

1 Author responses

2 Response to Executive Editor Comment

3 Dear authors,

4 In agreement with the CMIP6 panel members, the Executive editors of GMD would
5 like to establish a common naming convention for the titles of the CMIP6 experiment
6 description papers.

7 The title of CMIP6 papers should include both the acronym of the MIP, and CMIP6, so
8 that it is clear this is a CMIP6-Endorsed MIP.

9 Good formats for the title include:

10 'XYZMIP contribution to CMIP6: Name of project'

11 or

12 'Name of Project (XYZMIP) contribution to CMIP6'

13 If you want to include a more descriptive title, the format could be along the lines of,
14 'XYZMIP contribution to CMIP6: Name of project - descriptive title'

15 or

16 'Name of Project (XYZMIP) contribution to CMIP6: descriptive title.'

17 When you revise your manuscript, please correct the title of your manuscript
18 accordingly.

19 Additionally, we strongly recommend to add a version number to the MIP description.

20 The reason for the version numbers is so that the MIP protocol can be updated
21 later, normally in a second short paper outlining the changes. See, for example:

22 http://www.geosci-model-dev.net/special_issue11.html,

23 Yours,

24 Astrid Kerkweg

25 Many thanks for pointing this out. We have changed the title to:

26 nonlinMIP contribution to CMIP6: model intercomparison project for nonlinear mechanisms
27 - physical basis, experimental design and analysis principles (v1.0)

1
2 **Response to reviewer 1**
3

4 Many thanks for the time invested and valuable comments.
5

6 Reviewer comments are bold.
7

8 **- Of the nine figures, six or seven are taken from other papers (the origin of Figure 6 is**
9 **not clear). Several of these are of low quality, use concepts, models or methods**
10 **neither**
11 **explained in the caption nor the text, and are not necessarily well-suited to explain the**
12 **goals of nonlinMIP. I would suggest to get along with fewer figures and to design new**
13 **ones that are targeted at the purpose of this paper.**

14
15 Thanks, we have removed several figures which are unnecessary, on reflection. We have
16 also expanded some of the discussion around the remaining figures, to make proper use of
17 them. The remaining four figures illustrate key conceptual points.
18

19 **- Section 5 outlines one application of the experiments in nonlinMIP. I hope the**
20 **authors**
21 **have more ideas of what one could do with the experiments, and although I don't**
22 **expect**
23 **them to go into detail, I think the reader (potential participants in nonlinMIP) would be**
24 **encouraged to learn what new science can be done.**

25
26 Response: very good point, thanks. We have included new discussion at the start of section
27 5 (also, start of Conclusions and the Abstract) on the broader uses of these experiments,
28 which would be relevant to a wider audience.
29

30 **Detailed comments:**
31 **The authors cite mostly themselves. I cannot claim to have a very broad overview of**
32 **the literature, but here are some suggestions, which certainly shouldn't prevent the**
33 **authors to look more broadly at contributions in the literature, in particular towards**
34 **the**
35 **origin of ideas:**

36
37 Good point. Thanks for the suggestions.
38

39 **4, 28, here I think that Bala et al. (2008, PNAS) is among the first to note the**
40 **forcingdependent**
41 **response of precipitation under geo-engineering.**

42
43 Yes, although this is a bit off topic as nonlinMIP focuses specifically on responses to a single
44 forcing – CO₂ (the papers previously cited that used idealised geoengineering scenarios
45 were CO₂-only studies). However, this did point us to another useful paper by Bala et al. – a
46 nice example looking at fast responses of precipitation to forcings, which we now include in
47 the previous paragraph.
48

49 **4, 16, perhaps Bloch-Johnson et al. (2015, GRL), or references therein could provide**
50 **some background as to why state non-linearity is of interest.**

51
52 Thanks. We include this, and also two with a paleoclimate focus and one on the AMOC.
53

54 **5, 18, I am not sure why all these papers are cited here?**

1 Good point. Deleted.
2
3
4 **Section 2, in the description of the step-response framework, the first reference I know**
5 **of is Hasselmann et al. (1993, Clim. Dyn.), even if the mathematical background must**
6 **go back much further. Here it appears as if this was invented by the first author.**
7
8 Indeed it does read like this (not our intention). We now include the Hasselmann reference
9 up front to hopefully avoid this impression.
10
11 **9, 9, here perhaps cite Budyko (1969, Tellus) and Sellers (1969, JAM).**
12
13 We have included a couple of more up to date papers that would perhaps be of more value
14 to the contemporary reader; and also added a couple of useful ones on nonlinearity in the
15 soil moisture-temperature feedbacks.
16
17 **In addition I took note of:**
18
19 **6, 13, the parenthesis needs a end.**
20
21 Fixed. Thanks.
22
23 **9, 2-6, the paragraph is not well-connected with the rest of the text and the figure is**
24 **not**
25 **very clear or well-explained.**
26
27 We have linked with the previous text by mentioning faster and slower responses explicitly.
28 We also have added some clarifying text, and removed the figure, which is not really helpful.
29
30 **9, 26, delete one instance of 'different'**
31
32 Done. Thanks.
33
34 **9, 27-28, please explain which model is used, either here or in the caption of Figure 6.**
35
36 Done in the caption.
37
38 **10, 14, 'doubling difference' is not explained/defined.**
39
40 This text has been deleted, along with the corresponding figure. However, the doubling
41 difference is defined in the text above (with reference to what is now Figure 3).
42
43 **Figure 9, is the shown quantity global means?**
44
45 Yes, this is now stated in both the text and caption.
46

1 **Response to Reviewer 2**
2

3 Many thanks for the time invested and valuable comments.
4

5 Reviewer comments are bold.
6

7 **However,**
8

9 **I suggest that the authors be much clearer and much more explicit about what they**
10 **envise being the big scientific/practical advances that would come from this MIP. In**
11 **particular, if a nonlinear response for a given impact-relevant variable is found to exist**
12 **using the suggested simulations, how might this usefully be used to give more**
13 **realistic**
14 **impact assessments?**

15 Good point, thanks. We have expanded discussion on this in the new first two paragraphs of
16 the Conclusions and a new start to section 5 (also in the Abstract).
17

18 **Also, the authors say that these simulations will help to "understand"**
19 **nonlinear responses, but how would this be done in practice if a nonlinear**
20 **response is found? Can the authors give an illustrative example based on simple**
21 **physical**
22 **mechanisms?**

23 The basic idea is the same as for the cmip5 abrupt4xCO2 experiment (simplified forcing
24 simplifies the understanding of mechanisms of response). We have expanded a little the
25 paragraph introducing this in the Introduction (paragraph starting, 'These three issues...').
26 We also clarified a related paragraph at the end of section 3.1. A new start to section 5
27 states that for some applications, the same methods already used to study abrupt4xCO2 are
28 directly applicable. The penultimate paragraph of section 5.2 also addresses this. These
29 discussions link back to the linear and nonlinear mechanisms, and the discussion of these
30 does include example physical mechanisms.
31

32 **On a more practical note, how will internal variability be separated**
33 **from the nonlinearity when attempting to quantify the latter?**
34

35 A new final paragraph of section 5.2 addresses this. We also mention in the previous
36 paragraph and elsewhere that contamination from internal variability may be reduced as long
37 (~100-year) means are possible in these experiments.
38

39 **Specific comments: Section 1: "...but this assumption may also be applied either**
40 **explicitly**
41 **or implicitly in understanding mechanisms." -> I don't understand this sentence,**
42 **please be clearer about what is meant here**
43

44 We have attempted to clarify this: "In understanding or emulating regional patterns of climate
45 change, it is often assumed explicitly that regional climate change is roughly proportional to
46 global mean warming. In emulation work, this is termed 'pattern scaling' (Santer et al.,
47 1990; Mitchell, 2003; Ishizaki et al., 2012; Tebaldi and Arblaster, 2014), but this assumption
48 may also be applied implicitly in understanding mechanisms. Often, physical mechanisms are
49 studied for a single period of a single forcing scenario or in a single high-forcing experiment
50 such as abrupt4xCO2 (implicitly assuming that the understanding is relevant for other periods
51 or scenarios)."
52

53

1 **Section 1 and throughout: "(Chadwick**
2 **et al., 2013;Held et al., 2010;Williams et al., 2008;Manabe et al., 1990;Andrews and**
3 **Ringer, 2014)" -> references are neither in chronological nor alphabetical order. Is**
4 **there a good reason for this? It is typical to arrange references chronologically**

5
6 Thanks for spotting this. It was because the Copernicus style for EndNote we downloaded
7 had the incorrect setting for some reason. This is fixed now.

8 **Section 2: "apriori" -> typo**

9 Fixed.

10
11
12 **Section 3.2: "Both moisture content and atmospheric dynamics respond**
13 **to CO2 forcing, so in general we might expect convective precipitation to have**
14 **a nonlinear response to CO2 forcing." -> we would expect a nonlinear response from**
15 **the moisture part alone, given the Clausius-Clapeyron, in the absence of any changes**
16 **in dynamics**

17
18
19 Good point - now stated.

20

21

22

1

2 **marked-up manuscript version with track changes**

3

4 **The nonlinMIP contribution to CMIP6: model**
5 **intercomparison project: for nonlinear mechanisms -**
6 **physical basis, experimental design and analysis principles**
7 **(v1.0)**

8

9 **P. Good¹, T. Andrews¹, R. Chadwick¹, J. L. Dufresne³, J. M. Gregory^{2,1}, J. A.**
10 **Lowe¹, N. Schaller⁴, H. Shiogama⁵.**

11 ~~1~~ **Met¹Met** Office Hadley Centre, Exeter, United Kingdom

12 ~~2~~ **NCAS²NCAS**-Climate, University of Reading, Reading, United Kingdom

13 ~~3~~ **Laboratoire³Laboratoire** de Météorologie Dynamique, Institut Pierre Simon Laplace,
14 Paris, France

15 ~~4~~ **Atmospheric⁴Atmospheric**, Oceanic and Planetary Physics, University of Oxford, Parks
16 Road, Oxford OX1 3PU, United Kingdom

17 ~~5~~ **Climate⁵Climate** Risk Assessment Section, Centre for Global Environmental Research,
18 National Institute for Environmental Studies, Tsukuba, Japan

19 Correspondence to: P. Good (peter.good@metoffice.gov.uk)

20

21

1

2 **Abstract**

3 nonlinMIP ~~aims to quantify and understand, at provides experiments that account for state-~~
4 ~~dependent~~ regional ~~scales, and global~~ climate responses ~~that are non linear under~~. The
5 ~~experiments have two main applications: 1) to focus understanding of responses to~~ CO2
6 forcing ~~(meehanisms for which on states relevant to specific policy or scientific questions (e.g.~~
7 ~~change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to~~
8 ~~the present-day); or 2) to understand the state-dependence (nonlinearity) of climate change –~~
9 ~~i.e. why~~ doubling the CO2-forcing ~~does~~~~may~~ not double the response~~). Non linear. State~~
10 ~~dependence (nonlinearity) of~~ responses can be large at regional scales, with important
11 implications for understanding mechanisms and for GCM emulation techniques (e.g. energy
12 balance models and pattern-scaling methods). However, these processes are hard to explore
13 using traditional experiments, explaining why they have had little attention in previous
14 studies. Some single model studies have established novel analysis principles and some
15 physical mechanisms. There is now a need to explore robustness and uncertainty in such
16 mechanisms across a range of models~~. (point 2 above), and more broadly, to focus work on~~
17 ~~understanding the response to CO2 on climate states relevant to specific policy/science~~
18 ~~questions (point 1).~~

19

20 nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to
21 separate linear and non-linear mechanisms cleanly, with a good signal/noise ratio – while
22 being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5
23 and CMIP6 DECK protocols, and is centred around a suite of instantaneous atmospheric CO2
24 change experiments, with a ramp-up-ramp-down experiment to test traceability to gradual
25 forcing scenarios. In all cases the models are intended to be used with CO2 concentrations
26 rather than CO2 emissions as the input. The understanding gained will help interpret the
27 spread in policy-relevant scenario projections.

28

29 Here we outline the basic physical principles behind nonlinMIP, and the method of
30 establishing traceability from abrupt CO2 to gradual forcing experiments, before detailing the
31 experimental design and finally some analysis principles. The test of traceability from

1 abruptCO2 to transient experiments is recommended as a standard analysis within the CMIP5
2 and CMIP6 DECK protocols.

3

4

5 **1 Introduction**

6 Robust climate impacts assessments require, at regional scales, understanding of physical
7 mechanisms of climate change in GCM projections. A further, pragmatic requirement for
8 impacts assessments is the ability to emulate (using fast but simplified climate models) GCM
9 behaviour for a much larger range of policy-relevant scenarios than may be evaluated using
10 GCMs directly. These two requirements may be combined into a single question: what is the
11 simplest conceptual framework, for a given well defined model application, that has
12 quantitative predictive power and captures the key mechanisms behind GCM scenario
13 projections?

14

15 Often, a choice has been to assume some form of linearity. In studies of the global energy
16 balance, linearity is often assumed in the form of a constant climate feedback parameter. This
17 parameter may be used to quantify feedbacks in different models (e.g. Zelinka et al., 2013) or,
18 in emulation methods, to parameterise global energy balance models (e.g. Huntingford and
19 Cox, 2000). In understanding or emulating regional patterns of climate change, it is often
20 assumed explicitly that regional climate change is roughly proportional to global mean
21 warming. In emulation work, this is termed 'pattern scaling' (Mitchell, 2003; Santer et al.,
22 1990; Mitchell, 2003; Ishizaki et al., 2012; Tebaldi and Arblaster, 2014), but this assumption
23 may also be applied ~~either explicitly or~~ implicitly in understanding mechanisms. ~~Sometimes,~~
24 ~~patterns of change per K of global warming are quantified; often~~ Often, physical mechanisms
25 are studied for a single period of a single forcing scenario ~~or in a single high-forcing~~
26 ~~experiment such as abrupt4xCO2~~ (implicitly assuming that the understanding is relevant for
27 other periods or scenarios). The use of pattern-scaling is prevalent in studies of climate
28 impacts.

Field Code Changed

Field Code Changed

29
30 While these approximations appear to work well under many circumstances, significant
31 limitations are increasingly being revealed in such assumptions. These are of two types:

1 different timescales of response, and non-linear responses. In discussing this, a complication
2 arises in that different linearity assumptions exist. Henceforth we define 'linear' as meaning
3 'consistent with linear systems theory' - i.e. responses that are linear in model forcing (i.e.
4 where doubling the forcing doubles the response). This is different from assuming that
5 regional climate change is proportional to global mean warming – as in pattern scaling.

6
7 Even in a linear system (where responses are linear in forcing), the relationship between two
8 system outputs (e.g. between global-mean temperature and regional sea surface temperature -
9 SST) will in general not be linear. This is due to different timescales of response in different
10 locations and/or variables (section 3.1). Examples include lagged surface ocean warming due
11 to a connection with the deeper ocean (Manabe et al., 1990; Williams et al., 2008; Held et al.,
12 2010; Chadwick et al., 2013; Held et al., 2010; Williams et al., 2008; Manabe et al.,
13 1990; Andrews and Ringer, 2014) or the direct response of precipitation to forcings

Field Code Changed

14 (Andrews Mitchell et al., 2010; 1987; Allen and Ingram, 2002; Mitchell Andrews et al.,
15 1987; 2010; Bala et al., 2010; Bony et al., 2014). One (generally false, but potentially
16 acceptable) assumption of pattern scaling, then, is that regional climate responds over the
17 same timescale as global-mean temperature. Different timescales of response are especially
18 important in understanding and predicting behaviour under mitigation and geoengineering
19 scenarios (or over very long timescales).

Field Code Changed

20
21 Non-linear system responses (e.g. Schaller et al., 2013) are more complex to quantify,
22 understand and predict than those of linear systems (section 3.2). Some examples have been
23 known for some time, such as changing feedbacks through retreating snow/sea-ice or
24 increasing water vapour (Hansen et al., 2005; Colman and McAvaney, 2009; Jonko et al.,
25 2013; Meraner et al., 2013; Hansen et al., 2005), or the behaviour of the Atlantic Meridional
26 Overturning Circulation. Some paleoclimate evidence supports the idea that climate
27 sensitivity increases with warming (Caballero and Huber, 2013; Shaffer et al., 2016), which is
28 important for the risk of high-end global warming (Bloch-Johnson et al., 2015). The nonlinear
29 behaviour of the Atlantic Meridional Overturning Circulation is another example (Hofmann
30 and Rahmstorf, 2009; Ishizaki et al., 2012). More recently, substantial non-linear precipitation
31 responses have been demonstrated in spatial patterns of regional precipitation change in two
32 Hadley Centre climate models with different atmospheric formulations (Good et al.,

Field Code Changed

Field Code Changed

1 2012;Chadwick and Good, 2013). This is largely due to simultaneous changes in pairs of
2 known robust pseudo-linear mechanisms (Chadwick and Good, 2013). Regional warming has
3 been shown to be different for a first and second CO₂ doubling, with implications primarily
4 for impact assessment models or studies combining linear energy balance models with pattern
5 scaling (Good et al., 2015). Non-linearity has also been demonstrated in the response under
6 idealised geoengineering scenarios, of ocean heat uptake, sea-level rise, and regional climate
7 patterns, with different behaviour found when forcings are decreasing than when they are
8 increasing (Bouttes et al., 2013;Schaller et al., 2014;Bouttes et al., 2015).

9

10 Investigation of these mechanisms at regional scales has been constrained by the type of
11 GCM experiment typically analysed. Most previous analyses (e.g. Solomon et al., 2007) have
12 used results from transient forcing experiments, where forcing changes steadily through the
13 experiment. There are three main problems with this approach. First, information about
14 different timescales of response is masked. This is because the GCM response at any given
15 time in a transient forcing experiment is a mixture of different timescales of response (Good
16 et al., 2013;Held et al., 2010;Li and Jarvis, 2009;Held et al., 2010;Good et al., 2013),
17 including short-timescale responses (e.g. ocean mixed layer response from forcing change
18 over the previous few years) through long-timescale behaviour (including deeper ocean
19 responses from forcing changes multiple decades to centuries earlier). Secondly, in transient
20 forcing experiments, non-linear behaviour is hard to separate from linear mechanisms. For
21 example, in an experiment where CO₂ is increased by 1% per year for 140 years ('1pctCO₂'),
22 we might find different spatial patterns at year 70 (at 2xCO₂) than at year 140 (at 4xCO₂).
23 This could be due to nonlinear mechanisms (due to the different forcing level and associated
24 different climate state). However, it could also be due to linear mechanisms: year 140 follows
25 140 years of forcing increase, so includes responses over longer response timescales than at
26 year 70 (only 70 years of forcing increase). Thirdly, signal/noise ratios of regional climate
27 change can be relatively poor in such experiments.

28

29 Field Code Changed

30 These three issues may be addressed by the use of idealised abruptCO₂ GCM experiments
31 (Forster et al., 2012;Zelinka et al., 2013;Jonko et al., 2013;Good et al., 2013;Good et al.,
32 2012;Chadwick and Good, 2013;Chadwick et al., 2013;Bouttes et al., 2013;Gregory et al.,
2004); an experiment where CO₂ forcing is instantaneously changed, then held constant.

1 | The simplified forcing in such experiments simplifies the understanding of physical
2 | mechanisms of response. In these abrupt CO₂ experiments, responses over different
3 | timescales (fast and slow responses) are separated from each other. Further, responses at
4 | different forcing levels may be directly compared, e.g. by comparing the response in
5 | abrupt2xCO₂ and abrupt4xCO₂ experiments over the same timescale - both have identical
6 | forcing time histories, apart from the larger forcing magnitude in abrupt4xCO₂. Thirdly, high
7 | signal/noise is possible: averages may be taken over periods of 100 years or more (after the
8 | initial ocean mixed layer adjustment, change is gradual in such experiments). Recent work
9 | (Good et al., 2015;Good et al., 2012;Good et al., 2013;Zelinka et al., 2013;Bouttes et al.,
10 | 2015;Good et al., 2015) has established that these experiments contain global and regional-
11 | scale information quantitatively traceable to more policy-relevant transient experiments - and
12 | equivalently, that they form the basis for fast simple climate model projections traceable to
13 | the GCMs. In other studies (e.g. Frolicher et al., 2014), pulse experiments have been used to
14 | separate different timescales of response (where forcing is abruptly increased, then abruptly
15 | returned to the control state). We use abruptCO₂ experiments because they offer greater
16 | signal/noise in the change signal (important for regional-scale studies); and also for
17 | consistency with the CMIP6 DECK abrupt4xCO₂ experiment.

18 |
19 | The CMIP5 abrupt4xCO₂ experiments have thus been used widely: including quantifying
20 | GCM forcing and feedback behaviour (Gregory et al., 2004;Zelinka et al., 2013), and for
21 | traceable emulation of GCM projections of global-mean temperature and heat uptake (Good
22 | et al., 2013;Stott et al., 2013). Abrupt4xCO₂ is also part of the CMIP6 DECK protocol
23 | (Meehl et al., 2014).

24 |
25 | NonlinMIP builds on the CMIP5 and CMIP6 DECK designs to explore non-linear responses
26 | (via additional abruptCO₂ experiments at different forcing levels). It also explores responses
27 | over slightly longer timescales - extending the CMIP5 abrupt4xCO₂ experiment by 100
28 | years.

1 **2 Relating abruptCO2 to gradual forcing scenarios: the step-response model**

2 In using the highly-idealised abruptCO2 experiments, it is essential that their physical
3 relevance (traceability) to more realistic gradual forcing experiments is determined. We
4 cannot apriori reject the possibility that some GCMs could respond unrealistically to
5 the abrupt forcing change. A key tool here is the step-response model (described below).

6 This response function methodThis (Hasselmann et al., 1993) is a response-function method,
7 which aims to predict the GCM response to any given transient-forcing experiment, using the
8 GCM response to an abruptCO2 experiment. Such a prediction may be compared with the
9 GCM transient-forcing simulation, as part of a traceability assessment (discussed in detail in
10 section 5).

11

12 Once some confidence is established in traceability of the abruptCO2 experiments to
13 transient-forcing scenarios, the step-response model has other roles: to explore the
14 implications, for different forcing scenarios, of physical understanding gleaned from
15 abruptCO2 experiments; to help separate linear and nonlinear mechanisms (section 5); and
16 potentially as a basis for GCM emulation. The method description below also serves to
17 illustrate the assumptions of linear system theory.

18

19 The step-response model represents the evolution of radiative forcing in a scenario
20 experiment by a series of step changes in radiative forcing (with one step taken at the
21 beginning of each year). The method makes two linear assumptions. First, the response to
22 each annual forcing step is estimated by linearly scaling the response in a CO₂ step
23 experiment according to the magnitude of radiative forcing change. Second, the response y_i at
24 year i of a scenario experiment is estimated as a sum of responses to all previous annual
25 forcing changes (see Figure 1 of Good et al., 2013 for an illustration):

26

$$27 \quad y_i = \sum_{j=0}^i w_{i-j} x_j \quad (1a)$$

28

1 where x_j is the response of the same variable in year j of the CO₂ step experiment. w_{i-j} scales
2 down the response from the step experiment (x_j) to match the annual change in radiative
3 forcing during year $i-j$ of the scenario (denoted ΔF_{i-j}):

4

5 $w_{i-j} = \frac{\Delta F_{i-j}}{\Delta F_s}$ (1b)

6

7 where ΔF_s is the radiative forcing change in the CO₂ step experiment. All quantities are
8 expressed as anomalies with respect to a constant-forcing control experiment.

9

10 This approach can in principle be applied at any spatial scale for any variable for which the
11 assumptions are plausible (e.g. Chadwick et al., 2013).

12

13

14 **3 Linear and non-linear mechanisms, and the relevance of abruptCO2
15 experiments**

16 Here we discuss further, with examples, the distinction between linear and nonlinear
17 mechanisms, when they are important, and the relevance of abruptCO2 experiments.

18 **3.1 Linear mechanisms: different timescales of response**

19 Even in a linear system, regional climate change per K of global warming will evolve during
20 a scenario simulation. This happens because different parts of the climate system have
21 different timescales of response to forcing change.

22

23 This may be due to different effective heat capacities. For example, the ocean mixed layer
24 responds much faster than the deeper ocean, simply due to a thinner column of water (Li and
25 Jarvis, 2009). However, some areas of the ocean surface (e.g. the Southern Ocean and south-
26 east subtropical Pacific) show lagged warming, due to a greater connection (via upwelling or
27 mixing) with the deeper ocean (e.g. Manabe et al., 1990; Williams et al., 2008). The dynamics

Field Code Changed

1 of the ocean circulation and vegetation may also have their own inherent timescales (e.g.
2 vegetation change may lag global warming by years to hundreds of years, Jones et al., 2009).
3 At the other extreme, some responses to CO₂ forcing are much faster than global warming:
4 such as the direct response of global mean precipitation to forcings (Mitchell et al.,
5 1987; Allen and Ingram, 2002; Andrews et al., 2010; Mitchell et al., 1987) and the
6 physiological response of vegetation to CO₂ (Field et al., 1995).

Field Code Changed

Field Code Changed

7
8 In a linear system, patterns of change per K of global warming are sensitive to the forcing
9 history. For example in Figure 1, a scenario is illustrated where forcing is ramped up, then
10 stabilized. Three periods are highlighted, which may have different patterns of change per K
11 of global warming, due to different forcing histories: at the leftmost point, faster responses
12 will be relatively more important, whereas at the right, the slower responses have had some
13 time to catch up. This A key example is illustrated in Figure 2 for the different responses of
14 global-mean warming and global-mean sea-level rise. The blue curves show that for under
15 RCP2.6, as shown in Figures SPM.7 and SPM.9 of the IPCC Fifth Assessment Report (IPCC,
16 2013). Under RCP2.6, global-mean warming ceases after 2050, while when radiative forcing
17 is approximately stabilised (corresponding qualitatively to the period when the black line is
18 horizontal in Figure 1). In contrast, sea-level rise continues at roughly the same rate
19 throughout the century. Therefore, in RCP2.6, the sea-level rise per K of global warming
20 increases after 2050. This is largely because the timescale of deep ocean heat uptake is much
21 slower longer than that of ocean mixed-layer warming.

Formatted: Font: Times New Roman,
12 pt

22
23 By design, abruptCO₂ experiments separate GCM responses with different timescales of
24 GCM (i.e. separating faster responses from slower responses): the response of a given
25 variable in year Y of the experiment corresponds to forcing change. the response of that
26 variable over the timescale Y. This is used, for example, (Gregory et al., 2004) to estimate
27 radiative forcing and feedback parameters for GCMs: plotting radiative flux anomalies
28 against global mean warming can separate 'fast' and 'slow' responses (see e.g. Figure 3). For
29 example, the top-of-atmosphere outgoing shortwave flux shows a rapid initial change before
30 the global mean temperature has had time to respond.

1 **3.2 Non-linear responses**

2 Nonlinear mechanisms arise for a variety of reasons. Often, however, it is useful to describe
3 them as state-dependent feedbacks. For example, the snow-albedo ~~feedback becomes small at~~
4 ~~high or low snow depth and sea-ice albedo feedbacks becomes small at high or low snow~~
5 ~~depth (Hall, 2004; Eisenman, 2012). Soil moisture-temperature feedbacks can also be state-~~
6 ~~dependent (Seneviratne et al., 2006; Seneviratne et al., 2010): feedback is small when soil~~
7 ~~moisture is saturated, or so low that moisture is tightly bound to the soil (in both regimes,~~
8 ~~evaporation is insensitive to change in soil moisture)~~. Sometimes, nonlinear mechanisms may
9 be better viewed as simultaneous changes in pairs of properties. For example, convective
10 precipitation is broadly a product of moisture content and dynamics (Chadwick *et al.*,
11 ~~2012; Chadwick and Good, 2013; Chadwick Bony et al., 2012~~ 2014; Oueslati *et al.*, 2016; ~~Bony~~
12 ~~et al., 2014~~). Both moisture content and atmospheric dynamics respond to CO₂ forcing, so in
13 general we might expect convective precipitation to have a nonlinear response to CO₂
14 forcing. ~~In addition, the Clausius Clapeyron equation introduces some nonlinearity in the~~
15 ~~increase of specific humidity with warming.~~ Of course, more complex nonlinear responses
16 exist, such as for the Atlantic Meridional Overturning Circulation.

17

18 In contrast to linear mechanisms, nonlinear mechanisms are sensitive to the magnitude of
19 forcing. For example, the two points highlighted in Figure 42 may have different patterns of
20 change per K of global warming, due to nonlinear mechanisms- ~~(in contrast, linear~~
21 ~~mechanisms would cause no difference in the patterns of change per K of global warming~~
22 ~~between the two points in Figure 2, because the two scenarios have the same forcing history~~
23 ~~apart from a constant scaling factor).~~

24

25 An example is ~~given in Figure 5, which shows the snow/ice albedo feedback declining, which~~
26 ~~tends to change in magnitude~~ with increased global temperature, due to declining snow and
27 ice cover, and the remaining snow and ice being in areas of lower solar insolation (Colman
28 and McAvaney, 2009).

29

30 AbruptCO₂ experiments may be used to separate nonlinear from linear mechanisms. This can
31 be done by comparing the responses at the same timescale in different ~~different~~ abruptCO₂

1 experiments. Figure 63 compares abrupt2xCO₂ and abrupt4xCO₂ experiments over years 50-
2 149. A 'doubling difference' is defined, (Good et al., 2015), measuring the difference in
3 response to the first and second CO₂ doublings. In most current simple climate models (e.g.
4 Meinshausen et al., 2011), the radiative forcing from each successive CO₂ doubling is
5 assumed identical (because forcing is approximately linear in log[CO₂], Myhre et al., 1998).
6 With this assumption, a linear system would have zero doubling difference everywhere.
7 Therefore, the doubling difference is used as a measure of nonlinearity. The question of
8 which abruptCO₂ experiments to compare, and over which timescale, is discussed in section
9 5.

10

11 In some GCMs, the forcing per CO₂ doubling has been shown to vary with CO₂ (Colman and
12 McAvaney, 2009; Jonko et al., 2013). However, this variation depends on the specific
13 definition of forcing used (Jonko et al., 2013). Currently this is folded into our definition of
14 nonlinearity. If a robust definition of this forcing variation becomes available in future, it
15 could be used to scale out any difference in forcing between pairs of abruptCO₂ experiments,
16 to calculate an 'adjusted doubling difference'.

17

18 As an example, Figure 7 maps the response to abrupt2xCO₂ and abrupt4xCO₂, and the
19 doubling difference, for precipitation in HadGEM2-ES over the ocean (taken from Chadwick
20 and Good). The nonlinearities are large—comparable in magnitude to the responses to
21 abrupt2xCO₂, albeit with a different spatial pattern.

22

23

Formatted: German (Germany)

24 4 Experimental design

25 nonlinMIP is composed of a set of abruptCO₂ experiments (the primary tools), plus a CO₂-
26 forced transient experiment. AbruptCO₂ experiments are driven by changes in atmospheric
27 CO₂ concentration: CO₂ is abruptly changed, then held constant. These build on the CMIP5
28 and CMIP6 DECK protocols (the required runs from these are detailed in Table 1). The
29 additional nonlinMIP runs (Table 2) are assigned three priority levels. Three options for
30 participation are: 1) only the 'essential' simulation; 2) all 'high priority' plus the 'essential'
31 simulations; or, preferably, 3) all simulations. The experiments in Table 1 are required in all

1 cases. All experiments must be initialized from the same year of a pre-industrial control
2 experiment, except for abrupt4xto1x (see Table 2). A typical analysis procedure is outlined in
3 section 5.

4

5 The nonlinMIP design is presently limited to CO2 forcing, although the same principles could
6 be applied to other forcings.

7

8 **5 Basic analysis principles**

9 This section outlines the applications and general principles behind analysis of nonlinMIP
10 results.— First, some general applications are introduced, before giving more detail on how
11 one particular application (quantifying and understanding nonlinear change) may be analysed.

12

13 The addition of the abrupt2xCO2 experiment to the standard DECK abrupt4xCO2 permits
14 quantifying and understanding climate change due to CO2 for three main applications:

- 15 1) under global warming approximately comparable to that envisaged by the Paris
16 agreement. (quantified by abrupt2xCO2 – pre-industrial control)
- 17 2) climate change approximately comparable to that avoided by mitigation (quantified by
18 abrupt4xCO2 - abrupt2xCO2).
- 19 3) nonlinear change (the difference between 2 and 1).

20

21 Applications 1 and 2 are expected to be of the widest interest to the community, as they could
22 be analysed using the same methods as have already been used extensively to study the
23 response in the CMIP5 abrupt4xCO2 experiment, but for climate states more relevant to the
24 policy questions outlined in 1) and 2). Useful signal/noise should be possible because ~100
25 year means may be analysed (e.g. over years 50-149, where climate is relatively stable as it
26 follows the initial ocean mixed layer warming). Application 3 is more specialised, and is
27 discussed in more detail below.

28

1 The abrupt0.5xCO₂ experiment permits analogous work, extending the relevance to colder
2 past climates, and exploring one aspect of how past change may differ from future change. It
3 also allows nonlinear mechanisms to be studied with greater signal/noise:

4
5 4) change under past cold climates (abrupt0.5xCO₂ - piControl).

6 5) nonlinear change: as 3, but with larger signal/noise ([abrupt4xco2 - abrupt2xco2] -
7 [piControl - abrupt0.5xCO₂]).

8
9 In quantifying nonlinear change (applications 3 or 5 above), the primary idea is to find where
10 the step-response model (section 2) breaks: since the step-response model is based on a linear
11 assumption, this amounts to detecting non-linear responses.

12
13 The aim is to focus subsequent analysis. If non-linearities in a quantity of interest are found
14 to be small, then analysis may focus on understanding different timescales of response from a
15 single abruptCO₂ experiment: linearity means that the physical response (over a useful range
16 of CO₂ concentrations) is captured by a single abruptCO₂ experiment. This represents a
17 considerable simplification. If, on the other hand, non-linearities are found to be important,
18 the focus shifts to understanding the different responses in different abruptCO₂ experiments.
19 The choice of which abruptCO₂ experiments to focus on, and over which timescales, is
20 discussed below.

21
22 **5.1 First step: check basic traceability of abrupt4xCO₂ to the transient-forced**
23 **response near 4xCO₂**

24 The test described here is recommended as a routine analysis of the CMIP6 DECK
25 experiments (even if nonlinMIP experiments are not performed). The aim is to confirm
26 whether the abruptCO₂ experiments contain realistic physical responses in the variables of
27 interest (as previously done for global-mean temperature and heat uptake for a range of
28 CMIP5 models (Good et al., 2013), for regional-scale warming and ocean heat uptake
29 (Bouttes et al., 2015;Good et al., 2015;Bouttes et al., 2015) and for other global-mean

1 quantities for HadCM3 (Good et al., 2011). This also, rules out the most pathological non-
2 linearities (e.g. if the response to an abrupt CO₂ change in a given GCM was unrealistic).
3 Although this test has been done for a range of models and variables, traceability cannot be
4 assumed to hold for all models and variables.

5

6 The linear step-response model should first be used with the abrupt4xCO₂ response, to
7 predict the response near year 140 of the 1pctCO₂ experiment (i.e. near 4xCO₂). This
8 prediction is then compared with the actual GCM 1pctCO₂ result. This should first be done
9 for global mean temperature: this assessment has previously been performed for a range of
10 CMIP5 models (Good et al., 2013; see Figure 8), giving an idea of the level of accuracy
11 expected. If the abruptCO₂ response is fundamentally unrealistic, it is likely to show up in
12 the global temperature change. This approach may then be repeated for spatial patterns of
13 warming, and then for the quantities of interest. Abrupt4xCO₂ is used here as it has larger
14 signal/noise than abrupt2xCO₂, yet is representative of forcing levels in a business-as-usual
15 scenario by 2100. However, the tests may also be repeated using abrupt2xCO₂ – but
16 compared with year 70 of the 1pctCO₂ experiment (i.e. at 2xCO₂).

17

18 The step-response model emulation under these conditions should perform well for most
19 cases: the state at year 140 of the 1pctCO₂ experiment is very similar to that of abrupt4xCO₂
20 (same forcing, similar global-mean temperature), so errors from non-linear mechanisms
21 should be minimal. If large errors are found, this may imply caution about the use of
22 abruptCO₂ experiments for these variables, or perhaps point to novel non-linear mechanisms
23 that may be understood by further analysis.

24

25 **5.2 Second step: characterising nonlinear responses**

26 Having established some level of confidence in the abruptCO₂ physical response, the second
27 step is to look for nonlinear responses. This first involves repeating the tests from step 1
28 above, but for different parts of the 1pctCO₂ and 1pctCO₂ ramp-down experiments, and
29 using different abruptCO₂ experiments for the step-response model.

30

Formatted: Highlight
Formatted: Highlight
Formatted: Highlight

1 An example is given in Figure 94 (but for different transient-forcing experiments). This shows
2 results for global-mean precipitation in the HadCM3 GCM (Good et al., 2012). under an
3 idealised simulation where forcing is ramped up at a constant rate for 70 years, then ramped
4 down at the same rate for 70 years. Here, the step-response model prediction using
5 abrupt4xCO₂ (red curves) is only works close to the actual GCM simulation (black) where
6 at the transient-forced experiment simulation is near to 4xCO₂ (i.e. near year 70). Similarly,
7 the prediction using abrupt2xCO₂ (blue curves) works only near 2xCO₂ (near years 35 or
8 105). Otherwise, quite large errors are seen, and the predictions with abrupt2xCO₂ and
9 abrupt4xCO₂ are quite different from each other. This implies that there are large non-
10 linearities in the global-mean precipitation response in this GCM, and that they may be
11 studied by comparing the responses in the abrupt2xCO₂ and abrupt4xCO₂ experiments.

Field Code Changed

12
13 Having identified some non-linear response, and highlighted two or more abruptCO₂
14 experiments to compare (in the previous example, abrupt2xCO₂ and abrupt4xCO₂), the non-
15 linear mechanisms may be studied in detail by comparing the responses in the different
16 abruptCO₂ experiments over the same timescale (e.g. via the doubling difference, as in
17 Figures 6,7Figure 3). This allows (Good et al., 2012; Chadwick and Good, 2013; Good et al.,
18 2015) non-linear mechanisms to be separated from linear mechanisms (not possible in a
19 transient-forcing experiment). It is expected that analysis will focus on the 100-year period
20 over years 40-139 of the experiments (the relatively stable period after the initial ocean
21 mixed-layer warming).

Field Code Changed

22
23 In the same spirit as other CMIP5 and CMIP6 idealised experiments, nonlinMIP will help
24 understand nonlinear mechanisms by isolating the signal of nonlinear mechanisms more
25 effectively. This occurs in two ways: first, by using simplified forcing compared to the time-
26 dependent, RCP projections (the latter feature multiple forcings of evolving strength). The
27 simplified forcing means that alternative mechanisms (from different forcing agents or linear
28 mechanisms) may be ruled out by design. Secondly, contamination of the signal from internal
29 variability may be reduced, as averages of around 100 years are possible.

1 The magnitude of internal variability may also be estimated at the different levels of CO₂
2 forcing. This could be used to help explore changes in variability with warming (Seneviratne
3 et al., 2006;Screen, 2014), and to assess significance of any signal of nonlinear change in the
4 time mean climate. Internal variability could be estimated from years 40-139 of the
5 experiments (after the initial warming of the ocean mixed layer), after removing a fitted linear
6 trend.

7

8 **6 Conclusions**

9

10 These experiments can help improve climate science and consequent policy advice in a
11 number of ways. The focus is on understanding mechanisms (given the idealised nature of
12 the experiments). A further application, however, is that energy balance models could be
13 tuned to the different experiments, to explore the importance, for projections, of state-
14 dependence of feedback parameters (Hansen et al., 2005;Colman and McAvaney,
15 2009;Caballero and Huber, 2013). Also, if certain regions are found to show strongly
16 nonlinear behaviour in these experiments, this could help focus assessment of impact tools
17 like pattern-scaling or time-shifting (e.g. Herger et al., 2015).

18

19 Of probably widest interest is the fact that the additional experiments will allow
20 understanding work to focus on climate states more directly relevant to discrete policy/science
21 questions (the benefits of mitigation; impacts of scenarios consistent with the Paris
22 agreement; or understanding past cold climates; see start of section 5). These questions may
23 show important differences, due to state-dependence (nonlinearity) of mechanisms, but for
24 many cases the nature of the nonlinearity may not need to be assessed. A classical example is
25 the snow-albedo feedback: the strength of this would be different in a warm versus a cold
26 world (due to different baseline snow cover), but if the focus is on understanding the warm
27 world, the first priority is to study experiments representative of the warm world (with the
28 correct climate state).

29

30 There is also a need to quantify and understand, at regional scales, nonlinear mechanisms of
31 climate change:that is, do the above science/policy questions give significantly different

1 | answers (e.g. different patterns of rainfall change), and why? This is difficult to do using
2 | transient model experiments alone, for two reasons: contamination due to different timescales
3 | of response, and noise from internal variability.

4 |
5 | This paper outlines the basic physical principles behind the nonlinMIP design, and the method
6 | of establishing traceability from abruptCO₂ to gradual forcing experiments, before detailing
7 | the experimental design and finally some general analysis principles that should apply to most
8 | studies based on this dataset.

9 |
10 |
11 |
12 | **7 Data availability**

13 |
14 | Results will be made available as part of the CFMIP project, within the sixth model
15 | intercomparison project, CMIP6.

16 |
17 | **Acknowledgements**
18 | This work was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate
19 | Programme (GA01101). Jonathan Gregory received funding from the European Research
20 | Council under the European Community's Seventh Framework Programme (FP7/2007-2013),
21 | ERC Grant Agreement 247220, project "Seachange." Hideo Shiogama was supported by the
22 | SOUSEI program from the Ministry of Education, Culture, Sports, Science and Technology
23 | of Japan and the Environment Research and Technology Development Fund (S-10) of the
24 | Ministry of the Environment of Japan. Nathalie Schaller was supported by the Swiss National
25 | Science Foundation.

1

2 **References**

3

4 Allen, M. R., and Ingram, W. J.: Constraints on future changes in climate and the hydrologic
5 cycle, *Nature*, 419, 224-+, 10.1038/nature01092, 2002.

6 Andrews, T., Forster, P. M., Boucher, O., Bellouin, N., and Jones, A.: Precipitation, radiative
7 forcing and global temperature change, *Geophysical Research Letters*, 37, Artn L14701
8 Doi 10.1029/2010gl043991, 2010.

9 Andrews, T., and Ringer, M. A.: Cloud feedbacks, rapid adjustments, and the forcing-
10 response relationship in a transient co2 reversibility scenario, *Journal of Climate*, 27, 1799-
11 1818, Doi 10.1175/Jcli-D-13-00421.1, 2014.

12 [Bala, G., Caldeira, K., and Nemani, R.: Fast versus slow response in climate change:
13 Implications for the global hydrological cycle, Climate Dynamics, 35, 423-434,
14 10.1007/s00382-009-0583-y, 2010.](#)

15 [Bloch-Johnson, J., Pierrehumbert, R. T., and Abbot, D. S.: Feedback temperature dependence
16 determines the risk of high warming, Geophysical Research Letters, 42, 4973-4980,
17 10.1002/2015GL064240, 2015.](#)

18 Bony, S., Bellon, G., Klocke, D., Sherwood, S., Fermepin, S., and Denvil, S.: Robust direct
19 effect of carbon dioxide on tropical circulation and regional precipitation (vol 4, pg 447,
20 2013), *Nat Geosci*, 7, 547-547, 10.1038/NGEO2192, 2014.

21 Bouttes, N., Gregory, J. M., and Lowe, J. A.: The reversibility of sea level rise, *Journal of
22 Climate*, 26, 2502-2513, Doi 10.1175/Jcli-D-12-00285.1, 2013.

23 Bouttes, N., Good, P., Gregory, J. M., and Lowe, J. A.: Nonlinearity of ocean heat uptake
24 during warming and cooling in the famous climate model, *Geophysical Research Letters*, 42,
25 2409-2416, 10.1002/2014GL062807, 2015.

26 [Caballero, R., and Huber, M.: State-dependent climate sensitivity in past warm climates and
27 its implications for future climate projections, Proceedings of the National Academy of
28 Sciences of the United States of America, 110, 14162-14167, 10.1073/pnas.1303365110,
29 2013.](#)

30 Chadwick, R., Boutle, I., and Martin, G.: Spatial patterns of precipitation change in cmip5:
31 Why the rich don't get richer., *Journal of Climate*, accepted, 2012.

32 Chadwick, R., and Good, P.: Understanding non-linear tropical precipitation responses to co2
33 forcing, *Geophysical Research Letters*, 40, 10.1002/grl.50932, 2013.

34 Chadwick, R., Wu, P. L., Good, P., and Andrews, T.: Asymmetries in tropical rainfall and
35 circulation patterns in idealised co2 removal experiments, *Climate Dynamics*, 40, 295-316,
36 DOI 10.1007/s00382-012-1287-2, 2013.

37 Colman, R., and McAvaney, B.: Climate feedbacks under a very broad range of forcing,
38 *Geophysical Research Letters*, 36, L01702

39 10.1029/2008gl036268, 2009.

1 [Eisenman, I.: Factors controlling the bifurcation structure of sea ice retreat, Journal of](#)
 2 [Geophysical Research-Atmospheres, 117, Artn D01111](#)
 3 [Doi 10.1029/2011jd016164, 2012.](#)

4 Field, C. B., Jackson, R. B., and Mooney, H. A.: Stomatal responses to increased co2 -
 5 implications from the plant to the global-scale, Plant Cell Environ, 18, 1214-1225, DOI
 6 10.1111/j.1365-3040.1995.tb00630.x, 1995.

7 ~~Forster, P. M., Andrews, T., Good, P., Gregory, J. M., Jackson, L., and Zelinka, M. D.:
 8 Evaluating adjusted forcing and model spread for historical and future scenarios in the cmip5
 9 generation of climate models, Journal of Geophysical Research Atmospheres (accepted
 10 pending minor revisions), 2012.~~

11 Frolicher, T. L., Winton, M., and Sarmiento, J. L.: Continued global warming after co2
 12 emissions stoppage, Nat Clim Change, 4, 40-44, 10.1038/Nclimate2060, 2014.

13 Good, P., Gregory, J. M., and Lowe, J. A.: A step-response simple climate model to
 14 reconstruct and interpret aogcm projections, Geophysical Research Letters, 38, Artn L01703
 15 Doi 10.1029/2010gl045208, 2011.

16 Good, P., Ingram, W., Lambert, F. H., Lowe, J. A., Gregory, J. M., Webb, M. J., Ringer, M.
 17 A., and Wu, P. L.: A step-response approach for predicting and understanding non-linear
 18 precipitation changes, Climate Dynamics, 39, 2789-2803, DOI 10.1007/s00382-012-1571-1,
 19 2012.

20 Good, P., Gregory, J. M., Lowe, J. A., and Andrews, T.: Abrupt co2 experiments as tools for
 21 predicting and understanding cmip5 representative concentration pathway projections,
 22 Climate Dynamics, 40, 1041-1053, DOI 10.1007/s00382-012-1410-4, 2013.

23 Good, P., Lowe, J. A., Andrews, T., Wiltshire, A., Chadwick, R., Ridley, J. K., Menary, M.
 24 B., Bouttes, N., Dufresne, J. L., Gregory, J. M., Schaller, N., and Shiogama, H.: Nonlinear
 25 regional warming with increasing co2 concentrations, Nat Clim Change, 5, 138-142,
 26 10.1038/Nclimate2498, 2015.

27 Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe,
 28 J. A., Johns, T. C., and Williams, K. D.: A new method for diagnosing radiative forcing and
 29 climate sensitivity, Geophysical Research Letters, 31, L03205
 30 10.1029/2003gl018747, 2004.

31 [Hall, A.: The role of surface albedo feedback in climate, Journal of Climate, 17, 1550-1568,](#)
 32 [Doi 10.1175/1520-0442\(2004\)017<1550:Trosaf>2.0.Co;2, 2004.](#)

33 Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G.,
 34 Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y.,
 35 Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M.,
 36 Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov,
 37 T., Oinas, V., Perlitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev,
 38 N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate
 39 forcings, Journal of Geophysical Research-Atmospheres, 110, 45, D18104
 40 10.1029/2005jd005776, 2005.

41 [Hasselmann, K., Sausen, R., Maierreimer, E., and Voss, R.: On the cold start problem in](#)
 42 [transient simulations with coupled atmosphere-ocean models, Climate Dynamics, 9, 53-61,](#)
 43 [1993.](#)

1 Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F. R., and Vallis, G. K.: Probing
2 the fast and slow components of global warming by returning abruptly to preindustrial
3 forcing, *Journal of Climate*, 23, 2418-2427, Doi 10.1175/2009jcli3466.1, 2010.

4 [Herger, N., Sanderson, B. M., and Knutti, R.: Improved pattern scaling approaches for the use](#)
5 [in climate impact studies, *Geophysical Research Letters*, 42, 3486-3494,](#)
6 [10.1002/2015GL063569, 2015.](#)

7 [Hofmann, M., and Rahmstorf, S.: On the stability of the atlantic meridional overturning](#)
8 [circulation, *Proceedings of the National Academy of Sciences of the United States of*](#)
9 [America, 106, 20584-20589, DOI 10.1073/pnas.0909146106, 2009.](#)

10 Huntingford, C., and Cox, P. M.: An analogue model to derive additional climate change
11 scenarios from existing gcm simulations, *Climate Dynamics*, 16, 575-586, 2000.

12 IPCC: Summary for policymakers, in: Climate change 2013: The physical science basis.
13 Contribution of working group i to the fifth assessment report of the intergovernmental panel
14 on climate change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,
15 Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press,
16 Cambridge, United Kingdom and New York, NY, USA, 2013.

17 [Ishizaki, Y., Shiogama, H., Emori, S., Yokohata, T., Nozawa, T., Ogura, T., Abe, M.,](#)
18 [Yoshimori, M., and Takahashi, K.: Temperature scaling pattern dependence on representative](#)
19 [concentration pathway emission scenarios, *Climatic Change*, 112, 535-546, DOI](#)
20 [10.1007/s10584-012-0430-8, 2012.](#)

21 Jones, C., Lowe, J., Liddicoat, S., and Betts, R.: Committed terrestrial ecosystem changes due
22 to climate change, *Nat Geosci*, 2, 484-487, Doi 10.1038/Ngeo555, 2009.

23 Jonko, A. K., Shell, K. M., Sanderson, B. M., and Danabasoglu, G.: Climate feedbacks in
24 CCSM3 under changing CO₂ forcing. Part ii: Variation of climate feedbacks and sensitivity with
25 forcing, *Journal of Climate*, 26, 2784-2795, Doi 10.1175/Jcli-D-12-00479.1, 2013.

26 Li, S., and Jarvis, A.: Long run surface temperature dynamics of an a-ogcm: The hadcm3
27 4xCO₂ forcing experiment revisited, *Climate Dynamics*, 33, 817-825, 10.1007/s00382-009-
28 0581-0, 2009.

29 Manabe, S., Bryan, K., and Spelman, M. J.: Transient-response of a global ocean atmosphere
30 model to a doubling of atmospheric carbon-dioxide, *J Phys Oceanogr*, 20, 722-749, Doi
31 10.1175/1520-0485(1990)020<0722:Troago>2.0.CO;2, 1990.

32 Meehl, G. A., Moss, R., Taylor, K. E., Eyring, V., Stouffer, R. J., Bony, S., and Stevens, B.:
33 Climate model intercomparisons: Preparing for the next phase, *Eos Trans. AGU*, 95, 77,
34 2014.

35 Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled atmosphere-
36 ocean and carbon cycle models with a simpler model, *magicc6-part 1: Model description and*
37 *calibration, Atmos Chem Phys*, 11, 1417-1456, DOI 10.5194/acp-11-1417-2011, 2011.

38 Meraner, K., Mauritsen, T., and Voigt, A.: Robust increase in equilibrium climate sensitivity
39 under global warming, *Geophysical Research Letters*, 40, 5944-5948,
40 10.1002/2013GL058118, 2013.

41 Mitchell, J. F. B., Wilson, C. A., and Cunningham, W. M.: On CO₂ climate sensitivity and
42 model dependence of results, *Q J Roy Meteor Soc*, 113, 293-322, 1987.

1 Mitchell, T. D.: Pattern scaling - an examination of the accuracy of the technique for
2 describing future climates, *Climatic Change*, 60, 217-242, 2003.

3 Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of radiative forcing
4 due to well mixed greenhouse gases, *Geophysical Research Letters*, 25, 2715-2718, 1998.

5 Oueslati, B., Bony, S., Risi, C., and Dufresne, J. L.: Interpreting the inter-model spread in
6 regional precipitation projections in the tropics, *Climate Dynamics*, in press, doi
7 10.1007/s00382-016-2998-6, 2016.

8 Santer, B., Wigley, T., Schlesinger, M., and Mitchell, J. F. B.: Developing climate scenarios
9 from equilibrium gcm

10 results, Report No. 47, Max Planck Institute for Meteorology, Hamburg, 1990.

11 Schaller, N., Cermak, J., Wild, M., and Knutti, R.: The sensitivity of the modeled energy
12 budget and hydrological cycle to co2 and solar forcing, *Earth Syst Dynam*, 4, 253-266, DOI
13 10.5194/esd-4-253-2013, 2013.

14 Schaller, N., Sedláček, N. J., and Knutti, R.: The asymmetry of the climate system's response
15 to solar forcing changes and its implications for geoengineering scenarios, *Journal of
16 Geophysical Research: Atmospheres*, 10, 5171–5184, 2014.

17 [Screen, J. A.: Arctic amplification decreases temperature variance in northern mid- to high-latitudes, Nat Clim Change, 4, 577-582, 10.1038/Nclimate2268, 2014.](#)

18 [Seneviratne, S. I., Luthi, D., Litschi, M., and Schar, C.: Land-atmosphere coupling and
20 climate change in europe, Nature, 443, 205-209, Doi 10.1038/Nature05095, 2006.](#)

21 [Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B.,
22 and Teuling, A. J.: Investigating soil moisture-climate interactions in a changing climate: A
23 review, Earth-Sci Rev, 99, 125-161, DOI 10.1016/j.earscirev.2010.02.004, 2010.](#)

24 [Shaffer, G., Huber, M., Rondanelli, R., and Pedersen, J. O. P.: Deep time evidence for climate
25 sensitivity increase with warming, *Geophysical Research Letters*, 43, 6538-6545,
26 10.1002/2016GL069243, 2016.](#)

27 Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and
28 Miller, H. L.: Contribution of working group i to the fourth assessment report of the
29 intergovernmental panel on climate change, Cambridge University Press, Cambridge, United
30 Kingdom and New York, NY, USA, 2007.

31 Stott, P., Good, P., Jones, G., Gillett, N., and Hawkins, E.: The upper end of climate model
32 temperature projections is inconsistent with past warming, *Environ Res Lett*, 8, Artn 014024
33 Doi 10.1088/1748-9326/8/1/014024, 2013.

34 Tebaldi, C., and Arblaster, J. M.: Pattern scaling: Its strengths and limitations, and an update
35 on the latest model simulations, *Climatic Change*, 122, 459-471, DOI 10.1007/s10584-013-
36 1032-9, 2014.

37 Williams, K. D., Ingram, W. J., and Gregory, J. M.: Time variation of effective climate
38 sensitivity in gcm, *Journal of Climate*, 21, 5076-5090, Doi 10.1175/2008jcli2371.1, 2008.

39 Zelinka, M. D., Klein, S. A., Taylor, K. E., Andrews, T., Webb, M. J., Gregory, J. M., and
40 Forster, P. M.: Contributions of different cloud types to feedbacks and rapid adjustments in
41 cmip5, *Journal of Climate*, 26, 5007-5027, Doi 10.1175/Jcli-D-12-00555.1, 2013.

42

1
2

1 Table 1. List of CMIP5/CMIP6 DECK experiments required by nonlinMIP.

Experiment	Description	Role
piControl	Pre-industrial control experiment	
Abrupt4xCO2	CO2 abruptly quadrupled, then held constant for 150 years.	Separate different timescales of response.
1pctCO2	CO2 increased at 1% per year for 140 years (i.e. as CMIP5 1pctCO2 experiment), then decreased by 1% per year for 140 years (i.e. returning to pre-industrial conditions).	To test traceability of the abruptCO2 experiments to more realistic transient-forcing conditions. Adding the ramp-down phase explores physics relevant to mitigation and geo-engineering scenarios.

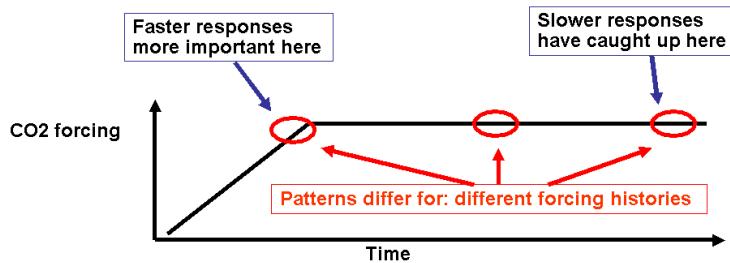
2

3

1 Table 2. NonlinMIP experimental design. Three options are: only the ‘essential’ simulation;
 2 all ‘high priority’ plus the ‘essential’ simulations; or, all simulations. The experiments in
 3 Table 1 are required in all cases.

Experiment (priority)	Description	Role
Abrupt2xCO2 (essential)	As abrupt4xCO2 (see Table 1), but at double pre-industrial CO2 concentration.	To diagnose non-linear responses (in combination with abrupt4xCO2). Assess climate response and (if appropriate) make climate projections with the step-response model at forcing levels more relevant to mid- or low-forcing scenarios.
Abrupt0.5xCO2 (essential)	As abrupt4xCO2 (see Table 1), but at half pre-industrial CO2 concentration	To diagnose non-linear responses (in combination with abrupt4xCO2 and abrupt2xCO2). Offers greater signal/noise for regional precipitation change than if just abrupt2xCO2 was used. Also relevant to paleoclimate studies.
Extend both abrupt2xCO2 and abrupt4xCO2 by 100 years (high priority)		Permit improved signal/noise in diagnosing some regional-scale non-linear responses Explore longer timescale responses than in CMIP5 experiment. Permit step-response model scenario simulations from 1850-2100

		<p>Allow traceability tests (via the step-response model) against most of the 1pctCO₂ ramp-up-ramp-down experiment.</p> <p>Provide a baseline control for the abrupt4xto1x experiment.</p>
1pctCO ₂ ramp-down (medium priority)	Initialised from the end of 1pctCO ₂ . CO ₂ is decreased by 1% per year for 140 years (i.e. returning to pre-industrial conditions).	To test traceability of the abruptCO ₂ experiments to more realistic transient-forcing conditions. Adding the ramp-down phase explores a much wider range of physical responses, providing a sterner test of traceability. Relevant also to mitigation and geo-engineering scenarios, and offers a sterner test of.
Abrupt4xto1x (medium priority)	Initialised from year 100 of abrupt4xCO ₂ , CO ₂ is abruptly returned to pre-industrial levels, then held constant for 150 years.	<p>Quantify non-linearities over a larger range of CO₂ (quantifies responses at 1xCO₂).</p> <p>Assess non-linearities that may be associated with the direction of forcing change.</p>
Abrupt8xCO ₂ (medium priority)	As abrupt4xCO ₂ , but at 8x pre-industrial CO ₂ concentration. Only 150 years required here.	Quantify non-linearities over a larger range of CO ₂ .


1

2

3

1

2

3

4

5 Figure 1. Schematic illustrating a situation where linear mechanisms can cause climate
6 patterns to evolve. This represents a scenario where global-mean radiative forcing (black
7 line) is ramped up, then stabilised. At the time indicated by the left red oval, responses with
8 shorter timescales are relatively important, due to the recent increase in forcing. At the time
9 marked by the right-hand oval, forcing has been stabilised for an extended period, so the
10 responses with longer timescales (such as sea-level rise) have had more time to respond to the
11 initial forcing increase.

12

13

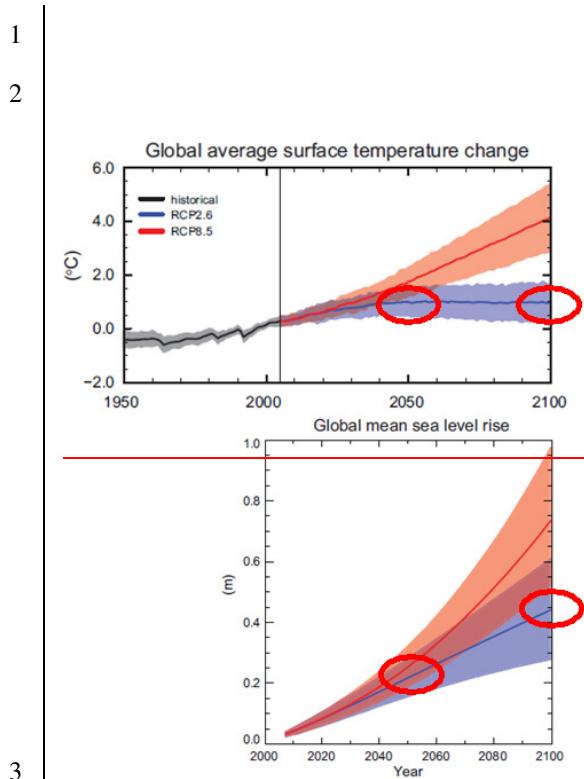


Figure 2. Adapted (red ovals overlaid) from the IPCC Fifth Assessment Report (IPCC, 2013), Figures SPM.7 and SPM.9. Global mean warming (top) and global mean sea level rise (bottom), relative to 1986–2005, for rep8.5 (red) and rep2.6 (blue).

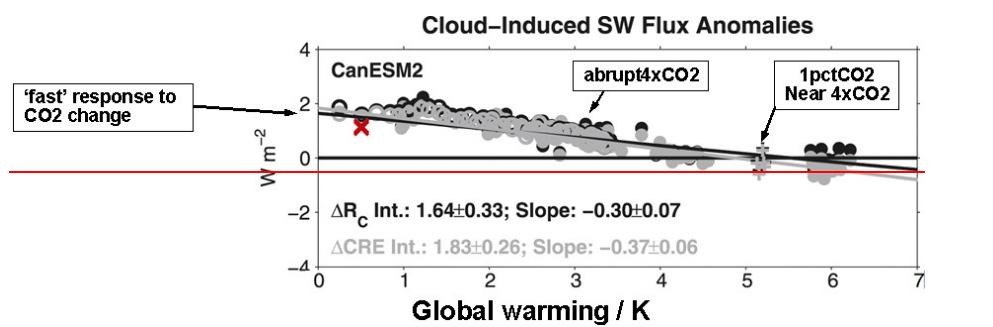
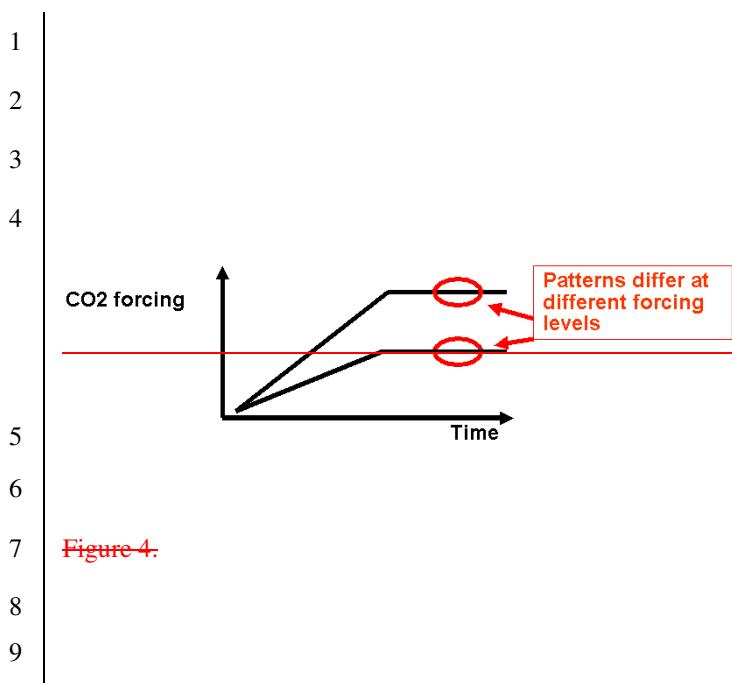
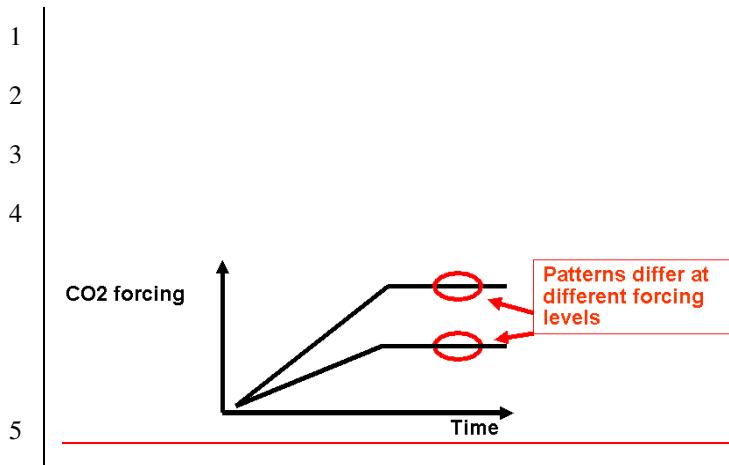




Figure 3. Illustrating a method (Gregory et al., 2004) for separating 'fast' and 'slow' responses to radiative forcing change. Figure adapted (labels in rectangles overlaid) from Zelinka et al. (2013). Global mean cloud-induced SW flux anomalies against global warming, for the CanESM2 model (black & grey represent two methods of calculating cloud-induced fluxes). This also illustrates one test of traceability of abrupt4xCO₂ to 1pctCO₂ responses: the linear fit to the abrupt4xCO₂ response (straight lines) passes through the 1pctCO₂ response near 4xCO₂ (i.e. near year 140 of that experiment).

Figure 2. Schematic illustrating the point that nonlinear mechanisms can cause climate patterns to differ at different forcing (and hence global temperature) levels. This represents two different scenarios, whose forcing timeseries is identical apart from a constant scale factor (the higher forcing scenario has about twice the forcing of the lower scenario).

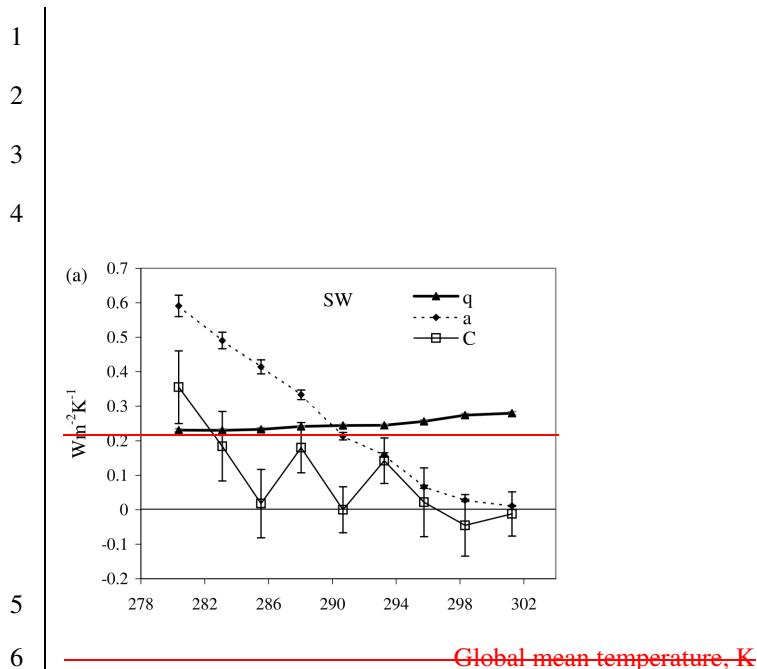


Figure 5. Albedo feedback (dotted line) strength (y-axis) decreasing with global mean temperature (x axis, K) in a climate model (figure from Colman and McAvaney, 2009).

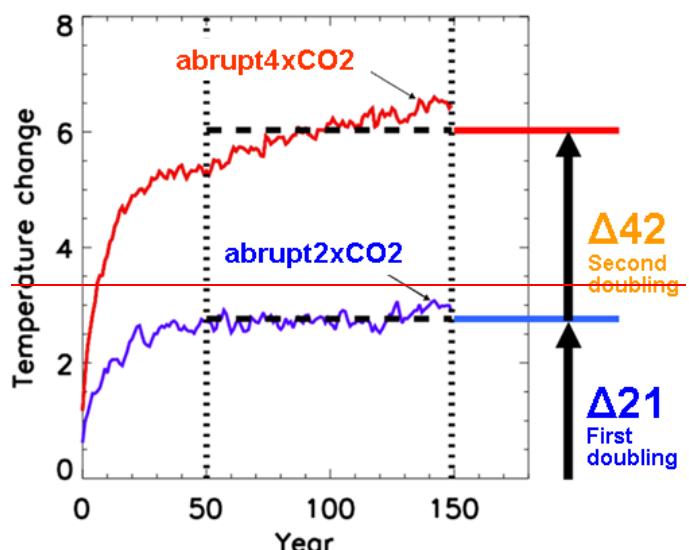


Figure 6. Defining the 'doubling difference'.

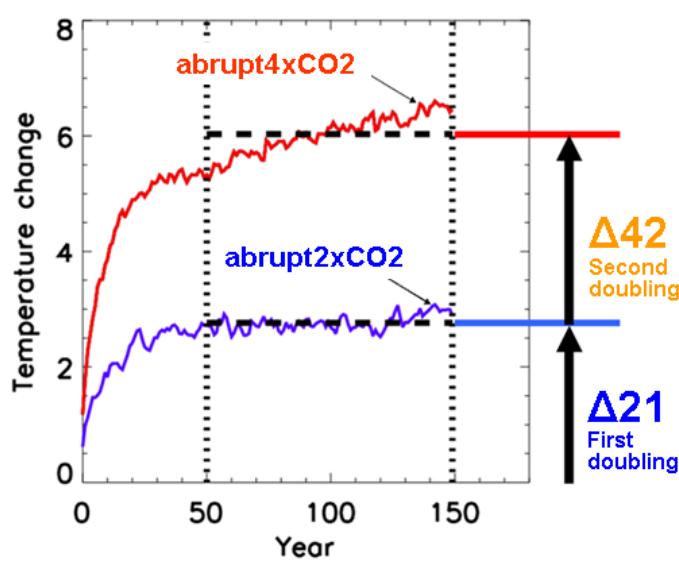


Figure 3. Defining the ‘doubling difference’. The red and blue lines show illustrative time-series of a variable (in this example, global-mean temperature from HadGEM2-ES) from the abrupt4xCO₂ and abrupt2xCO₂ experiments. Doubling difference = $\Delta 42 - \Delta 21$ (the difference in response between the first and second CO₂ doublings. This is defined for a specific timescale after the abrupt CO₂ change – in this example, it is the mean for means over years 50–149.

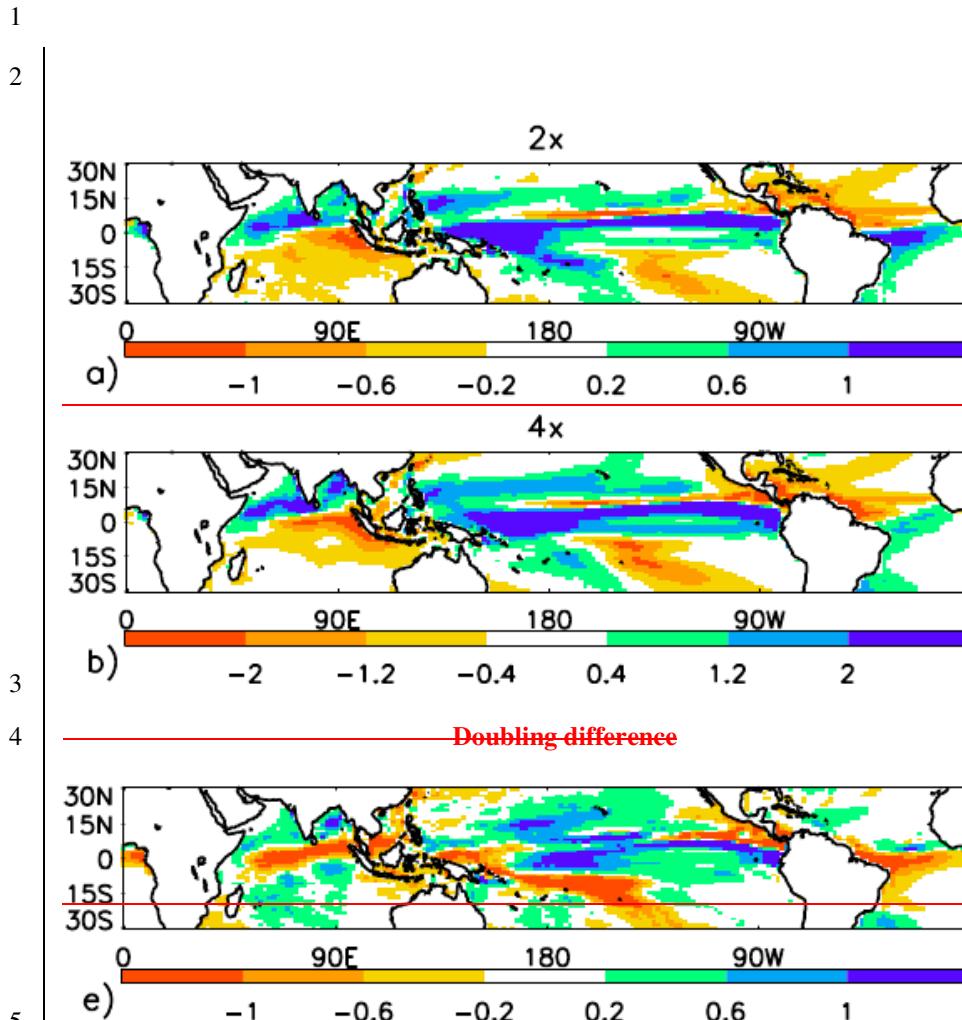


Figure 7. Non-linear regional precipitation responses over the ocean in HadGEM2-ES (figure from Chadwick and Good, 2013). Precipitation change (mm/day) averaged over years 50-149 for (top) abrupt $2\times\text{CO}_2$ and (middle) abrupt $4\times\text{CO}_2$, and the doubling difference (bottom). Note that the top and bottom panels have the same scale.

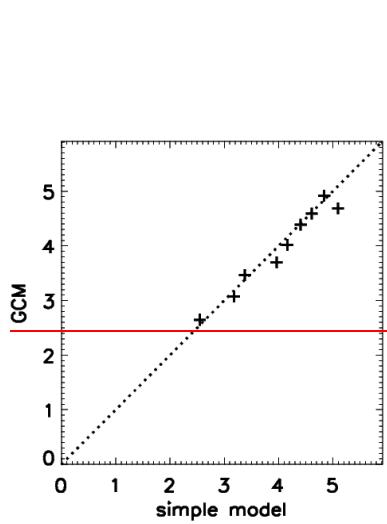
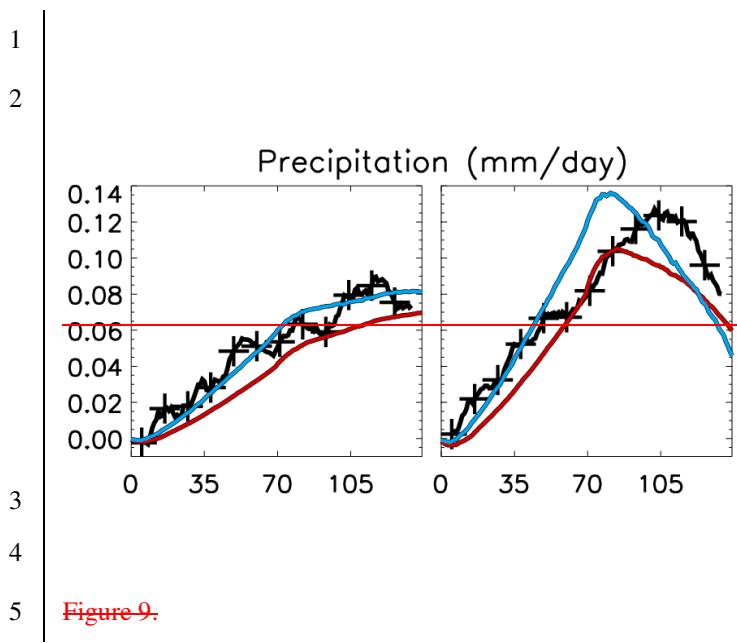
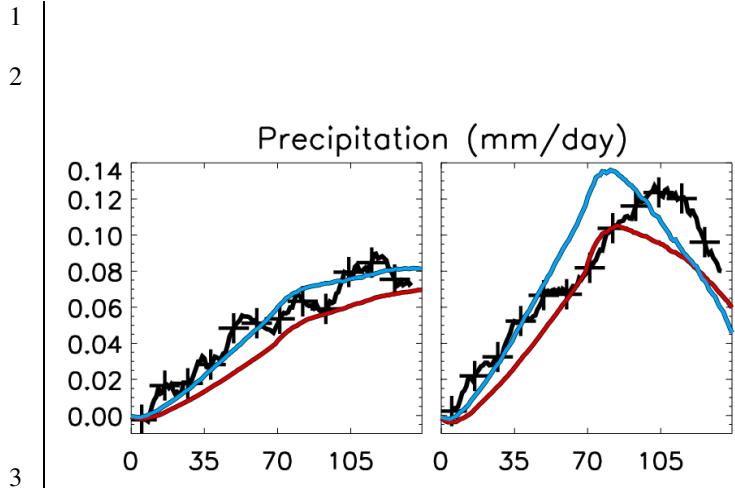




Figure 8. Checking basic traceability of abrupt $4\times\text{CO}_2$ to a transient forcing experiment (1petCO_2) (figure from Good et al., 2013). Global mean warming (K) averaged over years 120–139 of 1petCO_2 for (y axis) the GCM simulation and (x axis) the reconstruction from abrupt $4\times\text{CO}_2$ using the step response method.

