(sin (θ)Wr(j))2

Ww

 

X13,j 0 
√sin(θ) Wr(j)Wr(j)

Ww(j)
 

X14,j 0 sin (θ)
Wr

2(j)

Tr(j)
 

X15,j 0 sin (θ)
Wr

2(j)

Tr
4(j)

 

 1 
Table A1: Predictors 7 used for mixed gases and water vapor (after Matricardi et al. 2001). 2 

 3 
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 1 

 

   
        BIAS (K) 

   
RMS (K)  

             Elevation angle 90°   

 CHAN # Frequency(GHz) 90°-26° 90°-16° 90°-10° 90°-5°  90°-26° 90°-16° 90°-10° 90°-5° 
 1 22.24 -0.007 -0.016 0.004 -0.170 

 
0.033 0.059 0.047 0.373 

 2 23.04 -0.002 -0.009 0.011 -0.159 
 

0.029 0.052 0.050 0.352 
 3 23.84 0.005 0.002 0.023 -0.132 

 
0.028 0.043 0.053 0.308 

 4 25.44 0.009 0.011 0.029 -0.087 
 

0.029 0.036 0.056 0.224 
 5 26.24 0.009 0.011 0.028 -0.074 

 
0.029 0.035 0.054 0.195 

 6 27.84 0.008 0.012 0.025 -0.059 
 

0.029 0.034 0.050 0.158 
 7 31.40 0.009 0.011 0.023 -0.049 

 
0.033 0.038 0.049 0.128 

 8 51.26 0.017 0.024 0.043 -0.101 
 

0.175 0.176 0.159 0.244 
 9 52.28 0.021 0.025 0.039 -0.070 

 
0.202 0.201 0.186 0.246 

 10 53.86 0.010 0.012 0.015 0.001 
 

0.116 0.118 0.115 0.122 
 11 54.94 0.002 0.003 0.004 -0.008 

 
0.023 0.023 0.023 0.023 

 12 56.66 0.001 0.001 0.001 0.001 
 

0.007 0.007 0.007 0.007 
 13 57.30 0.001 0.001 0.001 0.001 

 
0.005 0.005 0.005 0.005 

 14 58.00 0.000 0.001 0.001 0.001 
 

0.004 0.004 0.004 0.004 

        
 

    
Elevation angle 30° 

   CHAN # Frequency(GHz) 90°-26° 90°-16° 90°-10° 90°-5° 
 

90°-26° 90°-16° 90°-10° 90°-5° 
 1 22.24 0.002 0.027 0.020 0.036 

 
0.033 0.047 0.046 0.180 

 2 23.04 0.000 0.025 0.019 0.029 
 

0.030 0.047 0.043 0.173 
 3 23.84 -0.002 0.020 0.016 0.014 

 
0.026 0.040 0.040 0.162 

 4 25.44 -0.004 0.013 0.013 -0.007 
 

0.024 0.037 0.037 0.150 
 5 26.24 -0.004 0.010 0.012 -0.012 

 
0.023 0.036 0.035 0.145 

 6 27.84 -0.003 0.008 0.011 -0.016 
 

0.024 0.037 0.033 0.137 
 7 31.40 -0.004 0.006 0.010 -0.019 

 
0.155 0.043 0.036 0.131 

 8 51.26 0.010 0.018 0.027 -0.079 
 

0.029 0.171 0.162 0.211 
 9 52.28 0.016 0.019 0.026 -0.073 

 
0.138 0.149 0.143 0.174 

 10 53.86 0.003 0.007 0.008 -0.005 
 

0.026 0.028 0.028 0.027 
 11 54.94 0.001 0.001 0.001 -0.001 

 
0.007 0.007 0.007 0.007 

 12 56.66 0.000 0.000 0.000 -0.000 
 

0.002 0.002 0.002 0.002 
 13 57.30 0.000 0.000 0.000 -0.000 

 
0.001 0.001 0.001 0.001 

 14 58.00 0.000 0.000 0.000 -0.000 
 

0.001 0.001 0.001 0.001 

         
 

    
Elevation angle 19° 

    CHAN # Frequency(GHz) 90°-26° 90°-16° 90°-10° 90°-5° 
 

90°-26° 90°-16° 90°-10° 90°-5° 
 1 22.24 -0.050 -0.004 -0.065 0.203 

 
0.078 0.044 0.086 0.317 

 2 23.04 -0.053 -0.005 -0.070 0.189 
 

0.079 0.042 0.089 0.298 
 3 23.84 -0.056 -0.007 -0.074 0.158 

 
0.083 0.038 0.090 0.259 

 4 25.44 -0.046 -0.007 -0.070 0.099 
 

0.089 0.036 0.087 0.192 
 5 26.24 -0.039 -0.006 -0.066 0.080 

 
0.089 0.036 0.084 0.171 

 6 27.84 -0.028 -0.005 -0.059 0.055 
 

0.091 0.036 0.078 0.149 
 7 31.40 -0.018 -0.004 -0.052 0.035 

 
0.103 0.043 0.077 0.139 

 8 51.26 0.020 0.013 -0.018 -0.003 
 

0.139 0.128 0.132 0.152 
 9 52.28 -0.031 0.012 -0.004 0.021 

 
0.085 0.085 0.085 0.097 

 10 53.86 0.004 0.001 -0.000 0.003 
 

0.013 0.010 0.010 0.011 
 11 54.94 0.002 0.000 0.000 0.001 

 
0.005 0.003 0.003 0.004 

 12 56.66 0.000 0.000 0.000 0.000 
 

0.001 0.001 0.001 0.001 
 13 57.30 0.000 0.000 0.000 0.000 

 
0.000 0.000 0.000 0.000 

 14 58.00 0.000 0.000 0.000 0.000 
 

0.000 0.000 0.000 0.000 
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                 BIAS (K) RMS (K)     
     Elevation angle 10°    

 CHAN # Frequency(GHz) 90°-26° 90°-16° 90°-10° 90°-5° 
 

90°-26° 90°-16° 90°-10° 90°-5° 
 1 22.24 -0.299 -0.324 -0.626 -0.930 

 
0.428 0.381 0.681 1.035 

 2 23.04 -0.297 -0.317 -0.632 -0.955 
 

0.461 0.369 0.685 1.027 
 3 23.84 -0.391 -0.312 -0.648 -0.998 

 
0.662 0.356 0.698 1.067 

 4 25.44 -0.544 -0.294 -0.664 -1.055 
 

1.214 0.343 0.716 1.128 
 5 26.24 -0.573 -0.284 -0.663 -1.065 

 
1.414 0.342 0.718 1.143 

 6 27.84 -0.592 -0.270 -0.659 -1.075 
 

1.685 0.349 0.716 1.159 
 7 31.40 -0.594 -0.260 -0.680 -1.129 

 
2.023 0.377 0.731 1.205 

 8 51.26 0.000 -0.088 -0.337 -0.609 
 

0.272 0.103 0.350 0.633 
 9 52.28 -0.021 -0.029 -0.106 -0.202 

 
0.083 0.034 0.112 0.214 

 10 53.86 0.022 0.000 -0.007 -0.014 
 

0.037 0.003 0.011 0.021 
 11 54.94 0.005 0.000 -0.002 -0.004 

 
0.009 0.001 0.003 0.006 

 12 56.66 0.000 0.000 -0.000 -0.000 
 

0.001 0.000 0.000 0.001 
 13 57.30 0.000 0.000 -0.000 -0.000 

 
0.000 0.000 0.000 0.001 

 14 58.00 0.000 0.000 -0.000 -0.000 
 

0.000 0.000 0.000 0.000 

 1 

Table 1: Statistics for the comparison between RTTOV-gb and the line-by-line model R98 (Rosenkranz, 1998) at 2 

elevation angles 90, 30, 19 and 10° (R98 minus RTTOV-gb). The HATPRO channel number (CHAN #), the channel 3 

central frequency, bias and RMS for each RTTOV training configuration are reported. The values which are larger 4 

than 0.5 K are highlighted in bold. 5 

 6 

  TRAINING CONFIGURANTION: Elevation angles from 90° to 16°     
                 BIAS (K) RMS (K)     

 CHAN # Frequency(GHz) 90° 30° 19° 10° 
 

90° 30° 19° 10° 
 1 22.24 -0.008 0.021 -0.004 -0.282 

 
0.049 0.045 0.042 0.326 

 2 23.04 -0.002 0.020 -0.006 -0.276 
 

0.042 0.045 0.042 0.319 
 3 23.84 0.007 0.017 -0.008 -0.273 

 
0.035 0.044 0.045 0.320 

 4 25.44 0.018 0.001 -0.009 -0.257 
 

0.032 0.042 0.051 0.339 
 5 26.24 0.011 0.007 -0.009 -0.247 

 
0.031 0.041 0.052 0.342 

 6 27.84 0.009 0.004 -0.008 -0.232 
 

0.031 0.040 0.053 0.346 
 7 31.40 0.008 0.001 -0.010 -0.230 

 
0.036 0.046 0.061 0.365 

 8 51.26 -0.004 -0.017 -0.015 -0.094 
 

0.156 0.159 0.127 0.115 
 9 52.28 -0.004 -0.009 -0.004 -0.033 

 
0.169 0.131 0.076 0.039 

 10 53.86 -0.001 0.002 -0.001 -0.002 
 

0.095 0.025 0.015 0.012 
 11 54.94 0.002 0.000 -0.000 -0.000 

 
0.023 0.011 0.008 0.003 

 12 56.66 0.002 0.000 0.000 0.000 
 

0.010 0.004 0.002 0.000 
 13 57.30 0.001 0.000 0.000 0.000 

 
0.009 0.003 0.001 0.000 

 14 58.00 0.001 0.000 0.000 0.000 
 

0.008 0.002 0.001 0.000 

 7 

Table 2: Statistics for the comparison between RTTOV-gb and the line-by-line model R98 (Rosenkranz, 1998) with 8 

the best RTTOV training configuration and the independent profile set (R98 minus RTTOV-gb). HATPRO channel 9 

number (CHAN #), the channel central frequency, bias and RMS at elevation angles 90, 30, 19 and 10° are reported. 10 

 11 

 12 
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  DEPENDENT PROFILE SET     
                 BIAS (K) RMS (K)     

 CHAN # Frequency(GHz) 90° 30° 19° 10° 
 

90° 30° 19° 10° 
 1 22.23 -0.016 0.027 -0.004 -0.319 

 
0.059 0.047 0.044 0.376 

 2 22.50 -0.015 0.026 -0.004 -0.321 
 

0.058 0.047 0.044 0.378 
 3 23.03 -0.009 0.025 -0.005 -0.318 

 
0.053 0.045 0.042 0.370 

 4 23.83 0.002 0.020 -0.007 -0.313 
 

0.043 0.040 0.038 0.357 
 5 25.00 0.010 0.014 -0.007 -0.300 

 
0.039 0.037 0.037 0.346 

 6 26.23 0.011 0.010 -0.006 -0.284 
 

0.037 0.036 0.036 0.343 
 7 28.00 0.011 0.008 -0.005 -0.270 

 
0.036 0.037 0.037 0.3500 

 8 30.00 0.011 0.006 -0.004 -0.266 
 

0.038 0.040 0.040 0.366 
 9 51.25 0.024 0.018 0.013 -0.088 

 
0.177 0.171 0.128 0.104 

 10 51.76 0.024 0.019 0.013 -0.056 
 

0.189 0.164 0.111 0.066 
 11 52.28 0.025 0.019 0.012 -0.029 

 
0.203 0.149 0.085 0.034 

 12 52.80 0.029 0.020 0.008 -0.011 
 

0.207 0.116 0.052 0.014 
 13 53.37 0.019 0.017 0.002 -0.002 

 
0.181 0.068 0.022 0.005 

 14 53.85 0.012 0.007 0.001 0.000 
 

0.120 0.029 0.010 0.003 
 15 54.40 0.006 -0.000 0.001 0.000  0.055 0.012 0.006 0.002 
 16 54.94 0.004 0.001 0.000 0.000  0.023 0.007 0.003 0.001 
 17 55.50 0.002 0.001 0.000 -0.000  0.013 0.004 0.002 0.000 
 18 56.02 0.001 0.000 0.000 -0.000  0.009 0.003 0.001 0.000 
 19 56.66 0.001 0.000 0.000 -0.000  0.007 0.002 0.000 0.000 
 20 57.29 0.001 0.000 -0.000 -0.000  0.005 0.001 0.000 0.000 
 21 57.96 0.001 0.000 -0.000 -0.000  0.004 0.001 0.000 0.000 
 22 58.80 0.000 0.000 -0.000 -0.000  0.004 0.001 0.000 0.000 

 1 

  INDEPENDENT PROFILE SET In    
                 BIAS (K) RMS (K)     

 CHAN # Frequency(GHz) 90° 30° 19° 10° 
 

90° 30° 19° 10° 
 1 22.23 -0.008 0.022 -0.003 -0.284 

 
0.049 0.046 0.042 0.157 

 2 22.50 -0.008 0.021 -0.005 -0.279 
 

0.048 0.046 0.043 0.158 
 3 23.03 -0.002 0.020 -0.006 -0.277 

 
0.042 0.045 0.042 0.154 

 4 23.83 0.007 0.017 -0.008 -0.274 
 

0.035 0.044 0.045 0.164 
 5 25.00 0.012 0.011 -0.009 -0.263 

 
0.033 0.043 0.051 0.206 

 6 26.23 0.011 0.007 -0.009 -0.247 
 

0.031 0.041 0.052 0.236 
 7 28.00 0.010 0.004 -0.008 -0.232 

 
0.031 0.040 0.053 0.257 

 8 30.00 0.008 0.002 -0.009 -0.228 
 

0.033 0.043 0.057 0.273 
 9 51.25 -0.005 -0.018 -0.016 -0.094 

 
0.156 0.160 0.128 0.067 

 10 51.76 -0.005 -0.014 -0.010 -0.061 
 

0.162 0.149 0.105 0.039 
 11 52.28 -0.005 -0.009 -0.004 -0.037 

 
0.170 0.131 0.077 0.020 

 12 52.80 -0.004 0.000 -0.001 -0.015 
 

0.169 0.098 0.044 0.015 
 13 53.37 -0.003 0.007 -0.003 -0.005 

 
0.145 0.056 0.021 0.015 

 14 53.85 -0.002 0.002 -0.002 -0.002 
 

0.097 0.026 0.015 0.012 
 15 54.40 0.000 -0.002 -0.001 -0.001  0.047 0.015 0.011 0.007 
 16 54.94 0.002 0.000 -0.000 -0.000  0.023 0.011 0.008 0.003 
 17 55.50 0.002 0.000 0.000 -0.000  0.016 0.007 0.005 0.001 
 18 56.02 0.002 0.000 0.000 -0.000  0.013 0.005 0.003 0.001 
 19 56.66 0.001 0.000 0.000 0.000  0.010 0.004 0.002 0.000 
 20 57.29 0.000 0.000 0.000 0.000  0.009 0.003 0.001 0.000 
 21 57.96 0.000 0.000 0.000 0.000  0.008 0.002 0.000 0.000 
 22 58.80 0.000 0.000 0.000 0.000  0.007 0.002 0.000 0.000 



 23 

Table 3: Statistics for the comparison between RTTOV-gb and the line-by-line model R98 at MP-3000A channels with 1 

the best RTTOV training configuration, for both dependent (top) and independent (bottom) profile set (R98 minus 2 

RTTOV-gb). MP3000A channel number (CHAN #), the channel central frequency, bias and RMS at elevation angles 3 

90, 30, 19 and 10° are reported. 4 

 5 

 6 

 7 

Figure 1: Vertical spacing of profiles levels used for RTTOV in this analysis. Level altitudes and altitude differences 8 

between levels are reported respectively with blue and green lines. Note that y-axis is in logarithmic scale. 9 

 10 

 11 

 12 

Figure 2: (A1) TB at K-band channels (20-35 GHz) computed by RTTOV-gb (red stars) and LBL R98 (black stars) 13 

from profile #8 of the dependent set. (A2) Same as A1, but for V-band channels (50-60GHz). (B1) TB differences (R98 14 

minus RTTOV-gb) at K-band channels. (B2) Same as B1, but for V-band channels. 15 

A1 B1 A2 B2 
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 1 

 2 

 3 

 4 

 5 

Figure 3: Bias (black solid line), RMS (blue dashed line) and maximum (cyan dashed line) of TB difference between 6 

RTTOV-gb and LBL R98 (Rosenkranz, 1998) for the dependent 83-profile set and the best training configuration 7 

(R98 minus RTTOV-gb). Top panels:  K-band channels; Bottom panels: V-band channels. Panels number 1-2-3-4 8 

report results at 90-30-19-10° elevation angle, respectively. Note that top panel 4 has different y-axis scale with respect 9 

to the other top panels. 10 

 11 

 12 

 13 

 14 

 15 

1 2 3 4 

1 2 3 4 
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 4 

Figure 4: Same as Figure 3 but for the independent 52-profile set (R98 minus RTTOV-gb). Top panels: K-band 5 

channels; Bottom panels: V-band channels. Panels number 1-2-3-4 report results at 90-30-19-10° elevation angle, 6 

respectively. Note that top panel 4 has different y-axis scale with respect to the other top panels. 7 

 8 

 9 

 10 

 11 

1 2 3 4 

1 2 3 4 
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 1 

   2 

Figure 5: Bias (black solid line), standard deviation (red dashed line) and RMS (blue dashed line) of TB differences 3 

between RTTOV-gb and the reference radiative transfer model ARTS (Eriksson et al., 2015), for both clear (A1-2) 4 

and cloudy (B1-2) sky conditions (ARTS minus RTTOV-gb). Panels 1-2 are for K- and V-band channels, respectively. 5 

All panels report results at 90° elevation angle. 6 

 7 

 8 

 9 

 10 

Figure 6: Bias (black line), standard deviation (red line) and RMS (blue line) of differences between TB measured 11 

with the microwave radiometer and TB simulated from radiosonde profiles respectively with RTTOV-gb (solid lines) 12 

and the reference radiative transfer model ARTS (dashed lines), both for clear-sky at 90° elevation angle 13 

(measurements minus simulations). 14 
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Figure 7: Jacobians calculated with the RTTOV-gb BF method and K-module. Panels A1: temperature Jacobians for 3 

V-band channels; Panels B1: absolute humidity for K-band channels. Note that BF method (solid) and K-module 4 

(dashed) are not distinguishable as they nearly completely overlap. Panels A2 and B2 show Jacobian differences 5 

between BF and K, respectively for temperature and absolute humidity. 6 
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Figure 8: Cloud Liquid Water Jacobians calculated with RTTOV-gb BF method and K-module (left) and Jacobian 10 

differences between BF and K (right), respectively for K-band (top) and V-band (bottom) channels. Note that BF 11 

method (solid) and K-module (dashed) are not distinguishable as they nearly completely overlap. 12 
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Figure 9: As in Figure 7, but for Jacobians calculated with ARTS (solid line) and RTTOV-gb K-module (dashed line). 3 

Panels A2 and B2 show Jacobian differences between ARTS and RTTOV-gb K-module, respectively for temperature 4 

and absolute humidity.  5 
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Figure 10: As in Figure 8, but for Jacobians calculated with ARTS (solid line) and RTTOV-gb K-module (dashed 9 

line). 10 
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Figure 11: Temperature (Panel A) and Humidity (Panel B) profiles of Background (blue line), Truth (red line) and 3 

1D-Var retrievals (cyan line) for two clear-sky profiles. 4 
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