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Abstract 8 

Landslide susceptibility (LS) assessment provides a relative estimate of landslide spatial 9 

occurrence based on local terrain conditions. A literature review revealed that LS evaluation 10 

has been performed in many study areas worldwide using different methods, model types, 11 

different partition of the territory (mapping units) and a large variety of geo-environmental 12 

data. Among the different methods, statistical models have been largely used to evaluate LS, 13 

but the minority of articles presents a complete and comprehensive LS assessment that 14 

includes model performance analysis, prediction skills evaluation and estimation of the errors 15 

and uncertainty 16 

The aim of this paper is to describe LAND-SE (LANDslide Susceptibility Evaluation), 17 

software that performs susceptibility modelling and zonation using statistical models, 18 

quantifies the model performances and the associated uncertainty. The software is 19 

implemented in R, a free software environment for statistical computing and graphics. This 20 

provides users with the possibility to implement and improve the code with additional models, 21 

evaluation tools or output types. The paper describes the software structure, explains input 22 

and output, and illustrates specific applications with maps and graphs. The LAND-SE script is 23 

delivered with a basic user guide and three example datasets.  24 
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1 Introduction 27 

Landslide susceptibility (LS) is the likelihood of a landslide occurring in an area based on 28 

local terrain conditions (Brabb, 1984). In mathematical language, LS quantifies the spatial 29 

probability of landslides occurrence in a mapping unit, not considering the temporal 30 

probability of failure or the magnitude of the expected landslides. Landslide susceptibility has 31 

been evaluated in many locations around the world since the early 1980. Authors have 32 

evaluated LS using different partitioning of the territory as mapping units, diversified 33 

combination of explanatory variables and distinct methods. Methods for the LS evaluation 34 

and mapping can be broadly grouped in: geomorphological mapping, analysis of landslide 35 

inventories, heuristic or index-based methods, statistically based models and geotechnical or 36 

physically based models (Guzzetti et al., 1999). Among the different approaches, the 37 

statistical models have been largely used to assess LS. A recent revision of papers on 38 

statistical models (Malamud et al., 2014), have shown that more than 95 different model types 39 

were proposed in the literature. Malamud and his co-authors grouped them in 20 classes, with 40 

the most frequent corresponding to logistic regression, neural networks and data overlay. 41 

According to them, the relevant number of statistical models described in the literature is 42 

probably related to the recent increasing number of commercial and open source packages for 43 

statistical analysis that can combine and integrate geographical data and/or Open Source GIS 44 

(i.e. SAGA GIS, GRASS GIS). The review analysis also revealed that authors not always 45 

present a complete and comprehensive assessment of the models performance, the prediction 46 

skills evaluations and the estimation of errors and uncertainty. Since the large variety of 47 

applications of statistical approaches, but the scarcity of model evaluation and quantification 48 

of the errors, we have implemented LAND-SE (LANDslide Susceptibility Evaluation), a 49 

software developed to prepare landslide susceptibility models and zonation at basin and 50 

regional scale, with specific functions focused on results evaluation and uncertainty 51 

estimation. The software is implemented in R, a free software environment for statistical 52 

computing and graphics (R Core Team, 2015). This provides users with the possibility to 53 

implement and improve the code with additional models, evaluation tools or output types.  54 

The paper describes LAND-SE structure, explains input and output, illustrates them with 55 

maps and graphs, some applications and provides a basic user guide. It is out of the scope of 56 

the manuscript, the description of the characteristics and results of statistical models and the 57 

advantage/disadvantage of model evaluation tools and matrixes. We have introduced a test 58 



 3

area only to show and demonstrate possible potential applications and different output of 59 

LAND-SE. 60 

The manuscript is structured as follows: section 2 describes the software, its modelling 61 

approaches and the main output types; section 3 illustrates the test area to illustrate the range 62 

of applications and different outputs of LAND-SE and section 4 formalizes some final 63 

remarks. The paper is completed by supplementary materials containing the software code, a 64 

user guide and example datasets. 65 

2 Software description 66 

LAND-SE, a software for landslide susceptibility modelling and zonation was implemented 67 

and improved with respect to the code proposed by Rossi and co-authors in 2010. The new 68 

version is coded in R (R Core Team, 2015) and it is open source. The software holds on the 69 

possibility to perform and combine different statistical susceptibility modelling methods, 70 

evaluate the results and estimate the associated uncertainty. As compared to the previous 71 

version (Rossi et al., 2010), the main improvements are related to: i) the possibility to use 72 

different cartographic units (pixel-based vs polygon-based); ii) the capacity to perform 73 

different type of validation analyses (spatial, temporal, random); iii) the ability to evaluate the 74 

model prediction skills and performances using success and prediction rate curves (Chung and 75 

Fabbri, 1999; 2003); iv) the possibility to provide results in standard geographical formats 76 

(shapefiles, geotiff); v) an optimization and stabilization of the modelling algorithms; vi) the 77 

possibility to use additional computational parameters to tune the calculation procedure, for 78 

the analysis of large datasets. This software version presents a relevant computer code 79 

restructuring (code refactoring), allowing the implementation of new single statistical 80 

approaches (e.g. support vector machines, regression tree based approaches) that can be added 81 

as new modules, preserving the basic software structure. The new structure simplifies the 82 

maintainability and improvement of the source code. 83 

Figure 1 shows the logical schema of LAND-SE subdivided in the following five functions: 84 

I. Input data preparation; 85 

II. Single susceptibility models and zonation; 86 

III. Combination of single models using a logistic regression approach; 87 

IV. Evaluation of single and combined LS models; 88 

V. Estimation of uncertainty of single and combined LS models. 89 
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2.1 Data input preparation 90 

The input data preparation, follows two steps: i) the choice of the cartographic unit and ii) the 91 

selection of the criteria for the definition of the training and the validation dataset.  92 

LAND-SE is designed to use different cartographic units, reducible to pixels or to polygon-93 

like subdivisions (e.g. slope units, geomorphological subdivisions, administrative boundaries, 94 

etc.). The input data shall be provided in tabular format where each line represents one 95 

mapping unit with the associated attributes. Since raster data cannot be used directly as input, 96 

a preliminary conversion is required to perform the pixel-based analysis. 97 

The choice of the mapping unit is crucial because it also determines how landslides are 98 

sampled to prepare the training and prediction (validation) subsets for the susceptibility 99 

modelling. In grid-based susceptibility assessments, several strategies are used to sample 100 

landslide pixels, the more frequent are: (1) single pixel selected as the centroid of the entire 101 

landslide or the scarp area; (2) all the pixels within the entire landslide body or the scarp area; 102 

(3) the main scarp upper edge (MSUE) approach which selects pixels on and around the 103 

landslide crown-line; and (4) the seed-cell approach that selects pixels within a buffer 104 

polygon around the upper landslide scarp area and sometimes part of the flanks of the 105 

accumulation zone (Atkinson et al.,1998; Atkinson and Massari, 2011; Goetz et al., 2015; 106 

Heckmann et al., 2014; Hussin et al., 2016; Regmi et al., 2014; Van Den Eeckhaut et al., 107 

2006). The analysis of model sensitivity to different landslide mapping strategies and the 108 

significance of different variables combinations can be performed using LAND-SE preparing 109 

different input files. Given the numerous possibility of variations required to set this type of 110 

evaluation, we decided not to include such functionalities in the current LAND-SE release, 111 

but we designed and implemented a command line interface (see §S5 of the LAND-SE User 112 

Guide V 1.0) to make this analysis possible using external procedures.  113 

To identify and separate the training and the validation dataset, different criteria can be 114 

adopted. Temporal, spatial or random subdivisions can be selected guiding the type of 115 

validation analysis. When the temporal validation is selected, secondary information not used 116 

in the model training must be provided for the area under analysis. Adopting a temporal 117 

subdivision approach, the training and the validation set are composed by the same mapping 118 

units and the analysis is performed using the same explanatory variables but different 119 

grouping variable (e. g. a different landslide inventory map, often more recent than what is 120 

used during the training phase). Differently, in the spatial and random approach, the training 121 
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and the validation dataset contain different mapping units, characterized by different grouping 122 

and explanatory variables. The main difference between the spatial and the random validation 123 

is the method chosen to separate the training and the validation dataset: in the first case, the 124 

datasets are spatially different (the two areas can be contiguous or not), in the second the 125 

subdivision is performed using a random selection. For the pixel-based approach, the 126 

definition of the training and the validation dataset can follow the same criteria, but in the 127 

literature, the subdivision is commonly performed using a random selection (Van Den 128 

Eeckhaut et al., 2010; Felicísimo et al., 2013; Petschko et al., 2014). 129 

 130 

2.2  Single susceptibility models estimation (single susceptibility maps) 131 

LAND-SE uses different supervised multivariate statistical models to evaluate the landslide 132 

spatial probability, identifying and quantifying the relation between dependent and 133 

independent variables. According to previous studies (Carrara et al., 1991; Rossi et al., 2010; 134 

Guzzetti et al., 2006, 2012), dependent variable (or grouping variable) is computed as the 135 

absence/presence of landslides in the mapping units and is usually derived from a landslide 136 

inventory. The independent variables (explanatory variables) are obtained from available 137 

thematic information (morphometry, land cover/use, lithology, etc.). Each model is executed 138 

in two phases: a the training phase, where the model reconstructs the relationships between 139 

the dependent and the independent variables, and a validation phase, where these relationships 140 

are verified in different conditions. LAND-SE calculates landslide susceptibility with four 141 

single models (Rossi et al., 2010): i) linear discriminant analysis (LDA) (Fisher, 1936; 142 

Brown, 1998; Venables and Ripley, 2002), ii) quadratic discriminant analysis (QDA) 143 

(Venables and Ripley, 2002), iii) logistic regression (LR) (Cox, 1958; Brown, 1998; Venables 144 

and Ripley, 2002), and iv) neural network (NN) modelling (Ripley, 1996; Venables and 145 

Ripley, 2002). The logistic regression model was significantly improved with respect to Rossi 146 

et al. (2010), substituting the previous code based on the “Zelig” package (Owen et al., 2013), 147 

with a more stable and performing code based on the “glm” function, included in the well 148 

tested base R implementation (R Core Team, 2015).  149 
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2.3 Combined model using a logistic regression approach (combined 150 

susceptibility maps) 151 

LAND-SE uses a combination model (CM) based on a logistic regression approach, where the 152 

grouping variable is the presence or absence of landslides in the mapping units, and the 153 

explanatory variables are the forecasts of the selected single susceptibility models (Rossi et 154 

al., 2010). Similarly, to the single logistic regression model, the original code based on the 155 

“Zelig” package was substituted with the “glm” function. LAND-SE allows to enable or not, 156 

the execution of the combined model selecting different combinations of single models.  157 

2.4  Susceptibility model evaluation 158 

In the training phase, LAND-SE reconstructs the relationships between dependent and 159 

independent variables and evaluates the prediction skills of single and combined models (i.e. 160 

the capability to predict the original data). In the validation phase, LAND-SE verifies the 161 

results in different conditions and evaluates the models capability to predict independent data. 162 

Model outputs of both phases are evaluated using the same tools and in particular the 163 

following statistical metrics and indices: 164 

 The dependence among explanatory variables (Belsley, 1991; Hendrickx, 2012); 165 

 Contingency tables (i.e. confusion matrixes) (Jollifee and Stephenson, 2003); 166 

 Contingency plots or fourfold plots summarizing the mapping units correctly and 167 

incorrectly classified by the models (Jollifee and Stephenson, 2003);  168 

 Error maps showing the geographical distribution of the mapping units correctly and 169 

incorrectly classified by the models (Rossi et al., 2010); 170 

 Plots showing receiver operating characteristic (ROC) curves (Green and Swets, 1966; 171 

Mason and Graham, 2002; Fawcett, 2006) and the associated Area Under Curve 172 

(AUC) statistics; 173 

 Evaluation plots showing the variation of the sensitivity (“hit rate”), the specificity (1-174 

false positive rate), and of the Cohen's kappa index (Cohen,1960); 175 

 Success and prediction rate curves (Chung and Fabbri, 1999; 2003) 176 

The description and discussion of the characteristics, advantage/drawbacks of these statistical 177 

metrics/indices are out of the scope of the manuscript and they will not be described in detail.   178 
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2.5  Uncertainty evaluation (single and combined susceptibility zonations) 179 

For each single and combined model, LAND-SE evaluates and quantifies the uncertainty 180 

adopting a “bootstrapping” approach. Bootstrapping is a resampling technique for estimating 181 

the distributions of statistics based on independent observation. Bootstrapping can refer to any 182 

test or metric that relies on random sampling with replacement (Efron, 1979; Davison and 183 

Hinkley, 2006). The technique has been largely used to estimate errors and uncertainties 184 

associated to classification models (among the others, Kuhn and Kjell, 2013). In the training 185 

phase, a user-specified number of runs are performed varying the selected dataset. Descriptive 186 

statistics for the probability (susceptibility) estimates, including the mean (μ) and the standard 187 

deviation (σ), are obtained from an ensemble of model runs (i.e. a user-defined number of 188 

LAND-SE simulations are executed to obtain the two descriptive statistics). Such information 189 

is portrayed in plots showing estimates for the model uncertainty in each mapping unit and in 190 

maps showing the geographical distribution of the uncertainty (Guzzetti et al., 2006; Rossi et 191 

al., 2010). To model the uncertainty associated to each LS zonation, the mean and the 192 

standard deviation are fitted using a parabolic function (Figure 3D). Such function is used to 193 

estimate the uncertainty in the validation phase. The map showing the geographical 194 

distribution of the uncertainty can provide additional and relevant information for the use of 195 

LS zonation in environmental planning studies. A proper interpretation of the map may 196 

provide for each mapping unit a proxy of a degree of confidence associated to the LS 197 

estimate. 198 

The sampling procedure implemented in LAND-SE is only focused to the estimation of the 199 

uncertainty associated to the susceptibility zonation. However, the software also outputs 200 

estimates of the performance variability in the training and validation phases providing 201 

confidence levels in the ROC plots (NCAR, 2014) and in the fourfold or contingency plots 202 

(Meyer et al., 2015). In addition, the execution of analyses that investigate sensitivity or 203 

variability of model results when varying inputs (e.g. using sampling procedures), is 204 

facilitated by the LAND-SE command line interface, that makes these analyses possible using 205 

external procedures. 206 

2.6 Software output formats 207 

LAND-SE can be executed in two different modes: the standard that provides textual and 208 

graphical results stored respectively in .txt and .pdf, and the geomode providing also 209 
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geographical output as shapefiles and GeoTIFF. Some output (i.e the success and prediction 210 

rate curves) are produced only in the geomode because they require geographical data 211 

(shapefile) as additional input. A complete list of the output with a detailed description is 212 

provided in the supplementary material (LAND-SE_UserGuide.pdf). 213 

 214 

3 LAND-SE applications 215 

To show LAND-SE functionalities and output types, we use as example the landslide 216 

susceptibility modelling and zonation originating from two articles published by Reichenbach 217 

and co-authors (2014; 2015). In the area selected as example, we perform the following 218 

analysis, using different configurations: 219 

 Polygon-based landslide susceptibility zonation; 220 

 Pixel-based landslide susceptibility zonation; 221 

 Landslide susceptibility scenarios zonation. 222 

The applications use different mapping units and distinct schema to select the training and 223 

validation dataset. The last analysis illustrates an application focused to evaluate the impact of 224 

different land use scenarios on landslide susceptibility. This type of analysis and results can 225 

be relevant information in environmental planning and management. 226 

3.1 Description of the example area and available data 227 

A small area was selected to show applications and output of LAND-SE. The area is located 228 

in the eastern portion of the Briga catchment (Figure 2), in the Messina province (Sicily, 229 

South Italy). The elevation ranges from the sea level to about 500 m and the terrain gradient 230 

from 0° to 80°. Landslides, including shallow soil slides and debris flows, deep-seated 231 

rotational and translational slides, and complex and compound failures (Varnes, 1984), are 232 

abundant, and caused primarily by rainfall (Ardizzone et al., 2012; Reichenbach et al., 2014; 233 

2015). On 1 October 2009, the Briga catchment and the surrounding areas were hit by an 234 

intense storm (Maugeri and Motta, 2011) that triggered more than 1000 shallow landslides, 235 

mainly shallow soil slides and debris flows (Varnes, 1984), caused 37 fatalities, numerous 236 

injured people and severe damages in the affected villages and along the transportation 237 

network. 238 

After the event, a detailed landslide inventory map at 1:10,000 scale was prepared for the 239 
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entire Briga catchment (Ardizzone et al., 2012). The inventory was obtained through a 240 

combination of field surveys carried out in the period from October to November 2009, and 241 

visual interpretation of pre-event and post-event stereoscopic and pseudo-stereoscopic aerial 242 

photographs. The inventory map shows the distribution and types of landslides triggered by 243 

the 1 October 2009 rainfall event (Figure 2), and the distribution and types of pre-existing 244 

landslides. In addition, two maps reporting the land use in different periods were prepared 245 

exploiting available aerial photographs and Very High Resolution (VHR) satellite imagery 246 

(Reichenbach et al., 2014; 2015). The first map was derived from the analysis of the same 247 

black and white aerial photograph used to map pre-event landslides. The second map was 248 

obtained from the analysis of two QuickBird satellite images taken the first on 2 September 249 

2006 and the second on 8 October 2009 (Mondini et al., 2011). 250 

In the area, landslide susceptibility zonation was prepared using two mapping units: pixels 251 

and slope-units. The slope-units (SU) are terrain subdivisions bounded by drainage and divide 252 

lines (Carrara et al., 1991). SU were outlined using a 5-meter resolution DEM obtained 253 

resampling the VH resolution DEM provided by the Italian national Department for Civil 254 

Protection and using r.slopeunits, a software recently written in Python for GRASS GIS 255 

(Marchesini et al., 2012; Alvioli et al., 2016). The size and the geometrical characteristics of 256 

the SU are controlled by modeling parameters defined by the user including the minimum 257 

half-basin area (Metz et al., 2011) and the slope aspect variability. In the study area, the 258 

procedure identified 238 SU which represent the polygon-based mapping units for the 259 

determination of LS. To explain the spatial distribution of landslides (Carrara et al., 1991; 260 

1995), for each slope-unit, we calculated the percentage of the event landslides as dependent 261 

(grouping) variable and the following explanatory variables: i) descriptive statistics (range, 262 

mean, standard deviation) of elevation and slope; ii) the percentage covered by each land use 263 

class; and iii) the percentage covered by old landslides.  264 

For the pixel-based analysis, we used the VH resolution DEM (1m x 1m) that accounts for 265 

about 5 million cells. Maps of the elevation, slope, land use and of the presence/absence of 266 

old landslides, were used as explanatory variables in the analysis. The presence/absence of 267 

event landslides was used as dependent variable (Carrara et al., 1991, 1995; Guzzetti et al., 268 

2006). The data originally in polygon format were first converted in raster and all the data 269 

were converted to the tabular format to be suited for LAND-SE (see LAND-270 

SE_UserGuide.pdf for details). 271 
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 272 

3.2 Polygon-based landslide susceptibility zonation 273 

This example is focused to illustrate landslide susceptibility zonation prepared using the 274 

slope-unit as mapping unit. Two spatial criteria were used to define the training and validation 275 

dataset, the first based on a random selection and the second on the subdivision of the entire 276 

catchment in two contiguous areas (Nord and South).  277 

In the first case, the training set contained 70% of the total slope-units and the validation 278 

corresponded to the entire basin. Landslide susceptibility models were trained using a subset 279 

of available data and results were applied in validation to the entire study area. Figure 3 280 

shows the main graphical and geographical outputs obtained during the training and the 281 

validation phases, including susceptibility, error and uncertainty maps, fourfold (contingency) 282 

plot, success and prediction rate curves, ROC plot, evaluation and uncertainty plots. For 283 

simplicity, the figure shows only results of the combined model, but outputs for each single 284 

model are available and can be exploited for further analysis. In the example, the random 285 

selection criteria resulted in similar training and validation performances (Figure 3). This 286 

application simulates LS zonation for a large territory, where landslides information is spotted 287 

and do not cover the entire study area. In such conditions, training cannot be performed on the 288 

entire area and a random selection of the training dataset, within the surveyed area, is a 289 

reasonable solution.  290 

In the second case, the SU located in the Northern part of the Briga catchment with respect to 291 

the main river, were used as training set and the SU located in the Southern portion as 292 

validation set. Figure 4 shows outputs, including susceptibility maps for the combined model, 293 

success and prediction rate curves, and ROC plots. As shown in Figure 4, the spatial 294 

subdivision resulted in good model skill analysis, but reduced validation performances, 295 

underlying a poor spatial transferability (Ruette et al., 2011; Petschko et al., 2014)of the 296 

model (i.e. poor applicability of the resulting model coefficients to different study areas). This 297 

type of application simulates LS zonation for areas where landslide information required to 298 

train the model, is available only for a portion of the area. Results obtained in the training 299 

phase are then applied to estimate susceptibility to the portion of the territory where landslide 300 

data are not available. This application can be useful to evaluate the possibility to use the 301 

same model output in different portion of territory or in different areas. 302 
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3.3 Pixel-based landslide susceptibility zonation 303 

This example shows a landslide susceptibility zonation prepared using the pixel as mapping 304 

unit. A random selection was chosen to prepare the training set and the validation was 305 

performed applying results on the entire study area. For the purpose, in the training set all the 306 

pixels corresponding to landslides and an equal number of pixels in stable areas were 307 

selected. Figure 5 shows the main outputs of the combined model prepared for the entire area 308 

during the validation phase, including susceptibility, error and uncertainty maps, fourfold 309 

(contingency) plot, prediction rate curve, ROC plot, evaluation and uncertainty plots.  310 

This example simulates a common and widespread susceptibility zonation approach that 311 

exploits pixel-based analysis at basin and regional scale. In such conditions, reasonable 312 

calculation times can be reached training the model with a random selected subset and 313 

applying results to the entire study area. Dealing with large dataset, we experienced that 314 

training the models using reduced samples (randomly selected) affects slightly the 315 

susceptibility model results and performances with a minor increase in the model uncertainty. 316 

As shown in Figure 5, although the training was performed with a subset of the data, the 317 

model performance for the entire study area is adequate and acceptable. 318 

3.4 Landslide susceptibility scenarios zonation  319 

This example illustrates how LAND-SE can be utilized to evaluate the impact of different 320 

land-use scenarios on landslide susceptibility zonation (Reichenbach et al. 2014, 2015) 321 

comparing the distribution of stable/unstable slope units and the success rate curves. The 322 

current, the past and possible future land-use distributions were evaluated on landslide 323 

susceptibility classes. Single models (linear discriminant analysis, quadratic discriminant 324 

analysis and logistic regression) and a combined model were prepared, exploiting the 2009 325 

event landslides as grouping variable and morphological and land-use classes as explanatory 326 

variables.   327 

To evaluate the influence of land use change on landslide susceptibility zonation, results 328 

obtained with the 2009 land use map were applied using the 1945 land use distribution. Figure 329 

6 portrays on the left, the combined model prepared using the 2009 land use map, and on the 330 

right the zonation obtained applying the results to the 1954 land use cover. Zonation maps 331 

obtained with the same models but using the 1954 land use map show a significant reduction 332 

in the number of unstable SU. Success rate curves reveal a decrease in the model fitting 333 
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performance when using the 1954 land use map, due to a reduction of slope units classified as 334 

unstable and an increase in stable terrain. In particular, the expansion of bare soil to the 335 

detriment of forested areas in the 56 years from 1954 to 2009, determined a general increase 336 

in the susceptibility. 337 

Moreover, to estimate the effect of land use distribution, we have designed different scenarios 338 

obtained changing the 2009 land use cover using and heuristic and empirical approach. 339 

Assuming an increase in the forested areas, we have considered three types of changes 340 

computed at the slope unit scale resulting in the following scenarios: i) 75% decrease in the 341 

pasture extent (Scenario 1); ii) 75% reduction of both pasture and cultivated areas (Scenario 342 

2); and iii) 75% decrease in bare soil where the slope-unit mean angle was greater than 15° 343 

together with 75% decrease in pasture areas (Scenario 3). A fourth scenario was prepared 344 

assuming the effect of a forest fire in the south-west part of the area, where we simulated a 345 

reduction of the forested cover and an increase in bare soil (Scenario 4). For each scenario, 346 

figure 7 shows the CM zonation and the success rate curve measuring the fitting performance 347 

of each model. The qualitative comparisons of the maps and of the success rate curves 348 

obtained for the different scenarios confirm how land use changes significantly affect the 349 

spatial distribution of unstable/stable slopes (Reichenbach et al., 2014). This information can 350 

be applied to evaluate the consequences of land use change on vulnerability and risk. 351 

Moreover, the proposed approach can be helpful to analyse the potential effects of land use 352 

planning and management on slope instability. 353 

 354 

4 Final remarks 355 

A recent review analysis on landslide statistical models revealed a large variety of statistical 356 

types, but a significant scarcity of a complete and comprehensive evaluation of the models 357 

performance and prediction skills (Malamud et al. 2014). Moreover assessment of the input 358 

data quality (Ardizzone et al. 2002), discussion on the scale applicability and the 359 

quantification of errors and uncertainty associate to the models are limited. In the recent years 360 

there has been an increase number of commercial and open source packages for statistical 361 

analysis that integrate geographical data and/or Open Source GIS, but software dedicated to 362 

landslide susceptibility zonation using statistical models is not available.  363 

LAND-SE is an open source software that performs LS modelling, zonation, results 364 

evaluation and associated uncertainty estimation using graphs, map and statistical metrics 365 
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filling the lacks of the large variety of statistical methods already available. LAND-SE is 366 

mainly designed to evaluate landslide susceptibility from basin (medium) to regional scale 367 

(small to very small scale).The quality and significant of model outputs is highly related to the 368 

scale, accuracy and resolution of landslide and environmental input data. In the field of 369 

landslide susceptibility zonation, LAND-SE is designed to be properly and productively used 370 

by experienced geomorphologists. Experienced practitioners are expected to use the code, 371 

with the support of experts in the field of environmental planning and management for a 372 

correct and reliable interpretation and exploitation of the results. A proper LAND-SE 373 

execution requires: (i) a basic knowledge of R language to run the script; (ii) experience on 374 

multivariate statistical models and on their evaluation skills/metrics (ROC plot, contingency 375 

table and plots, success/prediction rate curves, etc.); (iii) GIS skills to prepare and handle 376 

input data; and (iv) specific expertise for a correct  and reliable interpretations of the results. 377 

All the modelling types implemented in LAND-SE are basically statistical classification 378 

techniques applicable to any multivariate analysis with a binary grouping (dependent or 379 

response) variable. This makes the code flexible and appropriate to other scientific fields and 380 

usable, with minor customization and tailoring, by user with different expertise. 381 

We think further improvements may include additional models (i.e. forest tree analysis), tools 382 

for the input data preparation, tools for the visualization of results available now only in 383 

textual format (i.e. test of the collinearity evaluation, number of significant variables). 384 

Moreover, the software can be applied and customized to different applications, providing the 385 

users with the possibility to implement and improve the code with additional models, 386 

evaluations tools or output types. LAND-SE can also be used to prepare models to predict 387 

particular types of slope movements (e.g. debris flow source areas, Carrara et al., 2008) or can 388 

be customized to evaluate the probability of spatial occurrence of completely diversified 389 

natural phenomena.  390 
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Code availability and licence 398 

The LAND-SE code is provided as supplementary materials together with: 399 

1. the software user guide (LAND-SE_UserGuide_v1_03mar2016.docx); 400 

2. datasets containing the software script (LAND-SE_v30_20160118.R), the configuration 401 

files (LAND-SE_configuration_spatial_data.txt, LAND-SE_configuration.txt) and input 402 

files (training.txt, training.shp, validation.txt, validation.shp) relative to three examples 403 

applications: (i) polygon-based landslide susceptibility zonation with a random selection 404 

of the training dataset and a validation on a larger area; (ii) polygon-based landslide 405 

susceptibility zonation with training and validation performed in two different contiguous 406 

areas; (iii) pixel-based landslide susceptibility zonation with a random selection of the 407 

training dataset and a validation on a larger area. 408 

LAND-SE Copyright (C) Mauro Rossi. LAND-SE is free software; it can be redistributed or 409 

modified under the terms of the GNU General Public (either version 2 of the License, or any 410 

later version) as published by the Free Software Foundation. The program is distributed in the 411 

hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied 412 
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 547 

 548 

Figure 1. Logical schema of the LAND-SE software for landslide susceptibility modelling 549 
and zonation. 550 
  551 
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 552 

 553 

Figure 2. Shaded relief of the study area located in the Briga catchment, along the Ionian 554 
coast of Sicily (Italy). Red polygons show landslides triggered by the October 1, 2009 rainfall 555 
event. 556 
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 557 
 558 
Figure 3. Landslide susceptibility maps (CM) for the training dataset (A) and the validation 559 
dataset (B) classified in five unequally spaced classes (see legend). (A1, B1) fourfold plots 560 
summarizing the number of true positives (TP), true negatives (TN), false positives (FP), and 561 
false negatives (FN); (A2, B2) maps of the distribution of the four categories of slope units 562 
reported in the fourfold plots; (A3, B3) ROC plots; (A4, B4) success and prediction rate 563 
curves; (C) variation in the model sensitivity, specificity, and Cohen's kappa index; (D) plot 564 
showing measures of the model error (2σ) vs. the mean probability (μ), for each slope unit, 565 
(black circle); (A5, B5) maps of the geographical distribution of the model error. Maps 566 
coordinates and scale bar are shown in Figure 2. 567 
  568 
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 569 

 570 

Figure 4. Landslide susceptibility maps (CM) for the training dataset (A: Northern part) and 571 
the validation dataset (B: Southern part) of the test area, classified in five unequally spaced 572 
classes (see legend). (A1, B1) success and prediction rate curves; (A2, B2) ROC plots. Maps 573 
coordinates and scale bar are shown in Figure 2. 574 
  575 
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 576 

 577 
Figure 5. Pixel-based landslide susceptibility map (CM) of the test area (A) classified in five 578 
unequally spaced classes (see legend). (A1) fourfold plot summarizing the number of true 579 
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN); (A2) map 580 
of the distribution of the four categories reported in the fourfold plot; (A3) prediction rate 581 
curve; (A4) variation in the model sensitivity, specificity, and Cohen's kappa index; (A5) 582 
ROC plot; (A6) map of the geographical distribution of the model error. Maps coordinates 583 
and scale bar are shown in Figure 2. 584 

 585 
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Figure 6. (A) Landslide susceptibility map (CM) prepared using the 2009 land use and (B) 
using the 1954 land use cover. LS maps are classified in five unequally spaced classes (see 
legend); (A1, B1) plot showing the model uncertainty estimated in each slope unit; (A2, B2) 
success rate curves. Maps coordinates and scale bar are shown in Figure 2. 

  587 
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 588 

 589 

Figure 7. (A, B, C, D) Landslide susceptibility maps (CM) classified in five unequally spaced 590 
classes prepared using different land use scenario; (A1, B1, C1, D1) success rate curves. 591 
Maps coordinates and scale bar are shown in Figure 2. 592 


