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 1 

Abstract 2 

nonlinMIP provides experiments that account for state-dependent regional and global climate 3 

responses.  The experiments have two main applications: 1) to focus understanding of 4 

responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. 5 

change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to 6 

the present-day); or 2) to understand the state-dependence (nonlinearity) of climate change – 7 

i.e. why doubling the forcing may not double the response. State dependence (nonlinearity) of 8 

responses can be large at regional scales, with important implications for understanding 9 

mechanisms and for GCM emulation techniques (e.g. energy balance models and pattern-10 

scaling methods). However, these processes are hard to explore using traditional experiments, 11 

explaining why they have had little attention in previous studies.  Some single model studies 12 

have established novel analysis principles and some physical mechanisms. There is now a 13 

need to explore robustness and uncertainty in such mechanisms across a range of models 14 

(point 2 above), and more broadly, to focus work on understanding the response to CO2 on 15 

climate states relevant to specific policy/science questions (point 1). 16 

 17 

nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to 18 

separate linear and non-linear mechanisms cleanly, with a good signal/noise ratio – while 19 

being demonstrably traceable to realistic transient scenarios.  The design builds on the CMIP5 20 

and CMIP6 DECK protocols, and is centred around a suite of instantaneous atmospheric CO2 21 

change experiments, with a ramp-up-ramp-down experiment to test traceability to gradual 22 

forcing scenarios. In all cases the models are intended to be used with CO2 concentrations 23 

rather than CO2 emissions as the input. The understanding gained will help interpret the 24 

spread in policy-relevant scenario projections. 25 

 26 

Here we outline the basic physical principles behind nonlinMIP, and the method of 27 

establishing traceability from abruptCO2 to gradual forcing experiments, before detailing the 28 

experimental design and finally some analysis principles. The test of traceability from 29 

abruptCO2 to transient experiments is recommended as a standard analysis within the CMIP5 30 

and CMIP6 DECK protocols. 31 
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 1 

 2 

1 Introduction 3 

Robust climate impacts assessments require, at regional scales, understanding of physical 4 

mechanisms of climate change in GCM projections. A further, pragmatic requirement for 5 

impacts assessments is the ability to emulate (using fast but simplified climate models) GCM 6 

behaviour for a much larger range of policy-relevant scenarios than may be evaluated using 7 

GCMs directly.  These two requirements may be combined into a single question: what is the 8 

simplest conceptual framework, for a given well defined model application, that has 9 

quantitative predictive power and captures the key mechanisms behind GCM scenario 10 

projections?   11 

 12 

Often, a choice has been to assume some form of linearity.  In studies of the global energy 13 

balance, linearity is often assumed in the form of a constant climate feedback parameter. This 14 

parameter may be used to quantify feedbacks in different models (e.g. Zelinka et al., 2013) or, 15 

in emulation methods, to parameterise global energy balance models (e.g. Huntingford and 16 

Cox, 2000).  In understanding or emulating regional patterns of climate change, it is often 17 

assumed explicitly that regional climate change is roughly proportional to global mean 18 

warming.  In emulation work, this is termed 'pattern scaling' (Santer et al., 1990;Mitchell, 19 

2003;Ishizaki et al., 2012;Tebaldi and Arblaster, 2014), but this assumption may also be 20 

applied implicitly in understanding mechanisms. Often, physical mechanisms are studied for a 21 

single period of a single forcing scenario or in a single high-forcing experiment such as 22 

abrupt4xCO2 (implicitly assuming that the understanding is relevant for other periods or 23 

scenarios). The use of pattern-scaling is prevalent in studies of climate impacts. 24 

 25 

While these approximations appear to work well under many circumstances, significant 26 

limitations are increasingly being revealed in such assumptions.  These are of two types: 27 

different timescales of response, and non-linear responses.  In discussing this, a complication 28 

arises in that different linearity assumptions exist.  Henceforth we define 'linear' as meaning 29 

'consistent with linear systems theory' - i.e. responses that are linear in model forcing (i.e. 30 
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where doubling the forcing doubles the response). This is different from assuming that 1 

regional climate change is proportional to global mean warming – as in pattern scaling. 2 

 3 

Even in a linear system (where responses are linear in forcing), the relationship between two 4 

system outputs (e.g. between global-mean temperature and regional sea surface temperature - 5 

SST) will in general not be linear.  This is due to different timescales of response in different 6 

locations and/or variables (section 3.1). Examples include lagged surface ocean warming due 7 

to a connection with the deeper ocean (Manabe et al., 1990;Williams et al., 2008;Held et al., 8 

2010;Chadwick et al., 2013;Andrews and Ringer, 2014) or the direct response of precipitation 9 

to forcings (Mitchell et al., 1987;Allen and Ingram, 2002;Andrews et al., 2010;Bala et al., 10 

2010;Bony et al., 2014).  One (generally false, but potentially acceptable) assumption of 11 

pattern scaling, then, is that regional climate responds over the same timescale as global-mean 12 

temperature.  Different timescales of response are especially important in understanding and 13 

predicting behaviour under mitigation and geoengineering scenarios (or over very long 14 

timescales). 15 

 16 

Non-linear system responses (e.g. Schaller et al., 2013) are more complex to quantify, 17 

understand and predict than those of linear systems (section 3.2).  Some examples have been 18 

known for some time, such as changing feedbacks through retreating snow/sea-ice or 19 

increasing water vapour (Hansen et al., 2005;Colman and McAvaney, 2009;Jonko et al., 20 

2013;Meraner et al., 2013).  Some paleoclimate evidence supports the idea that climate 21 

sensitivity increases with warming (Caballero and Huber, 2013;Shaffer et al., 2016), which is 22 

important for the risk of high-end global warming (Bloch-Johnson et al., 2015). The nonlinear 23 

behaviour of the Atlantic Meridional Overturning Circulation is another example (Hofmann 24 

and Rahmstorf, 2009;Ishizaki et al., 2012).  More recently, substantial non-linear precipitation 25 

responses have been demonstrated in spatial patterns of regional precipitation change in two 26 

Hadley Centre climate models with different atmospheric formulations (Good et al., 27 

2012;Chadwick and Good, 2013).  This is largely due to simultaneous changes in pairs of 28 

known robust pseudo-linear mechanisms (Chadwick and Good, 2013).  Regional warming has 29 

been shown to be different for a first and second CO2 doubling, with implications primarily 30 

for impact assessment models or studies combining linear energy balance models with pattern 31 

scaling (Good et al., 2015). Non-linearity has also been demonstrated in the response under 32 
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idealised geoengineering scenarios, of ocean heat uptake, sea-level rise, and regional climate 1 

pattterns, with different behaviour found when forcings are decreasing than when they are 2 

increasing (Bouttes et al., 2013;Schaller et al., 2014;Bouttes et al., 2015). 3 

 4 

Investigation of these mechanisms at regional scales has been constrained by the type of 5 

GCM experiment typically analysed.  Most previous analyses (e.g. Solomon et al., 2007) have 6 

used results from transient forcing experiments, where forcing changes steadily through the 7 

experiment.  There are three main problems with this approach.  First, information about 8 

different timescales of response is masked.  This is because the GCM response at any given 9 

time in a transient forcing experiment is a mixture of different timescales of response (Li and 10 

Jarvis, 2009;Held et al., 2010;Good et al., 2013), including short-timescale responses (e.g. 11 

ocean mixed layer response from forcing change over the previous few years) through long-12 

timescale behaviour (including deeper ocean responses from forcing changes multiple 13 

decades to centuries earlier).  Secondly, in transient forcing experiments, non-linear behaviour 14 

is hard to separate from linear mechanisms.  For example, in an experiment where CO2 is 15 

increased by 1% per year for 140 years ('1pctCO2'), we might find different spatial patterns at 16 

year 70 (at 2xCO2) than at year 140 (at 4xCO2). This could be due to nonlinear mechanisms 17 

(due to the different forcing level and associated different climate state). However, it could 18 

also be due to linear mechanisms: year 140 follows 140 years of forcing increase, so includes 19 

responses over longer response timescales than at year 70 (only 70 years of forcing increase).  20 

Thirdly, signal/noise ratios of regional climate change can be relatively poor in such 21 

experiments. 22 

 23 

These three issues may be addressed by the use of idealised abruptCO2 GCM experiments: an 24 

experiment where CO2 forcing is instantaneously changed, then held constant.  The 25 

simplified forcing in such experiments simplifies the understanding of physical mechanisms 26 

of response.  In these abrupt CO2 experiments, responses over different timescales (fast and 27 

slow responses) are separated from each other.  Further, responses at different forcing levels 28 

may be directly compared, e.g. by comparing the response in abrupt2xCO2 and abrupt4xCO2 29 

experiments over the same timescale - both have identical forcing time histories, apart from 30 

the larger forcing magnitude in abrupt4xCO2.  Thirdly, high signal/noise is possible: averages 31 

may be taken over periods of 100 years or more (after the initial ocean mixed layer 32 
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adjustment, change is gradual in such experiments).  Recent work (Good et al., 2012;Good et 1 

al., 2013;Zelinka et al., 2013;Bouttes et al., 2015;Good et al., 2015) has established that these 2 

experiments contain global and regional-scale information quantitatively traceable to more 3 

policy-relevant transient experiments - and equivalently, that they form the basis for fast 4 

simple climate model projections traceable to the GCMs.  In other studies (e.g. Frolicher et 5 

al., 2014), pulse experiments have been used to separate different timescales of response 6 

(where forcing is abruptly increased, then abruptly returned to the control state).  We use 7 

abruptCO2 experiments because they offer greater signal/noise in the change signal 8 

(important for regional-scale studies); and also for consistency with the CMIP6 DECK 9 

abrupt4xCO2 experiment. 10 

 11 

The CMIP5 abrupt4xCO2 experiments have thus been used widely: including quantifying 12 

GCM forcing and feedback behaviour (Gregory et al., 2004;Zelinka et al., 2013), and for 13 

traceable emulation of GCM projections of global-mean temperature and heat uptake (Good 14 

et al., 2013;Stott et al., 2013).  Abrupt4xCO2 is also part of the CMIP6 DECK protocol 15 

(Meehl et al., 2014). 16 

 17 

NonlinMIP builds on the CMIP5 and CMIP6 DECK designs to explore non-linear responses 18 

(via additional abruptCO2 experiments at different forcing levels).  It also explores responses 19 

over slightly longer timescales - extending the CMIP5 abrupt4xCO2 experiment by 100 years. 20 

 21 

2 Relating abruptCO2 to gradual forcing scenarios: the step-response model 22 

In using the highly-idealised abruptCO2 experiments, it is essential that their physical 23 

relevance (traceability) to more realistic gradual forcing experiments is determined. We 24 

cannot a priori reject the possibility that some GCMs could respond unrealistically to the 25 

abrupt forcing change.  A key tool here is the step-response model (described below).  This 26 

(Hasselmann et al., 1993) is a response-function method, which aims to predict the GCM 27 

response to any given transient-forcing experiment, using the GCM response to an abruptCO2 28 

experiment. Such a prediction may be compared with the GCM transient-forcing simulation, 29 

as part of a traceability assessment (discussed in detail in section 5). 30 

 31 
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Once some confidence is established in traceability of the abruptCO2 experiments to 1 

transient-forcing scenarios, the step-response model has other roles: to explore the 2 

implications, for different forcing scenarios, of physical understanding gleaned from 3 

abruptCO2 experiments; to help separate linear and nonlinear mechanisms (section 5); and 4 

potentially as a basis for GCM emulation.  The method description below also serves to 5 

illustrate the assumptions of linear system theory. 6 

 7 

The step-response model represents the evolution of radiative forcing in a scenario 8 

experiment by a series of step changes in radiative forcing (with one step taken at the 9 

beginning of each year).  The method makes two linear assumptions. First, the response to 10 

each annual forcing step is estimated by linearly scaling the response in a CO2 step 11 

experiment according to the magnitude of radiative forcing change.  Second, the response yi at 12 

year i of a scenario experiment is estimated as a sum of responses to all previous annual 13 

forcing changes (see Figure 1 of Good et al., 2013 for an illustration): 14 

 15 
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 23 

where sF∆  is the radiative forcing change in the CO2 step experiment.  All quantities are 24 

expressed as anomalies with respect to a constant-forcing control experiment.   25 

 26 
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This approach can in principle be applied at any spatial scale for any variable for which the 1 

assumptions are plausible (e.g. Chadwick et al., 2013). 2 

 3 

 4 

3 Linear and non-linear mechanisms, and the relevance of abruptCO2 5 

experiments 6 

Here we discuss further, with examples, the distinction between linear and nonlinear 7 

mechanisms, when they are important, and the relevance of abruptCO2 experiments. 8 

3.1 Linear mechanisms: different timescales of response 9 

Even in a linear system, regional climate change per K of global warming will evolve during 10 

a scenario simulation. This happens because different parts of the climate system have 11 

different timescales of response to forcing change.  12 

 13 

This may be due to different effective heat capacities. For example, the ocean mixed layer 14 

responds much faster than the deeper ocean, simply due to a thinner column of water (Li and 15 

Jarvis, 2009).   However, some areas of the ocean surface (e.g. the Southern Ocean and south-16 

east subtropical Pacific) show lagged warming, due to a greater connection (via upwelling or 17 

mixing) with the deeper ocean (e.g. Manabe et al., 1990;Williams et al., 2008).  The dynamics 18 

of the ocean circulation and vegetation may also have their own inherent timescales (e.g. 19 

vegetation change may lag global warming by years to hundreds of years, Jones et al., 2009).  20 

At the other extreme, some responses to CO2 forcing are much faster than global warming: 21 

such as the direct response of global mean precipitation to forcings (Mitchell et al., 22 

1987;Allen and Ingram, 2002;Andrews et al., 2010) and the physiological response of 23 

vegetation to CO2 (Field et al., 1995). 24 

 25 

In a linear system, patterns of change per K of global warming are sensitive to the forcing 26 

history.  For example in Figure 1, a scenario is illustrated where forcing is ramped up, then 27 

stabilized. Three periods are highlighted, which may have different patterns of change per K 28 

of global warming, due to different forcing histories: at the leftmost point, faster responses 29 
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will be relatively more important, whereas at the right, the slower responses have had some 1 

time to catch up.  A key example is the different responses of global-mean warming and 2 

global-mean sea level rise under RCP2.6, as shown in Figures SPM.7 and SPM.9 of the IPCC 3 

Fifth Assessment Report (IPCC, 2013).  Under RCP2.6, global-mean warming ceases after 4 

2050, when radiative forcing is approximately stabilised (corresponding qualitatively to the 5 

period when the black line is horizontal in Figure 1).  In contrast, sea-level rise continues at 6 

roughly the same rate throughout the century. Therefore, in RCP2.6, the sea-level rise per K 7 

of global warming increases after 2050. This is largely because the timescale of deep ocean 8 

heat uptake is much longer than that of ocean mixed-layer warming.  9 

 10 

By design, abruptCO2 experiments separate GCM responses with different timescales (i.e. 11 

separating faster responses from slower responses): the response of a given variable in year Y 12 

of the experiment corresponds to the response of that variable over the timescale Y.  This is 13 

used, for example, (Gregory et al., 2004) to estimate radiative forcing and feedback 14 

parameters for GCMs: plotting radiative flux anomalies against global mean warming can 15 

separate 'fast' and 'slow' responses. For example, the top-of-atmosphere outgoing shortwave 16 

flux shows a rapid initial change before the global mean temperature has had time to respond. 17 

3.2 Non-linear responses 18 

Nonlinear mechanisms arise for a variety of reasons. Often, however, it is useful to describe 19 

them as state-dependent feedbacks. For example, the snow-albedo and sea-ice albedo 20 

feedbacks becomes small at high or low snow depth (Hall, 2004;Eisenman, 2012). Soil 21 

moisture–temperature feedbacks can also be state-dependent (Seneviratne et al., 22 

2006;Seneviratne et al., 2010): feedback is small when soil moisture is saturated, or so low 23 

that moisture is tightly bound to the soil (in both regimes, evaporation is insensitive to change 24 

in soil moisture). Sometimes, nonlinear mechanisms may be better viewed as simultaneous 25 

changes in pairs of properties. For example, convective precipitation is broadly a product of 26 

moisture content and dynamics (Chadwick et al., 2012;Chadwick and Good, 2013;Bony et al., 27 

2014;Oueslati et al., 2016). Both moisture content and atmospheric dynamics respond to CO2 28 

forcing, so in general we might expect convective precipitation to have a nonlinear response 29 

to CO2 forcing.  In addition, the Clausius Clapeyron equation introduces some nonlinearity in 30 
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the increase of specific humidity with warming. Of course, more complex nonlinear responses 1 

exist, such as for the Atlantic Meridional Overturning Circulation. 2 

 3 

In contrast to linear mechanisms, nonlinear mechanisms are sensitive to the magnitude of 4 

forcing.  For example, the two points highlighted in Figure 2 may have different patterns of 5 

change per K of global warming, due to nonlinear mechanisms (in contrast, linear 6 

mechanisms would cause no difference in the patterns of change per K of global warming 7 

between the two points in Figure 2, because the two scenarios have the same forcing history 8 

apart from a constant scaling factor). 9 

 10 

An example is the snow/ice albedo feedback, which tends to change in magnitude with 11 

increased global temperature, due to declining snow and ice cover, and the remaining snow 12 

and ice being in areas of lower solar insolation (Colman and McAvaney, 2009).  13 

 14 

AbruptCO2 experiments may be used to separate nonlinear from linear mechanisms. This can 15 

be done by comparing the responses at the same timescale in different abruptCO2 16 

experiments. Figure 3 compares abrupt2xCO2 and abrupt4xCO2 experiments over years 50-17 

149. A 'doubling difference' is defined (Good et al., 2015), measuring the difference in 18 

response to the first and second CO2 doublings. In most current simple climate models (e.g. 19 

Meinshausen et al., 2011), the radiative forcing from each successive CO2 doubling is 20 

assumed identical (because forcing is approximately linear in log[CO2], Myhre et al., 1998). 21 

With this assumption, a linear system would have zero doubling difference everywhere.  22 

Therefore, the doubling difference is used as a measure of nonlinearity.  The question of 23 

which abruptCO2 experiments to compare, and over which timescale, is discussed in section 24 

5. 25 

 26 

In some GCMs, the forcing per CO2 doubling has been shown to vary with CO2 (Colman and 27 

McAvaney, 2009;Jonko et al., 2013). However, this variation depends on the specific 28 

definition of forcing used (Jonko et al., 2013). Currently this is folded into our definition of 29 

nonlinearity. If a robust definition of this forcing variation becomes available in future, it 30 
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could be used to scale out any difference in forcing between pairs of abruptCO2 experiments, 1 

to calculate an 'adjusted doubling difference'. 2 

 3 

 4 

4 Experimental design 5 

nonlinMIP is composed of a set of abruptCO2 experiments (the primary tools), plus a CO2-6 

forced transient experiment. AbruptCO2 experiments are driven by changes in atmospheric 7 

CO2 concentration: CO2 is abruptly changed, then held constant.  These build on the CMIP5 8 

and CMIP6 DECK protocols (the required runs from these are detailed in Table 1).  The 9 

additional nonlinMIP runs (Table 2) are assigned three priority levels. Three options for 10 

participation are: 1) only the ‘essential’ simulation; 2) all ‘high priority’ plus the ‘essential’ 11 

simulations; or, preferably, 3) all simulations.  The experiments in Table 1 are required in all 12 

cases.  All experiments must be initialized from the same year of a pre-industrial control 13 

experiment, except for abrupt4xto1x (see Table 2).  A typical analysis procedure is outlined in 14 

section 5. 15 

 16 

The nonlinMIP design is presently limited to CO2 forcing, although the same principles could 17 

be applied to other forcings. 18 

 19 

5 Basic analysis principles 20 

This section outlines the applications and general principles behind analysis of nonlinMIP 21 

results.  First, some general applications are introduced, before giving more detail on how one 22 

particular application (quantifying and understanding nonlinear change) may be analysed. 23 

 24 

The addition of the abrupt2xCO2 experiment to the standard DECK abrupt4xCO2 permits 25 

quantifying and understanding climate change due to CO2 for three main applications:  26 

1) under global warming approximately comparable to that envisaged by the Paris 27 

agreement. (quantified by abrupt2xCO2 – pre-industrial control) 28 
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2) climate change approximately comparable to that avoided by mitigation (quantified by 1 

abrupt4xCO2 - abrupt2xCO2). 2 

3) nonlinear change (the difference between 2 and 1). 3 

 4 

Applications 1 and 2 are expected to be of the widest interest to the community, as they could 5 

be analysed using the same methods as have already been used extensively to study the 6 

response in the CMIP5 abrupt4xCO2 experiment, but for climate states more relevant to the 7 

policy questions outlined in 1) and 2).  Useful signal/noise should be possible because ~100 8 

year means may be analysed (e.g. over years 50-149, where climate is relatively stable as it 9 

follows the initial ocean mixed layer warming). Application 3 is more specialised, and is 10 

discussed in more detail below. 11 

 12 

The abrupt0.5xCO2 experiment permits analogous work, extending the relevance to colder 13 

past climates, and exploring one aspect of how past change may differ from future change. It 14 

also allows nonlinear mechanisms to be studied with greater signal/noise: 15 

 16 

4) change under past cold climates (abrupt0.5xCO2 - piControl). 17 

5) nonlinear change: as 3, but with larger signal/noise ( [abrupt4xco2 - abrupt2xco2] – 18 

[piControl - abrupt0.5xCO2] ). 19 

 20 

In quantifying nonlinear change (applications 3 or 5 above), the primary idea is to find where 21 

the step-response model (section 2) breaks: since the step-response model is based on a linear 22 

assumption, this amounts to detecting non-linear responses.   23 

 24 

The aim is to focus subsequent analysis.  If non-linearities in a quantity of interest are found 25 

to be small, then analysis may focus on understanding different timescales of response from a 26 

single abruptCO2 experiment: linearity means that the physical response (over a useful range 27 

of CO2 concentrations) is captured by a single abruptCO2 experiment.  This represents a 28 

considerable simplification.  If, on the other hand, non-linearities are found to be important, 29 
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the focus shifts to understanding the different responses in different abruptCO2 experiments.  1 

The choice of which abruptCO2 experiments to focus on, and over which timescales, is 2 

discussed below. 3 

 4 

5.1 First step: check basic traceability of abrupt4xCO2 to the transient-forced 5 

response near 4xCO2 6 

The test described here is recommended as a routine analysis of the CMIP6 DECK 7 

experiments (even if nonlinMIP experiments are not performed).  The aim is to confirm 8 

whether the abruptCO2 experiments contain realistic physical responses in the variables of 9 

interest (as previously done for global-mean temperature and heat uptake for a range of 10 

CMIP5 models (Good et al., 2013), for regional-scale warming and ocean heat updake 11 

(Bouttes et al., 2015;Good et al., 2015) and for other global-mean quantities for HadCM3 12 

(Good et al., 2011).   This also, rules out the most pathological non-linearities (e.g. if the 13 

response to an abrupt CO2 change in a given GCM was unrealistic).  Although this test has 14 

been done for a range of models and variables, traceability cannot be assumed to hold for all 15 

models and variables. 16 

 17 

The linear step-response model should first be used with the abrupt4xCO2 response, to 18 

predict the response near year 140 of the 1pctCO2 experiment (i.e. near 4xCO2).  This 19 

prediction is then compared with the actual GCM 1pctCO2 result.  This should first be done 20 

for global mean temperature: this assessment has previously been performed for a range of 21 

CMIP5 models (Good et al., 2013; see Figure 8), giving an idea of the level of accuracy 22 

expected.  If the abruptCO2 response is fundamentally unrealistic, it is likely to show up in 23 

the global temperature change.  This approach may then be repeated for spatial patterns of 24 

warming, and then for the quantities of interest.  Abrupt4xCO2 is used here as it has larger 25 

signal/noise than abrupt2xCO2, yet is representative of forcing levels in a business-as-usual 26 

scenario by 2100.  However, the tests may also be repeated using abrupt2xCO2 – but 27 

compared with year 70 of the 1pctCO2 experiment (i.e. at 2xCO2). 28 

 29 
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The step-response model emulation under these conditions should perform well for most 1 

cases: the state at year 140 of the 1pctCO2 experiment is very similar to that of abrupt4xCO2 2 

(same forcing, similar global-mean temperature), so errors from non-linear mechanisms 3 

should be minimal.  If large errors are found, this may imply caution about the use of 4 

abruptCO2 experiments for these variables, or perhaps point to novel non-linear mechanisms 5 

that may be understood by further analysis. 6 

 7 

5.2 Second step: characterising nonlinear responses 8 

Having established some level of confidence in the abruptCO2 physical response, the second 9 

step is to look for nonlinear responses.  This first involves repeating the tests from step 1 10 

above, but for different parts of the 1pctCO2 and 1pctCO2 ramp-down experiments, and 11 

using different abruptCO2 experiments for the step-response model. 12 

 13 

An example is given in Figure 4 (but for different transient-forcing experiments). This shows 14 

results for global-mean precipitation in the HadCM3 GCM (Good et al., 2012), under an 15 

idealised simulation where forcing is ramped up at a constant rate for 70 years, then ramped 16 

down at the same rate for 70 years.  Here, the step-response model prediction using 17 

abrupt4xCO2 (red curves) is only close to the actual GCM simulation (black) where the 18 

transient-forced simulation is near to 4xCO2 (i.e. near year 70).  Similarly, the prediction 19 

using abrupt2xCO2 (blue curves) works only near 2xCO2 (near years 35 or 105).  Otherwise, 20 

quite large errors are seen, and the predictions with abrupt2xCO2 and abrupt4xCO2 are quite 21 

different from each other.  This implies that there are large non-linearities in the global-mean 22 

precipitation response in this GCM, and that they may be studied by comparing the responses 23 

in the abrupt2xCO2 and abrupt4xCO2 experiments. 24 

 25 

Having identified some non-linear response, and highlighted two or more abruptCO2 26 

experiments to compare (in the previous example, abrupt2xCO2 and abrupt4xCO2), the non-27 

linear mechanisms may be studied in detail by comparing the responses in the different 28 

abruptCO2 experiments over the same timescale (e.g. via the doubling difference, as in Figure 29 

3).  This allows (Good et al., 2012;Chadwick and Good, 2013;Good et al., 2015) non-linear 30 
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mechanisms to be separated from linear mechanisms (not possible in a transient-forcing 1 

experiment).  It is expected that analysis will focus on the 100-year period over years 40-139 2 

of the experiments (the relatively stable period after the initial ocean mixed-layer warming). 3 

 4 

In the same spirit as other CMIP5 and CMIP6 idealised experiments, nonlinMIP will help 5 

understand nonlinear mechanisms by isolating the signal of nonlinear mechanisms more 6 

effectively. This occurs in two ways: first,  by using simplified forcing  compared to the time-7 

dependent, RCP projections (the latter feature multiple forcings of evolving strength).  The 8 

simplified forcing means that alternative mechanisms (from different forcing agents or linear 9 

mechanisms) may be ruled out by design. Secondly, contamination of the signal from internal 10 

variability may be reduced, as averages of around 100 years are possible. 11 

 12 

The magnitude of internal variability may also be estimated at the different levels of CO2 13 

forcing. This could be used to help explore changes in variability with warming (Seneviratne 14 

et al., 2006;Screen, 2014), and to assess significance of any signal of nonlinear change in the 15 

time mean climate.  Internal variability could be estimated from years 40-139 of the 16 

experiments (after the initial warming of the ocean mixed layer), after removing a fitted linear 17 

trend. 18 

 19 

6 Conclusions 20 

 21 

These experiments can help improve climate science and consequent policy advice in a 22 

number of ways.  The focus is on understanding mechanisms (given the idealised nature of 23 

the experiments).  A further application, however, is that energy balance models could be 24 

tuned to the different experiments, to explore the importance, for projections, of state-25 

dependence of feedback parameters (Hansen et al., 2005;Colman and McAvaney, 26 

2009;Caballero and Huber, 2013).  Also, if certain regions are found to show strongly 27 

nonlinear behaviour in these experiments, this could help focus assessment of impact tools 28 

like pattern-scaling or time-shifting (e.g. Herger et al., 2015).   29 

 30 



 16

Of probably widest interest is the fact that the additional experiments will allow 1 

understanding work to focus on climate states more directly relevant to discrete policy/science 2 

questions (the benefits of mitigation; impacts of scenarios consistent with the Paris 3 

agreement; or understanding past cold climates; see start of section 5).  These questions may 4 

show important differences, due to state-dependence (nonlinearity) of mechanisms, but for 5 

many cases the nature of the nonlinearity may not need to be assessed.  A classical example is 6 

the snow-albedo feedback: the strength of this would be different in a warm versus a cold 7 

world (due to different baseline snow cover), but if the focus is on understanding the warm 8 

world, the first priority is to study experiments representative of the warm world (with the 9 

correct climate state). 10 

 11 

There is also a need to quantify and understand, at regional scales, nonlinear mechanisms of 12 

climate change: that is, do the above science/policy questions give significantly different 13 

answers (e.g. different patterns of rainfall change), and why?  This is difficult to do using 14 

transient model experiments alone, for two reasons: contamination due to different timescales 15 

of response, and noise from internal variability.   16 

 17 

This paper outlines the basic physical principles behind the nonlinMIP design, and the method 18 

of establishing traceability from abruptCO2 to gradual forcing experiments, before detailing 19 

the experimental design and finally some general analysis principles that should apply to most 20 

studies based on this dataset. 21 

 22 

 23 

 24 

7 Data availability 25 

 26 

Results will be made available as part of the CFMIP project, within the sixth model 27 

intercomparison project, CMIP6. 28 

 29 
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Table 1. List of CMIP5/CMIP6 DECK experiments required by nonlinMIP. 1 

Experiment Description Role 

piControl Pre-industrial control 

experiment 

 

Abrupt4xCO2 CO2 abruptly quadrupled, 

then held constant for 150 

years. 

Separate different timescales 

of response. 

1pctCO2 CO2 increased at 1% per 

year for 140 years (i.e. as 

CMIP5 1pctCO2 

experiment), then 

decreased by 1% per year 

for 140 years (i.e. returning 

to pre-industrial 

conditions). 

To test traceability of the 

abruptCO2 experiments to 

more realistic transient-forcing 

conditions.   Adding the ramp-

down phase explores physics 

relevant to mitigation and geo-

engineering scenarios. 

 2 

3 
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Table 2.  NonlinMIP experimental design. Three options are: only the ‘essential’ simulation; 1 

all ‘high priority’ plus the ‘essential’ simulations; or, all simulations.  The experiments in 2 

Table 1 are required in all cases. 3 

Experiment 

(priority) 

Description Role 

Abrupt2xCO2 

(essential) 

 

As abrupt4xCO2 (see 

Table 1), but at 

double pre-industrial 

CO2 concentration. 

To diagnose non-linear responses (in 

combination with abrupt4xCO2). 

 

Assess climate response and (if 

appropriate) make climate projections 

with the step-response model at forcing 

levels more relevant to mid- or low-

forcing scenarios. 

Abrupt0.5xCO2 

(essential) 

As abrupt4xCO2 (see 

Table 1), but at half 

pre-industrial CO2 

concentration 

To diagnose non-linear responses (in 

combination with abrupt4xCO2 and 

abrupt2xCO2).  Offers greater 

signal/noise for regional precipitation 

change than if just abrupt2xCO2 was 

used.  Also relevant to paleoclimate 

studies. 

Extend both 

abrupt2xCO2 and 

abrupt4xCO2 by 

100 years (high 

priority) 

 Permit improved signal/noise in 

diagnosing some regional-scale non-

linear responses 

 

Explore longer timescale responses than 

in CMIP5 experiment.  Permit step-

response model scenario simulations 

from 1850-2100 

 



 24

Allow traceability tests (via the step-

response model) against most of the 

1pctCO2 ramp-up-ramp-down 

experiment. 

 

Provide a baseline control for the 

abrupt4xto1x experiment. 

1pctCO2 ramp-

down (medium 

priority) 

Initialised from the 

end of 1pctCO2.  

CO2 is decreased by 

1% per year for 140 

years (i.e. returning 

to pre-industrial 

conditions). 

To test traceability of the abruptCO2 

experiments to more realistic transient-

forcing conditions.   Adding the ramp-

down phase explores a much wider 

range of physical responses, providing a 

sterner test of traceability. Relevant also 

to mitigation and geo-engineering 

scenarios, and offers a sterner test of. 

Abrupt4xto1x 

(medium priority) 

Initialised from year 

100 of abrupt4xCO2, 

CO2 is abruptly 

returned to pre-

industrial levels, then 

held constant for 150 

years. 

Quantify non-linearities over a larger 

range of CO2 (quantifies responses at 

1xCO2). 

 

Assess non-linearities that may be 

associated with the direction of forcing 

change. 

Abrupt8xCO2 

(medium priority) 

As abrupt4xCO2, but 

at 8x pre-industrial 

CO2 concentration.  

Only 150 years 

required here. 

Quantify non-linearities over a larger 

range of CO2. 

 

 1 

 2 

3 
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 4 

Figure 1.  Schematic illustrating a situation where linear mechanisms can cause climate 5 

patterns to evolve.  This represents a scenario where global-mean radiative forcing (black 6 

line) is ramped up, then stabilised.  At the time indicated by the left red oval, responses with 7 

shorter timescales are relatively important, due to the recent increase in forcing.  At the time 8 

marked by the right-hand oval, forcing has been stabilised for an extended period, so the 9 

responses with longer timescales (such as sea-level rise) have had more time to respond to the 10 

initial forcing increase. 11 

 12 

 13 

 14 
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 2 

 3 

 4 

 5 

 6 

Figure 2.  Schematic illustrating the point that nonlinear mechanisms can cause climate 7 

patterns to differ at different forcing (and hence global temperature) levels.  This represents 8 

two different scenarios, whose forcing timeseries is identical apart from a constant scale 9 

factor (the higher forcing scenario has about twice the forcing of the lower scenario). 10 

 11 

 12 

 13 

 14 

15 
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 1 

 2 

 3 

Figure 3.  Defining the ‘doubling difference’.  The red and blue lines show illustrative time-4 

series of a variable (in this example, global-mean temperature from HadGEM2-ES) from the 5 

abrupt4xCO2 and abrupt2xCO2 experiments.  Doubling difference = ∆42 – ∆21 (the 6 

difference in response between the first and second CO2 doublings.  This is defined for a 7 

specific timescale after the abrupt CO2 change – in this example, it is for means over years 8 

50-149.   9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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 4 

Figure 4.  Finding nonlinear responses in transient forcing experiments.  (figure from Good et 5 

al., 2012).  Time-series of global-mean precipitation change under two experiments. Left: 6 

where CO2 is increased by 1% per year, then stabilised at 2x pre-industrial levels.  Right: 7 

where CO2 is increased by 2% per year for 70 years, then decreased by 2% per year for 70 8 

years.  Black: GCM.  Red: step-response model using the abrupt4xCO2 response.  Blue: the 9 

abrupt2xCO2 response.   10 
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