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Author responses 1 

 2 
Response to Executive Editor Comment 3 
 4 
Dear authors, 5 
In agreement with the CMIP6 panel members, the Executive editors of GMD would 6 
like to establish a common naming convention for the titles of the CMIP6 experiment 7 
description papers. 8 
The title of CMIP6 papers should include both the acronym of the MIP, and CMIP6, so 9 
that it is clear this is a CMIP6-Endorsed MIP. 10 
Good formats for the title include: 11 
’XYZMIP contribution to CMIP6: Name of project’ 12 
or 13 
’Name of Project (XYZMIP) contribution to CMIP6’ 14 
If you want to include a more descriptive title, the format could be along the lines of, 15 
’XYZMIP contribution to CMIP6: Name of project - descriptive title’ 16 
or 17 
’Name of Project (XYZMIP) contribution to CMIP6: descriptive title.’ 18 
When you revise your manuscript, please correct the title of your manuscript 19 
accordingly. 20 
Additionally, we strongly recommend to add a version number to the MIP description. 21 
The reason for the version numbers is so that the MIP protocol can be updated 22 
later, normally in a second short paper outlining the changes. See, for example: 23 
http://www.geosci-model-dev.net/special_issue11.html, 24 
Yours, 25 
Astrid Kerkweg 26 
 27 
Many thanks for pointing this out. We have changed the title to: 28 
nonlinMIP contribution to CMIP6: model intercomparison project for nonlinear mechanisms 29 
- physical basis, experimental design and analysis principles (v1.0) 30 

31 
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 1 
Response to reviewer 1 2 
 3 
Many thanks for the time invested and valuable comments. 4 
 5 
Reviewer comments are bold. 6 
 7 
- Of the nine figures, six or seven are taken from other papers (the origin of Figure 6 is 8 
not clear). Several of these are of low quality, use concepts, models or methods 9 
neither 10 
explained in the caption nor the text, and are not necessarily well-suited to explain the 11 
goals of nonlinMIP. I would suggest to get along with fewer figures and to design new 12 
ones that are targeted at the purpose of this paper. 13 
 14 
Thanks, we have removed several figures which are unnecessary, on reflection.  We have 15 
also expanded some of the discussion around the remaining figures, to make proper use of 16 
them.  The remaining four figures illustrate key conceptual points. 17 
 18 
- Section 5 outlines one application of the experiments in nonlinMIP. I hope the 19 
authors 20 
have more ideas of what one could do with the experiments, and although I don’t 21 
expect 22 
them to go into detail, I think the reader (potential participants in nonlinMIP) would be 23 
encouraged to learn what new science can be done. 24 
 25 
Response: very good point, thanks.  We have included new discussion at the start of section 26 
5 (also, start of Conclusions and the Abstract) on the broader uses of these experiments, 27 
which would be relevant to a wider audience. 28 
 29 
Detailed comments: 30 
The authors cite mostly themselves. I cannot claim to have a very broad overview of 31 
the literature, but here are some suggestions, which certainly shouldn’t prevent the 32 
authors to look more broadly at contributions in the literature, in particular towards 33 
the 34 
origin of ideas: 35 
 36 
Good point.  Thanks for the suggestions. 37 
 38 
4, 28, here I think that Bala et al. (2008, PNAS) is among the first to note the 39 
forcingdependent 40 
response of precipitation under geo-engineering. 41 
 42 
Yes, although this is a bit off topic as nonlinMIP focuses specifically on responses to a single 43 
forcing – CO2 (the papers previously cited that used idealised geoengineering scenarios 44 
were CO2-only studies).  However, this did point us to another useful paper by Bala et al. – a 45 
nice example looking at fast responses of precipitation to forcings, which we now include in 46 
the previous paragraph. 47 
 48 
4, 16, perhaps Bloch-Johnson et al. (2015, GRL), or references therein could provide 49 
some background as to why state non-linearity is of interest.  50 
 51 
Thanks.  We include this, and also two with a paleoclimate focus and one on the AMOC. 52 
 53 
5, 18, I am not sure why all these papers are cited here?  54 
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 1 
Good point.  Deleted. 2 
 3 
Section 2, in the description of the step-response framework, the first reference I know 4 
of is Hasselmann et al. (1993, Clim. Dyn.), even if the mathematical background must 5 
go back much further. Here it appears as if this was invented by the first author.  6 
 7 
Indeed it does read like this (not our intention).  We now include the Hasselmann reference 8 
up front to hopefully avoid this impression. 9 
 10 
9, 9, here perhaps cite Budyko (1969, Tellus) and Sellers (1969, JAM).  11 
 12 
We have included a couple of more up to date papers that would perhaps be of more value 13 
to the contemporary reader; and also added a couple of useful ones on nonlinearity in the 14 
soil moisture-temperature feedbacks. 15 
 16 
In addition I took note of:  17 
 18 
6, 13, the parenthesis needs a end.  19 
 20 
Fixed.  Thanks. 21 
 22 
9, 2-6, the paragraph is not well-connected with the rest of the text and the figure is 23 
not 24 
very clear or well-explained.  25 
 26 
We have linked with the previous text by mentioning faster and slower responses explicitly.  27 
We also have added some clarifying text, and removed the figure, which is not really helpful. 28 
 29 
9, 26, delete one instance of ‘different’ 30 
 31 
Done.  Thanks. 32 
 33 
9, 27-28, please explain which model is used, either here or in the caption of Figure 6.  34 
 35 
Done in the caption.  36 
 37 
10, 14, ‘doubling difference’ is not explained/defined.  38 
 39 
This text has been deleted, along with the corresponding figure.  However, the doubling 40 
difference is defined in the text above (with reference to what is now Figure 3). 41 
 42 
Figure 9, is the shown quantity global means?  43 
 44 
Yes, this is now stated in both the text and caption. 45 

46 
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Response to Reviewer 2 1 
 2 
Many thanks for the time invested and valuable comments. 3 
 4 
Reviewer comments are bold. 5 
 6 
However, 7 
I suggest that the authors be much clearer and much more explicit about what they 8 
envisage being the big scientific/practical advances that would come from this MIP. In 9 
particular, if a nonlinear response for a given impact-relevant variable is found to exist 10 
using the suggested simulations, how might this usefully be used to give more 11 
realistic 12 
impact assessments? 13 
 14 
Good point, thanks.  We have expanded discussion on this in the new first two paragraphs of 15 
the Conclusions and a new start to section 5 (also in the Abstract). 16 
 17 
Also, the authors say that these simulations will help to "understand" 18 
nonlinear responses, but how would this be done in practice if a nonlinear 19 
response is found? Can the authors give an illustrative example based on simple 20 
physical 21 
mechanisms? 22 
 23 
The basic idea is the same as for the cmip5 abrupt4xCO2 experiment (simplified forcing 24 
simplifies the understanding of mechanisms of response).  We have expanded a little the 25 
paragraph introducing this in the Introduction (paragraph starting, ‘These three issues...’).  26 
We also clarified a related paragraph at the end of section 3.1.  A new start to section 5 27 
states that for some applications, the same methods already used to study abrupt4xCO2 are 28 
directly applicable.  The penultimate paragraph of section 5.2 also addresses this.  These 29 
discussions link back to the linear and nonlinear mechanisms, and the discussion of these 30 
does include example physical mechanisms. 31 
 32 
On a more practical note, how will internal variability be separated 33 
from the nonlinearity when attempting to quantify the latter? 34 
 35 
A new final paragraph of section 5.2 addresses this.  We also mention in the previous 36 
paragraph and elsewhere that contamination from internal variability may be reduced as long 37 
(~100-year) means are possible in these experiments. 38 
 39 
 Specific comments: Section 1: "...but this assumption may also be applied either 40 
explicitly 41 
or implicitly in understanding mechanisms." -> I don’t understand this sentence, 42 
please be clearer about what is meant here 43 
 44 
We have attempted to clarify this: “In understanding or emulating regional patterns of climate 45 

change, it is often assumed explicitly that regional climate change is roughly proportional to 46 

global mean warming.  In emulation work, this is termed 'pattern scaling' (Santer et al., 47 

1990;Mitchell, 2003;Ishizaki et al., 2012;Tebaldi and Arblaster, 2014), but this assumption 48 

may also be applied implicitly in understanding mechanisms. Often, physical mechanisms are 49 

studied for a single period of a single forcing scenario or in a single high-forcing experiment 50 

such as abrupt4xCO2 (implicitly assuming that the understanding is relevant for other periods 51 

or scenarios).” 52 
 53 
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 Section 1 and throughout: "(Chadwick 1 
et al., 2013;Held et al., 2010;Williams et al., 2008;Manabe et al., 1990;Andrews and 2 
Ringer, 2014)" -> references are neither in chronological nor alphabetical order. Is 3 
there a good reason for this? It is typical to arrange references chronologically 4 
 5 
Thanks for spotting this.  It was because the Copernicus style for EndNote we downloaded 6 
had the incorrect setting for some reason.  This is fixed now. 7 
 8 
 Section 2: "apriori" -> typo 9 
 10 
Fixed. 11 
 12 
Section 3.2: "Both moisture content and atmospheric dynamics respond 13 
to CO2 forcing, so in general we might expect convective precipitation to have 14 
a nonlinear response to CO2 forcing." -> we would expect a nonlinear response from 15 
the moisture part alone, given the Clausius-Clapeyron, in the absence of any changes 16 
in dynamics 17 
 18 
Good point  - now stated. 19 
 20 

 21 

22 
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 1 

Abstract 2 

nonlinMIP aims to quantify and understand, atprovides experiments that account for state-3 

dependent regional scales,and global climate responses that are non-linear under .  The 4 

experiments have two main applications: 1) to focus understanding of responses to CO2 5 

forcing (mechanisms for whichon states relevant to specific policy or scientific questions (e.g. 6 

change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to 7 

the present-day); or 2) to understand the state-dependence (nonlinearity) of climate change – 8 

i.e. why doubling the CO2 forcing doesmay not double the response). Non-linear. State 9 

dependence (nonlinearity) of responses can be large at regional scales, with important 10 

implications for understanding mechanisms and for GCM emulation techniques (e.g. energy 11 

balance models and pattern-scaling methods). However, these processes are hard to explore 12 

using traditional experiments, explaining why they have had little attention in previous 13 

studies.  Some single model studies have established novel analysis principles and some 14 

physical mechanisms. There is now a need to explore robustness and uncertainty in such 15 

mechanisms across a range of models. (point 2 above), and more broadly, to focus work on 16 

understanding the response to CO2 on climate states relevant to specific policy/science 17 

questions (point 1). 18 

 19 

nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to 20 

separate linear and non-linear mechanisms cleanly, with a good signal/noise ratio – while 21 

being demonstrably traceable to realistic transient scenarios.  The design builds on the CMIP5 22 

and CMIP6 DECK protocols, and is centred around a suite of instantaneous atmospheric CO2 23 

change experiments, with a ramp-up-ramp-down experiment to test traceability to gradual 24 

forcing scenarios. In all cases the models are intended to be used with CO2 concentrations 25 

rather than CO2 emissions as the input. The understanding gained will help interpret the 26 

spread in policy-relevant scenario projections. 27 

 28 

Here we outline the basic physical principles behind nonlinMIP, and the method of 29 

establishing traceability from abruptCO2 to gradual forcing experiments, before detailing the 30 

experimental design and finally some analysis principles. The test of traceability from 31 
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abruptCO2 to transient experiments is recommended as a standard analysis within the CMIP5 1 

and CMIP6 DECK protocols. 2 

 3 

 4 

1 Introduction 5 

Robust climate impacts assessments require, at regional scales, understanding of physical 6 

mechanisms of climate change in GCM projections. A further, pragmatic requirement for 7 

impacts assessments is the ability to emulate (using fast but simplified climate models) GCM 8 

behaviour for a much larger range of policy-relevant scenarios than may be evaluated using 9 

GCMs directly.  These two requirements may be combined into a single question: what is the 10 

simplest conceptual framework, for a given well defined model application, that has 11 

quantitative predictive power and captures the key mechanisms behind GCM scenario 12 

projections?   13 

 14 

Often, a choice has been to assume some form of linearity.  In studies of the global energy 15 

balance, linearity is often assumed in the form of a constant climate feedback parameter. This 16 

parameter may be used to quantify feedbacks in different models (e.g. Zelinka et al., 2013) or, 17 

in emulation methods, to parameterise global energy balance models (e.g. Huntingford and 18 

Cox, 2000).  In understanding or emulating regional patterns of climate change, it is often 19 

assumed explicitly that regional climate change is roughly proportional to global mean 20 

warming.  In emulation work, this is termed 'pattern scaling' (Mitchell, 2003;Santer et al., 21 

1990;Mitchell, 2003;Ishizaki et al., 2012;Tebaldi and Arblaster, 2014), but this assumption 22 

may also be applied either explicitly or implicitly in understanding mechanisms. Sometimes, 23 

patterns of change per K of global warming are quantified; often Often, physical mechanisms 24 

are studied for a single period of a single forcing scenario or in a single high-forcing 25 

experiment such as abrupt4xCO2 (implicitly assuming that the understanding is relevant for 26 

other periods or scenarios). The use of pattern-scaling is prevalent in studies of climate 27 

impacts. 28 

 29 

While these approximations appear to work well under many circumstances, significant 30 

limitations are increasingly being revealed in such assumptions.  These are of two types: 31 

Field Code Changed
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different timescales of response, and non-linear responses.  In discussing this, a complication 1 

arises in that different linearity assumptions exist.  Henceforth we define 'linear' as meaning 2 

'consistent with linear systems theory' - i.e. responses that are linear in model forcing (i.e. 3 

where doubling the forcing doubles the response). This is different from assuming that 4 

regional climate change is proportional to global mean warming – as in pattern scaling. 5 

 6 

Even in a linear system (where responses are linear in forcing), the relationship between two 7 

system outputs (e.g. between global-mean temperature and regional sea surface temperature - 8 

SST) will in general not be linear.  This is due to different timescales of response in different 9 

locations and/or variables (section 3.1). Examples include lagged surface ocean warming due 10 

to a connection with the deeper ocean (Manabe et al., 1990;Williams et al., 2008;Held et al., 11 

2010;Chadwick et al., 2013;Held et al., 2010;Williams et al., 2008;Manabe et al., 12 

1990;Andrews and Ringer, 2014) or the direct response of precipitation to forcings 13 

(AndrewsMitchell et al., 20101987;Allen and Ingram, 2002;MitchellAndrews et al., 14 

19872010;Bala et al., 2010;Bony et al., 2014).  One (generally false, but potentially 15 

acceptable) assumption of pattern scaling, then, is that regional climate responds over the 16 

same timescale as global-mean temperature.  Different timescales of response are especially 17 

important in understanding and predicting behaviour under mitigation and geoengineering 18 

scenarios (or over very long timescales). 19 

 20 

Non-linear system responses (e.g. Schaller et al., 2013) are more complex to quantify, 21 

understand and predict than those of linear systems (section 3.2).  Some examples have been 22 

known for some time, such as changing feedbacks through retreating snow/sea-ice or 23 

increasing water vapour (Hansen et al., 2005;Colman and McAvaney, 2009;Jonko et al., 24 

2013;Meraner et al., 2013;Hansen et al., 2005), or the behaviour of the Atlantic Meridional 25 

Overturning Circulation..  Some paleoclimate evidence supports the idea that climate 26 

sensitivity increases with warming (Caballero and Huber, 2013;Shaffer et al., 2016), which is 27 

important for the risk of high-end global warming (Bloch-Johnson et al., 2015). The nonlinear 28 

behaviour of the Atlantic Meridional Overturning Circulation is another example (Hofmann 29 

and Rahmstorf, 2009;Ishizaki et al., 2012).  More recently, substantial non-linear precipitation 30 

responses have been demonstrated in spatial patterns of regional precipitation change in two 31 

Hadley Centre climate models with different atmospheric formulations (Good et al., 32 
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2012;Chadwick and Good, 2013).  This is largely due to simultaneous changes in pairs of 1 

known robust pseudo-linear mechanisms (Chadwick and Good, 2013).  Regional warming has 2 

been shown to be different for a first and second CO2 doubling, with implications primarily 3 

for impact assessment models or studies combining linear energy balance models with pattern 4 

scaling (Good et al., 2015). Non-linearity has also been demonstrated in the response under 5 

idealised geoengineering scenarios, of ocean heat uptake, sea-level rise, and regional climate 6 

pattterns, with different behaviour found when forcings are decreasing than when they are 7 

increasing (Bouttes et al., 2013;Schaller et al., 2014;Bouttes et al., 2015). 8 

 9 

Investigation of these mechanisms at regional scales has been constrained by the type of 10 

GCM experiment typically analysed.  Most previous analyses (e.g. Solomon et al., 2007) have 11 

used results from transient forcing experiments, where forcing changes steadily through the 12 

experiment.  There are three main problems with this approach.  First, information about 13 

different timescales of response is masked.  This is because the GCM response at any given 14 

time in a transient forcing experiment is a mixture of different timescales of response (Good 15 

et al., 2013;Held et al., 2010;Li and Jarvis, 2009;Held et al., 2010;Good et al., 2013), 16 

including short-timescale responses (e.g. ocean mixed layer response from forcing change 17 

over the previous few years) through long-timescale behaviour (including deeper ocean 18 

responses from forcing changes multiple decades to centuries earlier).  Secondly, in transient 19 

forcing experiments, non-linear behaviour is hard to separate from linear mechanisms.  For 20 

example, in an experiment where CO2 is increased by 1% per year for 140 years ('1pctCO2'), 21 

we might find different spatial patterns at year 70 (at 2xCO2) than at year 140 (at 4xCO2). 22 

This could be due to nonlinear mechanisms (due to the different forcing level and associated 23 

different climate state). However, it could also be due to linear mechanisms: year 140 follows 24 

140 years of forcing increase, so includes responses over longer response timescales than at 25 

year 70 (only 70 years of forcing increase).  Thirdly, signal/noise ratios of regional climate 26 

change can be relatively poor in such experiments. 27 

 28 

These three issues may be addressed by the use of idealised abruptCO2 GCM experiments 29 

(Forster et al., 2012;Zelinka et al., 2013;Jonko et al., 2013;Good et al., 2013;Good et al., 30 

2012;Chadwick and Good, 2013;Chadwick et al., 2013;Bouttes et al., 2013;Gregory et al., 31 

2004):: an experiment where CO2 forcing is instantaneously changed, then held constant.  32 
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The simplified forcing in such experiments simplifies the understanding of physical 1 

mechanisms of response.  In these abrupt CO2 experiments, responses over different 2 

timescales (fast and slow responses) are separated from each other.  Further, responses at 3 

different forcing levels may be directly compared, e.g. by comparing the response in 4 

abrupt2xCO2 and abrupt4xCO2 experiments over the same timescale - both have identical 5 

forcing time histories, apart from the larger forcing magnitude in abrupt4xCO2.  Thirdly, high 6 

signal/noise is possible: averages may be taken over periods of 100 years or more (after the 7 

initial ocean mixed layer adjustment, change is gradual in such experiments).  Recent work 8 

(Good et al., 2015;Good et al., 2012;Good et al., 2013;Zelinka et al., 2013;Bouttes et al., 9 

2015;Good et al., 2015) has established that these experiments contain global and regional-10 

scale information quantitatively traceable to more policy-relevant transient experiments - and 11 

equivalently, that they form the basis for fast simple climate model projections traceable to 12 

the GCMs.  In other studies (e.g. Frolicher et al., 2014), pulse experiments have been used to 13 

separate different timescales of response (where forcing is abruptly increased, then abruptly 14 

returned to the control state).  We use abruptCO2 experiments because they offer greater 15 

signal/noise in the change signal (important for regional-scale studies); and also for 16 

consistency with the CMIP6 DECK abrupt4xCO2 experiment. 17 

 18 

The CMIP5 abrupt4xCO2 experiments have thus been used widely: including quantifying 19 

GCM forcing and feedback behaviour (Gregory et al., 2004;Zelinka et al., 2013), and for 20 

traceable emulation of GCM projections of global-mean temperature and heat uptake (Good 21 

et al., 2013;Stott et al., 2013).  Abrupt4xCO2 is also part of the CMIP6 DECK protocol 22 

(Meehl et al., 2014). 23 

 24 

NonlinMIP builds on the CMIP5 and CMIP6 DECK designs to explore non-linear responses 25 

(via additional abruptCO2 experiments at different forcing levels.).  It also explores responses 26 

over slightly longer timescales - extending the CMIP5 abrupt4xCO2 experiment by 100 27 

years).. 28 

 29 
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2 Relating abruptCO2 to gradual forcing scenarios: the step-response model 1 

In using the highly-idealised abruptCO2 experiments, it is essential that their physical 2 

relevance (traceability) to more realistic gradual forcing experiments is determined. We 3 

cannot aprioria priori reject the possibility that some GCMs could respond unrealistically to 4 

the abrupt forcing change.  A key tool here is the step-response model (described below).  5 

This response-function methodThis (Hasselmann et al., 1993) is a response-function method, 6 

which aims to predict the GCM response to any given transient-forcing experiment, using the 7 

GCM response to an abruptCO2 experiment. Such a prediction may be compared with the 8 

GCM transient-forcing simulation, as part of a traceability assessment (discussed in detail in 9 

section 5). 10 

 11 

Once some confidence is established in traceability of the abruptCO2 experiments to 12 

transient-forcing scenarios, the step-response model has other roles: to explore the 13 

implications, for different forcing scenarios, of physical understanding gleaned from 14 

abruptCO2 experiments; to help separate linear and nonlinear mechanisms (section 5); and 15 

potentially as a basis for GCM emulation.  The method description below also serves to 16 

illustrate the assumptions of linear system theory. 17 

 18 

The step-response model represents the evolution of radiative forcing in a scenario 19 

experiment by a series of step changes in radiative forcing (with one step taken at the 20 

beginning of each year).  The method makes two linear assumptions. First, the response to 21 

each annual forcing step is estimated by linearly scaling the response in a CO2 step 22 

experiment according to the magnitude of radiative forcing change.  Second, the response yi at 23 

year i of a scenario experiment is estimated as a sum of responses to all previous annual 24 

forcing changes (see Figure 1 of Good et al., 2013 for an illustration): 25 

 26 

∑
=
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where xj is the response of the same variable in year j of the CO2 step experiment.  
jiw

−
 scales 1 

down the response from the step experiment (xj) to match the annual change in radiative 2 

forcing during year i-j of the scenario (denoted 
jiF

−
∆ ): 3 

 4 

s

ji

ji
F

F
w

∆

∆
=

−

−
                                                                              (1b) 5 

 6 

where 
sF∆  is the radiative forcing change in the CO2 step experiment.  All quantities are 7 

expressed as anomalies with respect to a constant-forcing control experiment.   8 

 9 

This approach can in principle be applied at any spatial scale for any variable for which the 10 

assumptions are plausible (e.g. Chadwick et al., 2013). 11 

 12 

 13 

3 Linear and non-linear mechanisms, and the relevance of abruptCO2 14 

experiments 15 

Here we discuss further, with examples, the distinction between linear and nonlinear 16 

mechanisms, when they are important, and the relevance of abruptCO2 experiments. 17 

3.1 Linear mechanisms: different timescales of response 18 

Even in a linear system, regional climate change per K of global warming will evolve during 19 

a scenario simulation. This happens because different parts of the climate system have 20 

different timescales of response to forcing change.  21 

 22 

This may be due to different effective heat capacities. For example, the ocean mixed layer 23 

responds much faster than the deeper ocean, simply due to a thinner column of water (Li and 24 

Jarvis, 2009).   However, some areas of the ocean surface (e.g. the Southern Ocean and south-25 

east subtropical Pacific) show lagged warming, due to a greater connection (via upwelling or 26 

mixing) with the deeper ocean (e.g. Manabe et al., 1990;Williams et al., 2008).  The dynamics 27 Field Code Changed
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of the ocean circulation and vegetation may also have their own inherent timescales (e.g. 1 

vegetation change may lag global warming by years to hundreds of years, Jones et al., 2009).  2 

At the other extreme, some responses to CO2 forcing are much faster than global warming: 3 

such as the direct response of global mean precipitation to forcings (Mitchell et al., 4 

1987;Allen and Ingram, 2002;Andrews et al., 2010;Mitchell et al., 1987) and the 5 

physiological response of vegetation to CO2 (Field et al., 1995). 6 

 7 

In a linear system, patterns of change per K of global warming are sensitive to the forcing 8 

history.  For example in Figure 1, a scenario is illustrated where forcing is ramped up, then 9 

stabilized. Three periods are highlighted, which may have different patterns of change per K 10 

of global warming, due to different forcing histories: at the leftmost point, faster responses 11 

will be relatively more important, whereas at the right, the slower responses have had some 12 

time to catch up. This A key example is illustrated in Figure 2 forthe different responses of 13 

global-mean warming and global-mean sea- level rise. The blue curves show that for under 14 

RCP2.6, as shown in Figures SPM.7 and SPM.9 of the IPCC Fifth Assessment Report (IPCC, 15 

2013).  Under RCP2.6, global-mean warming ceases after 2050, whilewhen radiative forcing 16 

is approximately stabilised (corresponding qualitatively to the period when the black line is 17 

horizontal in Figure 1).  In contrast, sea-level rise continues at roughly the same rate 18 

throughout the century. Therefore, in RCP2.6, the sea-level rise per K of global warming 19 

increases after 2050. This is largely because the timescale of deep ocean heat uptake is much 20 

slowerlonger than that of ocean mixed-layer warming.  21 

 22 

By design, abruptCO2 experiments separate GCM responses with different timescales of 23 

GCM (i.e. separating faster responses from slower responses): the response of a given 24 

variable in year Y of the experiment corresponds to forcing change.the response of that 25 

variable over the timescale Y.  This is used, for example, (Gregory et al., 2004) to estimate 26 

radiative forcing and feedback parameters for GCMs: plotting radiative flux anomalies 27 

against global mean warming can separate 'fast' and 'slow' responses (see e.g. Figure 3).. For 28 

example, the top-of-atmosphere outgoing shortwave flux shows a rapid initial change before 29 

the global mean temperature has had time to respond. 30 
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3.2 Non-linear responses 1 

Nonlinear mechanisms arise for a variety of reasons. Often, however, it is useful to describe 2 

them as state-dependent feedbacks. For example, the snow-albedo feedback becomes small at 3 

high or low snow depth.and sea-ice albedo feedbacks becomes small at high or low snow 4 

depth (Hall, 2004;Eisenman, 2012). Soil moisture–temperature feedbacks can also be state-5 

dependent (Seneviratne et al., 2006;Seneviratne et al., 2010): feedback is small when soil 6 

moisture is saturated, or so low that moisture is tightly bound to the soil (in both regimes, 7 

evaporation is insensitive to change in soil moisture). Sometimes, nonlinear mechanisms may 8 

be better viewed as simultaneous changes in pairs of properties. For example, convective 9 

precipitation is broadly a product of moisture content and dynamics (Chadwick et al., 10 

2012;Chadwick and Good, 2013;ChadwickBony et al., 20122014;Oueslati et al., 2016;Bony 11 

et al., 2014). Both moisture content and atmospheric dynamics respond to CO2 forcing, so in 12 

general we might expect convective precipitation to have a nonlinear response to CO2 13 

forcing.  In addition, the Clausius Clapeyron equation introduces some nonlinearity in the 14 

increase of specific humidity with warming. Of course, more complex nonlinear responses 15 

exist, such as for the Atlantic Meridional Overturning Circulation. 16 

 17 

In contrast to linear mechanisms, nonlinear mechanisms are sensitive to the magnitude of 18 

forcing.  For example, the two points highlighted in Figure 42 may have different patterns of 19 

change per K of global warming, due to nonlinear mechanisms. (in contrast, linear 20 

mechanisms would cause no difference in the patterns of change per K of global warming 21 

between the two points in Figure 2, because the two scenarios have the same forcing history 22 

apart from a constant scaling factor). 23 

 24 

An example is given in Figure 5, which shows the snow/ice albedo feedback declining, which 25 

tends to change in magnitude with increased global temperature, due to declining snow and 26 

ice cover, and the remaining snow and ice being in areas of lower solar insolation (Colman 27 

and McAvaney, 2009).  28 

 29 

AbruptCO2 experiments may be used to separate nonlinear from linear mechanisms. This can 30 

be done by comparing the responses at the same timescale in different different abruptCO2 31 
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experiments. Figure 63 compares abrupt2xCO2 and abrupt4xCO2 experiments over years 50-1 

149. A 'doubling difference' is defined, (Good et al., 2015), measuring the difference in 2 

response to the first and second CO2 doublings. In most current simple climate models (e.g. 3 

Meinshausen et al., 2011), the radiative forcing from each successive CO2 doubling is 4 

assumed identical (because forcing is approximately linear in log[CO2], Myhre et al., 1998). 5 

With this assumption, a linear system would have zero doubling difference everywhere.  6 

Therefore, the doubling difference is used as a measure of nonlinearity.  The question of 7 

which abruptCO2 experiments to compare, and over which timescale, is discussed in section 8 

5. 9 

 10 

In some GCMs, the forcing per CO2 doubling has been shown to vary with CO2 (Colman and 11 

McAvaney, 2009;Jonko et al., 2013). However, this variation depends on the specific 12 

definition of forcing used (Jonko et al., 2013). Currently this is folded into our definition of 13 

nonlinearity. If a robust definition of this forcing variation becomes available in future, it 14 

could be used to scale out any difference in forcing between pairs of abruptCO2 experiments, 15 

to calculate an 'adjusted doubling difference'. 16 

 17 

As an example, Figure 7 maps the response to abrupt2xCO2 and abrupt4xCO2, and the 18 

doubling difference, for precipitation in HadGEM2-ES over the ocean (taken from Chadwick 19 

and Good). The nonlinearities are large - comparable in magnitude to the responses to 20 

abrupt2xCO2, albeit with a different spatial pattern. 21 

 22 

 23 

4 Experimental design 24 

nonlinMIP is composed of a set of abruptCO2 experiments (the primary tools), plus a CO2-25 

forced transient experiment. AbruptCO2 experiments are driven by changes in atmospheric 26 

CO2 concentration: CO2 is abruptly changed, then held constant.  These build on the CMIP5 27 

and CMIP6 DECK protocols (the required runs from these are detailed in Table 1).  The 28 

additional nonlinMIP runs (Table 2) are assigned three priority levels. Three options for 29 

participation are: 1) only the ‘essential’ simulation; 2) all ‘high priority’ plus the ‘essential’ 30 

simulations; or, preferably, 3) all simulations.  The experiments in Table 1 are required in all 31 
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cases.  All experiments must be initialized from the same year of a pre-industrial control 1 

experiment, except for abrupt4xto1x (see Table 2).  A typical analysis procedure is outlined in 2 

section 5. 3 

 4 

The nonlinMIP design is presently limited to CO2 forcing, although the same principles could 5 

be applied to other forcings. 6 

 7 

5 Basic analysis principles 8 

This section outlines the applications and general principles behind analysis of nonlinMIP 9 

results.    First, some general applications are introduced, before giving more detail on how 10 

one particular application (quantifying and understanding nonlinear change) may be analysed. 11 

 12 

The addition of the abrupt2xCO2 experiment to the standard DECK abrupt4xCO2 permits 13 

quantifying and understanding climate change due to CO2 for three main applications:  14 

1) under global warming approximately comparable to that envisaged by the Paris 15 

agreement. (quantified by abrupt2xCO2 – pre-industrial control) 16 

2) climate change approximately comparable to that avoided by mitigation (quantified by 17 

abrupt4xCO2 - abrupt2xCO2). 18 

3) nonlinear change (the difference between 2 and 1). 19 

 20 

Applications 1 and 2 are expected to be of the widest interest to the community, as they could 21 

be analysed using the same methods as have already been used extensively to study the 22 

response in the CMIP5 abrupt4xCO2 experiment, but for climate states more relevant to the 23 

policy questions outlined in 1) and 2).  Useful signal/noise should be possible because ~100 24 

year means may be analysed (e.g. over years 50-149, where climate is relatively stable as it 25 

follows the initial ocean mixed layer warming). Application 3 is more specialised, and is 26 

discussed in more detail below. 27 

 28 
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The abrupt0.5xCO2 experiment permits analogous work, extending the relevance to colder 1 

past climates, and exploring one aspect of how past change may differ from future change. It 2 

also allows nonlinear mechanisms to be studied with greater signal/noise: 3 

 4 

4) change under past cold climates (abrupt0.5xCO2 - piControl). 5 

5) nonlinear change: as 3, but with larger signal/noise ( [abrupt4xco2 - abrupt2xco2] – 6 

[piControl - abrupt0.5xCO2] ). 7 

 8 

In quantifying nonlinear change (applications 3 or 5 above), the primary idea is to find where 9 

the step-response model (section 2) breaks: since the step-response model is based on a linear 10 

assumption, this amounts to detecting non-linear responses.   11 

 12 

The aim is to focus subsequent analysis.  If non-linearities in a quantity of interest are found 13 

to be small, then analysis may focus on understanding different timescales of response from a 14 

single abruptCO2 experiment: linearity means that the physical response (over a useful range 15 

of CO2 concentrations) is captured by a single abruptCO2 experiment.  This represents a 16 

considerable simplification.  If, on the other hand, non-linearities are found to be important, 17 

the focus shifts to understanding the different responses in different abruptCO2 experiments.  18 

The choice of which abruptCO2 experiments to focus on, and over which timescales, is 19 

discussed below. 20 

 21 

5.1 First step: check basic traceability of abrupt4xCO2 to the transient-forced 22 

response near 4xCO2 23 

The test described here is recommended as a routine analysis of the CMIP6 DECK 24 

experiments (even if nonlinMIP experiments are not performed).  The aim is to confirm 25 

whether the abruptCO2 experiments contain realistic physical responses in the variables of 26 

interest (as previously done for global-mean temperature and heat uptake for a range of 27 

CMIP5 models (Good et al., 2013), for regional-scale warming and ocean heat updake 28 

(Bouttes et al., 2015;Good et al., 2015;Bouttes et al., 2015) and for other global-mean 29 
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quantities for HadCM3 (Good et al., 2011).   This also, rules out the most pathological non-1 

linearities (e.g. if the response to an abrupt CO2 change in a given GCM was unrealistic).  2 

Although this test has been done for a range of models and variables, traceability cannot be 3 

assumed to hold for all models and variables. 4 

 5 

The linear step-response model should first be used with the abrupt4xCO2 response, to 6 

predict the response near year 140 of the 1pctCO2 experiment (i.e. near 4xCO2).  This 7 

prediction is then compared with the actual GCM 1pctCO2 result.  This should first be done 8 

for global mean temperature: this assessment has previously been performed for a range of 9 

CMIP5 models (Good et al., 2013; see Figure 8), giving an idea of the level of accuracy 10 

expected.  If the abruptCO2 response is fundamentally unrealistic, it is likely to show up in 11 

the global temperature change.  This approach may then be repeated for spatial patterns of 12 

warming, and then for the quantities of interest.  Abrupt4xCO2 is used here as it has larger 13 

signal/noise than abrupt2xCO2, yet is representative of forcing levels in a business-as-usual 14 

scenario by 2100.  However, the tests may also be repeated using abrupt2xCO2 – but 15 

compared with year 70 of the 1pctCO2 experiment (i.e. at 2xCO2). 16 

 17 

The step-response model emulation under these conditions should perform well for most 18 

cases: the state at year 140 of the 1pctCO2 experiment is very similar to that of abrupt4xCO2 19 

(same forcing, similar global-mean temperature), so errors from non-linear mechanisms 20 

should be minimal.  If large errors are found, this may imply caution about the use of 21 

abruptCO2 experiments for these variables, or perhaps point to novel non-linear mechanisms 22 

that may be understood by further analysis. 23 

 24 

5.2 Second step: characterising nonlinear responses 25 

Having established some level of confidence in the abruptCO2 physical response, the second 26 

step is to look for nonlinear responses.  This first involves repeating the tests from step 1 27 

above, but for different parts of the 1pctCO2 and 1pctCO2 ramp-down experiments, and 28 

using different abruptCO2 experiments for the step-response model. 29 

 30 
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An example is given in Figure 94 (but for different transient-forcing experiments). This shows 1 

results for global-mean precipitation in the HadCM3 GCM (Good et al., 2012)., under an 2 

idealised simulation where forcing is ramped up at a constant rate for 70 years, then ramped 3 

down at the same rate for 70 years.  Here, the step-response model prediction using 4 

abrupt4xCO2 (red curves) is only worksclose to the actual GCM simulation (black) where 5 

athe transient-forced experimentsimulation is near to 4xCO2. (i.e. near year 70).  Similarly, 6 

the prediction using abrupt2xCO2 (blue curves) works only near 2xCO2. (near years 35 or 7 

105).  Otherwise, quite large errors are seen, and the predictions with abrupt2xCO2 and 8 

abrupt4xCO2 are quite different from each other.  This implies that there are large non-9 

linearities in the global-mean precipitation response in this GCM, and that they may be 10 

studied by comparing the responses in the abrupt2xCO2 and abrupt4xCO2 experiments. 11 

 12 

Having identified some non-linear response, and highlighted two or more abruptCO2 13 

experiments to compare (in the previous example, abrupt2xCO2 and abrupt4xCO2), the non-14 

linear mechanisms may be studied in detail by comparing the responses in the different 15 

abruptCO2 experiments over the same timescale (e.g. via the doubling difference, as in 16 

Figures 6,7Figure 3).  This allows (Good et al., 2012;Chadwick and Good, 2013;Good et al., 17 

2015) non-linear mechanisms to be separated from linear mechanisms (not possible in a 18 

transient-forcing experiment).  It is expected that analysis will focus on the 100-year period 19 

over years 40-139 of the experiments (the relatively stable period after the initial ocean 20 

mixed-layer warming). 21 

 22 

In the same spirit as other CMIP5 and CMIP6 idealised experiments, nonlinMIP will help 23 

understand nonlinear mechanisms by isolating the signal of nonlinear mechanisms more 24 

effectively. This occurs in two ways: first,  by using simplified forcing  compared to the time-25 

dependent, RCP projections (the latter feature multiple forcings of evolving strength).  The 26 

simplified forcing means that alternative mechanisms (from different forcing agents or linear 27 

mechanisms) may be ruled out by design. Secondly, contamination of the signal from internal 28 

variability may be reduced, as averages of around 100 years are possible. 29 

 30 

Field Code Changed

Field Code Changed



 

 21

The magnitude of internal variability may also be estimated at the different levels of CO2 1 

forcing. This could be used to help explore changes in variability with warming (Seneviratne 2 

et al., 2006;Screen, 2014), and to assess significance of any signal of nonlinear change in the 3 

time mean climate.  Internal variability could be estimated from years 40-139 of the 4 

experiments (after the initial warming of the ocean mixed layer), after removing a fitted linear 5 

trend. 6 

 7 

6 Conclusions 8 

 9 

These experiments can help improve climate science and consequent policy advice in a 10 

number of ways.  The focus is on understanding mechanisms (given the idealised nature of 11 

the experiments).  A further application, however, is that energy balance models could be 12 

tuned to the different experiments, to explore the importance, for projections, of state-13 

dependence of feedback parameters (Hansen et al., 2005;Colman and McAvaney, 14 

2009;Caballero and Huber, 2013).  Also, if certain regions are found to show strongly 15 

nonlinear behaviour in these experiments, this could help focus assessment of impact tools 16 

like pattern-scaling or time-shifting (e.g. Herger et al., 2015).   17 

 18 

Of probably widest interest is the fact that the additional experiments will allow 19 

understanding work to focus on climate states more directly relevant to discrete policy/science 20 

questions (the benefits of mitigation; impacts of scenarios consistent with the Paris 21 

agreement; or understanding past cold climates; see start of section 5).  These questions may 22 

show important differences, due to state-dependence (nonlinearity) of mechanisms, but for 23 

many cases the nature of the nonlinearity may not need to be assessed.  A classical example is 24 

the snow-albedo feedback: the strength of this would be different in a warm versus a cold 25 

world (due to different baseline snow cover), but if the focus is on understanding the warm 26 

world, the first priority is to study experiments representative of the warm world (with the 27 

correct climate state). 28 

 29 

There is also a need to quantify and understand, at regional scales, nonlinear mechanisms of 30 

climate change.: that is, do the above science/policy questions give significantly different 31 
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answers (e.g. different patterns of rainfall change), and why?  This is difficult to do using 1 

transient model experiments alone, for two reasons: contamination due to different timescales 2 

of response, and noise from internal variability.   3 

 4 

This paper outlines the basic physical principles behind the nonlinMIP design, and the method 5 

of establishing traceability from abruptCO2 to gradual forcing experiments, before detailing 6 

the experimental design and finally some general analysis principles that should apply to most 7 

studies based on this dataset. 8 

 9 

 10 

 11 

7 Data availability 12 

 13 

Results will be made available as part of the CFMIP project, within the sixth model 14 

intercomparison project, CMIP6. 15 
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Table 1. List of CMIP5/CMIP6 DECK experiments required by nonlinMIP. 1 

Experiment Description Role 

piControl Pre-industrial control 

experiment 

 

Abrupt4xCO2 CO2 abruptly quadrupled, 

then held constant for 150 

years. 

Separate different timescales 

of response. 

1pctCO2 CO2 increased at 1% per 

year for 140 years (i.e. as 

CMIP5 1pctCO2 

experiment), then 

decreased by 1% per year 

for 140 years (i.e. returning 

to pre-industrial 

conditions). 

To test traceability of the 

abruptCO2 experiments to 

more realistic transient-forcing 

conditions.   Adding the ramp-

down phase explores physics 

relevant to mitigation and geo-

engineering scenarios. 

 2 

3 
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Table 2.  NonlinMIP experimental design. Three options are: only the ‘essential’ simulation; 1 

all ‘high priority’ plus the ‘essential’ simulations; or, all simulations.  The experiments in 2 

Table 1 are required in all cases. 3 

Experiment 

(priority) 

Description Role 

Abrupt2xCO2 

(essential) 

 

As abrupt4xCO2 (see 

Table 1), but at 

double pre-industrial 

CO2 concentration. 

To diagnose non-linear responses (in 

combination with abrupt4xCO2). 

 

Assess climate response and (if 

appropriate) make climate projections 

with the step-response model at forcing 

levels more relevant to mid- or low-

forcing scenarios. 

Abrupt0.5xCO2 

(essential) 

As abrupt4xCO2 (see 

Table 1), but at half 

pre-industrial CO2 

concentration 

To diagnose non-linear responses (in 

combination with abrupt4xCO2 and 

abrupt2xCO2).  Offers greater 

signal/noise for regional precipitation 

change than if just abrupt2xCO2 was 

used.  Also relevant to paleoclimate 

studies. 

Extend both 

abrupt2xCO2 and 

abrupt4xCO2 by 

100 years (high 

priority) 

 Permit improved signal/noise in 

diagnosing some regional-scale non-

linear responses 

 

Explore longer timescale responses than 

in CMIP5 experiment.  Permit step-

response model scenario simulations 

from 1850-2100 

 



 

 30

Allow traceability tests (via the step-

response model) against most of the 

1pctCO2 ramp-up-ramp-down 

experiment. 

 

Provide a baseline control for the 

abrupt4xto1x experiment. 

1pctCO2 ramp-

down (medium 

priority) 

Initialised from the 

end of 1pctCO2.  

CO2 is decreased by 

1% per year for 140 

years (i.e. returning 

to pre-industrial 

conditions). 

To test traceability of the abruptCO2 

experiments to more realistic transient-

forcing conditions.   Adding the ramp-

down phase explores a much wider 

range of physical responses, providing a 

sterner test of traceability. Relevant also 

to mitigation and geo-engineering 

scenarios, and offers a sterner test of. 

Abrupt4xto1x 

(medium priority) 

Initialised from year 

100 of abrupt4xCO2, 

CO2 is abruptly 

returned to pre-

industrial levels, then 

held constant for 150 

years. 

Quantify non-linearities over a larger 

range of CO2 (quantifies responses at 

1xCO2). 

 

Assess non-linearities that may be 

associated with the direction of forcing 

change. 

Abrupt8xCO2 

(medium priority) 

As abrupt4xCO2, but 

at 8x pre-industrial 

CO2 concentration.  

Only 150 years 

required here. 

Quantify non-linearities over a larger 

range of CO2. 

 

 1 

 2 
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 4 

Figure 1.  Schematic illustrating a situation where linear mechanisms can cause climate 5 

patterns to evolve.  This represents a scenario where global-mean radiative forcing (black 6 

line) is ramped up, then stabilised.  At the time indicated by the left red oval, responses with 7 

shorter timescales are relatively important, due to the recent increase in forcing.  At the time 8 

marked by the right-hand oval, forcing has been stabilised for an extended period, so the 9 

responses with longer timescales (such as sea-level rise) have had more time to respond to the 10 

initial forcing increase. 11 

 12 

13 
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 4 

Figure 2.  Adapted (red ovals overlaid) from the IPCC Fifth Assessment Report (IPCC, 2013), 5 

Figures SPM.7 and SPM.9.  Global mean warming (top) and global mean sea level rise 6 

(bottom), relative to 1986-2005, for rcp8.5 (red) and rcp2.6 (blue). 7 

 8 

 9 

10 



 

 33

 1 

 2 

 3 

Figure 3.  Illustrating a method (Gregory et al., 2004) for separating ‘fast’ and ‘slow’ 4 

responses to radiative forcing change.  Figure adapted (labels in rectangles overlaid) from 5 

Zelinka et al. (2013).  Global-mean cloud-induced SW flux anomalies against global 6 

warming, for the CanESM2 model (black & grey represent two methods of calculating cloud-7 

induced fluxes).  This also illustrates one test of traceability of abrupt4xCO2 to 1pctCO2 8 

responses: the linear fit to the abrupt4xCO2 response (straight lines) passes through the 9 

1pctCO2 response near 4xCO2 (i.e. near year 140 of that experiment). 10 

11 
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 5 

 6 

Figure 4. 7 

 8 
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 5 

 6 

Figure 2.  Schematic illustrating the point that nonlinear mechanisms can cause climate 7 

patterns to differ at different forcing (and hence global temperature) levels.  This represents 8 

two different scenarios, whose forcing timeseries is identical apart from a constant scale 9 

factor (the higher forcing scenario has about twice the forcing of the lower scenario). 10 

 11 

12 
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 4 

 5 

     Global mean temperature, K 6 

 7 

Figure 5.  Albedo feedback (dotted line) strength (y-axis) decreasing with global mean 8 

temperature (x-axis, K) in a climate model (figure from Colman and McAvaney, 2009). 9 

 10 

 11 

 12 

13 
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Figure 6.  Defining the ‘doubling difference’. 4 

 5 

 6 
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Figure 3.  Defining the ‘doubling difference’.  The red and blue lines show illustrative time-4 

series of a variable (in this example, global-mean temperature from HadGEM2-ES) from the 5 

abrupt4xCO2 and abrupt2xCO2 experiments.  Doubling difference = ∆42 – ∆21 (the 6 

difference in response between the first and second CO2 doublings.  This is defined for a 7 

specific timescale after the abrupt CO2 change – in this example, it is the meanfor means over 8 

years 50-149.   9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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     Doubling difference 4 

 5 

 6 

Figure 7.  Non-linear regional precipitation responses over the ocean in HadGEM2-ES (figure 7 

from Chadwick and Good, 2013).  Precipitation change (mm/day) averaged over years 50-149 8 

for (top) abrupt2xCO2 and (middle) abrupt4xCO2, and the doubling difference (bottom).  9 

Note that the top and bottom panels have the same scale. 10 

 11 

 12 

 13 
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Figure 8.  Checking basic traceability of abrupt4xCO2 to a transient forcing experiment 4 

(1pctCO2) (figure from Good et al., 2013).  Global-mean warming (K) averaged over years 5 

120-139 of 1pctCO2 for (y-axis) the GCM simulation and (x-axis) the reconstruction from 6 

abrupt4xCO2 using the step-response method. 7 

 8 
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Figure 9.5 
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 4 

Figure 4.  Finding nonlinear responses in transient forcing experiments.  (figure from Good et 5 

al., 2012).  Time-series of global-mean precipitation change under two experiments. Left: 6 

where CO2 is increased by 1% per year, then stabilised at 2x pre-industrial levels.  Right: 7 

where CO2 is increased by 2% per year for 70 years, then decreased by 2% per year for 70 8 

years.  Black: GCM.  Red: step-response model using the abrupt4xCO2 response.  Blue: the 9 

abrupt2xCO2 response.   10 

 11 

 12 


