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Abstract 8 

Landslide susceptibility (LS) assessment provides an relative estimate of the landslide spatial 9 

occurrence based on local terrain conditions.  LS has been evaluated in many locations around 10 

the world since the early ’80 distinct modelling approaches diverse combination of variables 11 

and different partition of the territory (mapping units). Among the different methods, 12 

statistical models have been largely used to assess LS and several model types have been 13 

proposed in the literature.  A recent literature review revealed that authors not always present 14 

a complete and comprehensive assessment of the LS that includes model performance 15 

analysis, prediction skills evaluation and estimation of the errors and uncertainty.  16 

A literature review revealed that LS evaluation has been performed in many study areas 17 

worldwide using different methods, model types, different partition of the territory (mapping 18 

units) and a large variety of geo-environmental data. Among the different methods, statistical 19 

models have been largely used to evaluate LS, but the minority of articles presents a complete 20 

and comprehensive LS assessment that includes model performance analysis, prediction skills 21 

evaluation and estimation of the errors and uncertainty 22 

The aim of this paper is to describe LAND-SE (LANDslide Susceptibility Evaluation), 23 

software that performs susceptibility modelling and zonation using statistical models, 24 

quantifies the model performances and the associated uncertainty. The software is 25 

implemented in R, a free software environment for statistical computing and graphics. This 26 

provides users with the possibility to implement and improve the code with additional models, 27 

evaluations tools or output types. The paper describes the software structure, explains input 28 
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and output, and illustrates specific applications with maps and graphs. The LAND-SE script is 29 

delivered with a basic user guide and three example datasets.  30 

 31 
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 3 

1 Introduction 33 

Landslide susceptibility (LS) is the likelihood of a landslide occurring in an area based on 34 

local terrain conditions (Brabb, 1984). In mathematical language, LS quantifies the spatial 35 

probability of landslides occurrence in a mapping unit, not considering the temporal 36 

probability of failure or the magnitude of the expected landslides. Landslide susceptibility has 37 

been evaluated in many locations around the world since the early ’801980. Authors have 38 

evaluated LS using different partitioning of the territory as mapping units, diversified 39 

combination of explanatory variables and distinct methods. Methods for the LS evaluation 40 

and mapping can be broadly grouped in: geomorphological mapping, analysis of landslide 41 

inventories, heuristic or index-based methods, statistically based models and geotechnical or 42 

physically based models (Guzzetti et al., 1999). Among the different approaches, the 43 

statistical models have been largely used to assess LS. A recent revision of papers on 44 

statistical models (Malamud et al., 2014), have shown that more than 95 different model types 45 

were proposed in the literature. Malamud and his co-authors grouped them in 20 classes, with 46 

the most frequent corresponding to logistic regression, neural networks and data overlay. 47 

According to them, the The relevant number of statistical models described in the literature is 48 

probably related to the recent increasing number of commercial and open source packages for 49 

statistical analysis that can combine and integrate geographical data and/or Open Source GIS 50 

(i.e. SAGA GIS, GRASS GIS). The review analysis also revealed that authors not always 51 

present a complete and comprehensive assessment of the models performance, and the 52 

prediction skills evaluations and the estimation of the errors and uncertainty. Since the large 53 

variety of applications of statistical approaches, but the scarcity of model evaluation and 54 

quantification of the errors, we have implemented LAND-SE (LANDslide Susceptibility 55 

Evaluation), a software developed to prepare landslide susceptibility models and zonation at 56 

basin and regional scale, with specific functions focused to on results evaluation and 57 

uncertainty estimation. The software is implemented in R, a free software environment for 58 

statistical computing and graphics (R Core Team, 2015). This provides users with the 59 

possibility to implement and improve the code with additional models, evaluations tools or 60 

output types.  61 

The paper describes LAND-SE structure, explains input and output, illustrates them with 62 

maps and graphs, some applications and provides a basic user guide. It is out of the scope of 63 

the manuscript, the description of the characteristics and results of each statistical models,  64 
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and the advantage/disadvantage of the model evaluation parameters tools and matrixesand the 65 

analysis of the model results. We have introduced a test area only to show and demonstrate 66 

possible potential applications and different output of LAND-SE. 67 

The manuscript is structured as follows: section 2 describes the software, its modelling 68 

approaches and the main output types; section 3 illustrates the test area to illustrate the range 69 

of applications and different outputs of LAND-SEand describes some applications and section 70 

4 formalizes some final remarks. The paper is completed by supplementary ancillary 71 

materials containing the software code, a user guide and example datasets. 72 

2 Software description 73 

LAND-SE, a software for landslide susceptibility modelling and zonation was implemented 74 

and improved with respect to the code proposed by Rossi and co-authors in 2010. The new 75 

version is coded in R (R Core Team, 2015) and it is open source. The software holds on the 76 

possibility to perform and combine different statistical susceptibility modelling methods, 77 

evaluate the results and estimate the associated uncertainty. As compared to the previous 78 

version (Rossi et al., 2010), the main improvements are related to: i) the possibility to use 79 

different cartographic units (pixel-based vs polygon-based); ii) the capacity to perform 80 

different type of validation analyses (spatial, temporal, random); iii) the ability to evaluate the 81 

model prediction skills and performances using success and prediction rate curves (Chung and 82 

Fabbri, 1999; 2003); iv) the possibility to provide results in standard geographical formats 83 

(shapefiles, geotiff); v) an optimization and stabilization of the modelling algorithms; vi) the 84 

possibility to use additional computational parameters to tune the calculation procedure, for 85 

the analysis of large datasets. This software version presents a relevant computer code 86 

restructuring (code refactoring), allowing the implementation of new single statistical 87 

approaches (e.g. support vector machines, regression tree based approaches) that can be added 88 

as new modules, preserving the basic software structure. The new structure simplifies the 89 

maintainability and improvement of the source code. 90 

Figure 1 shows the logical schema of LAND-SE subdivided in the following five functions: 91 

I. Input data Data input preparation; 92 

II. Single susceptibility models and zonation; 93 

III. Combination of single models using a logistic regression approach; 94 

IV. Evaluation of single and combined LS models; 95 

V. Estimation of uncertainty of single and combined LS models. 96 
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2.1 Data input preparation 97 

The input data preparation, follows two steps: i) the choice of the cartographic unit and ii) the 98 

selection of the criteria for the definition of the training and the validation dataset.  99 

LAND-SE is designed to use different cartographic units, reducible to pixels or to polygon-100 

like subdivisions (e.g. slope units, geomorphological subdivisions, administrative boundaries, 101 

etc.). The input data shall be provided in tabular format where each line represents one 102 

mapping unit with the associated attributes. Since raster data cannot be used directly as input, 103 

a preliminary conversion is required to perform the pixel-based analysis. 104 

The choice of the mapping unit is crucial because it also determines how landslides are 105 

sampled to prepare the training and prediction (validation) subsets for the susceptibility 106 

modelling. In grid-based susceptibility assessments, several strategies are used to sample 107 

landslide pixels, the more frequent are: (1) single pixel selected as the centroid of the entire 108 

landslide or the scarp area; (2) all the pixels within the entire landslide body or the scarp area; 109 

(3) the main scarp upper edge (MSUE) approach which selects pixels on and around the 110 

landslide crown-line; and (4) the seed-cell approach that selects pixels within a buffer 111 

polygon around the upper landslide scarp area and sometimes part of the flanks of the 112 

accumulation zone (Atkinson et al.,1998; Atkinson and Massari, 2011; Goetz et al., 2015; 113 

Heckmann et al., 2014; Hussin et al., 2016; Regmi et al., 2014; Van Den Eeckhaut et al., 114 

2006). The analysis of model sensitivity to different landslide mapping strategies and the 115 

significance of different variables combinations can be performed using LAND-SE preparing 116 

different input files. Given the numerous possibility of variations required to set this type of 117 

evaluation, we decided not to include such functionalities in the current LAND-SE release, 118 

but we designed and implemented a command line interface (see §S5 of the LAND-SE User 119 

Guide V 1.0) to make this analysis possible using external procedures.  120 

To identify and separate the training and the validation dataset, different criteria can be 121 

adopted. Temporal, spatial or random subdivisions can be selected guiding the type of 122 

validation analysis. When the temporal validation is selected, secondary information not used 123 

in the model training must be provided for the area under analysis. Adopting a temporal 124 

subdivision approach, the training and the validation set are composed by the same mapping 125 

units and the analysis is performed using the same explanatory variables but different 126 

grouping variable (e. g. a different landslide inventory map, often more recent than what is 127 

used during the training phase). Differently, in the spatial and random approach, the training 128 
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and the validation dataset contain different mapping units, characterized by different grouping 129 

and explanatory variables. The main difference between the spatial and the random validation 130 

is the method chosen to separate the training and the validation dataset: in the first case, the 131 

datasets are spatially different (the two areas can be contiguous or not), in the second the 132 

subdivision is performed using a random selection. For the pixel-based approach, the 133 

definition of the training and the validation dataset can follow the same criteria, but in the 134 

literature, the subdivision is commonly performed using a random selection (Van Den 135 

Eeckhaut et al., 2010; Felicísimo et al., 2013; Petschko et al., 2014). 136 

 137 

2.2  Single susceptibility models estimation (single susceptibility maps) 138 

LAND-SE uses different supervised multivariate statistical models to evaluate the landslide 139 

spatial probability, identifying and quantifying the relation between dependent and 140 

independent variables. According to previous studies (Carrara et al., 1991; Rossi et al., 2010; 141 

Guzzetti et al., 2006, 2012), dependent variable (or grouping variable) is computed as the 142 

absence/presence of landslides in the mapping units and is usually derived from a landslide 143 

inventory. The independent variables (explanatory variables) are obtained from available 144 

thematic information (morphometry, land cover/use, lithology, etc.). Each model is executed 145 

in two phases: a the training phase, where the model reconstructs the relationships between 146 

the dependent and the independent variables, and a validation phase, where these relationships 147 

are verified in different conditions. LAND-SE calculates landslide susceptibility with the 148 

followingfour single models (Rossi et al., 2010): i) linear discriminant analysis (LDA) 149 

(Fisher, 1936; Brown, 1998; Venables and Ripley, 2002), ii) quadratic discriminant analysis 150 

(QDA) (Venables and Ripley, 2002), iii) logistic regression (LR) (Cox, 1958; Brown, 1998; 151 

Venables and Ripley, 2002), and iv) neural network (NN) modelling (Ripley, 1996; Venables 152 

and Ripley, 2002). The logistic regression model was significantly improved with respect to 153 

Rossi et al. (2010), substituting the previous code based on the “Zelig” package (Owen et al., 154 

2013), with a more stable and performing code based on the “glm” function, included in the 155 

well tested base R implementation (R Core Team, 2015).  156 
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2.3 Combined model using a logistic regression approach (combined 157 

susceptibility maps) 158 

Similarly to the previous version, LAND-SE uses a combination model (CM) based on a 159 

logistic regression approach, where the grouping variable is the presence or absence of 160 

landslides in the mapping units, and the explanatory variables are the forecasts of the selected 161 

single susceptibility models (Rossi et al., 2010). Similarly, to the single logistic regression 162 

model, the original code based on the “Zelig” package was substituted with the “glm” 163 

function. LAND-SE allows to enable or not, the execution of the combined model selecting 164 

different combinations of single models.  165 

2.4  Susceptibility model evaluation 166 

In the training phase, LAND-SE reconstructs the relationships between dependent and 167 

independent variables and evaluates the prediction skills of single and combined models (i.e. 168 

the capability to predict the original data). In the validation phase, LAND-SE verifies the 169 

results in different conditions and evaluates the models capability to predict independent data. 170 

Models outputs of both phases are evaluated using the same tools and in particular the 171 

following statistical metrics and indices: 172 

• The dependence among explanatory variables (Belsley, 1991; Hendrickx, 2012); 173 

• Contingency tables (i.e. confusion matrixes) (Jollifee and Stephenson, 2003); 174 

• Contingency plots or fourfold plots summarizing the mapping units correctly and 175 

incorrectly classified by the models (Jollifee and Stephenson, 2003);  176 

• Error maps showing the geographical distribution of the mapping units correctly and 177 

incorrectly classified by the models (Rossi et al., 2010); 178 

• Plots showing receiver operating characteristic (ROC) curves (Green and Swets, 1966; 179 

Mason and Graham, 2002; Fawcett, 2006) and the associated Area Under Curve 180 

(AUC) statistics; 181 

• Evaluation plots showing the variation of the sensitivity (“hit rate”), the specificity (1-182 

false positive rate), and of the Cohen's kappa index (Cohen,1960); 183 

• Success and prediction rate curves (Chung and Fabbri, 1999; 2003) 184 

The description and discussion of the characteristics, advantage/drawbacks of these statistical 185 

metrics/indices are out of the scope of the manuscript and they will not be described in detail.   186 
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2.5  Uncertainty evaluation (single and combined susceptibility zonations) 187 

For each single and combined model, LAND-SE evaluates and quantifies the uncertainty 188 

adopting a “bootstrapping” re-sampling techniqueapproach. Bootstrapping is a resampling 189 

technique for estimating the distributions of statistics based on independent observation. 190 

Bootstrapping can refer to any test or metric that relies on random sampling with replacement 191 

(Efron, 1979; Davison and Hinkley, 2006). The technique has been largely used to estimate 192 

errors and uncertainties associated to classification models (among the others, Kuhn and 193 

Kjell, 2013). In the training phase, a user-specified number of runs are performed varying the 194 

selected dataset. Descriptive statistics for the probability (susceptibility) estimates, including 195 

the mean (μ) and the standard deviation (σ), are obtained from an ensemble of model runs (i.e. 196 

a user-defined number of LAND-SE simulations are executed to obtain the two descriptive 197 

statistics). Such information is portrayed in plots showing estimates for the model uncertainty 198 

in each mapping unit and in maps showing the geographical distribution of the uncertainty 199 

(Guzzetti et al., 2006; Rossi et al., 2010). To model the uncertainty associated to each LS 200 

zonation, the mean and the standard deviation are fitted using a parabolic function (Figure 201 

3D). Such function is used to estimate the uncertainty in the validation phase. The map 202 

showing the geographical distribution of the uncertainty can provide additional and relevant 203 

information for the use of LS zonation in environmental planning studies. A proper 204 

interpretation of the map may provide for each mapping unit a proxy of a degree of 205 

confidence associated to the LS estimate. 206 

The sampling procedure implemented in LAND-SE is only focused to the estimation of the 207 

uncertainty associated to the susceptibility zonation. However, the software also outputs 208 

estimates of the performance variability in the training and validation phases providing 209 

confidence levels in the ROC plots (NCAR, 2014) and in the fourfold or contingency plots 210 

(Meyer et al., 2015). In addition, the execution of analyses that investigate sensitivity or 211 

variability of model results when varying inputs (e.g. using sampling procedures), is 212 

facilitated by the LAND-SE command line interface, that makes these analyses possible using 213 

external procedures.  214 

2.6 SW Software output formats 215 

LAND-SE can be executed in two different modes: the standard that provides textual and 216 

graphical results stored respectively in .txt and .pdf, and the geomode providing also 217 
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geographical output as shapefiles and GeoTIFF. Some output (i.e the success and prediction 218 

rate curves) are produced only in the geomode because they require geographical data 219 

(shapefile) as additional input. A complete list of the output with a detailed description is 220 

provided in the supplementary material (LAND-SE_UserGuide.pdf). 221 

 222 

3 LAND-SE applications 223 

To show LAND-SE software functionalities and output types, we use as example the 224 

landslide susceptibility modelling and zonation originating from two articles published by 225 

Reichenbach and co-authors (2014; 2015)LAND-SE was applied in a test area. In the area 226 

selected as example, Different configurations were selected towe perform the following 227 

analysis, using different configurations: 228 

• Polygon-based landslide susceptibility zonation; 229 

• Pixel-based landslide susceptibility zonation; 230 

• Landslide susceptibility scenarios zonation. 231 

The applications use different mapping units and distinct schema to select the training and 232 

validation dataset. One The last analysis is focused to illustrates an application the use of 233 

LAND-SE focused to evaluate the impact of different land use scenarios of land use on 234 

landslide susceptibilityLS. LAND-SE This type of analysis and results can be considered 235 

relevant information in environmental planning and management. 236 

3.1 Description of the example area and available data 237 

A small area was selected to show applications and output of LAND-SE. The area is located 238 

in the eastern portion of the Briga catchment (Figure 2), in the Messina province (Sicily, 239 

South Italy). It hasThe elevation values ranging ranges from the sea level to about 500 m and 240 

the terrain gradient in the range offrom 0° - to 8180°. Landslides, including shallow soil slides 241 

and debris flows, deep-seated rotational and translational slides, and complex and compound 242 

failures (Varnes, 1984), are abundant, and caused primarily by rainfall (Ardizzone et al., 243 

2012; Reichenbach et al., 2014; 2015). On 1 October 2009, the Briga catchment and the 244 

surrounding areas were hit by an intense storm (Maugeri and Motta, 2011) that triggered more 245 

than 1000 shallow landslides, mainly shallow soil slides and debris flows (Varnes, 1984), 246 

caused 37 fatalities, numerous injured people and severe damages in the affected villages and 247 

along the transportation network. 248 
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After the event, a detailed landslide inventory map at 1:10,000 scale was prepared for the 249 

entire Briga catchment (Ardizzone et al., 2012). The inventory was obtained through a 250 

combination of field surveys carried out in the period from October to November 2009, and 251 

visual interpretation of pre-event and post-event stereoscopic and pseudo-stereoscopic aerial 252 

photographs. The inventory map shows the distribution and types of landslides triggered by 253 

the 1 October 2009 rainfall event (Figure 2), and the distribution and types of pre-existing 254 

landslides. In addition, two maps reporting the land use in different periods were prepared 255 

exploiting available aerial photographs and Very High Resolution (VHR) satellite imagery 256 

(Reichenbach et al., 2014; 2015). The first map was derived from the analysis of the same 257 

black and white aerial photograph used to map pre-event landslides. The second map was 258 

obtained from the analysis of two QuickBird satellite images taken the first on 2 September 259 

2006 and the second on 8 October 2009 (Mondini et al., 2011). 260 

In the area, landslide susceptibility zonation were was prepared using two mapping units: 261 

pixels and slope-units. The slope-units (SU) are terrain subdivisions bounded by drainage and 262 

divide lines (Carrara et al., 1991). SU were outlined using a 5-meter resolution DEM obtained 263 

resampling the VH resolution DEM provided by the Italian national Department for Civil 264 

Protection and using r.slopeunits, a software recently developed r.slopeunits written in Python 265 

for GRASS GIS module (Marchesini et al., 2012; Alvioli et al., 2016). The size and the 266 

geometrical characteristics of the SU are controlled by modeling parameters defined by the 267 

user including the minimum half-basin area (Metz et al., 2011) and the slope aspect 268 

variability. In the study area, the procedure identified 238 SU which represent the polygon-269 

based mapping units for the determination of LS. To explain the spatial distribution of 270 

landslides (Carrara et al., 1991; 1995), for each slope-unit, we calculated the percentage of the 271 

event landslides as dependent (grouping) variable and the following explanatory variables: i) 272 

descriptive statistics (range, mean, standard deviation) of elevation and slope; ii) the 273 

percentage covered by each land use class; and iii) the percentage covered by old landslides.  274 

For the pixel-based analysis, we used the VH resolution DEM (1m x 1m) that accounts for 275 

about 5 million cells. Maps of the elevation, slope, land use and of the presence/absence of 276 

old landslides, were used as explanatory variables in the analysis. The presence/absence of 277 

event landslides was used as dependent variable (Carrara et al., 1991, 1995; Guzzetti et al., 278 

2006). The data originally in polygon format were first converted in raster and all the data 279 

were converted to the tabular format to be suited for LAND-SE (see LAND-280 

SE_UserGuide.pdf for details). 281 
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 282 

3.2 Polygon-based landslide susceptibility zonation 283 

This example is focused to illustrate landslide susceptibility zonation prepared using the 284 

slope-unit as mapping unit. Two spatial criteria were used to define the training and validation 285 

dataset, the first based on a random selection and the second on the subdivision of the entire 286 

catchment in two contiguous areas (Nord and South).  287 

In the first case, the training set contained 70% of the total slope-units and the validation 288 

corresponded to the entire basin. Landslide susceptibility models were trained using a subset 289 

of available data and results were applied in validation to the entire study area. Figure 3 290 

shows the main graphical and geographical outputs obtained during the training and the 291 

validation phases, including susceptibility, error and uncertainty maps, fourfold (contingency) 292 

plot, success and prediction rate curves, ROC plot, evaluation and uncertainty plots. For 293 

simplicity, the figure shows only results of the combined model, but outputs for each single 294 

model are available and can be exploited for further analysis. In the example, the random 295 

selection criteria resulted in similar training and validation performances (Figure 3). This 296 

application simulates LS zonation for a large territory, where landslides information is spotted 297 

and do not cover the entire study area. In such conditions, training cannot be performed on the 298 

entire area and a random selection of the training dataset, within the surveyed area, is a 299 

reasonable solution.  300 

In the second case, the SU located in the Northern part of the Briga catchment with respect to 301 

the main river, were used as training set and the SU located in the Southern portion as 302 

validation set. Figure 4 shows outputs, including susceptibility maps for the combined model, 303 

success and prediction rate curves, and ROC plots. As shown in Figure 4, the spatial 304 

subdivision resulted in good model skill analysis, but reduced validation performances, 305 

underlying a poor spatial transferability (Ruette et al., 2011; Petschko et al., 306 

2014)exportability of the model (i.e. poor applicability of the resulting model coefficients to 307 

different study areas). This type of application simulates LS zonation for areas where 308 

landslides information required to train the model, is available only for a portion of the area. 309 

Results obtained in the training phase are then applied to estimate susceptibility to the portion 310 

of the territory where landslide data are not available. This application can be useful to 311 
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evaluate the possibility to use the same model output in different portion of territory or in 312 

different areas. 313 

3.3 Pixel-based landslide susceptibility zonation 314 

This example shows a landslide susceptibility zonation prepared using the pixel as mapping 315 

unit. A random selection was chosen to prepare the training set and the validation was 316 

performed applying results on the entire study area. For the purpose, in the training set all the 317 

pixels corresponding to landslides and an equal number of pixels in stable areas were 318 

selected. Figure 5 shows the main outputs of the combined model prepared for the entire area 319 

during the validation phase, including susceptibility, error and uncertainty maps, fourfold 320 

(contingency) plot, prediction rate curve, ROC plot, evaluation and uncertainty plots.  321 

This example simulates a common and widespread susceptibility zonation approach that 322 

exploits pixel-based analysis at basin and regional scale. In such conditions, reasonable 323 

calculation times with a limited loss of performances can be reached  to training the model 324 

with a random selected subset and applying results to the entire study area. Dealing with large 325 

dataset, we experienced that training the models using reduced samples (randomly selected) 326 

affects slightly the susceptibility model results and performances with a minor increase in the 327 

model uncertainty.  As shown in Figure 5, although the training was performed with a subset 328 

of the data, the model performance for the entire study area is adequate and acceptable. 329 

3.4 Landslide susceptibility scenarios zonation  330 

This example illustrates how LAND-SE can be utilized to evaluate the impact of different 331 

land-use scenarios on landslide susceptibility zonation (Reichenbach et al. 2014, 2015) 332 

comparing the distribution of stable/unstable slope units and the success rate curves. The 333 

current, the past and possible future land-use distributions were evaluated on landslide 334 

susceptibility classes. Single models (linear discriminant analysis, quadratic discriminant 335 

analysis and logistic regression) and a combined model were prepared, exploiting the 2009 336 

event landslides as grouping variable and morphological and land-use classes as explanatory 337 

variables.   338 

To evaluate the influence of land use change on landslide susceptibility zonation, results 339 

obtained with the 2009 land use map were applied using the 1945 land use distribution. Figure 340 

6 portrays on the left, the combined model prepared using the 2009 land use map, and on the 341 
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right the zonation obtained applying the results to the 1954 land use cover. Zonation maps 342 

obtained with the same models but using the 1954 land use map show a significant reduction 343 

in the number of unstable SU. Success rate curves reveal a decrease in the model fitting 344 

performance when using the 1954 land use map, due to a reduction of slope units classified as 345 

unstable and an increase in stable terrain. In particular, the expansion of bare soil to the 346 

detriment of forested areas in the 56 years from 1954 to 2009, determined a general increase 347 

in the susceptibility. 348 

Moreover, to estimate the effect of land use distribution, we have designed different scenarios 349 

obtained changing the 2009 land use cover using and heuristic and empirical approach. 350 

Assuming an increase in the forested areas, we have considered three types of changes 351 

computed at the slope unit scale resulting in the following scenarios: i) 75% decrease in the 352 

pasture extent (Scenario 1); ii) 75% reduction of both pasture and cultivated areas (Scenario 353 

2); and iii) 75% decrease in bare soil where the slope-unit mean angle was greater than 15° 354 

together with 75% decrease in pasture areas (Scenario 3). A fourth scenario was prepared 355 

assuming the effect of a forest fire in the south-west part of the area, where we simulated a 356 

reduction of the forested cover and an increase in bare soil (Scenario 4). For each scenario, 357 

figure 7 shows the CM zonation and the success rate curve measuring the fitting performance 358 

of each model.  359 

The qualitative comparisons of the maps and of the success rate curves obtained for the 360 

differentAnalyses of the  scenarios confirm how land use changes significantly affect the 361 

spatial distribution of unstable/stable slopes (Reichenbach et al., 2014). This information can 362 

be used applied to evaluate the consequences of land use change on vulnerability and risk. 363 

Moreover, the proposed approach can be helpful to analyse the potential effects of land use 364 

planning and management on slope instability. 365 

 366 

4 Final remarks 367 

A recent review analysis on landslide statistical models revealed a large variety of statistical 368 

types, but a significant scarcity of a complete and comprehensive evaluation of the models 369 

performance and prediction skills (Malamud et al. 2014). Moreover assessment of the input 370 

data quality (Ardizzone et al. 2002), discussion on the scale applicability and the 371 

quantification of errors and uncertainty associate to the models are limited. In the recent years 372 

there has been an increase number of commercial and open source packages for statistical 373 
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analysis that integrate geographical data and/or Open Source GIS, but software dedicated to 374 

landslide susceptibility zonation using statistical models is not available.  375 

LAND-SE is an open source SWsoftware that performs LS modelling, zonation, results 376 

evaluation and associated uncertainty estimation using graphs, map and statistical metrics 377 

filling the lacks of the large variety of statistical methods already available. LAND-SE is 378 

mainly designed to evaluate landslide susceptibility from basin (medium) to regional scale 379 

(small to very small scale).The quality and significant of model outputs is highly related to the 380 

scale, accuracy and resolution of landslide and environmental input data. In the field of 381 

landslide susceptibility zonation, LAND-SE is designed to be properly and productively used 382 

by experienced geomorphologists. Experienced practitioners are expected to use the code, 383 

with the support of experts in the field of environmental planning and management for a 384 

correct and reliable interpretation and exploitation of the results. A proper LAND-SE 385 

execution requires: (i) a basic knowledge of R language to run the script; (ii) experience on 386 

multivariate statistical models and on their evaluation skills/metrics (ROC plot, contingency 387 

table and plots, success/prediction rate curves, etc.); (iii) GIS skills to prepare and handle 388 

input data; and (iv) specific expertise for a correct  and reliable interpretations of the results. 389 

All the modelling types implemented in LAND-SE are basically statistical classification 390 

techniques applicable to any multivariate analysis with a binary grouping (dependent or 391 

response) variable. This makes the code flexible and appropriate to other scientific fields and 392 

usable, with minor customization and tailoring, by user with different expertise. 393 

We think further improvements may include additional models (i.e. forest tree analysis), tools 394 

for the input data preparation, tools for the visualization of results available now only in 395 

textual format (i.e. test of the collinearity evaluation, number of significant variables). 396 

Moreover, the software can be applied and customized to different applications, providing the 397 

users with the possibility to implement and improve the code with additional models, 398 

evaluations tools or output types. LAND-SE can also be used to prepare models to predict 399 

particular types of slope movements (e.g. debris flow source areas, Carrara et al., 2008) or can 400 

be customized to evaluate the probability of spatial occurrence of completely diversified 401 

natural phenomena.  402 
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files (LAND-SE_configuration_spatial_data.txt, LAND-SE_configuration.txt) and input 414 

files (training.txt, training.shp, validation.txt, validation.shp) relative to three examples 415 

applications: (i) polygon-based landslide susceptibility zonation with a random selection 416 

of the training dataset and a validation on a larger area; (ii) polygon-based landslide 417 

susceptibility zonation with training and validation performed in two different contiguous 418 

areas; (iii) pixel-based landslide susceptibility zonation with a random selection of the 419 

training dataset and a validation on a larger area. 420 

LAND-SE Copyright (C) Mauro Rossi. LAND-SE is free software; it can be redistributed or 421 

modified under the terms of the GNU General Public (either version 2 of the License, or any 422 

later version) as published by the Free Software Foundation. The program is distributed in the 423 

hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied 424 

warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 425 

GNU General Public License for more details.  426 
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Figures 563 

 564 

 565 

Figure 1. Logical schema of the LAND-SE software for landslide susceptibility modelling 566 
and zonation. 567 
  568 
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569 

 570 

 571 

Figure 2. Shaded relief of the study area located in the Briga catchment, along the Ionian 572 
coast of Sicily (Italy). Red polygons show landslides triggered by the October 1, 2009 rainfall 573 
event. 574 
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 575 
 576 
Figure 3. Landslide susceptibility maps (CM) for the training dataset (A) and the validation 577 
dataset (B) classified in five unequally spaced classes (see legend). (A1, B1) fourfold plots 578 
summarizing the number of true positives (TP), true negatives (TN), false positives (FP), and 579 
false negatives (FN); (A2, B2) maps of the distribution of the four categories of slope units 580 
reported in the fourfold plots; (A3, B3) ROC plots; (A4, B4) success and prediction rate 581 
curves; (C) variation in the model sensitivity, specificity, and Cohen's kappa index; (D) plot 582 
showing measures of the model error (2σ) vs. the mean probability (μ), for each slope unit, 583 
(black circle); (A5, B5) maps of the geographical distribution of the model error. Maps 584 
coordinates and scale bar are shown in Figure 2. 585 
  586 
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 587 
 588 

Figure 4. Landslide susceptibility maps (CM) for the training dataset (A: Northern part) and 589 
the validation dataset (B: Southern part) of the test area, classified in five unequally spaced 590 
classes (see legend). (A1, B1) success and prediction rate curves; (A2, B2) ROC plots. Maps 591 
coordinates and scale bar are shown in Figure 2. 592 
  593 
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 594 
 595 
Figure 5. Pixel-based landslide susceptibility map (CM) of the test area (A) classified in five 596 
unequally spaced classes (see legend). (A1) fourfold plot summarizing the number of true 597 
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN); (A2) map 598 
of the distribution of the four categories reported in the fourfold plot; (A3) prediction rate 599 
curve; (A4) variation in the model sensitivity, specificity, and Cohen's kappa index; (A5) 600 
ROC plot; (A6) map of the geographical distribution of the model error. Maps coordinates 601 
and scale bar are shown in Figure 2. 602 

 603 
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Figure 6. (A) Landslide susceptibility map (CM) prepared using the 2009 land use and (B) 
using the 1954 land use cover. LS maps are classified in five unequally spaced classes (see 
legend); (A1, B1) plot showing the model uncertainty estimated in each slope unit; (A2, B2) 
success rate curves. Maps coordinates and scale bar are shown in Figure 2. 
  605 
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606 

 607 

 608 

Figure 7. (A, B, C, D) Landslide susceptibility maps (CM) classified in five unequally spaced 609 
classes prepared using different land use scenario; (A1, B1, C1, D1) success rate curves. 610 
Maps coordinates and scale bar are shown in Figure 2. 611 
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