
Response to Referee #1

We want to thank the three anonymous referees for the very thorough review of our manuscript. In 
particular, the comments helped us to better articulate the science question of the manuscript, and this 
hopefully resolves some of the major concerns. We shifted the focus of the paper from general low-
frequency variability to multi-annual oscillations, and changed the title to “Multi-annual modes in the 20th 
century temperature variability in reanalyses and CMIP5 models”.

The comments led to substantial changes in the manuscript. One of the main changes is that we have 
made is the way the data sets are preprocessed. We have now used a common scaling factor for all the 
data sets in order to be able to compare the total spectra of the data sets (based on the reasoning of 
Referee #3). Because of this comment, we have recalculated all results and also made substantial changes
to the text, especially in the section describing the Results. Re-calculation did not change the big picture, 
but the results are now much better justifiable, especially as there is now a new Supplement available.

Because of these substantial changes, we kindly ask the Referees to read the whole manuscript once 
again.

We hope that these and the changes explained below help to better convey our message. Below are our 
detailed responses to the reviewer #1 (In the following, our response to each comment is in red font, and 
the referee’s comment in black).

(1) comments from referees/public
1. The goal of this study is unclear as it falls in between (1) a showcase of an advanced statistical tool
(RMSSA) and (2) the evaluation of variability in CMIP5 models. Both goals have already been addressed at
length in other publications and it is not clear what is new here.

(2) author's response
Thank you for your remark. We totally agree that the goal was not clearly articulated in the original 
submission. We hope that the revised manuscript is more of (2) and less of (1). We hope the novel aspects
are better conveyed in the revised manuscript so that it no longer unclear what is new here. Although there 
are a large number of studies on the evaluation of CMIP5 models, we still think that it is worthwhile to have 
a closer look at the model spectra, especially as the advanced tool (RMSSA) has not been applied never 
before in this extent in other publications.

(3) author's changes in manuscript
We have modified the title as well as the introduction of the manuscript to clarify the goal (which is to 
decompose the 20th century climate variability into its multi-annual modes, and to assess how these 
modes are represented by the contemporary climate models.) 

(1) comments from referees/public
2. The title seems to imply the second goal is pursued (model evaluation). Then it is unclear what the 
precise science question is. Why focus on these specific aspects of variability ? What implications for 
model use or development?

(2) author's response
The title is changed, and from the revised manuscript it should be now very clear that we produce a 
reference decomposition from two reanalyses on multi-annual scales and then assess how the model data 
performs with respect to the reference. The science question is clarified, and we provide hints for model 
development, but refrain from speculating what exactly may be behind some model deficiencies.

Due to this, and comments by other Referees, we shifted the focus to multi-annual variability because of 
better statistical confidence of the results. We hope this to provide guidance for model development due 



better understanding of the deficiencies in representing reanalysed modes of multi-annual climate 
variability.

(3) author's changes in manuscript
The comment induced a major revision of the text, especially in the Sections of Introduction and Results.

(1) comments from referees/public
3. The few lines that put in context model errors (p1/l19 to p2/l7) are quite weak and provide an overly 
simplistic view of this complex problem. Also, why use only 12 models out of the 40+ CMIP5 model 
available?

(2) author's response
We agree that the text was too simplistic, even though our goal was not to provide a comprehensive review
of the complex question. 

A subset of CMIP5 models was chosen to keep the analysis and presentation of results manageable. In 
selecting the models, a major principle was to use only one model per institution, so to avoid models that 
are too close relatives. Furthermore, all these models have undergone a long (generally several 
generations of) history of development, suggesting that the chosen models collectively represent the state-
of-the-art.

(3) author's changes in manuscript
The explicitly mentioned lines are removed. A justification to the choice of the models have been added. 
We want to point out again that it would be advisable to read the manuscript once again, since the 
revisions have been quite extensive - we cannot simply point to a changed word here and a sentence 
there.

(1) comments from referees/public
4. For ENSO time scale (and lower frequency), several studies have shown that a minimum of 200-300 
years of simulation are necessary to obtain robust statistics (Wittenberg 2009 and Stevenson et al. 2010). 
This questions the use of historical simulations (140 years).

(2) author's response
We agree that it would be ideal to have time series of 200 - 300 years to obtain robust statistics. In model 
simulation studies this is of course a possibility. However, the fact of reality is that the longest observation 
based references only extend over the past century, and this is what there is.

MSSA (and therefore also RMSSA) is especially designed for analysing short time series (see Ghil et al. 
2002). By taking lagged copies of the time series, it provides overlapping views of the series and enhances 
the identification of signals from the noise. We have also estimated the likelihood of the identified patterns 
being generated only by red noise. This is done by the Monte-Carlo significance test, as described in the 
paper. The test shows that the multi-annual oscillations, have at most 5% chance of being generated only 
by red noise in both reanalysis datasets (Figure 4b and c) and most of the climate model simulation 
datasets (Figure 5). Therefore we can even argue that long time-series are in part needed because weak 
methods are used to analyse high-dimensional data.

(3) author's changes in manuscript
The focus is shifted to multi-annual scales and abstained from closer scrutiny of the decadal and multi-
decadal scales (please see the the text in p.2, l. 4-14.) Proposed references are added.



(1) comments from referees/public
5. Spectra are not “objective” measures of model performance (nor any single metric, see IPCC AR5 Chap.
9) as error compensation can lead to the right statistics through the wrong balance of physical processes 
as shown in many studies.

(2) author's response
We agree that ‘objective’ was not the best word to use in this context. We agree that the spatio-temporal 
modes and their spectra are not objective performance metrics that allow ranking the models based on how
different the model spectra are from the reference (reanalyses). However, we see that the total spectra and
decompositions of each model provide useful hints of the strengths and weaknesses of the models.

We would like to point out, however, the differences of the method used here and the traditional spectrum 
analysis. RMSSA separates the variability modes that are independent of each other as orthogonal 
components, i.e. ST-PCs. We are then using spectrum analysis as a means to show on which frequency 
each component has most power. These spectra are then summarized to make the comparisons of the 
variability patterns in different data sets easier. We do not have to calculate any spatial averages to obtain 
the total spectra and also the regional differences in the variability patterns are included in the spatio-
temporal analysis.

(3) author's changes in manuscript
The comment has been included and the text is now changed (Section 3.3, 1st para). Total spectra and 
decompositions (Supplement) of each model are now available and commented in the Results.

(1) comments from referees/public
6. The “subjective” discussions are quite vague, unhelpful and don’t provide any perspective either 
compared to previous studies or for modelling groups.

(2) author's response
We agree, and this element has been removed altogether, and instead the revised manuscript now 
provides some perspective on the strengths and weaknesses of the models in simulating the multi-annual 
modes of temperature variability.

(3) author's changes in manuscript
Text changed as suggested in Results section.



Response to Referee #2

We want to thank the three anonymous referees for the very thorough review of our manuscript. In 
particular, the comments helped us to better articulate the science question of the manuscript, and this 
hopefully resolves some of the major concerns. We shifted the focus of the paper from general low-
frequency variability to multi-annual oscillations, and changed the title to “Multi-annual modes in the 20th 
century temperature variability in reanalyses and CMIP5 models”.

The comments led to substantial changes in the manuscript. One of the main changes is that we have 
made is the way the data sets are preprocessed. We have now used a common scaling factor for all the 
data sets in order to be able to compare the total spectra of the data sets (based on the reasoning of 
Referee #3). Because of this comment, we have recalculated all results and also made substantial changes
to the text, especially in the section describing the Results. Re-calculation did not change the big picture, 
but the results are now much better justifiable, especially as there is now a new Supplement available.

Because of these substantial changes, we kindly ask the Referees to read the whole manuscript once 
again.

We hope that these and the changes explained below help to better convey our message. Below are our 
detailed responses to the reviewer #2 (In the following, our response to each comment is in red font, and 
the referee’s comment in black).

(1) comments from referees/public
1. Fig. 1 shows that the greatest variance is explained by decadal-multidecadal variabilities (after 
detrending). However, the decadal-multidecadal variabilities are not examined in this paper, including their 
spatial patterns and potential mechanisms as well as model biases.

(2) author's response
The comment is exactly right: we did not provide many details about these slower modes although it would 
be very interesting to see some more details. The revised manuscript is even scarcer in this respect since 
due to the review comments, the scope is now firmly on multi-annual modes. We think the Referees’ 
comments were justified (that there is no statistical significance in the results related to the slow modes) 
and followed the advice in scoping the manuscript anew. We only note briefly in the revised manuscript that
the models behave quite differently regarding the variability in decadal and multi-decadal scales

(3) author's changes in manuscript
These are changes throughout the revised manuscript due to the refined scope, especially in Section 3.3, 
2nd para.

(1) comments from referees/public
2. Table 2: Some of the periods identified by the RMSSA are very close to each other (for example, 2.2, 
2.3, and 2.5; 3.5 and 3.6). It is unclear whether those identified periods truly represent significantly different
physical modes or they could merely represent the artifacts of the RMSSA method.

(2) author's response
Thank you for this remark which is now addressed in the revised text. The identified modes in the 
reanalysis data and CMIP5 models are quasi-periodic, meaning that the oscillation is wobbly and within 
some neighborhood of a given frequency. Thus, more than one frequency in this neighborhood will be 
identified as significant. This seems to explain Table 2 of the original submission. In addition, the method 
itself has a certain spectral resolution depending on the analysis window and temporal resolution of the 
original data set (monthly data in this case).



Based on the review comments, we realised that Table 2 is not very reader-friendly, and is now removed. 
The information is now incorporated in Figure 5 instead, which is more compact regarding the significant 
multi-annual periods. Figure S2 in the Supplementary material provides the test results exhaustively.

(3) author's changes in manuscript
Text has been changed (Section 3.4), Table 2 is removed and the information is incorporated in Figure 5. 
Supplementary material added.

(1) comments from referees/public
3. Figs. 1 and 3: In addition to ENSO, it will be useful to display the spatial patterns of other significant 
periods and examine the models’ performance in simulating them.

(2) author's response
We totally agree with this comment. The snag with this option is that there would soon be an excessive 
number of figures. In the revised manuscript, we selected to visualize a mode that is simulated reasonably 
well by most models, and the 3-4 yr variability pattern was the best option for this purpose.

(3) author's changes in manuscript
New figures available in the Supplement.

4. Specific comments:

(1) comments from referees/public
a) Last paragraph of Page 1: Atmosphere’s memory is too short to explain the signal with a period of 1.7 
years.

(2) author's response
This is true. In the revised manuscript, the explanatory power of the 1.7 yr mode has become weaker, 
presumably because of the new normalization with the common variance, and the mode no longer pop up 
so dramatically. There is thus no longer discussion about this mode in the revised manuscript.

(3) author's changes in manuscript
Text removed about the 1.7 yr mode.

(1) comments from referees/public
b) First paragraph of Page 2: Ocean dynamics responsible for the decadal-multidecadal variabilities needs 
to be discussed.

(2) author's response
This is completely true. However, with the focus on multi-annual modes, the revised manuscript no longer 
have this issue.

(3) author's changes in manuscript
No action taken.

(1) comments from referees/public
c) Page 5, Line 19-20: Components 15-17 of ERA-20C appears to capture the decadal variability of ENSO.

(2) author's response
The visualisation of all modes would be very nice. The new normalization with the common variance 



changed the results somewhat especially regarding the modes with low explanatory power. Therefore the 
components 15-17 of ERA-20C were affected.

(3) author's changes in manuscript
No action taken.

(1) comments from referees/public
d) page 7, Line 16-25: Replace "a warm pool" and "a cold pool" by "a warm anomaly" and "a cold anomaly"

(2) author's response
Thanks, this is now corrected.

(3) author's changes in manuscript
Text is corrected.



Response to Referee #3

We want to thank the three anonymous referees for the very thorough review of our manuscript. In 
particular, the comments helped us to better articulate the science question of the manuscript, and this 
hopefully resolves some of the major concerns. We shifted the focus of the paper from general low-
frequency variability to multi-annual oscillations, and changed the title to “Multi-annual modes in the 20th 
century temperature variability in reanalyses and CMIP5 models”.

The comments led to substantial changes in the manuscript. One of the main changes is that we have 
made is the way the data sets are preprocessed. We have now used a common scaling factor for all the 
data sets in order to be able to compare the total spectra of the data sets (based on the reasoning of 
Referee #3). Because of this comment, we have recalculated all results and also made substantial changes
to the text, especially in the section describing the Results. Re-calculation did not change the big picture, 
but the results are now much better justifiable, especially as there is now a new Supplement available.

Because of these substantial changes, we kindly ask the Referees to read the whole manuscript once 
again.

We hope that these and the changes explained below help to better convey our message. Below are our 
detailed responses to the reviewer #3 (In the following, our response to each comment is in red font, and 
the referee’s comment in black).

(1) comments from referees/public
This manuscript focuses on the capability of current climate models to simulate low-frequency climate 
variability, as determined through a randomised multi-channel singular spectrum analysis (RMSSA) of 
near-surface air temperature. On the basis of this analysis, the authors conclude that state-of-the-art 
climate models tend to exhibit variability that is too periodic, under-active at multidecadal timescales, and 
over-active at decadal timescales. On the positive side, I thought that the manuscript was clearly and 
smoothly written. However, I was left with many questions about the authors’ choices. The title of the 
manuscript is very broad and ambitious, but the authors only analyse one variable with one method in only 
12 climate models, so any conclusions that are drawn are much narrower in scope than the title would 
suggest. By focusing on statistically significant periodicities, the authors really do not directly address 
whether or not models have too much or too little low-frequency variability (particularly since all time series 
are standardized prior to the analysis). All comparisons between the models and reanalysis are informal 
and subjective, and all formal significance testing is limited to red noise null hypotheses rather than 
model/reanalysis differences. Overall, I was hoping that this study would provide a more thorough and 
objective evaluation of model performance that goes beyond previous studies, or if that was not the 
intention, that the scope of this study would be more clearly articulated. I describe my concerns more 
thoroughly below.

(2) author's response
Thank you for this very thoughtful comment. It helped us, in fact, a lot to better formulate our thoughts and 
scope the revised manuscript better. It is clear that the manuscript title was too general compared to the 
actual content of our research, and there was a gap or discrepancy. We hope the revision has resolved this
issue.

One of the main changes is the way the data sets are preprocessed. We have now used a common scaling
factor for all the data sets in order to be able to better compare the total spectra of the data sets. We have 
re-calculated everything, including all figures, and made substantial changes to the text to accommodate 
this change.



Major Comments

(1) comments from referees/public
1) Lines 41-48: The attribution of variance at different timescales by the authors is too simple and not 
entirely accurate. A substantial portion of variance at interannual to interdecadal timescales can be 
attributed to “climate noise” associated with processes with intrinsic timescales that are much shorter than 
interannual. That is the nature of red noise. For example, the North Atlantic Oscillation (NAO) is a 
teleconnection pattern with broad impacts and pronounced interannual and interdecadal variability, and yet 
much of that can be attributed to internal atmospheric variability (Wunsch 1999; Feldstein 2000). Therefore,
it is not accurate to say that interannual variability is primarily attributed to ENSO or that decadal-to-multi-
decadal variability is attributed to ocean dynamics. These comments may be true for periodic variability, but
then the authors need to explain why they are focusing on oscillatory behavior and neglecting other 
dominant sources of interannual and multi-decadal variability.

(2) author's response
Thanks for this clarification which we fully agree. We now realize that the original text was not entirely 
accurate. We have modified the introduction and these statements are not included anymore. Instead, we 
have added some text on this issue in the discussion on the lines of this comment (c.f. p. 10) and utilized 
the references.

(3) author's changes in manuscript
Introduction modified, and the statements removed. Text added on this issue in the discussion (c.f. p. 10), 
references are added.

(1) comments from referees/public
2) Why do the authors choose the 12 models that they choose? Given that there are so many more 
simulations available, this choice seems arbitrary.

(2) author's response
A subset of CMIP5 models was needed to keep the analysis and presentation manageable. In selecting the
models, we used only one model per major institution to avoid models with close common ancestors. 
Furthermore, all these models have undergone a long history of development covering several model 
generations, suggesting that the chosen models collectively represent the state-of-the-art. We admit that 
the subset could be selected in many different ways.

(3) author's changes in manuscript
The choice of models is justified in the revised manuscript, and some text is added (Section 2.4, 1st para).

(1) comments from referees/public
3) Line 166: Again, perhaps this relates to my misconception about what the authors are trying to address, 
but the decision to standardize the data sets has made it challenging for me to interpret the authors’ 
results. The climate models may have very different temperature standard deviations, which would impact 
the temperature variability from interannual to multidecadal timescales (e.g., Thompson et al. 2015). 
However, by standardizing the data, the authors essentially are artificially adjusting the climate models and 
reanalyses to have common variance at every grid point. Therefore, the authors are erasing potentially 
important differences in variance between the models and reanalyses that would impact reanalysis/model 
differences at all timescales. The motivation for this decision and the consequences for interpretation 
should be discussed.

(2) author's response
Thank you for this thoughtful remark. After quite some internal discussions we concluded that the way we 
normalized the data is not the best choice on the viewpoint of comparing the total spectra. We therefore 



decided to recompute everything according to this comment about the standardisation, and use a common 
normalisation factor (the average standard deviation of all the data sets). This better retains comparability 
of total spectra. The revision of the manuscript is thus extensive (also including the new focus on multi-
annual modes exclusively).

The data processing steps after the revision are:

• linear trend fitted and removed,

• annual cycle estimated using Seasonal-Trend Decomposition (STL; Cleveland et al., 1990) and 
removed,

• resulting values mean-centered and divided by the average standard deviation of all the data sets 
(see Figure 1). Average standard deviation is obtained after removal of the trend and the annual 
cycle.

These changes in the preprocessing has led to changes in the results, analysis and conclusions (not so 
much in the leading modes of variability but more of the modes of smaller eigenvalues). We note that the 
common normalisation factor may not be the optimal for each data set, but it supports better the aim of this 
study, which is to compare the multi-annual modes in reanalysis and climate model data sets.

(3) author's changes in manuscript
Text revised extensively.

(1) comments from referees/public
4) Lines 230-234: The decision to evaluate model performance subjectively is unsatisfying. It is difficult to 
compare power spectra with short records, and visual inspection can be deceiving. Combined with my 
previous comment, I have difficulty interpreting the authors’ results. There may be truth in the authors’ 
conclusions in lines 252-254, but I would like more support.

(2) author's response
We agree with this difficulty, and are not completely satisfied with the subjectivity either. The revised 
manuscript is our attempt for more objective conclusions. We have also included Supplementary material 
to better support the analysis. We have removed Table 3 and changed/removed the associated 
discussions. The conclusions are modified for objectivity, and solely focusing on the multi-annual variability.

(3) author's changes in manuscript
Table 3 is removed, and the associated discussions changed/removed. The conclusions are modified, and 
focus changed to multi-annual variability. A Supplement added.

(1) comments from referees/public
5) Line 272: How are “false alarms” defined? Again, the authors did not determine if there are significant 
differences between the reanalyses and models, and so I do not see how the determination of false alarms 
was made.

(2) author's response
Thanks for this comment - it helped us to realize that the original choice of making a subjective evaluation 
of model performance inevitably leads to this cascade of problems. We agree that ‘false alarms’ were not 
defined at all.

We do not use the term ‘false alarm’ in the revised manuscript. In addition, we have decided to remove 
Table 2 and show the significant multi-annual modes in Figure 5 (thin vertical lines) and also in the 
Supplementary material (S2). We think that these figures are more reader-friendly than Table 2, and the 
discussion more objective.



(3) author's changes in manuscript
The term ‘false alarm’ is removed, Table 2 is removed, and a Supplement is added.

(1) comments from referees/public
6) Line 289: Why did the authors subjectively choose the Nino3.4 region to base the composites? Although 
it seems reasonable that the 3.5-yr mode would be related to ENSO, by basing the composites on a 
subjectively chosen region, the authors seem to be predisposing the analysis to highlight ENSO-like 
variability. More generally, I am not sure why Section 3.4 is entirely focused on ENSO and its 
teleconnections, given that these topics have been covered extensively in other studies and that the 
authors argue that five periodicities exist. It would seem less arbitrary to let the analysis direct the content 
and to focus on all identified periodicities.

(2) author's response
It is true that the choice of the Nino3.4 region to base the composites directs the analysis (which is not 
nice), although the choice was made “post mortem”, i.e., after inspecting all the individual figures, which 
seem to illustrate ENSO-type variability.

Inspired by your comment, we used a completely different and fully objective approach in the revised 
manuscript, which results in “phase composites”. The compositing procedure now follows the one 
described in Plaut and Vautard (1994). The idea is to choose the grid point time series (RC l) for which the 
variance is the largest, and calculate its time derivative (RC’l). The phase of the mode at each time step is 
determined by calculating the angle between the vector (RCl, RC’l) and the vector (0, 1). These phases, in 
the interval (0, 2π), are then classified into eight categories, each occupied by equal number of “maps”. 
Composite maps are then constructed from the maps in each category. This description is included in a 
new subsection (2.6 Data visualisation).

In the revised manuscript we have identified significant multi-annual periods in the reanalysis data sets at 
3.5/3.6 and 5.2-5.7 yr. A variability mode with a period between 3 and 4 years was identified significant (at 
5% level) in majority of the climate models (excluding models c, g and k) and therefore we decided to 
illustrate this particular mode.

There are indeed interesting but different patterns in several CMIP5 models that would be worth studying, 
but inclusion of all these would make this paper excessively long, and are therefore not included. We tend 
to think that the model development groups should do this for sake of their own model development.

(3) author's changes in manuscript
Results are recomputed and text changed extensively.

Minor Comments

(1) comments from referees/public
1) Lines 137-138: This relates to my first comment, but the authors are not really addressing whether the 
models “capture the observed temperature distribution.”

(2) author's response
As far as we understand correctly this comment, the total spectra are now better inter-comparable, and 
therefore one can better assess the “capture” of variability.

(3) author's changes in manuscript
No action taken.



(1) comments from referees/public
2) Line 179: Is there any sensitivity to this choice of lag window?

(2) author's response
The sensitivity was studied in Seitola et al. (2015), c.f. Fig 7. In that paper it was concluded that the choice 
of the lag window does not have major effects on the significant periods (on multi-annual scales). We did 
not redo this sensitivity test here.

(3) author's changes in manuscript
No action taken.

(1) comments from referees/public

3) Line 202: I do not understand why those components are called “trend components” if the data were 
detrended.

(2) author's response
Sorry, calling the slow component as ‘trend components’ is a convention that has been used in some of our
more statistics oriented references. We agree that this is misleading and the term has been replaced in the 
revised manuscript.

(3) author's changes in manuscript
Terminology is changed.

(1) comments from referees/public
4) Lines 208-209: How is it determined that ENSO variability has a decadal component in 20CR?

(2) author's response
In the original manuscript, Figure 1, the components 5 and 6 of 20CR have also spectral power between 10
and 20 yr periods, in addition to power on multi-annual time-scales. In the revised manuscript, Figure 2, a 
similar pattern is seen in components 7 and 8.

(3) author's changes in manuscript
No action taken.

(1) comments from referees/public
5) Line 210: I would not consider the similarity of the 20CR and ERA-20C spectra to be striking, given that 
the reanalyses assimilate similar data.

(2) author's response
We agree to some extent, but also think that this shows that the data assimilation systems of 20CR and 
ERA-20C extract observed information in a very similar manner (which is of course good news).

(3) author's changes in manuscript
The word “striking” does not appear in the revised manuscript.



(1) comments from referees/public
6) Line 245: I am not convinced of five key periodicities. Physically, it seems that all identified periods may 
relate to one phenomenon (ENSO), and these five frequencies just happened to pass the significance 
threshold.

(2) author's response
Thanks for the remark. We agree that the identified periods may relate to ENSO. Since it is a quasi-periodic
oscillation, the ENSO-variability is captured by several near-by frequencies in the significance test.

(3) author's changes in manuscript
Text has been amended (Section 3.4).

(1) comments from referees/public
7) Discussion: Isn’t it possible that the existence of too many significant periodicities in the climate models 
could be due to ENSO being too periodic in some models, which has been discussed previously?

(2) author's response
We agree that too strong / periodic ENSO may result in a large number of significant periodicities in climate
models, and the significance test then to pick these up.

(3) author's changes in manuscript
The text has been amended in Section 3.4



List of changes in the manuscript:

We want to point out that it would be advisable to read the manuscript once again, since the revisions have
been quite extensive - we cannot simply point to a changed word here and a sentence there. Here are the 
major revisions that we have made:

• We have changed the title to: “Multi-annual modes in the 20th century temperature variability in 
reanalyses and CMIP5 models”

• We have modified the Introduction to clarify the goal of the work (which is to decompose the 20th 
century climate variability into its multi-annual modes, and to assess how these modes are 
represented by the contemporary climate models.) 

• The focus is shifted to multi-annual scales and abstained from closer scrutiny of the decadal and 
multi-decadal scales (please see the the text in p.2, l. 4-14.). There are changes throughout the 
revised manuscript due to the refined scope.

• One of the main changes is the way the data sets are preprocessed. We have now used a common
scaling factor for all the data sets in order to be able to better compare the total spectra of the data 
sets. This is described in 2.5, p.4-5. We have re-calculated everything, including all figures, and 
made substantial changes to the text to accommodate this change.

• Change in compositing procedure: we used a completely different and fully objective approach in 
the revised manuscript, which results in “phase composites”. The compositing procedure now 
follows the one described in Plaut and Vautard (1994). The idea is to choose the grid point time 
series (RCl) for which the variance is the largest, and calculate its time derivative (RC’l). The phase 
of the mode at each time step is determined by calculating the angle between the vector (RCl, RC’ l)
and the vector (0, 1). These phases, in the interval (0, 2π), are then classified into eight categories, 
each occupied by equal number of “maps”. Composite maps are then constructed from the maps in
each category. This description is included in a new subsection (2.6 Data visualisation). Please see 
the Figure 6 in the revised manuscript and also the supplement (S3).

• We have added a supplement including decompositions (S1), significance tests (S2) and spatial 
patterns of 3-4 yr mode for each data set (S3).

• A justification to the choice of the models have been added (section 2.4 data sources)

• Table 2 is removed and the information (significance test) is incorporated in Figure 5 and 
supplement (S2).

• Table 3 is removed, and the associated discussions changed/removed. The discussion (Section 4, 
p. 10) and conclusions (Section 5, p. 10) are modified, and focus changed to multi-annual 
variability.

• Figures 1, 3, and 6 are new

• Figures 2 (fig.1 in original version), 4 (fig. 2 in original version) and 5 (fig. 3 in original version) are 
modified
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Abstract. A crucial performance test of
::::::::::
performance

::::::::::
expectation

::
is
::::

that
:

Earth system models is their ability to simulate

:::::::
simulate

::::
well the climate mean state and variability. Here we concentrate on representation of inter-annual to multi-decadal

variability in 12 CMIP5 climate model simulations. Reference climate is provided by
:::
the

::::::
climate

::::::::::
variability.

::
To

::::
test

::::
this

::::::::::
expectation,

:::
we

::::::::::
decompose two 20th century reanalysis data sets of

:::
and

::
12

:::::::
CMIP5

::::::
model

::::::::::
simulations

:::
for

:::::
years

:::::
1901

::
–

::::
2005

::
of

:::
the

:
monthly mean near-surface air temperature . The spectral decomposition is based on

::::
using

:
Randomised Multi-5

Channel Singular Spectrum Analysis (RMSSA).
::::
Due

::
to

:::
the

::::::::
relatively

::::
short

::::
time

:::::
span,

:::
we

:::::::::
concentrate

:::
on

:::
the

::::::::::::
representation

::
of

::::::::::
multi-annual

:::::::::
variability

:::::
which

::::
the

:::::::
RMSSA

::::::
method

:::::::::
effectively

::::::::
captures

::
as

:::::::
separate

::::
and

:::::::
mutually

::::::::::
orthogonal

:::::::::::::
spatio-temporal

::::::::::
components.

:::::
This

::::::::::::
decomposition

::
is
::

a
::::::
unique

::::
way

:::
to

:::::::
separate

::::::::::
statistically

:::::::::
significant

::::::::::::
quasi-periodic

::::::::::
oscillations

:::::
from

::::
one

::::::
another

::
in

:::::::::::::::
high-dimensional

:::
data

::::
sets.

:

The main results are as follows. First, the total spectra for the two reanalysis data sets are remarkably similar in all time scales,10

except that spectral power of decadal variability (10–30 yr) differ in these data by about 30
:::
the

::::::
spectral

::::::
power

::
in

:::::::::
ERA-20C

:
is
::::::::::::
systematically

:::::::
slightly

::::::
higher

::::
than

::
in

:::::
20CR.

:::::
Apart

:::::
from

:::
the

::::
slow

::::::::::
components

::::::
related

::
to
::::::::::::

multi-decadal
:::::::::::
periodicities,

::::::
ENSO

:::::::::
oscillations

::::
with

::::::::::::
approximately

:::
3.5

::
yr

:::
and

::
5
::
yr

::::::
periods

:::
are

:::
the

::::
most

:::::::::
prominent

:::::
forms

::
of

:::::::::
variability

::
in

::::
both

:::::::::
reanalyses.

::
In

::::::
20CR,

::::
these

:::
are

::::::::
relatively

:::::::
slightly

::::
more

::::::::::
pronounced

::::
than

::
in
:::::::::
ERA-20C.

:::::
Since

:::::
about

:::
the

:::::::
1970’s,

:::
the

:::::::::
amplitudes

::
of

:::
the

:::
3.5

:::
yr

:::
and

::
5

::
yr

:::::::::
oscillations

::::
have

:::::::::
increased,

::::::::::
presumably

::::
due

::
to

:::::
some

::::::::::
combination

:::
of

:::::
forced

:::::::
climate

:::::::
change,

:::::::
intrinsic

::::::::::::
low-frequency

:::::::
climate15

:::::::::
variability,

::
or

::::::
change

::
in

:::::
global

::::::::
observing

:::::::
network. Second, none of the 12 coupled climate models closely reproduce all aspects

of the reference
::::::::
reanalysis spectra, although some models represent many aspects well. For instance, the IPSL-CM5B-LR

model is close to reanalyses but has too little multi-decadal variability, and the HadGEM2-ES model is close to reanalyses

except the notable over-activity at periods at and around 10 yr
:::::::::::::
GFDL-ESM2M

:::::
model

:::
has

::::
two

:::::
nicely

:::::::::
separated

:::::
ENSO

:::::::
periods

:::::::
although

::::
they

:::
are

::::::::
relatively

:::
too

:::::::::
prominent

:::
as

::::::::
compared

::::
with

:::
the

::::::::::
reanalyses.

:::::
There

::
is

:::
an

::::::::
extensive

::::::::::
Supplement

:::
and

::::::::
Youtube20

:::::
videos

::
to

::::::::
illustrate

:::
the

::::::::::
multi-annual

:::::::::
variability

::
of

:::
the

::::
data

::::
sets.

Keywords: climate model assessment, dimensionality reduction
:::::::::::::
spatio-temporal

::::::
modes,

::::::
climate

:::::::::
variability,

::::::
climate

::::::
model

::::::::
simulation,

random projection, 20th century reanalysis, significance testing, RMSSA algorithm
:::::::
RMSSA

:::::::::
algorithm,

::::::
ENSO

::::::::::
oscillation,

:::::::
Youtube

:::::
video
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1 Introduction25

The ultimate goal in developing Earth system models (ESM) is to exploit the inherent predictability of the Earth system to

:::::
enable

::::::::::
exploitation

:::
of

:::
the

:::::::
inherent

:::::
Earth

::::::
system

:::::::::::
predictability,

::::
and

:::::
hence

:
reduce weather and climate related uncertainties in

our daily life, and guide societies in making sustainable choices (e.g., Slingo and Palmer 2011; Meehl et al. 2014). Prediction

tools are very complex and their testing goes hand-in-hand with their development. A crucial performance test of ESMs is

related to their ability to simulate well the observed
:::
For

:::
the

::::::::::
predictions

::
to

:::
be

:::::
useful

::::
and

::::::
usable,

:::
the

::::::::::
expectation

::
is

::::
that

:::
the30

climate mean state and the variability around the mean.

Here we focus on ESMs of today and how they represent inter-annual to multi-decadal climate variability . This is a

very broad range of temporal scales and it is associated with a multitude of spatial scales. Generally speaking, spectral

misrepresentations appear either due to lack of variability in a model or over-activity of a model in some temporal scales.

Conclusions about model deficiencies based on spectral differences are very scale dependent, and some general guidance can35

be obtained by thinking about the mechanisms of natural climate variability (e.g., Ghil 2002). Essentially, short time scale

variability (below 2 yr) in the model spectrum of near-surface air temperature is most likely related to the representation

of internal variability of the atmosphere. Associated model deficiencies, such as low resolution, can explain most of these

weaknesses. Inter-annual variability (2–7 yr) is prominently related to the ENSO phenomenon, and simulation weaknesses

point more towards deficiencies in atmosphere-ocean feedback processes and ocean model dynamics. Decadal-to-multi-decadal40

variability can be thought of being driven by ocean dynamics. There is however clear indication of multi-decadal variability,

such as Atlantic multi-decadal oscillation (AMO), that may be driven by stochastic forcing of mid-latitude atmospheric

circulation on ocean, and changes in ocean circulation may rather be a response rather than driver of the variability (Clement

et al., 2015). This interpretation widens the scope of possible root causes from model errors in ocean dynamics to coupling

issues
::::::
climate

::::::::
variability

::::
are

::::
well

::::::::
simulated

:::
by

:::::
these

:::::
tools.

::::
Due

::
to

:::
the

::::::::::
complexity

::
of

:::
the

::::::
models

::::
and

:::
the

::::
data

::::
they

::::::::
produce,45

:::::
testing

:::
the

::::::::::
expectation

:::::
poses

::
a

::::::::
challenge:

:::::
many

:::::::
aspects

::
of

:::
the

::::::
model

::::::::::
performance

:::
are

::::::::
gathered

:::::
under

:::
the

:::::::::
variability

:::::::
concept

:::
and

::
no

::::::
single

::::::::
diagnostic

:::::
alone

::
is

::::::::
sufficient

::
to

:::::::
exhaust

::
its

:::
all

:::::
facets.

::::
Yet,

::::::::::::
understanding

:::
the

:::::::::::
discrepancies

:::::::
between

:::
the

::::::::
observed

:::
and

::::::::
simulated

:::::::::
variability

::
is

::::::
crucial

:::::::
feedback

:::
for

::::::
model

::::::::::
development.

Representation of inter-annual to multi-decadal climate variability among models participating in climate model inter-

comparisons(,
:

such as CMIP5)
:
, has been studied by e.g. Bellenger et al. (2014), Knutson et al. (2013), Ba et al. (2014),50

and Fredriksen and Rypdal (2016). We will add to this literature by applying a recently developed powerful spectral analysis

tool in this field. We identify the spectral signatures by
::::::::
interfacing

::
a

:::::::::::
representative

:::
set

::
of

:::::::::::
contemporary

:::::::
coupled

:::::::
climate

::::::
models

::::
with

::::::::
reanalysis

::::
data

:::::::
focusing

:::
on

:::::::::::::
spatio-temporal

:::::
modes

:::
of

::::::
climate

:::::::::
variability.

::::
One

::::::
century

:::::::
covered

::::
with

:::::
global

:::::::::
reanalysis

::::
data

:
is
::::::::
naturally

::::
very

:::::
short

::
for

::::
this

:::::::
purpose

:::
and

:::::::
severely

:::::::::
constrains

::::::::::::::
inter-comparison

::::::
studies

:::
(e.

::
g.

:::::::::
Wittenberg

:::::
2009

:::
and

:::::::::
Stevenson

:
et
:::
al.

:::::
2010).

:::::
First,

::::
time

:::::
series

::::::
should

:::::
cover

:
a
::::::::
sufficient

:::::::
number

::
of

::::::::
recurring

:::::::
"events"

:::
for

::::::::
obtaining

::::::::::
significance

::
for

:::
the

::::::::
findings.55

::::::::
Therefore,

:::::::::::::::::::::
decadal-to-multi-decadal

:::::::::
variability

:
is
:::
of

::::::
interest

:::
but

:::
not

::
as

::::::::::
informative

::
as

:::::::
focusing

:::
on

::::::
shorter

::::::
cycles

::
of

:::::::::
variability.

::::::
Second,

:::
the

:::::::
applied

:::::::
methods

::::
have

::
to

:::
be

::::
very

:::::::
effective

::
in

:::::::::
extracting

::::::::::
information

::::
from

:::
the

::::
short

:::
but

:::::::::::::::
high-dimensional

::::
data

::::
sets.

:::
For

::::
these

::::::::
reasons,

::
we

::::::::::
concentrate

:::
on

:::
the

::::::::::::
representation

::
of

:::::::::::
multi-annual

::::::::
variability

:::
in

:::::::::
reanalyses

:::
and

:::::::
coupled

::::::
climate

:::::::
models

2



applying Randomised Multi-Channel Singular Spectrum Analysis (RMSSA; Seitola et al. 2014, 2015) which is an advanced

::::::::
effectively

::::::::
separates

::::::::
mutually

:::::::::
orthogonal

:::::::::::::
spatio-temporal

::::::::::
components

:::::
from

:::
our

::::::::::::::
high-dimensional

::::
data

::::
sets.

:
60

:::
The

::::
aim

::
of

:::
this

:::::
study

::
is
:::
to

:::::::::
decompose

:::
the

::::
20th

:::::::
century

::::::
climate

:::::::::
variability

::::
into

::
its

:::::::::::
multi-annual

:::::::
modes,

:::
and

::
to

::::::
assess

::::
how

::::
these

::::::
modes

:::
are

::::::::::
represented

::
by

:::
the

::::::::::::
contemporary

:::::::
climate

:::::::
models.

:::
We

::::
hope

::::
this

::
to

:::::::
provide

:::::::
guidance

:::
for

::::::
model

:::::::::::
development

:::
due

:::::
better

::::::::::::
understanding

::
of

:::
the

::::::::::
deficiencies

::
in

:::::::::::
representing

:::::::::
reanalysed

::::::
modes

::
of

:::::::::::
multi-annual

::::::
climate

:::::::::
variability.

::::::::::
Ultimately,

:::::::::
interpreting

:::
the

:::::
hints

:::::
about

:::::
model

::::::::::
deficiencies

::
as

:::::::::::
development

:::::
topics

:::
are

::::
due

:::
for

:::
the

::::::::::
development

::::::
teams

:::::::::
themselves.

::::
Our

::::
role

:
is
::
to
:::::
point

:::::::
towards

:::
the

:::::::
potential

:::::
error

:::::::
sources.

:::
For

:::::::::
reassuring

:::
the

:::::
teams

::::
that

::::::::::::::
high-dimensional

:
time series analysis method for65

:
is
::::::::
possible

:::::
today,

:::
we

:::::::::
emphasise

:::
the

:::::::::::::
methodological

::::::
aspect

::
of

::::
this

:::::
study.

:::::::
RMSSA

::::
can,

:::::
under

:::::
very

::::
weak

:::::::::::
assumptions

:::
on

:::
the

::::
data,

:::::::::
decompose

:
high-dimensional problems. The strength of RMSSA lies in the fact it is able to

:::
data

::::
sets

::
in

::
a
::::::
unique

::::
way

:::
and

:::::::
separate

::::::::::
statistically

:::::::::
significant

::::::::::::
quasi-periodic

:::::::::::::
spatio-temporal

::::::::::
oscillations

::::
from

:::
one

:::::::
another.

:::::
This

::
is

::
in

:::::::
contrast

::
to

:::::
many

::::
other

::::::::::
approaches

:::::
which

:::::
either

:::::
make

::::::::::
assumptions

:::::
about

:::
the

:::::::::
oscillation

:::::::::
structures,

::::
such

:::
as

::::::
Fourier

::
or

::::::::
spherical

:::::::::::::
decomposition,

::
or

::::::
resolve

:::::
only

:::::
either

::::::
spatial

::
or

::::::::
temporal

:::::::
aspects

::
of

:::::::::
variability.

::::::::
RMSSA

:::
can

:
detect spatially evolving

:
"chains of eventsin70

high-dimensional systems by
:
"
:::::::
through resolving eigenmodes of spatio-temporal covariance data. This is a significant advan-

tage, say, over PCA which only resolves eigenmodes of spatial covariances . This can lead to undesirable projection of
:::
and

::::
often

:::::::
projects

:
temporal evolution of an event

::::::
"event" onto a number of different eigenmodes. Additional benefits of RMSSA

are: (i) dimension reduction via
::
In

::::::::
addition,

:::
the

:::::
novel

::::
data

::::::::::
compression

::::::
based

::
on

:
random projections enable applications in

extremely high dimensional problems, (ii) convergence properties of the eigenmode decomposition are very good allowing75

better physical interpretation of fewer components, and (iii) the resulting spectrum is straightforward to test for significance.

The paper is organised as follows: data and methods are explained in Section 2, results in Section 3, followed by discussion

and conclusions
:::
here

::
a
:::
vast

::::::::
increase

::
in

:::::::
tractable

:::::::
problem

::::
size

::::
(i.e.,

::::
data

:::::::::
dimension)

::
-
::::
even

:::::::::::
multi-variate

::::::::::::
decomposition

::
is

::::
now

:::::::
possible,

::::::::
although

:::
not

:::::::
included

::::
here.

2 Methods and Data80

2.1 Randomised multi-channel singular spectrum analysis

Multi-channel singular spectrum analysis (MSSA; Broomhead and King, 1986a,b) can be characterised as being a time series

analysis method for high-dimensional problems. It effectively identifies spatially and temporally coherent patterns of a data set

by decomposing a lag-covariance data matrix into its eigenvectors and eigenvalues (e.g., Ghil et al., 2002) using singular value

decomposition (SVD). The lag window in MSSA is a user choice, recommended typically to be shorter than approximately85

one third of the length of the time series (Vautard and Ghil, 1989). Long lag window enhances the spectral resolution, i.e., the

number of frequencies that can be identified, but distributes the variance on a larger set of components. MSSA eigenvectors

are called here space-time EOFs (ST-EOFs), and the projections of the data set onto those ST-EOFs space-time principal

components (ST-PCs). Because of the lag window, ST-PCs have
:
a reduced length and they cannot be located into the same index

space with the original time series. However, they can be represented in the original coordinate system by the reconstructed90

components (RC; Plaut and Vautard, 1994).
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MSSA is computationally expensive and practical limits are easily exceeded for large data sets and long lag windows. In

order to overcome this limitation, a computationally more efficient variant, called Randomised MSSA (RMSSA; Seitola et

al., 2015), is applied here. The RMSSA algorithm, in a nutshell, (1) reduces the dimension of the original data set by using

so-called random projections (RP; Bingham and Mannila, 2001; Achlioptas, 2003), (2) decomposes the data set by calculating95

standard MSSA in the low-dimensional space, and (3) reconstructs the components in the original high-dimensional space.

In RP, the original data set is projected onto a matrix of Gaussian distributed random numbers (zero mean and unit variance)

in order to construct a lower dimensional representation. In this study, we reduce the data volume to about 0.8 to 5 % of the

original volume. Since the computational complexity of RP is low, involving only a matrix multiplication, it can be applied

to very high-dimensional data sets. Although RP is not a lossless compression, it has the important property that the lower-100

dimensional data set has essentially the same structure as the original high-dimensional data set. This has been demonstrated

for climate model data in Seitola et al. (2014). The RMSSA algorithm is briefly presented in the Appendix ??.

2.2 Computation of spectra

The ST-PCs represent the different oscillatory modes extracted from the data set. In order to estimate the dominant frequencies

associated with each ST-PC, the power spectrum is calculated with the Multitaper spectral analysis method (MTM) (Thomson,105

1982; Mann and Lees, 1996). To further compare the spectral properties of
::::::::
variability

::::::
modes

:::
and

:::::
their

::::::::
intensities

::
in

:
different

data sets, the power spectrum of all the ST-PCs of each data set is summed up to obtain so-called total spectrum. The ST-PCs

are already weighted by their respective explanatory power, i.e. multiplied by the corresponding eigenvalue. Therefore the

components with more explanatory power have also higher spectral densities compared to the ones that explain only a small

fraction of the variance. Therefore no extra weighting is needed in this step.110

:::
The

::::::::::
uncertainty

::::::
related

::
to

:::
the

::::::::::
explanatory

::::::
power

::
of

::::
each

::::::
ST-PC

::::
(i.e.

:::
the

:::::::::
confidence

:::::::
interval

::
of

:::
the

:::::::::
respective

::::::::::
eigenvalue)

:
is
:::::::::

estimated
:::::
using

:::
the

::::::
Norths

::::
rule

::
of

::::::
thumb

:::
for

::::::::
sampling

::::::
errors

::::::
(North

::
et

:::
al.,

::::::
1982).

::::
The

::::::::
sampling

:::::
error

::::
(ek)::

is
:::::
given

:::
by

::::::::::::
ek ∼ λk(2/N),

::::::
where

:::
λk ::

is
:::
the

:::::::::
eigenvalue

:::::::::
associated

::::
with

:::
the

:::
kth

::::::
ST-PC

::::
and

::
N

::
is
:::

the
::::::

length
::
of

::::
the

::::
time

:::::
series.

::::::
Thus,

:::
the

:::::::::
confidence

::::::
interval

::
of

:::
the

::::
total

::::::::
spectrum

::::::::
describes

:::
the

:::::::::::
uncertainties

::::::
related

::
to

:::
the

::::::::::
explanatory

:::::
power

::
of

::::
each

:::::::
ST-PC.

2.3 Statistical significance testing115

In data sets of dynamical systems, ST-PCs/ST-EOFs of MSSA often appear as quadratic pairs that explain approximately the

same variance and are π/2 out of phase with each other. However, existence of such a pair does not guarantee any physical

oscillation in the data set, and it may be due to some non-oscillatory processes, such as first-order autoregressive noise. Allen

and Robertson (1996) formulated a test, where the oscillatory modes identified with MSSA are tested against a red noise

null-hypothesis through Monte-Carlo
::::::
Monte

:::::
Carlo simulation.120

Significance testing in MSSA requires solving conventional PCs of the original data set. In case of very high-dimensional

problems this easily exceeds practical computational limits. The RMSSA implementation in Seitola et al. (2015) contains

the Allen-Robertson test such that the PCs are solved in the dimension-reduced space, and is thus affordable even in very

high-dimensional problems. The Appendix ?? also includes a short description of the significance test.

4



2.4 Data sources125

The data consists of the monthly mean near-surface air temperature from the historical 20th Century simulations of 12 dif-

ferent climate models (Table ??).
:::
The

:::::::
selected

:::::::
models

:::::::
originate

:::::
from

:::::::
different

:::::::::
modelling

:::::::
centres,

:::
and

::::
thus

:::
do

:::
not

::::
have

:::::
close

:::::::
common

:::::::
ancestor

:::::::
models.

:::::::::::
Furthermore,

:::
the

:::::::
selected

::::::
models

:::::
have

:::::::::
undergone

:
a
::::
long

:::::::::
(generally

::::::
several

::::::::::
generations

:::
of)

::::::
history

::
of

:::::::::::
development,

:::::::::
suggesting

::::
that

:::
the

::::::
chosen

:::::::
models

::::::::::
collectively

::::::::
represent

:::
the

:::::::::::::
state-of-the-art. Near-surface temperature was

chosen, because many processes must be adequately represented in coupled models to realistically capture the observed tem-130

perature distribution (Flato et al., 2013). These include processes in the Earth system component models (atmosphere, ocean,

etc.) as well as in their mutual coupling models.
:::::
Also,

:::
for

::
the

:::::::::::
near-surface

::::::::::
temperature,

:::::
there

:::
are

:::::::::::
corresponding

:::::::::
reanalysis

::::
data

::::::::
available.

The historical (1901–2005) simulations were extracted from the CMIP5 data archive and they follow the CMIP5 experi-

mental protocol (Taylor et al. 2012). The 20th Century simulations use the historical record of climate forcing factors such as135

greenhouse gases, aerosols, solar variability, and volcanic eruptions. We used a single ensemble member of each model and

the model data sets were interpolated into a common grid of 144× 73 points.

As a reference, we used two reanalysis data sets: the 20th Century Reanalysis V2 data (hereafer 20CR) provided by the

NOAA/OAR/ESRL PSD (Compo et al., 2011), and ERA-20C data provided by ECMWF (Poli et al., 2013). The data sets

are produced using an ensemble of perturbed reanalyses, and the final data set corresponds to the ensemble mean. In 20CR,140

only surface pressure observations are assimilated, and the observed monthly sea-surface temperature and sea-ice distributions

from HadISST1.1 (Rayner et al., 2003) are used as boundary conditions (Compo et al., 2011). In ERA-20C, observations

of surface pressure and surface marine winds are assimilated (Poli et al., 2013). Unlike 20CR, it uses a more recent sea-

surface temperature and sea ice cover analysis from HadISST2 (Rayner et al., 2006). Both 20CR and ERA-20C are forced by

historical record of changes in climate forcing factors (greenhouse gases, volcanic aerosols and solar variations). In order to145

be consistent with the climate model simulations, the same time period is used (1901–2005, i.e., 1260 monthly mean fields) .

20CR has ∼2.0 degree horizontal resolution and we have used gaussian gridded (192× 94) data from 3-hour forecast values.

The horizontal resolution of ERA-20C is approximately 125 km (T159) in a grid of 360× 181 points
:::
and

:::
the

:::::::::
reanalysis

::::
data

:::
sets

::::
were

::::::::::
interpolated

::::
into

:::
the

:::::
same

:::
grid

::
as
:::
the

::::::
model

::::::::::
simulations

::::::::
(144× 73

::::::
points).

2.5 Data processing150

Some pre-processing of the data sets is
:::
was

:
needed before applying RMSSAand statistical significance testing. The data sets

were standardised (i.e. the time series of
:
.
::
At

:
each grid point was mean-centered and divided by its standard deviation) to

avoid overweighting the grid points with higher variance. This adds weight on the lower latitude variability, where ENSO-type

variability is pronounced. On the other hand, no-scaling would make the higher latitude variability dominant because of larger

amplitude variations there. Furthermore, each data set was de-trended, and the dominating
::
the

::::
data

::::
sets

:::::
were

::::::::
processed

:::
as155

:::::::
follows:

–
:::::
linear

::::
trend

::::
was

::::
fitted

::::
and

::::::::
removed,
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– annual cycle was estimated using Seasonal-Trend Decomposition (STL; Cleveland et al., 1990) and removedfrom the

original time series.
:
,

–
:::::::
resulting

::::::
values

::::
were

::::::::::::
mean-centered

::::
and

::::::
divided

:::
by

:::
the

:::::::
average

:::::::
standard

::::::::
deviation

::
of

:::
all

:::
the

::::
data

:::
sets

::::
(see

::::::
Figure

::::
??).160

:::::::
Average

:::::::
standard

::::::::
deviation

:::
was

::::::::
obtained

::::
after

:::::::
removal

::
of

:::
the

:::::
trend

:::
and

:::
the

::::::
annual

:::::
cycle.

:::
The

::::::::
reanalysis

::::
and

::::::
climate

:::::
model

::::
data

:::
sets

:::::
have

:::::::
different

::::::::::
temperature

:::::::
standard

:::::::::
deviations,

:::::
which

::::::
would

:::::
impact

:::
the

::::::::::
temperature

::::::::
variability

::::
from

:::::::::::
inter-annual

::
to

:::::::::::
multi-decadal

:::::::::
timescales

::::
(e.g.,

:::::::::
Thompson

::
et

::
al.

::::::
2015).

::
To

:::::
retain

:::::
these

::::::::::
differences,

:::
we

::::
have

::::
used

:
a
::::::::
common

:::::::::::
normalization

::::::
factor

::::
(i.e.,

:::
the

:::::::
average

:::::::
standard

::::::::
deviation

::
of

:::
all

:::
the

::::
data

:::::
sets).

::::
This

:::::::::
procedure

:::::::
reduces

:::
the

::::::
weight

::
of

:::
grid

::::::
points

::::
with

::::
high

::::::::
variance,

:::::::
typically

::
at
::::::
higher

::::::::
latitudes,

:::
and

:::::
hence

:::::
adds

::::::
weight

::
on

:::
the

:::::
lower

:::::::
latitude

:::::::
features.

:
After the165

pre-processing, the dimension reduction step of RMSSA was applied so that approximately 3
:
5 % of the original dimensions

of 20CR data, 0.8 of ERA-20C, and about 5 of climate model data were retained – the different percentages are due to different

volumes of the original data
:::
data

:::::::::
dimensions

:::::
were

:::::::
retained. The lag window in the analysis was 20 yr (240 months). The total

spectra was
::::
were obtained from this analysis

:
,
:::
and

:::
are

::::::::::
comparable

:::
due

::
to
::::::::::::

normalisation
:::::
using

:::
the

:::::::
common

::::::::
standard

::::::::
deviation

::
of

:::
the

:::
data

::::
sets.170

In the
:::
The statistical significance test , the

:::
uses

::
a
:::
red

:::::
noise

::::
null

::::::::::
hypothesis.

::
In

::::
the

:::
test

:::
we

:::::
have

::::
used

::::
data

::::
sets

::::
that

:::
are

:::::::::
normalised

::
by

::::
their

::::
own

:::::::
standard

:::::::::
deviations.

::::::
Using

:
a
:::::::
common

::::::::::::
normalisation

::::::::
interferes

::::
with

:::::::::
generating

::
the

:::
red

:::::
noise

:::::::::
surrogates

:::::::::::
corresponding

:::
to

::::
each

::::
data

:::
set.

::::
The

:
first 50 PCs of each data set were retained as input. Those PCs explain 80

::
79

:
% of the

variability in 20CR, 75 % in ERA-20C, and 70 %–80 % in the climate model data sets. A total of 1000 realisations of red noise

surrogate data sets were generated, and confidence intervals (90 and
::::::
interval

:
(95 %) for the oscillatory modes were estimated.175

We note that transformation to PCs may intefere
:::::::
interfere with the detection of weak signals, as demonstrated by Groth and

Ghil (2015).

In the following section we will compare the spectral properties of the reanalysis and model data sets. Furthermore, we will

test the spectra of each data set against a red noise null hypothesis in order to distinguish signal from noise. Finally, we will

compare the spatial patterns of an oscillatory modewith a180

2.6
::::

Data
:::::::::::
visualization

:::
We

::::
used

::::::::::::
reconstructed

::::::::::
components

:::::
(RC;

:::
see

:::::::::
Appendix

:::
??)

:::
for

:::::::::::
visualisation

::
of

:::
the

::::::
spatial

:::::::
patterns

:::::::
related

::
to

:::::::
ST-PCs.

::::
For

::::
each

:::
grid

:::::
point

::::
time

::::::
series,

:::
we

:::
can

::::::::
calculate

:::
the

::::
RCs

::::::::::::
corresponding

::
to
::::

the
::::::
ST-PCs

:::
(or

:::::::
modes)

::
of

:::::::
interest.

:::::
These

::::
RC

::::::
values,

::::::::
reflecting

::
the

:::::::::::
contribution

::
of

::::
each

:::
grid

:::::
point

::
to

:::
the

:::::
mode,

:::
can

:::
be

::::::
plotted

::
on

:
a
::::
map

::
at

::::
each

::::
time

::::
step.

:::
We

::::
have

:::::
used

::::
these

:::::
maps

::
to

:::::::
construct

::::::
videos

::
of

:::
the

:::::::::::::
spatio-temporal

::::::
modes.

::
In

:::::::
Section 3.5yr period as represented by different data sets. ,

:::
we

::::
have

::::::::
analysed185

:::
RCs

::::::::::::
corresponding

:::
to

:::
3–4

::
yr

:::::::::
variability.

::::
The

:::::
result

::
is

:
a
:::::
time

:::::
series

::
of

:::
the

::::
data

::::::::::::
corresponding

::
to

:::
the

:::
3–4

:::
yr

:::::
mode

::
in

::::
each

::::
grid

::::
point

::::
and

::::::::
according

::
to

::
its

::::::::
variance

::::
after

:::::::::
detrending

:::
and

:::::::::
removing

:::
the

:::::
annual

::::::
cycle.

::
In

:::
the

:::::::
analysis

:::
we

::::
have

::::::::
neglected

::
5

:::
yrs

::
in

::
the

:::::::::
beginning

:::
and

:::
the

::::
end

::
of

:::
the

::::
time

:::::
series,

:::::::
because

:::
the

::::::::::::
reconstruction

:::::::::
procedure

::::
may

::
be

::::::
biased

::::
there

::::
(see

:::
the

:::::::::
Appendix,

:::
eq.

::::
A4).

:::
The

::::::
videos

:::
can

:::
be

:::::
found

::
at

:::
our

:::::::
Youtube

:::::::
channel

:
(https://www.youtube.com/channel/UCu1zJdwJfLaXvfvTqsKCLHw

::
).
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::
To

:::::::::
summarise

:::
the

::::::::::
animations,

:::
we

:::::
have

:::::::::
calculated

::::::::
composite

:::::
maps

:::
of

:::
the

::::::
modes.

::::
The

::::::::::
compositing

:::::::::
procedure

:::::::
follows

:::
the190

:::
one

::::::::
described

::
in
:::::

Plaut
::::
and

:::::::
Vautard

::::::
(1994).

::::
The

::::
idea

::
is

::
to

::::::
choose

:::
the

::::
grid

:::::
point

::::
time

:::::
series

::::::
(RCl):::

for
:::::
which

:::
the

::::::::
variance

::
is

::::::
largest,

:::
and

::::::::
calculate

::
its

::::
time

::::::::
derivative

:::::::
(RC

′

l ). :::
The

:::::
phase

::
of

:::
the

:::::
mode

::
at

::::
each

::::
time

::::
step

::
is

:::::::::
determined

:::
by

:::::::::
calculating

:::
the

:::::
angle

:::::::
between

:::
the

:::::
vector

:::::
(RCl,:::::

RC
′

l )::::
and

::
the

::::::
vector

:::::
(0,1).

:::::
These

:::::::
phases,

::
in

::
the

:::::::
interval

:::::::
(0,2π),

::
are

::::
then

::::::::
classified

::::
into

::::
eight

:::::::
equally

::::::::
populated

:::::::::
categories.

:::::::::
Composite

:::::
maps

:::
are

::::::::::
constructed

::::
from

:::::
these

:::::::::
categories.

3 Results195

3.1 Spectral similarity of the two reanalysis data sets

We first demonstrate the spectral similarity of the two reanalysis data sets. Figure ?? displays, in terms of explained variance,

the leading 30

3.1
:::::::::

Reanalysis
:::::::::::::
decompositions

:::
The

:::::
main

:::::::
outcome

::
of

:::
the

:::::::
RMSSA

:::::::
method,

:::
the

:::::::::
space-time

::::::::
principal

::::::::::
components

:
(ST-PCsfor

:
)
::::::::::
characterise

::::
both

:::
the

:::::
spatial

::::
and200

:::::::
temporal

::::::::
structure

::
of

:::
the

::::::
modes

::
of

:::::::::
variability.

:::::::
Sections

:::
3.1

::
–
:::
3.4

:::::
focus

::
on

:::::
their

:::::::
temporal

:::::::
aspects.

::::
The

::::::
leading

:::
30

::::::
ST-PC

::::
time

:::::
series

:::
and

:::
the

::::::::::::
corresponding

::::::
power

::::::
spectra

:::
are

::::::::
displayed

::
in
::::::

Figure
:::
??

:::
for 20CR and ERA-20Cand the corresponding power

spectra. The decomposition reveals that variance is distributed in a very similar way in 20CR and ERA-20C. The ordering of

component pairs is not identical but there is a very clear correspondence of the spectral peaks. For instance, the 1.7 yr peak

in the 20CR components 29–30 corresponds to the components 24–25 in ERA-20C. In summary, ,
:::::::
ordered

::::::::
according

:::
to

:::
the205

::::::::
explained

:::::::
variance.

::::
We

:::
can

:::
see

:::
that

:

– the trend components with multi-decadal periods (components
:::
with

:::::::::::::
predominantly

:::::::::::
multi-decadal

:::::::::
periodicity

::
(1and

:
, 2)

explain 6 ,
::
5,

::::
and

::
6)

::::::
explain

:
a
::::
total

::
of

:::
7.2

:
% and 5.3

:::
5.9 % of the variance in 20CR and ERA-20C, respectively, with very

similar spectra (the length of the time series – 105 years – restricts, of course, the correct identification of multi-decadal

oscillations) the spectral peak at 3.5 yr and the broad one around 5 yr are very similar in components 3–6, although the210

associated 10–20 yr variability in
::::
clear

:::::::::
similarities

::
in
:::::
their

::::
time

:::::
series

:::
and

::::::
spectra

:

–
::::::::::
multi-annual

:::::::::::
components

::
(3,

::
4,
:::

7,
:::
and

::
8)

:::::::
explain

:::
4.2 %

:::
and

:::
3.2 %

:
of

:::
the

::::::::
variance

::
in 20CR is separate in components

9–10 in ERA-20C (i. e. ENSO variability has a decadal component in 20CR)
:::
and

:::::::::
ERA-20C,

::::::::::
respectively

:

–
::::
there

::
is

:
a
::::::

broad
::::::::::
multi-annual

:::::
peak

:::::::
centered

::
at
::
5
::
yr

::::
and

:
a
::::::::
narrower

::::
peak

:::
at

:::
3.5

::
yr

::
in

::::
both

::::::::::
reanalyses;

:::::
these

:::
are

::::::
clearly

::::::::
separated

::
in

::::::::
ERA-20C

::
at

:::
the

::::::::::
components

::
3

:::
and

::
4

:::::
versus

::
7

:::
and

::
8.

::::
This

:::::::::
separation

::
in

:::::
20CR

::
is

:::
less

:::::
clear215

–
::::
there

:::
are

:::::
many

:::::::
spectral

::::::
peaks

::
in

:::
the

:::::::::
reanalyses

::
at

::::
2–3

::::
year

:::::::
periods

::::
with

::::
little

:::::::::
explained

:::::::
variance

:::
but

:::::
some

::::
are

::::
well

::::::::
separated

:::
and

::::::
distinct

:
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The similarity of
:::
The

:::::::::
conclusion

:::::
based

:::
on

:::::
Figure

::
2
::
is

:::
that

:::
the

:::::::
leading

::::::
sources

::
of

:::
the

::::::::::
near-surface

:::
air

::::::::::
temperature

:::::::::
variability

:
at
::::::::::::
multi-decadal

:::
and

:::::::::::
multi-annual

::::::
periods

:::
are

::::
well

:::::::::
identifiable

::
in
:::
the

:::::::::
reanalysis

::::
data

::::
sets. 20CR and ERA-20C is striking in the

total spectra (Fig. ??a ). Variability shorter than about 10 years is captured similarly by the two reanalyses . 20CR is somewhat220

more lively in decadal scale (10–30 yr ) and has about 30 higher spectral density there
::
are

:::::::::
composed

::
of

::::
very

::::::
similar

::::::::::
components

::::::::
explaining

:::
the

::::::::
variance

::
in

:::
the

:::
two

::::
data

::::
sets.

::::
This

::
is
::
of

::::::
course

::::::::
expected

:::
but

::
it

:
is
::::
also

:::::::::
reassuring

::::
from

:::
the

:::::::::::::
methodological

:::::
view

:::::
point:

::::::
despite

::
its

::::::::::
complexity,

:::
the

:::::::
RMSSA

:::::::::::::
decomposition

:
is
:::::::::
consistent.

:

:
It
::
is

::::::::::
noteworthy

::
in

:::::
Figure

:::
??

::::
that

::
the

:::::::::::
components

::
3,

::
4,

::
7,

:::
and

::
8

::
in

::::
both

:::::::::
reanalyses

::::
have

:::::::
become

::::
more

:::::::::
prominent

::::
with

:::::
time.

::::
Since

:::::
about

:::
the

:::::::
1970’s,

::
the

::::::::::
amplitudes

::
of

::::
these

:::
3.5

::
yr

::::
and

:
5
::
yr

::::::::::
oscillations

::::
have

::::
been

::
at

::
a

:::::
higher

:::::
level,

::::::::::
presumably

:::
due

::
to

:::::
some225

::::::::::
combination

::
of

::::::
forced

::::::
climate

:::::::
change,

:::::::
intrinsic

::::::::::::
low-frequency

::::::
climate

:::::::::
variability,

::
or

:::::::
changes

::
in

::::::
global

::::::::
observing

:::::::
network

::::
(the

:::::
rather

::::::
sudden

:::::::
increase

:::
in

:::
the

::::::::
amplitude

::::::
seems

::
to

::::::::
coincide

::::
with

:::
the

:::::
onset

::
of

:::
the

:::::::
modern

:::
era

:::
of

:::::::
satellite

:::::::::::
observations).

:::::
This

::::::
finding

:::::
seems

::
to

:::
be

::
in

:::::::
support

::
of

:::
e.g.

:::::::
Russell

:::
and

::::::::::::
Gnanadesikan

:::::::
(2014).

::
In

:::
this

::::::::::
connection

:
it
::::::

should
:::
be

:::::
noted,

::::::::
however,

::::
that

:::::::
apparent

::::::::::::
low-frequency

:::::::::
variations

:::
and

:::::::
changes

:::
in

::::::::
amplitude

:::::
may

::::::
simply

::::
arise

:::::
from

:::::::
random

::::::::::
fluctuations

::
of

:::
the

::::
time

::::::
series

::::::::
(Wunsch,

:::::
1999;

::::::::::
Wittenberg,

::::::
2009). One explanation for this difference may be the decadal variability of ENSO which is230

present in
:::::::::::::
Back-projection

:::
of

::::
these

::::::::::
components

::::
into

:::
the

:::::::
original

::::
grid

::::::::::::
representation

::::::
(Figure

::::
??),

::::::
reveals

:::
that

:::
the

:::::::::::
components

::
are

::::::
indeed

:::::::::
associated

::::
with

:::
the

:::::
ENSO

:::::::::::
phenomenon

:::
and

:::
are

::::::::::::
geographically

::::::
similar

::
in

:
20CR

::
and

:::::::::
ERA-20C.

::
In

:::
the

::::::::
snapshots

:::::
from

::::::
January

:::::
1987

:::
and

:::::::
January

::::
1998

:::::::
(Figure

:::
??),

:::::
there

::
is

:
a
::::::
typical

::
El

:::::
Niño

::::::
pattern

::::
with

:::::::
positive

::::::::
anomalies

::
in
:::
the

:::::::::
equatorial

::::::
Pacific

::::::
Ocean,

:::::::::::::
South-America,

::::
and

:::::::::::
northwestern

:::::::::::::
North-America.

::::::
These

:::
are

:::::::::
associated

::::
with

:::::::::::
synchronous

::::::::
evolution

:::
of

::
(i)

::
a
::::::
dipole

:::::::
structure

::
in

:::
the

:::::::
western

:::::::::
Antarctica

::::
with

::::::
easterly

:::::::
motion,

:::
and

:::
(ii)

::
a
:::::::::
wave-train

::::
type

::::::
pattern

::
in

:::
the

:::::::::::
northernmost

:::::::::::::
North-America235

::::
with

:::::::::::
north-easterly

:::::::
motion.

:::
The

::::::::::
components

::
3,
::
4,
::
7,
::::
and

:
8
::::
thus

::::::::
represent

:
a
::::::
global

:::::::::::
phenomenon,

::::
with

::
an

::::::::
increased

:::::::::
amplitude

::
in

:::::
recent

:::::::
decades.

:::::
These

:::::::
features

:::
are

:::::
nicely

:::::::
depicted

::
in

:::
our

:::::::
Youtube

:::::::
channel

:
(https://www.youtube.com/watch?v=vehbT8fOHeM

:
,

https://www.youtube.com/watch?v=xG--SiUqqAI
:
).
:

3.2
:::::::::
Reanalysis

::::
total

:::::::
spectra

:::::
Figure

::::
??a

:::::
shows

:::
the

:::::
total

::::::::
spectrum

:::
for

:::
the

:::::::::
reanalyses

:::::::::
constructed

:::::
from

:::
the

:::::::
ST-PCs,

::::
and

::::
their

:::::::::
confidence

::::::::
intervals

:::::::
(dashed240

:::::
lines).

:::
As

::
in

:::
the

::::::
ST-PCs,

:::::
there

::
is

::::
most

:::::
power

::
in
:::
the

:::::
slow

::::::
modes.

::
At

::::::
periods

:::
of

::::
about

:::
3.5

:::
yr

:::
and

:
5
:::
yr,

::::
there

:::
are

:::
the

:::::::
spectral

:::::
peaks

::
of

:::
the

::::::::::
components

::
3,

::
4,

::
7,

:::
and

::
8.

::::
The

:::
dip

::
at

:
1
::
yr

:::::::
reflects

:::
the

:::::::
removed

::::::
annual

:::::
cycle.

:

::
As

::::
Fig.

:::
??

::::::
already

::::::::
suggests,

::::
the

:::::
shape

::
of

:::
the

::::
two

:::::::
spectra

::
is

:::::::::
remarkably

:::::::
similar

::
in

:::
all

::::
time

::::::
scales (Fig. ??, components

5–6)but is missing from
::::
??a).

::::
This

:::::
leaves

::::::
hardly

:::
any

:::::
doubt

::::
that

:::
the

:::
data

:::::::::::
assimilation

::::::
systems

:::
of

:::::
20CR

:::
and

:
ERA-20C .

The statistical significance testing of the periodicities
:::::
extract

::::::::
observed

::::::::::
information

:::
in

:
a
:::::

very
::::::
similar

:::::::
manner.

::::::
There

:::
are245

::::
some

::::::::::
differences,

::::::::
however.

:::
The

:::::::
spectral

::::::
power

::
in

::::::::
ERA-20C

::
is
::::::::::::
systematically

:::::::
slightly

:::::
higher

::::
than

::
in
::::::
20CR.

::::
This

:::::::::
difference

::
is

:::::::::
statistically

:::::::::
significant

::
at

::::::
almost

::
all

::::
time

::::::
scales.

::::
This

::
is
:::::
most

:::::
likely

:::
due

::
to

::::::::
generally

::::::
higher

::::::::::
temperature

:::::::
variance

::
in

:::::::::
ERA-20C

::::::::
compared

::
to

::::::
20CR,

::::::::
especially

::
in

:::
the

::::::::
Southern

:::::
Ocean

::::
and

:::::
Arctic

::::::
Ocean.

:::::
Also,

:
in 20CR(Fig. ??b )

:
,
:::
the

:::
3.5

::
yr

:::
and

::
5
::
yr

:::::::
spectral

:::::
peaks

::
are

::::::::
relatively

:::::
more

::::::::::
pronounced

::::
than

::
in

:::::::::
ERA-20C.

:

::::::::
Statistical

::::::::::
significance

::::
tests

:::
are

:::::::::
presented

::
in

:::::
Figs.

:::
??b

::::
and

:::
??c

:::
for

::::::
20CR and ERA-20C(Fig. ??c) reveals that nearly the250

same periods rise above the red noise in the two data sets (,
::::::::::
respectively.

::::
The

:::::::::::
multi-annual

::::::
periods

::::
(less

::::
than

::
7

::
yr)

::::::
rising

:::::
above

8
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::
the

:::
95 %

::::::::
confidence

:::::::
interval

::::
(i.e.,

:
the red dots above the area

:::::
region covered by the vertical bars)

:::
are

:::
3.5

::
yr,

:::
3.6

:::
yr,

::::
and

:::
5.7

::
yr

::
in

:::::
20CR

:::
and

:::
3.6

:::
yr,

:::
5.2

:::
yr,

:::
5.5

::
yr,

::::
and

:::
5.7

::
yr

::
in

:::::::::
ERA-20C.

:::::
Thus,

::::::
nearly

:::
the

:::::
same

::::::::::
periodicities

:::
rise

::::::
above

:::
the

:::
red

:::::
noise

::
in

:::
the

:::
two

::::
data

:::
sets. It is logical that the frequency corresponding to the annual cycle is present in the red noise surrogates while it is

removed
:::::
absent from the datasets (

:
, and therefore the red dots are far below the bars). The periods rising above the red noise255

at 5 and 10 significance level are tabulated in Table ??, columns 1 and 2, and are nearly the same
:::
fall

:::
far

:::::
below

::::
their

::::::::
expected

::::::
values.

:::::::::::
Interestingly,

:::
the

:::::
period

:::
of

:::
2.9

::
yr

:
in 20CR and ERA-20C

:::
fall

:::::
below

:::
the

:::
95

:
%

:::::::::
confidence

::::::
interval. Our conclusion is

therefore that the low-frequency
:::::::::::
multi-annual climate variability in the near-surface air temperature is very similar in the two

reanalyses
:::::
20CR

:::
and

:::::::::
ERA-20C.

3.3 Evaluation of the simulated
:::::::
CMIP5

::::::
model

::::
total spectra260

The climate model simulation data was processed exactly the same way as the reanalysis data. The total spectrum of each

model is shown in Figure ?? with
::::
total

::::::
spectra

:::
for

:::
the

:::
12

:::::::
CMIP5

::::::
model

:::
are

::::::
shown

::
in

::::
Fig.

:::
??

:::::
(solid

:::::
lines)

:::::
with

::::
their

:::
95

%
:::::::::
confidence

::::::::
intervals

:::::::
(dashed

:::::::::
envelopes)

:::
and

:
the reanalysis spectra on the background as a reference (dotted

:::
thin

:
lines).

The spectra are objective measures of model performance. We evaluate subjectively how the models reproduce
::::::::::
Statistically

::::::::
significant

:::::::::::
multi-annual

::::::
modes

:::
(at

:
5
:
%

::::
level)

:::
are

:::::::
denoted

:::
by

::::::
vertical

::::::
dashed

:::::
lines.

:::
As

::
in

:::
the

::::
case

::
of

::::::::::
reanalyses,

:::::
these

::::::
spectra265

::
are

:::::::
unique

:::::::::
expressions

:::
of

:::
the

::::::::::::
low-frequency

:::::::::
variability

::::::
present

::
in
:::
the

:::::::::
simulation

:::::
data.

::
A

::::::::::
comparison

:::::::
between

:::
the

:::::::::
simulated

:::
and

:
the reanalysis spectra , and adopt the following terminology: a model can be either under-active

:::::::
provides

::::
one

::::::
means

::
to

:::::
assess

:::
the

::::::::
strengths

:::
and

::::::::::
weaknesses

:::
of

:::::
these

:::::::
models.

::::::::
However,

:::
one

::::::
cannot

:::::::
simply

::::
rank

:::
the

::::::
models

::::::
based

::
on

::::
how

::::
"far

::::
off"

::
the

::::::
model

::::::
spectra

:::
are

:::::
from

:::
the

::::::::
reference,

:::::::
because

::::
this

::::::::::
comparison

::::::
focuses

:::
on

:::
just

::::
one

::::::::
(although

:::::::::
important)

::::::
aspect

::
of

::::::
model

::::::::::
performance

:::
and

:::::::
because

:::::::::
seemingly

:::::
good

::::::::
agreement

::::
with

:::::::::::
observations

:::::
might

:::::::::::
occasionally

:::::
result

::::
from

::::::::::::
compensating

:::::
errors

::
in270

:::::
model

::::::::::
processes.

::::
Here

:::
we

:::
will

::::::::::
concentrate

::
on

:::
the

::::::::::
multi-annual

:::::::
aspects

:::
but

:::
note

::
in

:::::::
passing

:::
that

:::
the

::::
level

::
of

::::::::::::
multi-decadal

::::::::
variability (over-active)

if the spectral density is lower (higher) than in the reanalysis spectra, or a model is on-target with respect to spectral density.

This enables us to make an overall evaluation of the current capabilities of climate models to represent low-frequency variability

.
:
>
:::
20

:::
yr)

:
is
:::::
close

::
to

:::::::::
reanalyses

::
in

::::::
models

::
a,

::
c,

::
d,

:
e,
::::
and

::
g.

::
In

:::
the

:::
rest

::
of

:::
the

:::::::
models,

::
the

:::::
level

:::::
seems

:::
too

::::
low.

::
In

:::
the

::::::
decadal

:::::
scale275

::::
(∼10

::
...

:::
20

:::
yr),

:::
the

:::::
level

::
of

:::::::
variance

::
is

:::::
close

::
to

:::::::::
reanalyses

::
in

::
a,

::
b,

::
c,

:
f,
::
i,

:
j,
::::
and

:
l.
:::::::::::

Subjectively,
:::
the

:::::
shape

:::
of

:::
the

::::::::::::
low-frequency

:::
end

::
of

:::
the

::::::
spectra

:::::::
appears

::::
most

:::::::
realistic

::
in

::::::
models

::
a
:::
and

::
c.

The subjective evaluation is summarised in Table ??. In representing multi-decadal variability, three models are on-target

while the rest are under-active. In decadal variability, majority of the models are on target, while four are over-active. Only

one model has both of these variabilities on-target (a). In ENSO variability, two models (i and g) seem to have both the
::
In280

::::::::::
multi-annual

::::::
scales,

:::
the

:::::
model

:::::::::::
performance

:::::
varies

:
a
:::
lot

::::::
among

:::
the

::::::
models.

:::::
There

::
is
::
a

:::::
group

::
of

::::::
models

:::
(a,

:
b,
::
d,
::::
and

::
e)

::::
with

::::
high

::::::
spectral

:::::::
density

::
at

:::::
about

:
3
::
–
:
7
:::

yr
:::::::
periods.

:::
The

:::::::
models

:
d
::::
and

:
e
:::::
have

:
a
::::::::
bi-modal

:::::::
spectral

::::::::
structure,

::
as

::
in

:::
the

::::::::::
reanalyses,

:::::
while

::::::
models

:
a
::::
and

:
b
::::
have

::
a
:::::
broad

::::::::
unimodal

:::::
peak.

:::::::::::::
Decompositions

:::::::::
(available

::
in

:::
the

::::::::::::
Supplementary

::::::::
material,

:::
S1)

:::::
partly

:::::::
explain

:::
the

::::::
reasons

::::::
leading

::
to
:::::
these

::::
total

:::::::
spectra.
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::
In

:::::
model

::
a,
:::
for

::::::::
instance,

:::::
there

::
is

:
a
::::::::
unimodal

:::::
broad

:::::
peak

::
at

:
3.5 and 5 yr periods on-target. Five models have one of these285

periods on-target, and the rest of the models are either under- or over-active. With respect to the inter-annual variability, four

models seem to be over-active, while the rest are on target.
:
–
::
4
::
yr

::::::
periods

:::::
(Fig.

::::
??a).

::::
The

::::::::::::
decomposition

::::::
reveals

::::
that

::::
there

::::
are,

::
in

::::
fact,

:::
two

::::
well

::::::::
separated

::::::::::
component

::::
pairs

::
at
:::
3.5

:::
yr

:::
and

::
4

::
yr

:::::::::
generating

:::
one

:::::::
merged

::::
peak

::
to
::::

the
::::
total

::::::::
spectrum

::::
(Fig.

::::
S1a

::
in

::
the

::::::::::::
Supplement).

::
A

::::::::::
development

::::
hint

::
is

::::
thus

::
to

:::::::::
investigate

:::::
these

::::::
modes

:::::
which

:::
can

::::
help

::
to

:::::
better

::::::::::
understand

:::::
some

:::::::::
underlying

::::::::
modelling

:::::::::::
deficiencies,

:::
and

::
to

:::::
keep

:::::::::
monitoring

::::
how

::::
this

:::::
aspect

::
of

::::::
model

:::::::::::
performance

::::::
evolves

::
in
:::

the
::::::

future
:::::
model

:::::::::
upgrades.290

::
An

:::::::::
additional

:::::::
concern

::
in

:::::
model

::
a
::
is

::
the

:::::::::
excessive

::::::
spectral

:::::::
density

:
at
:::::
about

::
2
::
yr

:::
and

::
7
:
–
:::
10

::
yr

:::::::
periods.

:

We are not going to rank the models, but two models (i and g) seem to perform particularly well and have four out of five

key periodicities on-target. The IPSL-CM5B-LR model (i) is close to the reanalyses all the way from inter-annual and ENSO

variability to the decadal scale of 20 years and only seem to have too little multi-decadal variability . The HadGEM2 model

(g
:
In

::::::
model

::
e,

::::
there

::
is
::
a

:::::::
bimodal

::::
total

::::::::
spectrum

::::
(Fig.

:::::
??e),

:::::::
although

:::
far

:::
too

::::::::::
pronounced

::
as

:::::::::
compared

::::
with

:::
the

:::::::::
reanalyses.

::::
The295

::::::::::::
decomposition

::::
(Fig.

::::
S1e

::
in

:::
the

:::::::::::
Supplement)

::::::
reveals

:::
that

:::
the

::::::
ST-PC

:::::::::::
components

:
1
::
–

::
10

:::::::
(except

::::
7–8)

:::
are

::
all

:::::::::::
multi-annual

::::
and

::::
peak

:::::::
strongly

:::
and

::::
well

::
in

::::::::
isolation

::
at

:
3
:::
yr,

:::
3.5

::
yr,

::
4

::
yr,

::::
and

:
5
::::
yrs,

:::::::::
explaining

:::::::
together

::
no

::::
less

::::
than

::::
13.9 %

::
of

:::
the

::::
total

::::::::
variance.

:::
The

:::::::::::
development

::::
hint

:::
for

::::::
model

:
e
::
is

::::
thus

::
to

::::::::::
investigate

:::
the

::::::::::
mechanisms

::::::
behind

:::
the

:::::::::::
components

:
1
::

–
:::
10

:::
and

:::::::
thereby

::::::
obtain

:::::::
guidance

:::
for

:::::::::
improving

:::
the

::::::
realism

::
of

:::::::::::
simulations.

::
In

::::
most

:::::
other

::::::
models,

:::
the

:::::::::::
multi-annual

::::::::
variability

::
is
::::
less

::::::::
prominent

::::
than

::
in

:::
the

:::::::::
reanalyses.

::
In

::::::
model

:
c
::::
(Fig.

::::
??c), on the other300

hand, is reasonably close to the reanalyses across the spectrum, except for the notable over-activity at periods at and around 10

yr. CanESM2 (a)is the only model that closely reproduces both the decadal and
::
one

:::::
hand,

:::
the

:::::::::::::
decomposition

:::::
points

:::
out

:::::
(Fig.

:::
S1c

::
in

:::
the

:::::::::::
Supplement)

:::
that

:::::
there

:::
are

::::
about

:::
12

::::::
ST-PC

::::::::::
components

::::
with

::::::
periods

:::::::
between

:::
1.5

::
–

:
3
:::
yrs

::::::
leading

:::
to

:
a
::::
total

::::::::
spectrum

::::
with

:
a
:::::
broad

:::::
peak

::
of

::
2
::
–

:
3
:::
yr

:::::::
periods.

:::::
These

::::::::::
components

:::::
tend

::
to

::::
have

::::
very

:::::::
regular

::::::
cycles,

::::::::
remotely

:::::::::
resembling

::
a
:::::::
coupled

::::::::
harmonic

::::::::
oscillator

:::
and

:::::::::
seemingly

:::::::
missing

:::
the

::::::::
"offbeats"

:::
or

:::
true

::::::::::::::
quasi-periodicity

:::
of

:::
the

:::::::::
reanalyses.

::::
The

::::
task

:::::
seems

::
to

:::
be

::
to305

:::
find

:::
out

:::::::
reasons

::::
why

:::::
model

:
c
::::::::
produces

:::
too

:::::
rapid

:::
and

::::::
regular

:::::::::::
multi-annual

:::::::::
variability.

::
In

:::::
model

::
g
::::
(Fig.

:::::
??g),

::
on

:::
the

:::::
other

:::::
hand,

::
the

:::::::
leading

::::::
ST-PC

::::::::::
components

::
1

:
–
::
9
:::
are

::
on

::::::
either

::::::
decadal

:::
or multi-decadal variability

::::::
periods

:::
and

:::::
these

::::::::::
overwhelm

:::
the

::::
total

::::::::
spectrum.

::
It

:::::
should

:::
be

::::::::
important

::
to

::::
find

:::
out

:::
the

:::::
causes

:::
for

::::
this

::::::::::
accentuated

:::::::::
variability,

::::::::
especially

:::
on

:::
the

::::::
decadal

:::::
scale.

Overall, the clearest signal here is that the modelsgenerally seem to lack multi-decadal variability , and some models are

over-active in representing decadal and inter-annual variability. In ENSO time scales, only two models are on-target
::::::
Finally,310

:::
Fig.

:::
??

::::
casts

:::::
light

::
on

:::::::
models’

::::::
overall

:::::
level

::
of

:::::::::
variability

::::::::
compared

::
to
::::::::::

reanalyses.
:::::::
Clearly,

:::
this

:::::
level

::
in

:::::
model

::
h
:::::
(Fig.

::::
??h)

::
is

:::
low.

:::::::::
Curiously

:::::::
enough,

::
the

:::::::
leading

::::::
ST-PC

:::::::::
component

:::
pair

::
in
::::::
model

:
h
:::::::
explains

:::::
only

::
1.4

:
%

::
of

:::::::
variance

:::
and

:::::
peaks

::
at

:::
3.2

:::
yr.

::::
This

::::::::::
corresponds

::
to

:::
the

::::::
isolated

:::::
peak

::
in

:::
the

::::
total

::::::::
spectrum.

3.4 Significance test by Monte-Carlo MSSA
::
of

::::::::::::
multi-annual

::::::
modes

::
in

:::::::
CMIP5

::::::
models

Table ?? contains the periods rising
::
In

:::
the

:::::::::
reanalyses

:::::
(Fig.

::::
??),

::::
only

::
a
::::
few

:::::::::::
multi-annual

::::::
periods

::::
rise

:
above the red noise315

at 5 and 10 significance level. The periods for
::::
(three

:::
in 20CR and

::::
four

::
in ERA-20Care in the columns 1 and 2. Both data

sets have five periodicities significant at
:
).
:::::
They

:::
are

::
at

::::::::::::
approximately

:::
3.5

::
yr

::::
and 5 level, four of which are common and one
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specific. Additionally, there are three common periodicities significant at 10 level. In terms of statistical significance, 20CR

and ERA-20C behave in a very similar manner.

Table ?? gives an impression that the number of statistically significant periodicities is very large in models, in general. In320

this respect, the climate model data is dissimilar to the reanalysis data. There is only one model (model k) which has fewer

significant periodicities than the reanalyses, and three models (g, h, j) are somewhat close to reanalyses with 11–13 significant

periodicities. The rest of the models have many more periodicities (up to 30). Interestingly,
::
yr

::::::
periods.

::::
For

:::
the

::::::
CMIP5

:::::::
models,

::
the

::::
test

::::::
results

:::
are

:::::::
available

:::
in

:::
the

::::::::::::
Supplementary

:::::::
material

:::::
(S2).

::
In

::::
Fig.

:::
??,

:::
the

:::::::::::
multi-annual

::::::
modes

::::
with

::::::
periods

::::
less

::::
than

::
7

::
yrs

::
at
:
the HadGEM2 model (g) has the 10 yr peak, discussed earlier, significant at 5 % level.325

The number of models that correctly detected either the 20CR or ERA-20C periodicities were seven models for
::::::::::
significance

::::
level

:::
are

:::::::
denoted

::
by

::::::
dashed

:::::::
vertical

::::
lines.

:

::
In

::::::::
summary,

:::::
there

::
are

::
5
::
–

::
15

::::::::::
statistically

:::::::::
significant

::::::
periods

::
in

:::
the

:::::::
models,

::::::
except

:::::
model

::
k

::::
(Fig.

::::
??k)

::::
with

:::::
three

:::
and

::::::
model

:
g
::::
(Fig.

::::
??g)

::::
with

::::
zero

:::::::
periods.

::::
The

::::
large

:::::::
number

::
of

:::::::::
significant

::::::
periods

:::::::
(models

::
d

:::
and

::
e,

:::
for

:::::::
instance)

::::
can

::
be

:::::::::
explained,

::
at

::::
least

:::::
partly

::
by

:::
the

::::
fact

:::
that

:::
the

::::::
modes

:::
are

::::::::::::
quasi-periodic

::::
and

:::
the

::::::
spectral

:::::::
density

:::::::
therefore

:::::::
appears

:::
on

:
a
:::::
range

::
of

:::::::::::
frequencies.

::::
This330

::::::::
manifests

::
as

::::::::
excursion

::
of

:
the 1.7 yr period, five for 2.2 yr, four for

::::::::
red-noise

::::::::
threshold

::
on

::::::
several

::::::::
adjacent

::::::::::
frequencies.

::::
This

::
is

:::::
typical

:::
for

:::::::
models

::::
with

::::
large

:::::::
spectral

:::::
power

:::
on

::::::
certain

::::
time

::::::
scales.

::
In

:::::
model

:
l
:::::
(Fig.

::::
??l),

:::
for

:::::::
instance,

:::::
there

:::
are

:::
two

:::::
broad

::::
and

::::::
distinct

:::::::
spectral

:::::
peaks

::
at

:::::
about 3.5 yr , seven for 3.6, four for 4.2 yr , and two for 5.2

:::
and

:
6
::
yr

:::::::
periods,

::::
and

:::::
many

:::::::::
significant

::::::
periods

:::
are

:::::::
gathered

:::
at

::::
these

::::
and

::::::
nearby

::::::::::
frequencies.

::
In

::::::::
contrast,

::::::
models

::
f
:::
and

::
h

::::
(and

::
to

:::::
some

:::::
extent

::::::
model

::
c)

:::::
have

::::::
several

::::::::
significant

::::
and

::::::
distinct

:::::::
periods

:::::::
between

::
2

::
yr

:::
and

::
7
:
yr. In addition to these, there were many "false alarms", as seen in Table335

??
::::
terms

:::
of

::::::
number

::
of

:::::::::
significant

::::::
modes,

:::::::
models

::
a,

:
i,
::
j,

:::
and

::
k

::::
seem

::
to

:::
be

::::::
closest

::
to

:::
the

::::::::
reanalyses.

3.5 Spatial patterns of the 3.5
:::
3-4 yr mode

The oscillatory mode with a 3.5 yr period was significant in 20CR and ERA-20C and in seven climate models. The
::::::
ST-PC

::::::::::
components

:::
can

:::
be

::::::::::
represented

::
in

:::
the

:::::::
original

:::::::::
coordinate

:::::::
system

::
as

:::
so

:::::
called

::::::::::::
reconstructed

::::::::::
components

:::::
(RC)

::::
that

:::
can

:::
be

::::::::
visualised.

:::
In

:::
this

:::::::
section,

::::
some

:::::::::::
visualisation

::::::
results

:::
are

::::::::
presented

:::
and

:::::::::
discussed.340

::
In

:::::::::
ERA-20C,

::::
there

::
is
::
a spectral peak at 3.5 yr has some power on both sides of the peak. Therefore, a 3–4 yr mode would

perhaps be a more appropriate name for the peak. Oscillations at these periods are usually attributed to ENSO
::::::
period,

:::::
which

::
is

::::::::
significant

::
at
::
5 %

::::
level

:::::
(Fig.

:::
??).

::::
This

::::
peak

::
is
::::
due

::
to

:::
the

:::::
ST-PC

:::::::::::
components

:
7
:::
and

::
8
::::
with

:::::::
spectral

::::::
density

::::::
closely

:::::::::::
concentrated

::
on

::::
this

::::::::
frequency

:::::
(Fig.

:::
??).

::::::
Figure

:::
??

::::::
depicts

:::::::::
composite

:::::
maps

::
of

:::::
each

::
of

:::
the

:::::
eight

:::::
phases

:::
of

:::
the

:::
3.5

::
yr

:::::
mode

:::
in

:::::::::
ERA-20C.

::::::
Firstly,

:::
the

:::::
mode

::
is
::::::
global

::::
with

:::
the

:::::::
largest

::::::::::
temperature

:::::::::
anomalies

::
in

:::
the

:::::::
Pacific

:::
and

::::::::::::::
North-America.

::::::::
Secondly,

::::
the

:::::
mode345

:::::::
contains

::::::
tropical

::::::
Pacific

::::::::::
temperature

::::::::::
anomalies,

:::
like

::
in

:::
the

::::::
ENSO

:::::::::::
phenomenon (e.g. Kleeman, 2008). We illustrate here how

this periodicity appears in different data sets. Since the 3.5 yr period is not reproduced by all of the climate models, we have

chosen in these cases a periodicity that is close to 3.5 years.

We have calculated the reconstructed components (RC) corresponding to the 3.5 yr mode in order to visualise the associated

spatial temperature anomaly patterns. The result is a time series of the original (centered)data corresponding to the 3.5 yr mode350

in each grid point and according to its original variance. We therefore have an animation of
::::
The

::::
cold

::::::
(warm)

:::::::::
maximum

::
is

::
in

11



:::::
phase

:
1
:::
(5)

::::
with

:::
the

:::::::::
anomalies

::::::::
extending

:::
to the global 3.5 yr mode for each data set for the whole timeperiod (1901–2005).

:::::::::::::
South-American

:::::::::
continent.

::::::
Thirdly,

:::::
there

:::
are

:::::::
traveling

::::::::::
temperature

:::::::::
anomalies

::
at

::::
high

:::::::
latitudes

:::
on

::::
both

:::::::::::
hemispheres.

:::::
These

:::
are

::::::::
described

::::
next.

:

To synthesise the animations, we have calculated composite maps of the 3.5 yr mode for each data set
::
In

:::::
phase

::
1

::::
(Fig.

::::
??),355

::::
there

::
is

:
a
:::::

small
:::::
warm

:::::::::::
temperature

:::::::
anomaly

::
in

:::
the

::::::::::::
North-Pacific

:::
(lon

:::::::
160◦W,

:::
lat

::::::
30◦N).

::::
This

::::::
pattern

::::::
slowly

::::::
moves

::::::::
northeast

:::::::
reaching

::::::
Alaska

::
in

:::::
phase

::
5

:::
and

::::
then

::::::::
gradually

:::::::::
dissipating

::::
over

:::
the

:::::::::::
northernmost

:::::::::::::
North-America

::
in

:::::
phase

::
8
::::
(and

:::::
being

::::::
visible

:::
still

::
in

:::::
phase

:::
1).

:::::
There

::
is

:
a
::::
very

::::::
similar

::::::::
evolution

::
of

:
a
::::
cold

:::::::
anomaly

:::::::
starting

::
in

:::::
phase

::
5.

::
At

:::
the

:::::
same

::::
time,

:::::
there

::
is

::
an

:::::::::
oscillating

::::::::::
temperature

:::::::
anomaly

::::
over

:::
the

::::::::
Eurasian

::::::::
continent

::
in

:::::::
opposite

::::::
phase.

::
In

::::
Fig.

:::
??,

::::
there

::
is
::::
also

::
a

:::::::
traveling

::::::::::
temperature

::::::::
anomaly

::
in

:::
the

::::::::
Southern

:::::::::::
Hemisphere.

::
In

:::::
phase

::
8
:
(Fig. ??). The patterns are composites of eight instances when the mode is in its360

maximum positive phase in the Niño3.4 region (120
:::
??),

::::
there

::
is

:
a
::::
cold

::::::::
anomaly

::::
over

:::
the

:::::::
Southern

::::::
Ocean

::::
(lon

:::
160◦W–170

:::
W).

::::
This

::::::::::
strengthens,

::::::
moves

::::
east,

::::::::
weakens,

:::
and

:::::::
crosses

:::
the

::::::::
Antarctic

::::::::
Peninsula

::
in

:::::
phase

::
4
::::
and

:::::::
remains

::
in

:::
the

:::::::
Weddell

:::
Sea

:::::
until

:::::
phase

::
7.

::::::::
Similarly,

::::
there

::
is
::
a
:::::
warm

:::::::
anomaly

::
in
:::::
phase

::
4
::::
(lon

:::
160◦W, 5◦ N–5◦ S) . Positive events are defined as an average of

winter months (November–March)
::::
with

::::::
similar

::::::::
evolution

::
as

:::
the

::::
cold

:::
one.

The top row of Fig. ?? displays the patterns for the reanalyses. One can see typical El Niño related temperature anomalies,365

such as positive anomalies in the equatorial Pacific Ocean and South-America,
::::
Next,

:::::
20CR

::::
and

:::
the

::::::
CMIP5

::::::
model

::::::::
behaviour

::
is

::::::
studied.

::::
The

:::
3.5

::
yr

:::::
mode

:
is
:::::::::
significant

::
in

:::::
20CR and northwestern North-America. There is also a cold anomaly over the northern

parts of the Eurasian continent, a dipole structure in the western Antarctica, and warm Africa. The patterns are remarkably

similar
:::::::::
ERA-20C.

:::
For

::::
the

::::::::::
illustration,

:::
we

::::
have

:::::::
chosen

:::::::::
component

:::::
pairs

:::::
from

:::
the

::::::
model

:::::::::::::
decompositions

::::::::::::::
(Supplementary

:::::::
material

:::
Fig.

:::
S1)

::::
that

::::
have

:::::::
spectral

:::::
peaks

:::::::
between

:
3
::::
and

:
4
:::::
years

:::
and

:::
do

:::
not

::::::
express

:::::::::
substantial

:::::::::
variability

::
on

:::::
other

::::
time

::::::
scales.370

::
In

::::
most

::::::
climate

:::::::
models,

::::
such

::
a

::::::::::::
corresponding

:::::
mode

:::::
exists,

::::::
except

::
in

::::::
models

:
g
::::
and

::
k.

::
In

:::::
model

::
c
:::
this

:::::
mode

::
is

:::
not

:::::::::
significant

::
at

:
5
:
%

::::
level,

:::
but

::
it

::
is

::::::::
illustrated

:::::::
anyway.

:::::::::::::
Supplementary

:::::::
material

::::::
reveals

::::
how

:::::
these

::::::
modes

:::
are

::::::::::
represented

::
in

:::::::
different

::::
data

::::
sets

::::
(Fig.

::::::::
S3–S14).

:::
The

::::::
format

::
is

:::
the

:::::
same

::
as

::
in

:::
Fig.

:::
??.

::
A
:::::
short

::::::::
summary

::
is

::::::::
presented

::::
next.

:

::
In

:::::
20CR

::::
(Fig.

::::
S3),

:::
the

:::::::::
anomalies

:::
are

::::::
weaker

::::::::
compared

::
to
:::::::::
ERA-20C

::::
(Fig.

::::
S4).

::::
This

::
is

::::::
mainly

:::::::
because

:::
the

::
3

:
–
::
4

::
yr

:::::
mode

::
is

:::::::::
distributed

::
on

::::
two

:::::::::
component

::::
pairs

:
in 20CR and

::::::
whereas

::
in

:
ERA-20C with somewhat larger amplitudes

::
it

:
is
:::::::::::
concentrated

:::
on375

:::
one

::::
pair.

:::::::::::
Nevertheless,

::::::
similar

::::::::
although

::::::
weaker

::::::
signal

::
is

::::::
evident

:
in 20CR, except the stronger dipole in ERA-20C. Next, we

will try to subjectively assess model performance in reproducing the spatial patterns of
::::
such

::
as

:::
the

::::::::
northeast

::::::::::
propagation

::
of

:::
the

:::::::::::
North-Pacific

::::::::::
temperature

::::::::
anomaly.

:::::
(Note

:::
that

::
in

::::
Fig.

:::
??, the 3.5 yr oscillation.

All models produce a warm pool
::::::::::
combination

::
of

::::::::::
components

::
3,

::
4,

::
7,

:::
and

::
8
:::::::
produce

:::::
highly

::::::
similar

::::::
global

:::::::
patterns

:::
for

:::::
20CR

:::
and

::::::::::
ERA-20C.)

:
A
:::::::::
prominent

::::::
feature

::
is

::::
also

:::
the

:::::::
opposite

::::::::::
temperature

::::::::
anomalies

::
in
:::
the

::::::::
northern

::::::
Eurasia

::::::
versus

:::::::::::::
North-America.380

:::
All

::::::
models

:::::
(Figs.

:::::::
S5–S14)

:::::::
produce

:
a
::::::::::
temperature

:::::::
anomaly

:
to the equatorial Pacific Ocean

:
(and South-America). The amplitude

is larger
:::
and/or the area extends too far

:::::
further

:
to the west in five

:::
than

::
in
:::::::::

ERA-20C
::
in

:::
six

:
models (a, b, d, e, h). Unlike in the

reanalyses, the pool extends to the Atlantic in four models (a, d, e, h). The warm anomaly in the South-American land area is

too weak in five models (c, f, g, j, k).
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The warm anomaly ,
:::
l).

:::
The

::::::::
anomaly

::::::
pattern in the northwestern North-America is present in all the models

:
to

:::::
some

:::::
extent.385

In the reanalyses, the anomaly is strictly confined to land areas but in most models, it is either
::::::::
somewhat

:
misplaced or extends

to the adjacent sea areas and the Eurasian continent.

The cold anomaly over the Eurasian continent is not well represented in the model data. There is a weak cold anomaly in

three models (f, i, l), a weak warm anomaly in one model (c), and a mixture of cold and warm areas in the rest.

The warm pool in the Amundsen sea related to the warm-cold dipole around the western Antarctica is present in nine models390

(a
::::::
Models

:
c, e, f, g, h, i, j, k, l). The cold pool in the Weddell sea is present in five models (c, d, f, g, k). Three models (f, g,

k) represent both pools, and thus the dipole structure in well represented. In Africa, the anomaly is on the positive side in all

models.

In Table ??, there are three over-active models with respect to
:::
and

::
f
:::::::
produce

:::
the

::::::::::::::
North-American

::::::
pattern

::::
quite

:::::::
similar

::
to

:::::::::
reanalyses,

:::
and

:
the 3.5 yr period (a, d, e). These are associated with large amplitudes in Fig. ??. Additionally, two models also395

seem to have large amplitudes in Fig. ?? (b, h). Both of these have higher spectral density than the reanalyses (Table ??), but

were anyhow assessed as "on-target" in Table ??. Four models were under-active in Table ?? (
::::::::
northeast

::::::::::
propagation

:
is
::::::::
captured

::
to

::::
some

::::::
extent

::
by

::::::
models

::
b,

:
c, f, j, k). These correspond to the low-amplitude maps in Fig. ??. In summary, the patterns of Fig.

?? are in support of the subjective analysis of the total spectra of Table ??
:
i,
:::
and

:
l.

4 Discussion400

Table ?? shows that there is a much larger number of significant periodicities in the model data than in the reanalyses. This

seems to imply that "nature" tends to produce only a few but statistically significant periodicities, and the other potential

periodicities are somehow
:::
We

::::
note

::::
that

:
a
:::::::::
substantial

:::::::
portion

::
of

::::::::
variance

::
at

::::::::::
inter-annual

::
to
::::::::::::

inter-decadal
:::::::::
timescales

:::
can

:::
be

::::::::
attributed

::
to "worn out

:::::
climate

:::::
noise" via non-liner interactions and feedbacks so that they cannot be distinguished from red

noise. We can think of two possible causes for this. First, it may simply be because the reanalysis data represent ensemble405

mean while the model data are individual simulations. This difference may appear as a difference in the number of significant

periodicities. Second, it may be that something in models prohibits the wearing process from occurring, and we can observe the

excessive number of periodicities above the noise level – as if the models were missing some non-linear processes. However,

MPI-ESM (model k)has fewer significant periodicities than observed, and to our knowledge, this model does not fundamentally

differ from the other models. Therefore, it is unclear what exactly lies behind this result.410

We have not discussed the interpretation of the 1.7 yr interannual variability. Based on the related spatial patterns, it may be

that it is a harmonic of the ENSO variability (2× 1.7 yr = 3.4 yr)
:::::::::
associated

::::
with

::::::::
processes

::::
with

:::::::::
timescales

:::::
much

::::::
shorter

::::
than

::
the

:::::::::::
inter-annual

::::
scale

::::::::
(Wunsch

:::::
1999;

::::::::
Feldstein

::::::
2000).

::
If

:::
the

::::::::
amplitude

::
of

:::
the

:::::::::
variability

:::::
mode

:::::::
exceeds

:::::
some

:::::
noise

::::::::
threshold

::::
(such

:::
as

:::
red

::::::
noise),

::::
then

:::
the

::::::::
variability

:::::
mode

::
is
::::
also

:::::
likely

::::::
driven

:::
by

::::
some

:::::::
process

:::::::
external

::
to

:::
the

::::::::::
atmosphere,

::
in
::::::::

addition
::
to

::
the

:::::::
climate

:::::
noise.

:::
For

::::::::
example,

::::
large

::::
part

::
of

:::
the

::::::::::
inter-annual

:::::::::::
atmospheric

:::::
ENSO

::::::
pattern

::
is

::::::::::
presumably

:::::
driven

:::
by

:::::::::
anomalies

::
of415

::::::
tropical

:::::::
diabatic

::::::
heating

:::::::::
associated

::::
with

:::
sea

:::::::
surface

::::::::::
temperature

:::::::::
anomalies

:::::::::
(Feldstein,

:::::
2000).

::::
We

::::::
assume

::::
that

::
for

::::
this

::::::
reason

::
the

:::::::::::
multi-annual

:::::::
patterns

::::::
related

::
to

::::::
ENSO

::::::
clearly

::::::
exceed

:::
the

::::
noise

::::::::
threshold

::
in

:::
the

::::::
results

::
of

::::
this

::::
study.
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5
::::::::::
Conclusions

In this study , we decomposed
:::
The

::::
aim

:::
of

:::
this

:::::
study

::
is
:::

to
:::::::::
decompose

:
the 20th Century near-surface temperature

::::::
century

::::::
climate

:
variability into its inter-annual to multi-decadal eigenmodes. We used two state-of-the-art

::::::::::
multi-annual

::::::
modes,

::::
and420

::
to

:::::
assess

::::
how

:::::
these

::::::
modes

::::
are

::::::::::
represented

:::
by

:::
the

::::::::::::
contemporary

:::::::
climate

:::::::
models.

:::
To

:::
this

::::
end,

::::
two

:
20th Century

::::::
century

reanalysis data sets and 12 historical climate model simulations extracted from the CMIP5 data archive. The analysis was

performed using the randomised multi-channel singular spectrum analysis
::::::
CMIP5

::::::
model

:::::::::
simulations

:::
for

:::::
years

::::::::::
1901–2005

::
of

::
the

::::::::
monthly

:::::
mean

::::::::::
near-surface

:::
air

::::::::::
temperature

::::
have

:::::
been

::::::::::
decomposed

:::::
using

:::::::::::
Randomised

::::::::::::
Multi-Channel

:::::::
Singular

:::::::::
Spectrum

:::::::
Analysis

:
(RMSSA), which is particularly well suited to high-dimensional time series analysis. The statistical significance of425

the identified eigenmodes was estimated with Monte-Carlo
::::::
modes

:::
has

::::
been

::::::::
estimated

::::
with

::::::
Monte

:::::
Carlo simulations. The main

conclusions are as follows:
:
.

The spectral
::::::
Spectral

:
properties of the two reanalyses (20CR and ERA-20C ) are remarkably similar, the only notable

difference being the different spectral density in the decadal scale variability (10–30 yr ). Also, nearly the same periodicities

rise above the red noise at the 5 and 10 significance levels. Majority of the climate models are under-active in representing430

the multi-decadal climate variability (> 30 yr), some models are over-active in decadal (10–30 yr) or inter-annual (< 2 yr)

variability, and only two models are on-target in both the
::::::::
reanalysis

::::
data

::::::
appear

::::::::::
remarkably

::::::
similar.

::::
The

::::
most

:::::::::
prominent

:::::
forms

::
of

::::::::
variability

:::
in

::::
both

::::
data

:::
sets

:::
are

::::::
related

::
to
:::::::::::::
approximately 3.5 yr and 5 yr ENSO variabilities. The IPSL-CM5B-LR and the

HadGEM2-ES are the closest to the total spectra of
:
yr

::::::
modes

:::::
which

:::
are

:::::::::
significant

::
at

:
5 %

::::
level.

:::
The

:::::::
spectral

:::::
power

::
in

:::::::::
ERA-20C

:
is
::::::::::::

systematically
:::::::

slightly
::::::
higher

::::
than

::
in
::::::

20CR.
::::

The
:::
3.5

:::
yr

:::::
mode

::
is

:::::::::
illustrated

::
in

:::::
more

:::::
detail.

:::
In

:::::::::
ERA-20C,

:
the reanalyses.435

::::
mode

::
is
:::::::::
associated

::::
with

::::::
typical

::::::
ENSO

::::::
pattern

::
of

::::::::::
temperature

:::::::::
anomalies

::
in

:::
the

:::::::::
equatorial

::::::
Pacific

::::::
Ocean,

:::::::::::::
South-America,

::::
and

::::::::::
northwestern

::::::::::::::
North-America.

:::
On

:::
top

::
of

:::::
these,

:::
the

:::::
mode

::::
also

:::::::
contains

::
a
::::::::
northeast

::::::::::
propagating

::::::::::
temperature

::::::::
anomaly

::::
over

:::
the

:::::::::::
northernmost

:::::::::::::
North-America,

:::
and

:::::::
another

:::::::
eastward

::::::::::
propagating

:::::::
anomaly

:::
in

::
the

:::::::
vicinity

::
of

:::::::
western

:::::::::
Antarctica.

:::::
Since

:::::
about

:::
the

::::::
1970’s,

:::
the

::::::::
amplitude

::
of

::::
this

:::
3.5

::
yr

:::::
global

:::::
mode

:::::
have

::::::::
increased.

:

Relaxation
:::::
None

::
of

:::
the

:::
12

:::::::
coupled

::::::
climate

:::::::
models

::::::
closely

::::::::
reproduce

:::
all

::::::
aspects

:::
of

:::
the

::::::::
reanalysis

:::::::
spectra,

::::::::
although

:::::
some440

::::::
models

::::::::
represent

:::::
many

::::::
aspects

::::
well.

::::
For

:::::::
instance,

:::
the

:::::::::::::
GFDL-ESM2M

::::::
model

:::
has

::::
two

:::::
nicely

::::::::
separated

::::::
ENSO

::::::
-related

:::::::
periods

:::::::
although

::::
they

:::
are

::::::::
relatively

:::
too

:::::::::
prominent

::
as

::::::::
compared

::
to

:::
the

::::::::::
reanalyses.

::::
Also,

::
a
::::::
number

:::
of

::::::
models

::::::::
represent

:::
the

::::::::::
propagating

::::::::::
temperature

::::::::
anomalies

:::
at

:
3
::
–
::
4

::
yr

::::
time

::::::
frame.

:::::
Some

::::::::::
suggestions

::::
are

:::::::
provided

:::
in

:::
the

:::
text

:::
for

::::::::
potential

::::::
model

:::::::::::
development

::::::
aspects.

:

:::::
There

::
is

::
an

::::::::
extensive

::::::::::
Supplement

::::::::
available

:::::::::
presenting

:::
the

::::::
results

::
in

::::::
visual

:::::
format

:::
for

:::::
each

::::::::
reanalysis

::::
and

:::::
model

::::
data

::::
set.445

::
In

:::
the

::::::
future,

::::::::
relaxation

:
of the uni-variate nature of the present study remains as a subject for future research. It would be

very interesting to extend the set of variables
:::::
would

:::::
seem

:
a
:::::::

natural
::::::::
extension.

:::::
This

:
is
::::

now
::::::::

possible since the use of random

projections allows efficient data
:::::
allow

:::::::
efficient

::::
data

::::::::
structures

:::::::::
preserving

:
compression. Of special interest would be to study

behaviour of variables directly linked with
::::::::::::::
atmosphere-ocean

:
coupling processes, such as heat, momentum, and moisture fluxes

over oceans.450
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6 Data and code availability

All data used in this study was downloaded from open sources. The RMSSA algorithm and the statistical significance testing

are implemented using GNU licensed free software from the R Project for Statistical Computing (www.r-project.org). Our

implementation is available on request. The animations of the 3.5 yr periodicity
:::
3–4

::
yr

:::::
mode

:
are available for all data sets at

https://www.youtube.com/channel/UCu1zJdwJfLaXvfvTqsKCLHw.455

Appendix A: Randomised multi-channel singular spectrum analysis (RMSSA)

The RMSSA algorithm and the significance test is briefly presented here. The original data matrix is XN×L, where the columns

are called channels. In case of gridded data set, N represents the time steps and L is the number of grid points. It is useful

to think N as the time steps when the sample of dimension L is collected. The dimension reduction is a projection XN×L→
PN×k, where L� k. In other words, we preserve all samples but reduce the sample dimension from L to k. The dimension460

reduction is performed in two steps: (1) generate a random matrix RL×k, where the matrix elements are rij ∼N(0,1) and

column vectors of R are normalised to unit length, and (2) project X onto R:

PN×k =XN×LRL×k. (A1)

The next step is to construct an augmented data matrix A, which containsM lagged copies of each channel in P. In RMSSA,

M represents the lag window. A now has Mk columns and N ′ =N −M +1 rows. The singular value decomposition of A is465

A=UD1/2VT (A2)

The vectors of U are the eigenvectors of Z=
1

Mk
AAT and VT contains the eigenvectors of C=

1

N ′
ATA. These vectors

are orthogonal and often called space-time principal components (ST-PCs) and space-time empirical orthogonal functions (ST-

EOFs), respectively. Note that the ST-EOFs are now in reduced space k. Diagonal elements of D are the eigenvalues of C or

Z. Finally, the eigenvectors (ST-EOFs) are calculated in the original L-dimensional space by

V ≈AT
o U(D1/2)−1, (A3)

where Ao is the augmented matrix of the original data matrix X. Note that the calculation of ST-EOFs in Eq. (??) can be470

limited only to the eigenmodes of interest.

The ST-PCs can be represented in the original coordinate system by the reconstructed components, RCs (Plaut and Vautard,

1994; Ghil et al., 2002). This transformation is given by

rcle(n) =
1

Mn

Jn∑
m=In

ue(n−m+1)vle(m), (A4)
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where ue are the ST-PCs and vle are the ST-EOFs calculated in Eq. (??) (the part of ST-EOF corresponding to channel l). e is

the index of the eigenmode that is calculated. The normalisation factor Mn and the summation bounds In and Jn are given in475

Ghil et al. (2002) and for the central part of the time series (M ≤ n≤N −M +1) they are (M,1,M), respectively.

RMSSA with significance testing is briefly presented in the following. Testing the MSSA components against a red-noise

null-hypothesis requires orthogonal input vectors, which are obtained by calculating first a conventional PCA and retaining a

set of dominant PCs. Therefore some additional calculation steps are included in the RMSSA-algorithm:

SVD of lower dimensional matrix P is calculated to obtain the principal components (PCs, calculated as UD1/2). PCs480

fullfil the orthogonality constraint exactly. PCs, that explain large part of the variance of the data set (e.g. 50 first), are retained

to obtain matrix T, where the columns are the PCs. Next, the augmented matrix APC is constructed from T and SVD is

calculated as in Eq. (??).

Finally, a large number of red-noise processes (i.e. surrogate data sets) are generated, and the confidence limits for the

MSSA eigenmodes are determined. This signicance test (Monte-Carlo
:::::
Monte

:::::
Carlo MSSA) is described in detail in Allen and485

Robertson (1996).
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Table 1. Climate models used in the study. For more details of the models, see Table 9.1. in Flato et al. (2013).

Model ID Model name Modeling center Country

a CanESM2 CCCMA Canada

b CESM1(CAM5) NSF-DOE-NCAR USA

c CNRM-CM5-2 CNRM-CERFACS France

d CSIRO-Mk3.6.0 CSIRO-QCCCE Australia

e GFDL-ESM2M NOAA GFDL USA

f GISS-E2-R NASA GISS USA

g HadGEM2-ES MOHC UK

h INM-CM4 INM Russia

i IPSL-CM5B-LR IPSL France

j MIROC-ESM JAMSTEC/AORI/NIES Japan

k MPI-ESM-MR MPI-M Germany

l MRI-CGCM3 MRI/JMA Japan

Evaluation summary. Under-active On-target Over-active Multi-decadal (> 30 yr) b, c, d, e, f a, g, j h, i, k, l Decadal (10–30 yr) a, b, c, e, f,

d, g, j, k h, i, l ENSO at ∼5 yr a, f, h, j, l c, g, i, k b, d, e ENSO at ∼3.5 yr c, f, j, k b, g, h, i, l a, d, e Inter-annual (<
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Figure 1.
:::
Map

::
of
:::
the

:::::::
common

::::::::::
normalisation

:::::
factor.

:::::
Shown

::
is

::
the

::::
mean

:::::::
standard

:::::::
deviation

::
of 2 yr) d, f, g, h, i, a, b, c, e j, k, l

::::
metre

:::::::::
temperature

:::::
(degC)

:::::
across

::
all

:::
the

:::
data

::::
sets.

Approximate periodicities (in years) detected by the Monte-Carlo significance test with a 20 year lag window length. Similar periodicities

among the data sets are aligned. Numbers in the table are in bold if the significance level is at 5 and in italics if at 10 . Dominant periodicities

of the oscillations are estimated with MTM.
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Figure 2. ST-PCs 1–30 of 20CR
:::::::
Reanalysis

::::::
ST-PC

:::
time

:::::
series

:::::::
(columns

:
1
:
and ERA-20C

::
3)

::
of monthly near-surface temperature 1901–2005

and their spectra . The lag window length M used in RMSSA is 20 years (240 months
::::::
columns

:
2
:::
and

:
4)

:::
for

::::
20CR

:::
and

::::::::
ERA-20C. The annual

cycle and linear trend
:::::::::
components are removed from

:::::
ordered

::::::::
according

::
to the original data set before applying RMSSA

:::::::
explained

:::::::
variance

:
(%

:
).The proportion
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Figure 3.
:::::
Global

::::::
patterns

:
of

:
2
::::
metre

::::::::::
temperature

::
for

:
the remaining variance explained by each component is also presented

:::::::::
components

::
3,

:
4,
::
7

:::
and

:
8 in the figure

::::
20CR

::::
(left

::::::
column)

:::
and

::::::::
ERA-20C

::::
(right

:::::::
column).

::::::::
Snapshots

:::
are

::::
taken

::::
from

:::
Jan

::::
1987

:::
(top

::::
row)

:::
and

:::
Jan

::::
1998

::::::
(bottom

::::
row).

:::
Unit

:::::
degC.
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Figure 4. (a) Total spectrum of the reanalysis data sets, 20CR
:::
(red

::::
line) and ERA-20C . The total spectrum is a sum of the spectral density of

all components (ST-PCs
::::
green

::::
line) related to each data set

:::
with

::::
their

:::::::
min-max

::::::::
confidence

::::::
intervals. The unit of the spectra

:::::
spectral

::::::
density

:
is

arbitrary. (b) Significance test of the monthly near-surface temperature variability in the 20CR data set 1901–2005. PCs 1–50 are used as input

channels and the lag window length M is 20 years (240 months). In the test the
:::::::::
periodicities

:::::
against

:
red-noise basis is used

:::::::::::
null-hypothesis.

Red squares show
:::::
Shown

::
are

:
the data eigenvalues plotted against the dominant frequency of the ST-PC corresponding to each eigenvalue.

The vertical bars show
:::
(red

::::::
squares)

:::
and

:
the 2.5th and 97.5th percentiles of the eigenvalue distribution calculated from 1000 realisations of

the red-noise surrogates . The ST-PCs that correspond to eigenvalues rising above the 97.5th percentiles are considered significant at the 5

level. There is missing power at 1 yr due to the removal of the annual cycle
::::::
(vertical

::::
bars). (c) Same as (b), but for the ERA-20C data set.
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Total spectrum of each climate model. The total spectrum is the sum of the spectral density of all components (ST-PCs) related to each data

set. For comparison, the total spectra of the reanalysis data sets are plotted in each subfigure. The unit of the spectra is

arbitrary.
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Figure 5.
::
As

:::::
Figure

::::
??a

::
but

::::
now

::
for

::::
each

::::::
climate

:::::
model

:::::
(black

::::
line).

:::
The

::::::::
reanalysis

:::::
spectra

:::
are

:::::
shown

::
as

:
a
:::::::
reference

::::::
(dashed

:::::
green

:::
and

:::
red

::::
lines).

::::
The

:::::
dashed

::::::
vertical

::::
lines

::::::
indicate

:::
the

:::::
climate

:::::
model

::::::::::
multi-annual

::::::
periods

::::::::
significant

:
at
::
5 %

::::
level.
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Global patterns of 3–4 yr oscillation of the near-surface temperature anomaly (◦C) in the reanalysis and climate model data sets 1901–2005.

The patterns are composites of 8 cases, when the oscillation is in its maximum positive phase in the Niño3.4 region (120◦ W–170◦ W, 5◦

N–5◦ S). The positive events are defined as an average of November-March. The identified patterns have similarities to the El Niño

-phenomenon.
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Figure 6.
::::::::
ERA-20C

::::
phase

::::
(1–8)

:::::::::
composites

::
of

:::
the

:::
3–4

::
yr

:::::::
variability

:::::
mode.

::::
Unit

:::::
degC.
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