
Response to Editor Review

1. Thank you for the revised submission. I concur that you have addressed the relatively minor concerns

raised by the reviewers. In essence the paper is ready for publication. However, the generally excel-

lent provenance information provided in the paper is just slightly let down by the lack of an explicit

statement about the exact revision of NCO used to conduct the experiments, and a permanent archive

of that version. This could easily be achieved using the GitHub Zenodo integration, or you could

upload a tarball to Figshare if you prefer. Once that is done, this manuscript is ready to go.

I had not heard of Zenodo before yet it proved relatively easy to implement. The revised manuscript

now states the DOI provided by Zenodo in the Code Availability section, and cites this release:

“The NCO software version 4.6.1 (Zender, 2016b) used to produce this paper is permanently archived

with DOI 10.5281/zenodo.61341, though any version since 4.4.8 should be functionally equivalent

with regards to features described here.”

2. In the interim I corrected two misleading statements in the abstract:

“Bit Grooming reduces the storage space required by uncompressed and compressed climate data by

up to 50% and 20%, respectively, for single-precision data (the most common case for climate data)

. . . Bit Grooming reduces the volume of single-precision compressed data by roughly 10% per decimal

digit quantized (or “groomed”) after the third such digit, up to a maximum reduction of about 50%.”

In fact the upper bounds (as shown in the tables for preserving 1 decimal digit of precision), are 80%

and 65% (not 50% and 20%), respectively. The misleading statements were originally penned with an

assumed (though unstated) choice of retaining 3–4 digits of precision. At the time I thought this was

a reasonable and conservative choice but in hindsight I see this as a subjective choice that conveys

incomplete information and obscures the potential power of Bit Grooming. It is more clear to state

the full range of compression that can be achieved by the full range of preserved precisions. I replaced

those statements in the abstract with:

“Bit Grooming reduces the storage space required by initially uncompressed and compressed climate

data by 25–80% and 5–65%, respectively, for single-precision values (the most common case for

climate data) quantized to retain 1–5 decimal digits of precision.”

The new sentence has no subjective assumptions built-in and more accurately conveys the study re-

sults.

1

Bit Grooming: Statistically accurate precision-preserving
quantization with compression, evaluated in the netCDF Operators
(NCO, v4.4.8+)
Charles S. Zender
Departments of Earth System Science and Computer Science, University of California, Irvine, Irvine, CA 92697-3100, USA

Correspondence to: C. S. Zender (zender@uci.edu)

Abstract. Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes

storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for mea-

surements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without

compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations

are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point5

data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive

values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving

which quantizes values solely by zeroing bits. Our variation eliminates the artificial low-bias produced by always zeroing bits,

and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important.

Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit10

Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3,

netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by
::::::
initially

:
uncompressed and com-

pressed climate data by up to 50% and 20
:::::::
25–80%

:::
and

:::::
5–65%, respectively, for single-precision data

:::::
values

:
(the most

common case for climate data) .
::::::::
quantized

::
to
::::::

retain
:::
1–5

:::::::
decimal

::::::
digits

::
of

:::::::::
precision.

:::
The

::::::::
potential

::::::::
reduction

::
is
:::::::

greater
:::
for

:::::::::::::
double-precision

::::::::
datasets.

:
When used aggressively (i.e., preserving only 1–2 decimal digitsof precision

::::
digits), Bit Groom-15

ing produces storage reductions comparable to other quantization techniques such as linear packing. Unlike linear packing,

whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit

Grooming guarantees the specified precision throughout the full floating-point range. Bit Grooming reduces the volume of

single-precision compressed data by roughly 10% per decimal digit quantized (or “groomed”) after the third such digit, up

to a maximum reduction of about 50%. The potential reduction is greater for double-precision datasets. Data quantization by20

Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers.

Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens

on users.

1

1 Introduction

The increased resolution of geoscientific models and measurements (GSMMs) leads to increases in dataset size that outpace

improvements in both accuracy (nearness to true values) and precision (degree of repeatability). Numerical precision that

exceeds true or assumed knowledge of the underlying phenomena is called false precision and a significant fraction of GSMM

storage bits archive this false precision as essentially random (and therefore hard to compress) bits that lack scientific content.5

Lossy compression techniques can reduce storage requirements without sacrificing scientific content by eliminating unused

range and/or false precision of stored fields. We introduce a new algorithm, Bit Grooming, that preserves a specified level of

precision, is statistically unbiased, retains the full representable range of floating-point data, yet requires no additional software

tools or filters to read or write.

For measurements there is never a scientific reason to retain false precision, as it amounts to storing random bits. Reasons10

to retain false precision during prognostic integrations of geoscientific models include numerical stability, conservation checks

(e.g., mass, energy, momentum), and correct treatment of threshold and resonance phenomena. There are fewer reasons to

retain false precision after than during a simulation. Most GSMMs store their data as either four or eight-byte IEEE floating

point numbers. IEEE Single-Precision (SP, four-byte) and Double-Precision (DP, eight-byte) formats (IEEE, 2008) represent

six and fifteen decimal digits of precision, respectively. Even SP often exceeds the precision to which the data are trusted.15

Lossy data compression can exploit the gap between the precision representable by the data type (SP or DP) and the precision

associated with the values to be stored.

Data compression is well-studied (e.g., Sayood, 2003; Salomon and Molta, 2010) and before attempting lossy data compres-

sion data most researchers will check whether lossless data compression adequately serves their needs. Widely used lossless

algorithms are embedded in ubiquitous (and free and patent-unencumbered) tools such as gzip/zlib (Gailly and Adler, 2000),20

bzip2 (Seward, 2007), and lz4 (Collet, 2013). These tools operate on generic byte steams. Special purpose lossless compressors

designed for scientific data can exploit the four-byte or eight-byte structure of floating-point data (e.g., Isenburg et al., 2005;

Burtscher and Ratanaworabhan, 2009). Temporal and/or spatial correlations in GSMM data with large-scale patterns (e.g.,

climate data) can further enhance lossless compression (Liu et al., 2014).

The compression ratios of lossless techniques are limited by the need to recover the exact data compressed. Lossy compres-25

sion (also called quantization) relaxes this requirement and can “trade-off” precision for compression. Losses acceptable with

some forms of data can only be determined subjectively, as for example the quality of photographic images. In contrast, re-

searchers can, at least in principle, know a priori the scientifically defensible precision of GSMMs. False precision can mislead

(by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can

be both economical (save space) and heuristic (clarify data limitations). Data quantization can thus be appropriate regardless30

of whether space limitations are a concern. Thus after presenting our quantitative results, we describe techniques that make Bit

Grooming simple and practical.

This manuscript is organized into four more sections. Section 2 describes the lossy and lossless compression algorithms that

this manuscript will intercompare. Section 3 defines the comparison metrics and evaluates the statistical properties and com-

2

pression ratios of Bit Grooming. Section 4 discusses implementation features of all lossy and lossless compression algorithms

in NCO, with particular focus on Bit Grooming. Section 5 summarizes our conclusions.

2 Methods

A primary motivation in developing Bit Grooming is to reduce the storage of climate-related datasets. We implemented and

tested Bit Grooming in the netCDF Operators, NCO (Zender and Mangalam, 2007; Zender, 2008), a freely available suite5

of tools for manipulating data stored in the netCDF and HDF formats (Rew et al., 2006; HDF Group, 2015) that are widely

used in the geosciences for both modeled and satellite-measured data. NCO implements or accesses four different compression

algorithms, one is lossless and three are lossy. All four algorithms reduce the on-disk size of a dataset while sacrificing no

(lossless) or a specified amount (lossy) of precision.

First, NCO can read and write data encoded with the (lossless) DEFLATE algorithm (Deutsch, 2008) accessible to both10

netCDF4 and HDF5 (Rew et al., 2006; HDF Group, 2015). DEFLATE is a widely-used, freely available, and efficient com-

pression technique that combines Lempel-Ziv compression (Ziv and Lempel, 1977, 1978) with Huffman coding. It identifies

patterns at the bit-level and always, identifies, encodes and compresses space freed by the simple Bit Shaving (setting to zero)

and Bit Setting (to one) techniques described here. DEFLATE works equally well on Bit Grooming, which is simply an alterna-

tion between Bit Shaving and Bit Setting. Some users and many data centers manually DEFLATE and re-inflate netCDF3 files15

with gzip and gunzip respectively, so DEFLATE is effectively available for all netCDF and HDF datasets. Hence our metrics

will show the volume of uncompressed data, the same data (losslessly) deflated as the base case for compression, and the same

data (lossily) quantized with Bit Grooming in tandem with DEFLATE.

2.1 Packing

The three lossy compression algorithms NCO employs are Packing and two precision-preserving algorithms (including Bit20

Grooming). Packing quantizes (usually) floating-point data into a lower precision type (fewer bytes per value) that rep-

resents a much smaller range. By convention netCDF defines a linear packing algorithm that depends on two parameters

(scale_factor and add_offset) (Rew et al., 2005; Caron, 2014a). Linear packing quantizes SP and DP data into (usually)

two-byte signed integers. NetCDF uses the nomenclature NC_FLOAT for SP (aka float32), NC_DOUBLE for DP (float64),

NC_SHORT for int16, and NC_INT for int32. In netCDF nomenclature, packing converts NC_FLOATs and NC_DOUBLEs into25

NC_SHORTs). Since packing works at the byte level, the space saved is usually a factor of two (NC_FLOAT!NC_SHORT) or

four (NC_DOUBLE!NC_SHORT) and cannot be specified at finer levels. Packed data can be (losslessly) deflated for additional

space savings.

Packing floating-point data into integers has benefits and drawbacks. The type conversion frees-up the IEEE754 exponent

bits (8 bits for SP, and 11 bits for DP) which then contribute to the dynamic range of the packed integers (16 and 32 bits30

for NC_SHORT and NC_INT, respectively). However, integers have a much-reduced dynamic range relative to floating-point

numbers. The dynamic ranges of SP and DP numbers are ⇠ 10

37 and ⇠ 10

308, respectively, whereas data packed linearly into

3

two-byte and four-byte integers have dynamic ranges of ⇠ 10

5 and ⇠ 10

10, respectively. Variables packed as NC_SHORT,

for example, can represent only about 64000 discrete values in the range �32768⇥ scale_factor+ add_o↵set to 32767⇥
scale_factor+ add_o↵set. The optimal add_offset parameter for linear packing is the midpoint of the data to be packed,

and the optimal scale_factor is the data dynamic range (i.e., maximum minus minimum) divided by 2

16�1 = 65,535 (Zender,

2016a). Unpacked values must cluster within a dynamic range of ⇠ 10

5 that may itself reside anywhere within the full (⇠ 10

37)5

floating point range. Thus archived fields that meaningfully span more than five orders of magnitude (aka five decades) are not

well-suited for linear packing into two-byte integers. The presence of such fields depends on the GSMM. Candidates in climate

models include aerosol number concentrations, pressure, solar heating rates, and (some) tracer mixing ratios. Astrophysical

and stellar models span larger scales and are replete with such fields, e.g., plasma density, pressure, and thermal radiation.

Another limitation of linear packing is that the precision of packed data cannot be specified or guaranteed in advance because10

it depends on the distribution of values to be packed. While the numeric resolution (i.e., the smallest resolvable difference) of

unpacked data always equals scale_factor, the number of significant digits of precision depends on the dynamic range (maxi-

mum minus minimum) of values to quantize, and rapidly degrades beyond the first decade of unpacked values. To illustrate this,

consider a pressure field p [Pa] uniformly spanning values 0.0 p 65535.0. Linear packing exactly represents integer values

in this range, and quantizes all fractional values to integers. For example, p= 1.23456Pa and p= 65534.23456Pa would be15

quantized as 1 and 65534, respectively, which have one and four significant digits (nsd = 1 and 4 in the terminology defined

in Section 2.2 below), respectively. Packing this distribution of values achieves its highest precision (four decimal digits for

two-byte integers) only for the greatest (in absolute value) unpacked value. Unpacked values of lesser magnitude lose precision

at a rate of approximately one significant digit per decade from the maximum. Since the precision of linear packing degrades

by about one digit per decade, only values within one decade of the maximum regularly achieve the highest possible precision20

(four decimal digits for two-byte integers). This is the maximum precision that packing guarantees for an arbitrary distribution

of values.

Consider the same dynamic range used previously except now offset by 10

5 (i.e., add_offset = 10

5), so 100000.0 p
165535.0. The previously examined values, offset by 10

5, are p= 100001.23456Pa and p= 165534.23456Pa. These would

be quantized as 100001 and 165534, respectively, which both have six significant digits. Thus the add_offset parameter can25

provide additional precision to unpacked values, bringing the total precision up to six digits, for some but not all distributions

of values. Except where otherwise indicated in this work we state the best precision that a compression algorithm guarantees

for any distribution of values, not the best precision it can achieve for special distributions of values.

2.2 Precision-Preserving Compression

The other two lossy compression algorithms considered both perform Precision-Preserving Compression (PPC). The opera-30

tional definition of “significant digit” in our precision preserving algorithms is that the exact value, before rounding or quan-

tization, is within one-half the value of the decimal place occupied by the Least Significant Digit (LSD) of the rounded value.

For example, the value ⇡ = 3.14 correctly represents the exact mathematical constant ⇡ to three significant digits because the

4

LSD of the rounded value (i.e., 4) is in the one-hundredths digit place, and the difference between the exact value and the

rounded value is less than one-half of one one-hundredth, i.e., 3.14159265358979323844� 3.14 = 0.00159< 0.005.

One PPC algorithm preserves the specified total Number of Significant Digits (NSD) of the value. For example there is only

one significant digit in the weight of most “eight-hundred pound gorillas” that you will encounter, i.e., so nsd = 1. NSD is

the most straightforward measure of precision, and is the default PPC algorithm in NCO. Bit Grooming combines two NSD5

algorithms (described below) to yield more accurate statistical properties.

The other PPC algorithm preserves the number of Decimal Significant Digits (DSD), i.e., the number of significant digits

following (positive, by convention) or preceding (negative) the decimal point. For example, 0.008 and 800 have, respectively,

three and negative two decimal digits following the decimal point, and correspond to dsd = 3 and dsd =�2.

Their fundamental difference is that NSD is independent of dimensional units and DSD is not. The NSD for a given GSMM10

value depends on intrinsic accuracy and error characteristics of the model or measurements. The appropriate DSD for a given

value depends on these intrinsic characteristics and, in addition, the dimensional units with which values are stored. Our eight-

hundred pound gorilla has nsd = 1 regardless of whether the value is stored in pounds or in some other unit. DSD corresponding

to this weight is dsd =�2 if the value is stored in pounds (8⇥ 10

2 lb), dsd = 4 if stored in megapounds (8⇥ 10

�4 Mlb).

2.3 Algorithms15

The time-penalty for compressing and uncompressing data varies according to the algorithm. (Silver and Zender, 2016) show

that lossless compression dominates the total compression time, and that quantization via Bit Grooming or linear Packing can

actually shorten total compression time because they reduce the amount of data to compress. At least in our implementations

and for the purposes of this discussion, a Number of Significant Digit (NSD) algorithm quantizes by bitmasking, and employs

no floating-point math. By contrast, a Decimal Significant Digit (DSD) algorithm quantizes by rounding, and thus does require20

floating-point math. Hence NSD is likely faster than DSD, though the difference has not been measured.

NSD algorithms create a bitmask to alter the significand (aka mantissa or fraction) of IEEE 754 floating-point data. For

instance, the bitmask for the NSD technique called Bit Shaving is one for all bits to be retained and zero for ignored bits

(Caron, 2014b). The logical AND of this mask with the exact IEEE value produces the quantized IEEE value. The bitmask

for the NSD technique we call Bit Setting is zero for retained bits and one for discarded bits. The logical OR of this mask25

with the exact IEEE value produces the quantized IEEE value. These algorithms assume that the number of binary digits

(i.e., bits) necessary to represent a single base-10 digit is ln(10)/ ln(2) = 3.32. The exact numbers of explicit mantissa bits

Nbit retained for single and double precision values are ceil(3.32⇥ nsd)+ 1 and ceil(3.32⇥ nsd)+ 2, respectively. (The

IEEE format includes a single mantissa bit that is implicit and that is not included in these counts because it consumes no

memory). This is more than predicted by the simple rule that the required number of bits is nsd⇥ ln(10)/ ln(2). The extra30

bits are the (experimentally determined) overhead required to guarantee that terminal significant digits are accurate within half

the minimal value of their decimal position. Once the number of bits required exceeds the IEEE SP and DP storage standards

of 23 and 53 explicit mantissa bits, respectively, bitmasking is completely ineffective. This occurs at nsd = 6.3 and 15.4,

5

respectively. To guarantee preserving 1–7 digits of precision, Bit Grooming must retain 5,8,11,15,18,21, and 25 explicit

mantissa bits, respectively. Thus Bit Grooming (and IEEE) require DP format to guarantee nsd � 7.

The DSD algorithm, by contrast, uses rounding to remove undesired precision. The rounding zeroes the greatest number

of (Base 2) significand bits consistent with the desired (Base 10) decimal precision. Our NCO implementation rounds with

the internal math library rint() family of functions that were standardized in C99. The exact algorithm NCO employs is5

val = rint(scale⇥ val)/scale where scale is the nearest power of 2 that exceeds 10prc and the inverse of scale is used when

prc < 0. For ppc = 3 or ppc =�2, for example, we have scale = 1024 and scale = 1/128. Because our DSD algorithm rounds

a Base 10 integer to achieve a Base 10 precision, we call it the Decimal Rounding algorithm. The Decimal Rounding algorithm

implemented in the nc3tonc4 software tool by J. Whitaker is distinct-from but consistent-with and equivalent-to (though not

bit-for-bit with) NCO’s.10

Maintaining non-biased statistical properties during lossy compression requires special attention. Decimal Rounding uses

rint() to round toward the nearest even integer. Thus our DSD algorithm has no systematic bias. However, NSD algorithms

use a bitmask technique that is susceptible to statistical bias. Zeroing all non-significant bits is guaranteed to produce numbers

quantized to the specified tolerance, i.e., half of the decimal value of the position occupied by the LSD. However, always

zeroing the non-significant bits results in quantized numbers that never exceed the exact number. Thus Bit Shaving produces a15

negative bias in statistical quantities (e.g., the average) subsequently derived from the quantized numbers. Likewise Bit Setting

produces a positive statistical bias. To avoid bias, Bit Grooming (our new NSD algorithm) rounds non-significant bits down

(to zero) or up (to one) in an alternating fashion when processing array data. In general, the first element is rounded down,

the second up, the third down, etc. Hence Bit Grooming can nearly eliminate the mean quantization bias. Our Bit Grooming

implementation has one exception to the rule of alternately setting and shaving bits: never quantize upwards the floating-20

point value of zero. This exception prevents creation of quantization fluctuations in arrays of zeros. Finally, for simplicity, our

implementation of Bit Grooming always rounds scalars downwards.

To demonstrate the change in IEEE representation caused by quantization, consider again the case of ⇡, represented as

an NC_FLOAT. The IEEE 754 single precision representations of the exact value (3.141592...), the value with only three

significant digits treated as exact (3.140000...), and the value as stored (3.140625) after NSD (prc = 3) and DSD (prc = 2)25

quantization (Table 1). The string of sixteen trailing zero-bits in the rounded values facilitates both byte-stream and bitwise

compression. NSD and DSD algorithms do not always produce results that are bit-for-bit identical, although they do in this

particular case when the NSD algorithm is Bit Grooming or Bit Shaving (which are identical algorithms for a single scalar

value). When the NSD algorithm is Bit Setting we obtain the fifth row where insignificant bits set to one not zero.

Reducing the preserved precision of NSD-rounding produces increasingly long strings of identical-bits amenable to com-30

pression (Table 2). The consumption of about 3 bits per digit of base-10 precision is evident, as is the coincidence of a quantized

value that greatly exceeds the mandated precision for NSD= 2. Although the NSD algorithm generally masks some bits for all

nsd <= 7 (for NC_FLOAT), compression algorithms like DEFLATE may need byte-size-or-greater (i.e., at least eight-bit) bit

patterns before their algorithms can take advantage of of encoding such patterns for compression. Do not expect significantly

enhanced compression from nsd > 5 (for NC_FLOAT) or nsd > 14 (for NC_DOUBLE). Clearly values stored as NC_DOUBLE35

6

Table 1. Exact and Lossy IEEE Single-Precision Floating Point Pi

IEEE-754 Single Precision binary representations of ⇡ stored exactly, with three significant digits, and with three quantization algorithms.

Signa Exponentb Significandc Decimal Notes

0 10000000 10010010000111111011011 3.14159265 Exact ⇡

0 10000000 10010001111010111000011 3.14000000 Three significant digits

0 10000000 10010010000000000000000 3.14062500 DSD = 2 (Decimal Rounding)

0 10000000 10010010000000000000000 3.14062500 NSD = 3 (Bit Shaving)d

0 10000000 10010010000111111111111 3.14160132 NSD = 3 (Bit Setting)

aBit 0 is s which IEEE-754 format uses to encode signedness as �1s.
bBits 1–8 form base-2 exponent q in the factor 2q�127 which in IEEE-754 multiplies the significand.
cBits 9–31 are base-2 significand (or mantissa or fraction) c in the IEEE-754 representation of the full value �1s ⇥ (1+ c)⇥ 2q�127.
dBit Grooming and Bit Shaving are identical for a single value.

Table 2. Bit Grooming Pi

Same as Table 1 but after varying degrees of Bit Grooming

Sign Exponent Fraction (Significand) Decimal Notes

0 10000000 10010010000111111011011 3.14159265 Exact

0 10000000 10010010000111111011011 3.14159265 NSD = 8

0 10000000 10010010000111111011010 3.14159262 NSD = 7

0 10000000 10010010000111111011000 3.14159203 NSD = 6

0 10000000 10010010000111111000000 3.14158630 NSD = 5

0 10000000 10010010000111100000000 3.14154053 NSD = 4

0 10000000 10010010000000000000000 3.14062500 NSD = 3

0 10000000 10010010000000000000000 3.14062500 NSD = 2

0 10000000 10010000000000000000000 3.12500000 NSD = 1

7

(i.e., eight-bytes) are susceptible to much greater compression than NC_FLOAT for a given precision because their significands

explicitly contain 53 bits rather than 23 bits.

3 Results

3.1 Metrics

How can one be sure lossy data are sufficiently precise? We define several metrics to quantify quantization error. The mean

error ✏̄ and mean absolute error ✏̄+ incurred in quantizing a variable from true values xi to quantized values qi are, respectively,

✏̄=

Pi=N
i=1

µimiwi(xi � qi)Pi=N
i=1

µimiwi

and ✏̄

+

=

Pi=N
i=1

µimiwi|xi � qi|Pi=N
i=1

µimiwi

where µi is 1 unless xi is a missing value, mi is 1 unless xi is masked, and wi is the weight. The maximum and minimum

errors ✏
max

and ✏

min

are both signed

✏

max

=max(xi � qi) and ✏

min

=min(xi � qi)

while the maximum and minimum absolute errors ✏+
max

and ✏

+

min

are positive-definite.

✏

+

max

=max|xi � qi|=max(|✏
max

|, |✏
min

|)

✏

+

min

=min|xi � qi|=min(|✏
max

|, |✏
min

|)

Typically ✏

+

min

= 0 for quantization, since many exact values need no quantization.5

The three most important error metrics for quantization are ✏

+

max

, ✏̄+, and ✏̄. The upper bound (worst case) quantization

performance is ✏+
max

. The mean accuracy ✏̄ indicates whether statistical properties of quantized numbers will accurately reflect

the true values. However, ✏̄ allows positive and negative offsets to compensate each other and conceal poor performance.

✏̄

+ measures the absolute mean accuracy of quantization, so that all errors accumulate and (unlike ✏̄) do not compensate. The

difference between ✏

+

max

and ✏̄

+ indicates how much of an outlier the worst case error is.10

3.2 Bit Grooming vs. Bit Shaving

Traditional Bit Shaving bit-shifts zeros into the least significant bits (LSBs) of true values (Caron, 2014b). Thus Bit-Shaving

nearly always underestimates true values, and this produces ✏
max

= 0. Conversely, bit-shifting ones into the LSBs, a procedure

that might be called Bit Setting, would nearly always overestimate true values and result in ✏

min

= 0. The intrinsic compression

efficiencies of Bit Shaving and Bit Setting are identical. The key innovation in Bit Grooming is to alternately bit-shift zeroes15

and ones into the consecutive true values in an array. By alternating high with low quantization errors, Bit Grooming balances

the mean quantization error. As a result, statistical operations produce less-biased results when operating on values quantized

by Bit Grooming than by Bit Shaving or Bit Setting. Balanced algorithms like Bit Grooming should yield ✏

max

⇡�✏

min

,

✏

+

max

⇡ ✏

+

min

, and ✏̄⇡ 0.

8

Table 3. Error Metrics for Bit Grooming vs. Bit Shaving

Artificial Dataa Observed Datab

BG and BSc BGSP BSSP BGDP BSDP BGSP BSSP BGDP BSDP

NSD

d ✏+
max

✏̄+ ✏̄e ✏̄ ✏̄ ✏̄ ✏̄ ✏̄ ✏̄ ✏̄

1 0.31 0.11 4.1e�4 �0.11 4.0e�4 �0.11 2.4e�3 �0.11 2.4e�3 �0.11

2 0.39 0.14 6.8e�5 �0.14 5.5e�5 �0.14 3.8e�4 �0.14 3.9e�4 �0.14

3 0.49 0.17 1.0e�6 �0.17 �5.5e�7 �0.17 �9.6e�5 �0.17 �5.3e�5 �0.18

4 0.30 0.11 3.2e�7 �0.11 �6.1e�6 �0.11 2.3e�3 �0.11 2.7e�3 �0.11

5 0.37 0.13 3.1e�7 �0.13 �5.6e�6 �0.13 2.2e�3 �0.13 6.5e�3 �0.13

6 0.36 0.12 �4.4e�7 �0.12 �4.1e�7 �0.17 1.7e�2 �0.11 6.1e�2 �0.11

7 0.00 0.00 0.0 0.00 1.5e�7 �0.10 0.0 0.00 0.1 0.00

aArtificial Data is N = 1000000 values spanning [1.0,2.0) in equal-increment steps of 1⇥ 10�6.
bN = 13934592 values of the temperature field from the NASA MERRA analysis of 20130601.
cBG is Bit Grooming, BS is Bit Shaving, SP is Single-Precision, and DP is Double-Precision. Values for ✏+

max

and ✏̄+ are shown only once. They are

identical to two significant figures for BG and BS in both SP and DP, for both Artificial and Observed Data.
dNSD is Number of Significant Digits.
e✏̄ is shown in floating-point notation for values smaller than 0.1, i.e., 4.1e�4 means 4.1⇥ 10�4.

All three metrics are expressed in terms of the fraction of the ten’s place occupied by the LSD. If the LSD is the hundreds

digit or the thousandths digit, then the metrics are fractions of 100, or of 1/1000, respectively. PPC algorithms should produce

maximum absolute errors less than 0.5 in these units. If the LSD is the hundreds digit, then quantized versions of true values will

be within fifty of the true value. It is much easier to satisfy this tolerance for a true value of 100 (only 50% accuracy required)

than for 999 (5% accuracy required). Thus the minimum accuracy guaranteed for nsd = 1 ranges from 5–50%. For this reason,5

the best and worst cast performance usually occurs for true values whose LSD value is close to one and nine, respectively.

Of course most users prefer prc > 1 because accuracies increase exponentially with prc. Continuing the previous example to

prc = 2, quantized versions of true values from 1000–9999 will also be within 50 of the true value, i.e., have accuracies from

0.5–5%. In other words, only two significant digits are necessary to guarantee better than 5% accuracy in quantization. We

recommend that dataset producers and users consider quantizing datasets with nsd = 3. This guarantees accuracy of 0.05–10

0.5% for individual values. Statistics computed from ensembles of quantized values will, assuming the mean error ✏̄ is small,

have much better accuracy than 0.5%. This accuracy is the most that many applications can justify.

To demonstrate these principles we conduct error analyses on an artificial, reproducible dataset, and on an actual dataset1

of values from a re-analysis of observed weather data. Table 3 summarizes quantization accuracy for each NSD based on the

three metrics: the maximum absolute error ✏+
max

, the mean absolute error ✏̄+, and the mean error ✏̄. PPC quantization performs15

1The artificial dataset employed is one million evenly spaced values from 1.0–2.0. The analysis data are N = 13934592 values of the temperature field

from the NASA MERRA analysis of 20130601.

9

as expected. First, absolute maximum errors ✏+
max

< 0.5 for all prc. We increased the exact number of bits shaved or groomed

until the worst performance (✏+
max

= 0.49 for prc = 3) was better than ✏

+

max

= 0.5. This guarantees that Bit Grooming always

produces precision that meets or exceeds the requested number of significant digits.

For 1 prc  6, quantization results in comparable maximum absolute and mean absolute errors ✏+
max

and ✏̄

+, respectively

(Table 3). Mean errors ✏̄ are orders of magnitude smaller because quantization produces over- and under-estimated values in5

balance. When prc = 7, quantization of single-precision values is ineffective, because all available bits are used to represent

the maximum precision of seven digits. The maximum and mean absolute errors ✏

+

max

and ✏̄

+ are nearly identical across

algorithms, precisions, and dataset types. This is consistent with both the artificial data and empirical data being random, and

thus exercising equally strengths and weaknesses of the algorithms over the course of millions of input values. We generated

artificial arrays with many different starting values and interval spacing and all gave qualitatively similar results. The results10

presented are the worst obtained.

The artificial data has much smaller mean error ✏̄ than the observational analysis. The reason why is unclear. It may be

because the temperature field is concentrated in particular ranges of values (and associated quantization errors) prevalent on

Earth, e.g., 200< T < 320. It is worth noting that the mean error ✏̄< 0.01 for 1<= prc < 6, and that ✏̄ is typically at least

two or more orders of magnitude less than ✏

+

max

. Thus quantized values with precisions as low as prc = 1 still yield highly15

significant statistics by contemporary scientific standards.

3.3 Compressing Real Climate Datasets

PPC quantization enhances compression of typical climate datasets. The degree of enhancement depends, of course, on the

required precision. Model results are often computed as NC_DOUBLE then archived as NC_FLOAT to save space, while, in

our experience, observations are usually stored as NC_FLOAT because most sensors lack the precision required to justify20

NC_DOUBLE. We evaluated compression performance of lossless and lossy compression techniques on four datasets repre-

sentative of model-simulations and satellite-retrievals. Only floating-point data were compressed. No attempt was made to

compress integer-type variables as they occupy an insignificant fraction of most climate datasets.

The first dataset tested (Table 4) comes from a global aerosol simulation (Zender et al., 2003) of horizontal resolution latitude

⇥ longitude = 64⇥128 (i.e., 8192 gridpoints). This dataset is the smallest (35 MB, Row A) relative to the others tested, and was25

produced uncompressed, as is still the norm for most climate models. Weak and strong compression (BZ1 and BZ9) with bzip2

(Seward, 2007) both achieve compression ratios CR⇠ 84% (Rows B–C). Conversion from netCDF3 (N3) to netCDF4 (N7)

imposes a small penalty on size due to the extra internal metadata used by the underlying HDF5 format (Rew et al., 2006;

HDF Group, 2015) (Row D). Both the weak and strong HDF-implementation of DEFLATE (Deutsch, 2008) shrink the data

to CR⇠ 81% (Rows E–F), slightly better than bzip2 (Rows B–C). There continues to be little difference between weak and30

strong lossless compression of a given mode (bzip2 or DEFLATE) so for brevity in the following we focus on performance

with weak (DF1) DEFLATE compression (e.g., Rows H–O).

Packing SP floating point data into two-byte integers yields CR⇠ 51% (Row G). Lossless compression more than halves

that CR to ⇠ 23% (Row H). For this dataset, Bit Grooming ranges between 81� CR� 29% for 7� NSD � 1 (Rows I-O).

10

Table 4. Compression Ratios for Low-Resolution Initially Uncompressed Model netCDF3 Data

Rowa Fmtb LLCc Qntd Rnge NSDf Sizeg CRh Methodi

A N3 -j - 1037 ⇠7 34.7 100.0 Uncompressed

B N3 BZ1 - 1037 ⇠7 28.9 83.2 Bzip2

C N3 BZ9 - 1037 ⇠7 29.3 84.4 Bzip2

D N7 - - 1037 ⇠7 35.0 101.0 Uncompressed

E N7 DF1 - 1037 ⇠7 28.2 81.3 DEFLATE

F N7 DF9 - 1037 ⇠7 28.0 80.8 DEFLATE

G N7 - LP 105 ⇠1–4 17.6 50.9 Linear Packing

H N7 DF1 LP 105 ⇠1–4 7.9 22.8 Linear Packing

I N7 DF1 BG 1037 ⇠7 28.2 81.3 Bit Grooming

J N7 DF1 BG 1037 6 27.9 80.6 Bit Grooming

K N7 DF1 BG 1037 5 25.9 74.6 Bit Grooming

L N7 DF1 BG 1037 4 22.3 64.3 Bit Grooming

M N7 DF1 BG 1037 3 18.9 54.6 Bit Grooming

N N7 DF1 BG 1037 2 14.5 43.2 Bit Grooming

O N7 DF1 BG 1037 1 10.0 29.0 Bit Grooming

aRow, also labels the compression configuration in that row.
bFormat on-disk: N3 for netCDF CLASSIC, N4 for NETCDF4, N7 for NETCDF4_CLASSIC (which comprises netCDF3 data types and structures with

netCDF4 storage features like compression), H4 for HDF4, and H5 for HDF5. N4/7 means results apply to both N4 and N7 filetypes.
cLossless compression method (if any) employed. Numbers prefixed by DF refer to the strength of the DEFLATE algorithm employed internally by

netCDF4/HDF5, while numbers prefixed by BZ refer to the block size employed by the Burrows-Wheeler algorithm in bzip2.
dQuantization (lossy compression) method (if any) employed: BG for Bit Grooming and LP for default ncpdq linear packing algorithm (convert floating-

point types to NC_SHORT).
eDynamic range of values compressible to indicated precision.
fNumber of significant digits retained. Similarity symbol indicates value is approximate, not guaranteed. Full IEEE single-precision has nsd ⇠ 7 and

guarantees nsd � 6. Bit Grooming guarantees specified number of digits. Linear-packing achieves nsd & 4 in the largest decade of unpacked values, decreasing

by one digit per decade to nsd & 1 in the smallest decade of unpacked values.
gResulting filesize in MB.
hCompression ratio in %, i.e., filesize after compression divided by its original size, times one-hundred. Compression ratios reported are relative to the

size of the original file as distributed (e.g., by NASA). The original files in Tables 4 and 5 were not yet compressed, and those in Tables 6 and 7 were already

compressed.
iCompression method, if any. Supplement provides full commands to reproduce results.
jA dash (-) indicates the associated compression feature was not employed.

11

Table 5. Compression Ratios for High-Resolution Initially Uncompressed Model Dataa

Row Fmt LLC Qnt Rng NSD Size CR Method

A N3 - - 1037 ⇠7 839.6 100.0 Uncompressed

B N3 BZ1 - 1037 ⇠7 581.8 69.3 Bzip2

C N3 BZ9 - 1037 ⇠7 580.8 69.2 Bzip2

D N7 - - 1037 ⇠7 823.2 98.1 Uncompressed

E N7 DF1 - 1037 ⇠7 503.7 60.0 DEFLATE

F N7 DF9 - 1037 ⇠7 491.3 58.5 DEFLATE

G N7 - LP 105 ⇠1–4 413.4 49.2 Linear Packing

H N7 DF1 LP 105 ⇠1–4 162.6 19.4 Linear Packing

I N7 DF1 BG 1037 ⇠7 503.6 60.0 Bit Grooming

J N7 DF1 BG 1037 6 485.0 57.8 Bit Grooming

K N7 DF1 BG 1037 5 427.6 50.9 Bit Grooming

L N7 DF1 BG 1037 4 346.2 41.2 Bit Grooming

M N7 DF1 BG 1037 3 289.6 34.5 Bit Grooming

N N7 DF1 BG 1037 2 229.2 27.3 Bit Grooming

O N7 DF1 BG 1037 1 161.4 19.2 Bit Grooming

aNotation as in Table 4.

Table 4 shows Packing as having 1. NSD . 4. Packing (into two-byte integers) uses 16-bit integers, the same as the number

of mantissa bits Bit Grooming uses (as discussed in Section 2.3, and including the implicit IEEE bit) to guarantee NSD = 4.

Section 2.1 describes why linear Packing guarantees NSD & 4 precision only for the greatest decade of unpacked values, and

degrades to NSD & 1 for the smallest decade of unpacked values.

The second dataset tested (Table 5) contains a an atmospheric GCM simulation (Dennis et al., 2012) on a higher horizontal5

resolution unstructured grid (with 48602 gridpoints), and occupies 840 MB uncompressed (Row A). It is about 15% more

susceptible to both bzip2 (Rows B–C) and DEFLATE (Row E–F) compression than the dataset in Table 4. The reasons for this

are unclear, though at ⇠ 25-times the size of the first dataset, it seems possible that the internal metadata stored by DEFLATE

is more efficient with larger datasets. Packing is nearly as efficient as before (Row G), since the CR of packing is independent

of the values packed. The compressed packed data (Row H) reaches CR⇠ 19%, whereas Bit Grooming ranges between10

60� CR� 19% for 7� NSD � 1 (Rows I-O).

NASA uses HDF4-format to store and distribute the third dataset tested (Table 6). Satellite-borne remote sensing datasets

may be most commonly found in HDF4 format due to its early availability and the long mission duration of satellites. This

dataset contains compressed (DF5) meteorological data from MERRA re-analysis (Rienecker et al., 2011) on a medium res-

12

Table 6. Compression Ratios for High-Resolution Initially Compressed Observed HDF4 Data

Row Fmt LLC Qnt Rng NSD Size CR Method

A H4 DF5 - 1037 ⇠7 244.3 100.0 DEFLATE

B1 H4 BZ1 - 1037 ⇠7 244.7 100.1 Bzip2

D1 N4 DF5 - 1037 ⇠7 214.5 87.8 DEFLATE

D2 N7 DF5 - 1037 ⇠7 210.6 86.2 DEFLATE

B2 N4 BZ1 - 1037 ⇠7 215.4 88.2 Bzip2

C N4 BZ9 - 1037 ⇠7 214.8 87.9 Bzip2

D3 N3 - - 1037 ⇠7 617.1 252.6 Uncompressed

D4 N4/7 - - 1037 ⇠7 694.0 284.0 Uncompressed

E N4/7 DF1 - 1037 ⇠7 223.2 91.3 DEFLATE

F N4/7 DF9 - 1037 ⇠7 207.3 84.9 DEFLATE

G N4/7 - LP 105 ⇠1–4 347.1 142.1 Linear Packing

H N4/7 DF1 LP 105 ⇠1–4 133.6 54.7 Linear Packing

I N4/7 DF1 BG 1037 ⇠7 223.1 91.3 Bit Grooming

J N4/7 DF1 BG 1037 6 225.1 92.1 Bit Grooming

K N4/7 DF1 BG 1037 5 221.4 90.6 Bit Grooming

L N4/7 DF1 BG 1037 4 201.4 82.4 Bit Grooming

M N4/7 DF1 BG 1037 3 185.3 75.9 Bit Grooming

N N4/7 DF1 BG 1037 2 150.0 61.4 Bit Grooming

O N4/7 DF1 BG 1037 1 100.8 41.3 Bit Grooming

olution (latitude ⇥ longitude = 144⇥ 288, 41472 gridpoints) grid and is 244 MB compressed (Row A) and 617–694 MB

uncompressed (Rows D3–D4). bzip2-compression has no effect on the dataset as distributed in HDF4-format (Row B). How-

ever, converting from HDF4-format to netCDF4-format reduces its size by 13% to CR⇠ 87% (Rows D1–D2). Neither of these

formats affords any help to bzip2 (Rows B2–C). The uncompressed data occupies 10% less space in netCDF3- than in netCDF4-

format (Rows D3–D4). The HDF5-implementation of DEFLATE yields moderately more dynamic range (91%� CR� 85)5

(Rows E–F) than in the previous two datasets. The reasons for this are unclear. Packing once again yields a 50% reduction

relative to the uncompressed dataset size (Row G), and compressing that yields CR⇠ 55% (Row H). Bit Grooming yields

92� CR� 41% for 7� NSD � 1 (Rows I–O).

NASA uses HDF5-format to store and distribute the fourth dataset tested (Table 7) which is representative of current storage

practices. HDF5 and netCDF4 are used by all new satellite missions to our knowledge. This dataset contains compressed (DF5)10

satellite retrievals, a swath from the OMI instrument (Krotkov et al., 2008), in a curvilinear (Time ⇥ Cross-track = 1644⇥ 60,

13

Table 7. Compression Ratios for Initially Compressed HDF5 data

Row Fmt LLC Qnt Rng NSD Size CR Method

A H5 DF5 - 1037 ⇠7 29.5 100.0 DEFLATE

B1 H5 BZ1 - 1037 ⇠7 29.3 99.6 Bzip2

D1 N4 DF5 - 1037 ⇠7 29.5 100.0 DEFLATE

B2 N4 BZ1 - 1037 ⇠7 29.3 99.6 Bzip2

C N4 BZ9 - 1037 ⇠7 29.3 99.4 Bzip2

D2 N4 - - 1037 ⇠7 50.7 172.3 Uncompressed

E N4 DF1 - 1037 ⇠7 29.8 101.3 DEFLATE

F N4 DF9 - 1037 ⇠7 29.4 99.8 DEFLATE

G N4 - LP 105 ⇠1–4 27.7 94.0 Linear Packing

H N4 DF1 LP 105 ⇠1–4 12.9 43.9 Linear Packing

I N4 DF1 BG 1037 ⇠7 29.7 100.7 Bit Grooming

J N4 DF1 BG 1037 6 29.7 100.8 Bit Grooming

K N4 DF1 BG 1037 5 27.3 92.8 Bit Grooming

L N4 DF1 BG 1037 4 23.8 80.7 Bit Grooming

M N4 DF1 BG 1037 3 20.3 69.0 Bit Grooming

N N4 DF1 BG 1037 2 15.1 51.2 Bit Grooming

O N4 DF1 BG 1037 1 9.9 33.6 Bit Grooming

98000 gridpoints) grid and is 30 MB compressed (Row A) and 50 MB uncompressed (Row D2). The dataset can be converted

directly to netCDF4 (Row D1) at no additional cost in storage. However, it cannot be converted to netCDF3 because it uses so-

called “enhanced” features (such as hierarchical groups) available only in netCDF4/HDF5. Once again the already-compressed

data are insensitive to the level of DEFLATE (Rows E–F). Packing reduces the uncompressed size by nearly 50% (Row G),

and compressing that yields CR⇠ 44%. Bit Grooming yields 100� CR� 33% for 7� NSD � 1 (Rows I–O).5

4 Discussion

PPC algorithms preserve all significant digits of every value. The Bit Grooming (NSD) algorithm uses a theoretical approach

(3.32 bits per base-10 digit), tuned and tested to ensure the worst case quantization error is less than half the value of the

minimum increment in the least significant digit. The Decimal Rounding (DSD) algorithm uses floating-point math to round

each value optimally so that it has the maximum number of zeroed bits that preserve the specified precision.10

While Bit Grooming works on top of any lossless compression technique, we demonstrated it with the DEFLATE algorithm

(Deutsch, 2008) which is free and ubiquitous. Byte-stream compression techniques such as DEFLATE (which is accessible

14

through the netCDF4/HDF5 interfaces) always compress strings of zeros and of ones more efficiently than random digits. We

expect the additional compression achieved by Bit Grooming to remain roughly the same with different underlying lossless

compression techniques.

4.1 Comparison of Lossy Compression Techniques

Factors influencing the choice of lossy compression technique include precision, accuracy, dynamic range, compression ratio,5

and portability (Silver and Zender, 2016). Section 3 evaluates Bit Grooming performance alongside linear packing, a widely

used, well-known lossy compression method. Packing four-byte SP floating point data into two-byte integers produces a com-

pression ratio CR⇠ 50% relative to uncompressed data (Tables 4–7, Row G). Lossless compression more than halves that

CR, so that linear Packing followed by DEFLATE achieves ⇠ 26%� CR� 19% (Row H) relative to uncompressed data. All

other things being equal, a competitive lossy compression algorithm should produce a comparable CR to be considered as10

a sensible option to Packing plus DEFLATE. For the tested datasets, Bit Grooming produces 43� CR� 21% for NSD = 2

and 29� CR� 15% for NSD = 1 (Rows I-O), relative to uncompressed data. Thus Bit Grooming is only competitive with

compressed Packing if used aggressively (i.e., preserving only 1 or 2 digits) and/or if other factors are considered as important

as CR.

These other factors may include the greater transparency, dynamic range, and guaranteed precision of Bit Grooming relative15

to Packing. Regarding transparency, Bit-Groomed data is valid IEEE floating point immediately suitable for analysis and

plotting, whereas Packed data must first be unpacked and reconstituted into intelligible floating point data. Hence Bit-Groomed

data are more portable than Packed data.

Another important consideration is precision. Bit Grooming guarantees that its lossy quantization will preserve a specified

number of (decimal) significant digits. Packing into two-byte integers always provides 16 bits for discretization, which can20

potentially yield the same precision as Bit Grooming with nsd = 4. However, as described in Section 2.1, linear packing guar-

antees nsd & 4 precision only for the single greatest decade of unpacked values. Unpacked values of lesser absolute magnitude

lose approximately one guaranteed significant digit per decade. By contrast, Bit Grooming guarantees the specified minimum

precision level over the entire IEEE range. Other types of packing, e.g., logarithmic packing or “layer packing” can alleviate

though not eliminate precision issues that affect linear packing (Silver and Zender, 2016). However, only linear packing is a25

netCDF convention (Rew et al., 2005). Thus other forms of packing are less portable than linear packing which (as mentioned

above) is itself less portable than Bit Grooming.

In terms of range, Bit Grooming has the same dynamic ranges as IEEE SP and DP data, ⇠ 10

37 and ⇠ 10

308, respectively.

Linear Packing into two-byte integers (the usual case) reduces the dynamic range to 2

16�1 = 65,535 discretely representable

values that lay in a five-decade cluster within the IEEE range. The greater range of Bit Grooming relative to Packing (⇠ 10

37

30

vs. 105) favors it for GSMM fields that span multiple orders of magnitude, such as aerosol number concentrations, pressure,

solar heating rates, and (some) tracer mixing ratios.

15

4.2 Implementation in NCO

Offering multiple quantization and compression algorithms with a consistent and simple interfaces is important so that users

can easily find the algorithm that best suits their needs. This section describes the NCO implementation of the three quan-

tization and single lossless compression algorithm that NCO exposes to user control. We focus on the new PPC algorithms

(Bit Grooming and Decimal Rounding) whose characteristics are the subject of most of this study, but we begin with a brief5

summary of the DEFLATE and Packing implementations that have been in NCO for 10–20 years. NCO triggers lossless DE-

FLATE compression with the -L switch followed by a compression level argument on a scale from 0 (no compression) to 9

(full compression, much slower):

ncks -L 5 in.nc out.nc # DEFLATE lossless compression level 5

The NCO operator ncpdq performs Packing quantization:10

ncpdq in.nc out.nc # Pack Data Quickly (quantization)

NCO implements numerous packing policies (which variables should be packed) and packing maps (which datatype should

a higher-precision datatype be stored as). The Users Guide (Zender, 2016a) contains a full description of policies and maps.

Packing followed by lossless compression is simple and yields the most impressive compression ratios in Tables 4–7.

ncpdq -L 5 in.nc out.nc # Pack then compress15

Although Bit Grooming instantly reduces data precision, on-disk storage reduction occurs only once the data are compressed

either internally (e.g., by netCDF) or externally (by a user-supplied mechanism). It is straightforward to compress data inter-

nally using the built-in compression and decompression supported by netCDF4/HDF5. For convenience, NCO automatically

activates file-wide DEFLATE deflation level one (i.e., -L 1) when PPC is requested for any variable in a netCDF4 output file.

This makes PPC easier to use, since the user need not explicitly specify deflation. Any explicitly specified deflation (includ-20

ing no deflation, or -L 0 with NCO) overrides the PPC deflation default. If the output file is netCDF3 format, NCO emits a

message that suggests internal netCDF4 or external netCDF3 compression. netCDF3 files compressed by an external utility

such as gzip accrue approximately the same benefits (shrinkage) as netCDF4, although with netCDF3 the user or provider

must uncompress (e.g., gunzip) the file before accessing the data. There is no storage benefit to rounding numbers and storing

them in netCDF3 files unless such custom compression/decompression is employed. Without compression, one may as well25

maintain the undesired precision.

NCO users can invoke PPC with the long option --ppc var=prc, or give the same arguments to the synonyms

--precision_preserving_compression, or to --quantize. Here var is the variable to quantize, and prc is the

precision. NCO assumes that prc specifies Bit Grooming (i.e., NSD precision) so, e.g., T=2 means nsd = 2. In NCO, users may

prepend prc with a decimal point to specify decimal rounding (i.e., DSD precision), e.g., T=.2 means dsd = 2. Bit Grooming30

precision must be specified as a positive integer. Rounding precision may be a positive or negative integer; and is specified

as the negative base 10 logarithm of the desired precision, in accord with common usage. For example, specifying T=.3 or

16

T=.-2 tells the Decimal Rounding algorithm to store only enough bits to preserve the value of T rounded to the nearest

thousandth or hundred, respectively.

NCO users can specify the precision of an entire dataset with many variable in one simple command. Setting var to

default has the special meaning of applying the associated PPC algorithm to all normal floating point variables. The excep-

tions, i.e., variables not affected by default, include integer and non-numeric atomic types, dimensional coordinates (such5

as longitude, latitude), and, in accord with the CF Metadata Convention (Gregory, 2003; Eaton et al., 2016), variables men-

tioned in the bounds, climatology, or coordinates attributes of any variable. These exceptions prevent the coordinate

grid itself, and the variables needed to describe it, from losing precision. Usually the coordinate grid is known to much higher

precision than the fields stored on the grid. NCO applies PPC to coordinate grid variables only if those variables are explicitly

specified (i.e., not with the default=prc mechanism. NCO applies PPC to integer-type variables only if those variables are10

explicitly specified (i.e., not with the default=prc, and only if the DSD algorithm is invoked with a negative prc. To prevent

PPC in NCO from applying to certain non-coordinate variables (e.g., gridcell_area or gaussian_weight), explicitly

specify a precision exceeding 7 (for NC_FLOAT) or 15 (for NC_DOUBLE) for those variables. Since these are the maximum

representable precisions in decimal digits, NCO turns-off PPC (i.e., does nothing) when more precision is requested.

NCO users access PPC through a single switch, --ppc, repeated as many times as necessary. To request Bit Grooming only15

for variable u use, e.g.,

ncks -7 --ppc u=2 in.nc out.nc

The output file will preserve two significant digits of u. The options -4 or -7 ensure a netCDF4-format output (regardless of the

input file format) to support internal compression. NCO recommends though does not require writing netCDF4 files after PPC.

However, for conciseness the -4/-7 switches are omitted in subsequent examples. To maintain data-processing provenance,20

NCO attaches attributes that indicate the algorithm used and degree of precision retained for each variable affected by PPC. The

Bit Grooming (i.e., NSD) and Decimal Rounding (i.e., DSD) algorithms store the attributes number_of_significant_digits

and least_significant_digit2, respectively. It is safe to attempt PPC on input that has already been rounded. Vari-

ables can be made rounder, not sharper, i.e., variables cannot be “un-rounded”. Thus PPC attempted on an input variable with

an existing PPC attribute proceeds only if the new rounding level exceeds the old, otherwise no new rounding occurs (i.e., a25

“no-op”), and the original PPC attribute is retained rather than replaced with the newer value of prc.

To request, say, five significant digits (nsd = 5) for all fields, except, say, wind speeds u and v which are only known to

integer values (dsd = 0) in the supplied units, use --ppc twice:

ncks --ppc default=5 --ppc u,v=.0 in.nc out.nc

To preserve five digits in all variables except coordinate variables and u and v, use the default option and separately specify30

the exceptions:

ncks --ppc default=5 --ppc u,v=20 in.nc out.nc

2 The nc3tonc4 tool by J. Whitaker adds the same attribute.

17

Specify --ppc option any number of times to support varying precision types and levels. Each option may aggregate all the

variables with the same precision:

ncks --ppc p,w,z=5 --ppc q,RH=4 --ppc T,u,v=3 in.nc out.nc

This type of per-variable approach to PPC may yield the best balance of precision and compression. It does require that the

dataset producer understand the intrinsic precision of each variable treated in a non-default manner. For convenience, variable5

names may be extended regular expressions. This simplifies generating lists of related variables:

ncks --ppc Q.?=5 --ppc FS.?,FL.?=4 --ppc RH=.3 in.nc out.nc

5 Conclusions

We introduced a new lossy and precision-preserving compression (PPC) algorithm called Bit Grooming, and evaluated it

against its nearest cousin, Bit Shaving, as well as against Packing and lossless techniques. Bit Grooming replaces the (un-10

wanted) least significant bits of the IEEE significand with a string of identical values that alternates between zeroes and ones

for consecutive elements of an array. We quantified the trade-offs involved in the choice of lossy packing technique for four

climate-related datasets. We found that PPC compression reduces the volume of single-precision compressed data by roughly

10% per decimal digit quantized (or “groomed”) after the third such digit, up to a maximum reduction of about 50% relative to

losslessly compressed data
:
.
:::
Bit

::::::::
Grooming

:::::::
reduces

::
the

:::::::
storage

::::
space

::::::::
required

::
by

:::::::
initially

:::::::::::
uncompressed

::::
and

:::::::::
compressed

:::::::
climate15

:::
data

:::
by

:::::::
25–80%

::::
and

:::::::
5–65%,

::::::::::
respectively,

:::
for

:::::::::::::
single-precision

::::::
values

::::
(the

::::
most

::::::::
common

::::
case

:::
for

:::::::
climate

::::
data)

:::::::::
quantized

::
to

:::::
retain

:::
1–5

:::::::
decimal

:::::
digits

::
of

::::::::
precision. Bit Groomed and Bit Shaved data are equally efficiently compressed, and Bit Groom-

ing eliminates undesirable statistical artifacts of Bit Shaving. By alternately using zero and one as the fill-bit, Bit Grooming

produces no mean absolute bias whereas Bit Shaving is negatively biased.

The lossy technique of linear Packing, followed by lossless compression, produces significantly better compression ratios20

than PPC algorithms like Bit Grooming for most precision levels. Bit Grooming yields comparable to or better compression

than Packing only when retaining one or two significant digits of precision. Packing, however, can only encode values from a

much smaller dynamic range than Bit Grooming, and its guaranteed precision degrades rapidly (one digit per decade) outside

the largest decade of values to be quantized. Moreover, packed data requires additional software overhead to unpack. Bit

Grooming, in contrast, works on all ranges of floating point values, has well-defined and guaranteed precision, and requires no25

additional software interface to read. By understanding the trade-offs between precision, statistical accuracy, numerical range

and storage space of common lossy packing techniques, producers can make better decisions regarding how much precision to

archive in their datasets, and how to discard the false precision.

Code availability

NCO source code is available from GitHub at https://github.com/nco. NCO
:::
The

::::
NCO

:::::::
software

:::::::
version

::::
4.6.1

::::::::::::::::::
(Zender, 2016b) used30

::
to

:::::::
produce

:::
this

::::::
paper

::
is

::::::::::
permanently

::::::::
archived

::::
with

::::
DOI

::::::::::::::::::::
10.5281/zenodo.61341,

::::::
though

::::
any

::::::
version

:::::
since

:::::
4.4.8

::::::
should

:::
be

18

::::::::::
functionally

:::::::::
equivalent

::::
with

::::::
regards

:::
to

:::::::
features

::::::::
described

:::::
here.

:::::
NCO executables are available on most modern Linux and

OS X systems using standard commands (apt-get install nco, dnf
::::
brew install nco, yum install nco,

::::
conda

::::::
install

::
-c

::::::::::
conda-forge

:::
nco,

::::
dnf

:::::
install

::::
nco,

:
port install nco, brew

:::
yum

:
install nco). Additional binaries are available for easy installation, see the

homepage http://nco.sf.net for more details. Detailed documentation and help pages are also at http://nco.sf.net. The Supple-

ment details the commands and datasets necessary to reproduce the results.5

Acknowledgements. Two anonymous reviewers and J. D. Silver provided helpful comments that improved the quality of this manuscript.

R. Signell originally suggested we investigate Decimal Rounding. Supported by NASA ACCESS NNX12AF48A and NNX14AH55A and

by DOE ACME DE-SC0012998.

19

References

Burtscher, M., and P. Ratanaworabhan (2009), FPC: A high-speed compressor for double-precision floating-point data, IEEE Transactions

on Computers, 58(1), 18–31, doi:10.1109/TC.2008.131.

Caron, J. (2014a), Compression by scaling and offset, http://www.unidata.ucar.edu/blogs/developer/entry/compression_by_scaling_and_

offfset.5

Caron, J. (2014b), Compression by bit shaving, http://www.unidata.ucar.edu/blogs/developer/entry/compression_by_bit_shaving.

Collet, Y. (2013), Lz4 lossless compression algorithm, “http://lz4.org”.

Dennis, J. M., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worley (2012), CAM-SE:

A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Perform. Comput. Appl., 26(1), 74–89,

doi:10.1177/1094342011428142.10

Deutsch, L. P. (2008), DEFLATE compressed data format specification version 1.3, Tech. Rep. IETF RFC1951, Internet Engineering Task

Force.

Eaton, B., J. Gregory, B. Drach, K. Taylor, and S. Hankin (2016), NetCDF Climate and Forecast (CF) metadata conventions, http:

//cfconventions.org/cf-conventions.

Gailly, J.-l., and M. Adler (2000), zlib documentation, “http://zlib.net”.15

Gregory, J. (2003), The CF metadata standard, CLIVAR Exchanges, 8(4), 4.

HDF Group (2015), HDF5: API Specification Reference Manual, The HDF Group, Champaign-Urbana, IL.

IEEE (2008), IEEE standard for floating-point arithmetic, Tech. Rep. ISO/IEC/IEEE 60559 (IEEE Std 754-2008), IEEE Computer Society,

Piscataway, NJ.

Isenburg, M., P. Lindstrom, and J. Snoeyink (2005), Lossless compression of predicted floating-point geometry, Computer-Aided Design,20

37(8), 869–877, doi:10.1016/j.cad.2004.09.015.

Krotkov, N. A., et al. (2008), Validation of SO
2

retrievals from the Ozone Monitoring Instrument over NE China, J. Geophys. Res., 113,

doi:10.1029/2007JD008818.

Liu, S., X. Huang, Y. Ni, H. Fu, and G. Yang (2014), A high performance compression method for climate data, pp. 68–77,

10.1109/ISPA.2014.18.25

Rew, R., G. Davis, S. Emmerson, and H. Davies (2005), The NetCDF Users’ Guide, Version 3.6.1, University Corporation for Atmospheric

Research, Boulder, CO, http://www.unidata.ucar.edu/packages/netcdf.

Rew, R., E. Hartnett, and J. Caron (2006), NetCDF-4: Software implementing an enhanced data model for the geosciences, in Proceedings of

the 22nd AMS Conference on Interactive Information and Processing Systems for Meteorology, p. 6.6, American Meteorological Society,

AMS Press, Boston, MA.30

Rienecker, M. M., et al. (2011), MERRA: NASA’s modern-era retrospective analysis for research and applications, J. Climate, 24(14),

3624–3648.

Salomon, D., and G. Molta (2010), Handbook of Data Compression, 5th ed., Springer-Verlag, London.

Sayood, K. (Ed.) (2003), Lossless Compression Handbook, 488 pp., Academic Press.

Seward, J. (2007), bzip2 documentation, “http://bzip.org”.35

Silver, J. D., and C. S. Zender (2016), Finding the Goldilocks zone: Compression-error trade-off for large gridded datasets, sub judice,

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-177.

20

Zender, C. S. (2008), Analysis of self-describing gridded geoscience data with netCDF Operators (NCO), Environ. Modell. Softw., 23(10),

1338–1342, doi:10.1016/j. envsoft.2008.03.004. doi:10.1016/j.envsoft.2008.03.004.
:

Zender, C. S. (2016a), NCO User Guide, http://nco.sf.net/nco.pdf
:
.

:::::
Zender,

:::
C.

:
S.
:::::

(2016b
:
),
::::::
netCDF

::::::::
Operators

:
(
::::
NCO

:
), version 4.6.0,

::
.1,

:::::::
Zenodo, doi:10.5281/zenodo.61341.

Zender, C. S., and H. J. Mangalam (2007), Scaling properties of common statistical operators for gridded datasets, Int. J. High Perform.5

Comput. Appl., 21(4), 458–498, doi:10.1177/1094342007083,802. doi:10.1177/1094342007083802.
:

Zender, C. S., H. Bian, and D. Newman (2003), Mineral Dust Entrainment And Deposition (DEAD) model: Description and 1990s dust

climatology, J. Geophys. Res., 108(D14), 4416, doi:10.1029/2002JD002,775. doi:10.1029/2002JD002775
:
.

Ziv, J., and A. Lempel (1977), A universal algorithm for sequential data compression, IEEE Trans. on Information Theory, 23(3), 337–343.

Ziv, J., and A. Lempel (1978), Compression of individual sequences via variable-rate coding, IEEE Trans. on Information Theory, 24(5),10

530–536, doi:10.1109/TIT.1978.1055934.

Supplement

This supplement details the commands and datasets necessary to reproduce the results tabulated in the paper. For Tables 1–2,

first place the exact value ⇡ in a variable named, say, pi in a netCDF file named, say, in.nc. (Alternatively, use the file in.nc

that comes with NCO). Then apply Bit Grooming and Decimal rounding as follows:15

Define pi

ncap2 -s ’pi=3.1415926535897932384626433832795029’ in.nc in.nc

Bit Groom to every level from 1 to 9 significant digits

ncks -v pi --ppc pi=1 in.nc nsd1.nc

ncks -v pi --ppc pi=2 in.nc nsd2.nc20

ncks -v pi --ppc pi=3 in.nc nsd3.nc

ncks -v pi --ppc pi=4 in.nc nsd4.nc

ncks -v pi --ppc pi=5 in.nc nsd5.nc

ncks -v pi --ppc pi=6 in.nc nsd6.nc

ncks -v pi --ppc pi=7 in.nc nsd7.nc25

ncks -v pi --ppc pi=8 in.nc nsd8.nc

ncks -v pi --ppc pi=9 in.nc nsd9.nc

Decimal rounding to 2 significant decimal places

ncks -v pi --ppc pi=.2 in.nc dsd2.nc

Print to sixteen decimals30

ncks -v pi -s %20.16e -C -H nsd1.nc

Many sites like http://www.h-schmidt.net/FloatConverter/IEEE754.html show the IEEE binary format of the resulting decimal

numbers.

21

These instructions produce the statistical evaluation of Bit Grooming vs. Bit Shaving in Table 3.

Convert MERRA assimilation downloaded from NASA from HDF to netCDF

and extract temperature T

ncks -3 -v T MERRA300.prod.assim.inst3_3d_asm_Cp.20130601.hdf T.nc

Delete extraneous packing information5

ncatted -a scale_factor,,d,, -a add_offset,,d,, T.nc

Copy MERRA T into SP and DP PPC input files

Use separate variable name for each Bit Grooming level

SP (Single Precision):

ncap2 -s ’ppc=T;nsd1=nsd2=nsd3=nsd4=nsd5=nsd6=nsd7=ppc’ T.nc ppc_in.nc10

DP (Double Precision):

ncap2 -s ’ppc=double(T);nsd1=nsd2=nsd3=nsd4=nsd5=nsd6=nsd7=ppc’ \

T.nc ppc_in.nc

Artificial SP dataset

ncap2 -s ’defdim("dmn",1000000);ppc=float(array(1.0,1.e-6,$dmn))’ \15

-s ’nsd1=nsd2=nsd3=nsd4=nsd5=nsd6=nsd7=ppc’ in.nc ppc_in.nc

Artificial DP dataset

ncap2 -s ’defdim("dmn",1000000);ppc=array(1.0,1.e-6,$dmn);’ \

-s ’nsd1=nsd2=nsd3=nsd4=nsd5=nsd6=nsd7=ppc’ in.nc ppc_in.nc

20

Bit Groom input dataset

ncks --ppc nsd1=1 --ppc nsd2=2 --ppc nsd3=3 --ppc nsd4=4 --ppc nsd5=5 \

--ppc nsd6=6 --ppc nsd7=7 ppc_in.nc ppc_out.nc

Decimal Round input dataset

ncks --ppc nsd1=.1 --ppc nsd2=.2 --ppc nsd3=.3 --ppc nsd4=.4 \25

--ppc nsd5=.5 --ppc nsd6=.6 --ppc nsd7=.7 ppc_in.nc ppc_out.nc

Subtract quantized from exact data

ncbo ppc_out.nc ppc_in.nc ppc_dff.nc

Ratios of biases to exact data30

ncbo -y dvd ppc_dff.nc ppc_in.nc ppc_rat.nc

Multiply biases by scale factor for easy intercomparison

ncap2 -s ’nsd1*=10;nsd2*=100;nsd3*=1000;nsd4*=10000;nsd5*=100000;’ \

-s ’nsd6*=1000000;nsd7*=10000000’ ppc_rat.nc ppc_rat_scl.nc

Compute statistics of biases35

22

ncwa -y avg ppc_rat_scl.nc ppc_avg.nc # Mean bias

ncwa -y max ppc_rat_scl.nc ppc_max.nc # Maximum bias

ncwa -y min ppc_rat_scl.nc ppc_min.nc # Minimum bias

ncwa -y mabs ppc_rat_scl.nc ppc_mabs.nc # Maximum absolute bias

ncwa -y mebs ppc_rat_scl.nc ppc_mebs.nc # Mean absolute bias5

ncwa -y mibs ppc_rat_scl.nc ppc_mibs.nc # Minimum absolute bias

These instructions produce the compression ratios shown in Tables 4–7. The indicated files (total size ⇠ 1.2GB) are available

from http://figshare.com after contacting the author (zender at uci dot edu). Run the indicated commands on each input file and

compute the compression ratio as the output file-size divided by the initial file-size.

Tables 4-710

fl=dstmch90_clm.nc

fl=famipc5_ne30_v0.3_00003.cam.h0.1979-01.nc

fl=MERRA300.prod.assim.inst3_3d_asm_Cp.20130601.hdf

fl=OMI-Aura_L2-OMIAuraSO2_2012m1222-o44888_v01-00-2014m0107t114720.h5

15

Use ls to obtain filesize for output files

Compute compression ratio as Row A divided by output filesize

ls -l ${fl} # Row A

bzip2 -1 -f ${fl} # Row B

bzip2 -9 -f ${fl} # Row C20

ncks -7 -L 0 ${fl} foo.nc # Row D

ncks -7 -L 1 ${fl} foo.nc # Row E

ncks -7 -L 9 ${fl} foo.nc # Row F

ncpdq -7 -L 0 ${fl} foo.nc # Row G

ncpdq -7 -L 1 ${fl} foo.nc # Row H25

ncks -7 -L 1 --ppc default=7 ${fl} foo.nc # Row I

ncks -7 -L 1 --ppc default=6 ${fl} foo.nc # Row J

ncks -7 -L 1 --ppc default=5 ${fl} foo.nc # Row K

ncks -7 -L 1 --ppc default=4 ${fl} foo.nc # Row L

ncks -7 -L 1 --ppc default=3 ${fl} foo.nc # Row M30

ncks -7 -L 1 --ppc default=2 ${fl} foo.nc # Row N

ncks -7 -L 1 --ppc default=1 ${fl} foo.nc # Row O

23

