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Abstract 20 

Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an 21 

additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 22 

observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land 23 

regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a 24 

terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates 25 

of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 26 

disequilibrium between fluxes to and from the atmosphere is considered due to the historical change 27 

in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 28 

observations is effectively a double deconvolution system with consideration of the spatial variations 29 

of isotopic discrimination and disequilibrium.  Compared to the CO2-only inversion, this 13CO2 30 

constraint on the inversion considerably reduces the total land carbon sink from 3.40±0.84 to 31 

2.53±0.93 Pg C y-1 but increases the total oceanic carbon sink from 1.48±0.40 to 2.36 ±0.49 Pg C y-1. 32 

This constraint also changes the spatial distribution of the carbon sink. The largest sink increase 33 

occurs in Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 34 

data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 35 

discrimination rate over land is ignored by treating it as a constant at the global average of -14.1‰, 36 

the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up 37 

to 15% for some regions).  The uncertainties in our disequilibrium flux estimation are 8.0 PgC y-1 ‰ 38 

and 12.7 Pg C y-1 ‰ for land and ocean, respectively. These uncertainties induced uncertainties of 39 

0.47 Pg C y-1 and 0.54 Pg C y-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint 40 

inversion system is therefore useful for improving the partitioning between ocean and land sinks and 41 

the spatial distribution of the inverted carbon flux.  42 



3 

 

 43 

1. Introduction 44 

Over the last few decades, much progress has been made in estimating the global carbon 45 

cycle using different methods (Houghton et al., 2007; Canadell et al., 2007; Le Quéré et al., 2013). 46 

In particular, atmospheric CO2 mole fractions measured near the surface have been used to infer the 47 

carbon flux over land and ocean surfaces through atmospheric inversion (Rödenbeck et al., 2003; 48 

Michalak et al., 2005; Peylin et al., 2005; Peters et al., 2007). However, the uncertainty in the 49 

inferred flux is still very large, mostly because of the insufficient number of observation stations and 50 

the error in modeling the atmospheric transport of CO2 from the surface to the observation stations. 51 

To reduce this uncertainty, it would be useful to introduce constraints to the inversion using other gas 52 

species that are associated the CO2 flux. 53 

Measurements of the atmospheric concentration of the stable isotope 13CO2 at a number of 54 

stations across the globe since 1994 have been compiled in a database (GLOBALVIEW-CO2C13, 55 

2009), and the number of extended 13CO2 records from January 1994 to January 2009 increased to 76 56 

by 2009.  The mole fraction of 13CO2 to CO2 in the atmosphere is about 1.1%, and the CO2 exchange 57 

between the surface and the atmosphere generally induces concurrent 13CO2 exchange. However, the 58 

proportion of the 13CO2 flux relative to the CO2 flux differs at different locations and different times 59 

due to different mechanisms that discriminate against heavier 13CO2 molecules in the exchange 60 

processes, and therefore the 13CO2 concentration measured in the atmosphere contains additional 61 

information for the CO2 flux. This information is useful for differentiating between terrestrial and 62 

oceanic CO2 exchanges with the atmosphere because the terrestrial CO2 flux experiences much 63 

greater discrimination against 13CO2 than does the oceanic CO2 flux (Tans et al., 1990; Ciais et al., 64 
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1995a; Francey et al., 1995). Observed 13CO2 mole fractions can also provide independent 65 

information on the net CO2 exchange over land and ocean because the net carbon flux to the surface 66 

discriminates against heavier 13CO2 (Fung et al., 1997; Randerson et al., 2002; Suits et al., 2005). 67 

The 13CO2 observations over the globe, albeit with a limited number of stations, could therefore be 68 

used to assist in quantifying the global carbon cycle.  69 

In previous studies (Siegenthaler and Oeschger, 1987; Keeling et al., 1989a; Francey et al., 70 

1995; Randerson et al., 2002), atmospheric 13CO2 observations have been used to separate ocean and 71 

land CO2 fluxes through the use of a technique dubbed “double deconvolution”, by which the CO2 72 

fluxes of land and ocean are separated (deconvolved) based on different discrimination rates against 73 

13CO2 in the atmospheric CO2 exchange with land and ocean surfaces. This double deconvolution 74 

often assumes that the discrimination rates over land and ocean are spatially uniform, although they 75 

can be temporally variable. Through forward atmospheric transport modeling, the ocean and land 76 

CO2 fluxes were also separated based on the spatial gradients of the measured 13CO2 /CO2 ratio either 77 

globally (Keeling et al., 1989b) or by latitudinal bands (Ciais et al., 1995a). The same 13CO2 data 78 

have also been used in inverse modeling of the surface CO2 flux (Enting et al., 1995; Rayner et al., 79 

1999; Rayner et al., 2008). Enting et al. (1995) pioneered a methodology for inverting annual mean 80 

ocean and land CO2 fluxes from both atmospheric CO2 and 13CO2 concentration data for 12 ocean 81 

regions and 8 land ecosystems for the 1986-1987 and 1989-1990 periods. Rayner et al. (1999) 82 

developed a different methodology to invert monthly CO2 fluxes for 12 ocean and 14 land regions for 83 

the period from 1980 to 1995 from CO2 observations at 12 stations and 13CO2 and O2/N2 84 

observations at 1 station.  Rayner et al. (2008) refined their methodology and applied it to the period 85 

from 1992 to 2005 using CO2 at 67 sites and 13CO2 at 10 sites. These studies showed the usefulness 86 

of the additional information from 13CO2 observations in improving the inversion of annual mean and 87 
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seasonality of the CO2 flux over land and ocean. In these inversion studies, the discrimination rate for 88 

land is either assumed to be a constant (Enting et al., 1995; Rayner et al., 1999) or allowed to vary 89 

with the areal fraction of C4 plant in a region (Rayner et al., 2008). These inversions based on the 90 

Bayesian principle were also constrained with only simple prior estimates of the terrestrial and 91 

oceanic CO2 and 13CO2 fluxes. Since the data density (the numbers of CO2 and 13CO2 observation 92 

sites) is low, the assumed discrimination constants and these prior estimates would have considerable 93 

influence on the inverted results, as this is clearly demonstrated in Enting et al. (1995).  94 

Atmospheric CO2 observations have been extensively used to estimate the carbon flux over 95 

ocean and land through inverse modeling using Bayesian synthesis (Gurnay et al., 2002; Rödenbeck 96 

et al.,2003; Baker et al., 2006; Peylin et al. 2005) or data assimilation techniques (Peters et al., 2007; 97 

Zhang et al., 2014). Atmospheric inversion studies (Gurnay et al., 2003; Jacobson et al., 2007) often 98 

produced ocean sinks considerably smaller than those estimated based on observed gradients in 99 

dissolved inorganic carbon (DIC) in interior ocean using ocean circulation models (Steinkamp and 100 

Gruber, 2013). Recent estimates for the ocean sink for anthropogenic CO2 in 2000’s based on DIC 101 

ranges from 1.6 to 2.6 Pg C y-1 (Park et al., 2010; Wanninkhof et al., 2013; Landschützer et al., 2014; 102 

Majkut et al., 2014; DeVries, 2014; Rödenbeck et al., 2014) with an uncertainty of about 0.6 Pg C y-1, 103 

while atmospheric inversion results are not yet reliable enough to be included in a global ocean sink 104 

synthesis (Le Quéré et al., 2013). The partition between ocean and land fluxes using atmospheric 105 

inversion techniques is sensitive to errors in atmospheric transport modeling (Baker et al., 2006; 106 

Stephens et al., 2007) and prior fluxes for land and ocean used to constrain the inversion (Zhang et 107 

al., 2014; Chen et al., 2015). It would therefore be highly desirable to use 13CO2 observations to 108 

constrain this partition in the inversion process. Accurate partition between ocean and land sinks is 109 

important in global carbon cycle research because (1) land sinks are still more reliably estimated as 110 
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the residual of the global carbon budget than those from land-based data (Le Quéré et al., 2013) and 111 

(2) ocean sink estimates based on DIC in ocean water also suffer from considerable errors due to 112 

insufficient DIC observations and in ocean circulation modeling (DeVries, 2014).  113 

The overall goal of this study is to explore the information content of 13CO2 measurements 114 

for global CO2 flux estimation through developing a Bayesian synthesis inversion system that uses 115 

both CO2 and 13CO2 observations.  This system is effectively a new double de-convolution system 116 

with the capacity to consider the spatial variations of the prior carbon flux and all major isotopic 117 

parameters including photosynthetic discrimination, respiratory signature, and disequilibrium rate. In 118 

this study, this new system is used to achieve the following objectives: (1) to partition between ocean 119 

and land sinks with consideration of the spatial distributions of 13CO2 isotopic parameters over ocean 120 

and land; (2) to evaluate the importance of considering the spatial distributions of the 13CO2 121 

discrimination rate over land in the inversion of the CO2 flux, and (3) to assess the impacts of the 122 

errors in disequilibrium flux estimation on the flux partition between ocean and land. To achieve 123 

these objectives, a terrestrial ecosystem model named the Boreal Ecosystem Productivity Simulator 124 

(BEPS) is further developed to simulate the spatial distributions of the 13CO2 discrimination and 125 

disequilibrium rates over land for use in a global Bayesian synthesis inversion with 13CO2 constraint. 126 

BEPS is also used to produce CO2 prior fluxes globally to regularize the inversion.  127 

2. Methodology 128 

2.1 The inversion method  129 

2.1.1 Inversion system 130 

The nested inversion system with a focus on North America developed by Deng et al. (2007) 131 

is adopted in this study. In this system, two of the Transcom regions (Gurney et al., 2002) in North 132 
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America are divided into 30 regions according to ecosystem types and administrative boundaries 133 

(Figure 1), in order to reduce spatial aggregation errors in the inversion over North America and to 134 

investigate the inverted spatial distribution of the carbon flux against ecosystem model results. This 135 

nested region serves the purpose of evaluating the influence of the spatial distribution of isotopic 136 

discrimination on the inverted carbon flux at a relatively high resolution. Also shown in Figure 1 are 137 

the spatial distributions of 210 CO2 and 73 13CO2 observation sites selected in this study from the 138 

NOAA GLOBALVIEW database. Most 13CO2 sites except 11 are collocated with CO2 sites. 139 

2.1.2 Synthesis Bayesian inversion with CO2 observations 140 

To estimate the CO2 flux (f), we represent the relationship between CO2 measurements and 141 

the flux from the surface by a linear model: 142 

0c c = Gf + A ε                                                   (1) 143 

where 1mc  is a given vector of m CO2 concentration observations over space and time (m equals 144 

number of stations times number of months, and for CO2 only inversion, it is 12600, i.e. 210 stations 145 

× 60 months, 2000-2004); 1mε is a random error vector with a zero mean and a covariance matrix 146 

cov( ) m mε R ;  ( 1)m n G is a matrix representing a transport (observation) operator, where n-1 is the 147 

number of fluxes to be determined (equals 3000, i.e. 50 regions × 60 months, 2000-2004); 1mA  is a 148 

unity vector (filled with 1) representing the assumed initial well-mixed atmospheric CO2 149 

concentrations  ( 0c ) before the first month; and ( 1) 1n f  is  an unknown vector of monthly carbon 150 

fluxes of the 50 regions. 151 

Combining matrixes G  and A as ( , )m nM = G A  and vectors f  and 0c  as 1n 0c

T Ts = (f , ) ,  eq. 152 

(1) can be expressed as  153 
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c = Ms + ε           (2) 154 

The inverse problem of estimating s from c is often poorly constrained and a Bayesian 155 

approach is used to circumvent this problem. Pre-existing knowledge and models incorporating 156 

additional sources of information can be used to provide an initial estimate of s, known as the a 157 

priori, to constrain the inversion. This a priori is then updated when it is combined with information 158 

from c measurement to form a posterior estimate of s, known as the a posteriori. In Bayesian 159 

synthesis inversion (Tarantola, 1987), the following objective function is employed in the place of 160 

the traditional least square objective function: 161 

J  T -1 T -1

p p

1 1
(Ms -c) R (Ms -c) + (s - s ) Q (s - s )

2 2
                    (3) 162 

where 1nps is the a priori estimate of s ; the covariance matrix n nQ represents the uncertainty in the 163 

a priori estimate; and m mR  is the transport model-data mismatch error covariance. By minimizing 164 

this objective function expressed in eq. (3), we obtain the posterior best estimate of s as [Enting, 165 

2002]: 166 

ˆ  T -1 -1 -1 T -1 -1

ps (M R M + Q ) (M R c + Q s ) .                         (4) 167 

Meanwhile the posterior uncertainty matrix for the posterior flux can be deduced as follows: 168 


-1 T -1 -1

Q = (Q + M R M) .                            (5) 169 

 170 

Following the methodology of Deng and Chen (2011), the CO2 concentration matrix c in the 171 

above equations is the residual concentration after subtracting the observed concentration with 172 

contributions from fossil fuel emission, biomass burning, the prior ocean flux and the prior 173 
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biospheric flux (see Section 2.4 for detail). In this way, the values in sp are set to zero and the 174 

inverted flux s is considered to be an adjustment to the prior flux that contributes to the pre-175 

subtracted portions of the CO2 concentration. 176 

2.1.3 Synthesis Bayesian inversion with both CO2 and 13CO2 observations 177 

We attempt to use 13CO2 observations to provide an additional constraint to the otherwise 178 

CO2-only inversion presented above. This additional constraint is possible on the grounds that air 179 

13CO2 concentration is affected differently by carbon fluxes from ocean and land surfaces. Since the 180 

13CO2 gas is transported passively in similar ways as CO2, the same transport matrix M applies to 181 

13CO2 data to associate 13CO2 observations with the surface13CO2 flux. This simple treatment of the 182 

transport matrix differs from Rayner et al. (2008) who considered the reduced response of observed 183 

13CO2 concentrations to surface fluxes with time due to its accumulated exchange with the surface. 184 

As we are interested in the net CO2 flux, the exchanges of both 13CO2 and CO2 with the surface are 185 

consistently not included in the M matrix calculation, although this simplification would induce 186 

errors in the inverted CO2 flux when the accumulated exchanges are spatially highly heterogeneous. 187 

In order to conduct an inversion using both CO2 and 13CO2 observations, we simply append 13CO2-188 

related data to the c, R and M matrixes in Eq. (4), while the s matrix remains unchanged as the 189 

purpose of this joint inversion is only to optimize the CO2 flux.  For c and R, 13CO2 observations and 190 

their variances are appended directly to the original matrixes for the CO2 only case, as shown in Eq. 191 

6.  Similarly, the M matrix is also extended to consider 13CO2 transport, and the relevant elements for 192 

the 13CO2 observation stations are from the original M matrix. However these elements are 193 

multiplied by the 13CO2 discrimination rate over land or ocean for each region and each month in 194 

order to relate the CO2 flux to the temporal variations in the measured air 13CO2 composition at each 195 
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station and each month. The extended M is a combination of the corrected M matrix appended to the 196 

M matrix for CO2 (see below)  197 

             (6) 198 

where ci is the CO2 concentration (i=1 to m) and 13C composition (i=m+1 to m+k) in the air from the 199 

starting month (i=0); Mij is the transport operator between region-month j (hereafter simply referred 200 

as region) and station-month i (hereafter simply referred as station), and ijjij MDW  , in which Dj is 201 

the discrimination rate against 13CO2 in the CO2 flux for region j. In the inversion procedure, the 202 

difference in concentration between two consecutive times is equated with the flux during the time 203 

interval (one month).  204 

 In order to calculate Dj and Ci (i=m+1 to m+k) in Eq. 6, some theoretical development is 205 

made according to the 13CO2 budget equation derived by Tans et al. (1993): 206 

)()()()()( a

e

aoaaooaoa

e

lblblblphlblphaff
a

a FFFFFFF
dt

d
C 


    (7)                  207 

where Ca is the CO2 pool in the atmosphere (in Pg C), δa is the 13C composition of the atmosphere 208 

in ‰, Ff is the carbon emission from fossil fuels and biomass burning, δf  is the 13C composition of 209 

fossil fuels or biomass, Flph is the photosynthetic carbon uptake by the land biosphere (always 210 

positive), Flb is the respiratory carbon flux of the land biosphere (always positive), εlph is the 211 

photosynthetic discrimination of the land biosphere in ‰, δlb is the 13C composition of the land 212 
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respiratory carbon flux (see Section 2.2.2), 
e

lb  is the biospheric 13C composition in equilibrium with 213 

the current atmosphere (i.e. in 2003), Foa is the one-way carbon from the ocean surface to the 214 

atmosphere (always positive), Fao is the one-way carbon flux from the atmosphere to the ocean 215 

surface (always positive),  εao is the air-to-ocean fractionation, εoa is the air-to-ocean fractionation, 216 

and 
e

a is the 13C composition in equilibrium with the ocean surface. Eq. 7 states that the temporal 217 

variation of the measured 13C composition in the atmospheric CO2 is determined by contributions 218 

from the various sources: fossil fuels and biomass burning (term 1 of the right hand side of Eq. 7), 219 

net land biosphere carbon uptake (term 2), one-way respiratory flux from the land biosphere (term 3), 220 

net carbon flux of the ocean (term 4), and one-way ocean-to-atmosphere flux (term 5). The one-way 221 

carbon fluxes from land and ocean surfaces are important sources of 13C because the atmosphere is in 222 

isotopic disequilibrium with these surfaces due to the long-term change of the atmospheric 13C 223 

composition. Similar to other terms in Eq. 7, these disequilibrium fluxes are also called isofluxes 224 

(Rayner, 2001). 225 

 In order to reduce the errors of our inversion system (Eq. 6) that assumes linear relationships 226 

between fluxes and concentrations, the contributions of all fluxes, including prior biospheric and 227 

ocean fluxes, to the CO2 concentration are subtracted from the measured CO2 concentration prior to 228 

the inversion (Deng and Chen, 2011). Accordingly, the contributions of all 13C sources to the 13C 229 

concentration in the atmosphere are also subtracted from the measured 13C concentration. The 230 

purpose of the inversion is then to find the residual CO2 flux, denoted as S in Eq. 6.  For this purpose, 231 

we denote SlN =-(Flph-Flb) as the net flux from the land surface to the atmosphere (negative for sinks) 232 

and SoN =-(Fao-Foa) as the net flux from the ocean surface to the atmosphere (negative for sinks). 233 

After taking l

P

lNlN SSS  and o

P

oNoN SSS  , where 
P

lNS  and 
P

oNS  are the prior net CO2 fluxes to the 234 
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land and ocean surfaces, respectively, and lS and oS are the residual fluxes to be inverted for the land 235 

and ocean surfaces, respectively, Eq. 7 can be rewritten as: 236 

)]()()([ a

e

aoaao

P

oN

e

lblblblph

P

lNaff
a

aaoolphl FSFSF
dt

d
CSS 


    (8) 237 

Eq. 8 is the theoretical basis for our joint 13C/12C inversion as it links the measured 13C composition 238 

in the atmosphere to the CO2 fluxes of the land and ocean surfaces. In the implementation of the joint 239 

inversion system (Eq. 6), a transport matrix is used to link a flux in a particular region to the 240 

concentration measured at a particular site. We focus on optimizing the net CO2 flux using both CO2 241 

and 13CO2 observations rather than optimizing the one-way fluxes, and therefore the discrimination 242 

terms to be optimized are moved to the left-hand side of Eq. 8 and the disequilibrium terms remain 243 

on the right-hand side. Based Eq. 8, the regional discrimination Dj in Eq. 6 is therefore defined as: 244 

jaoj

jlphj

D

D

,

,








           (9) 245 

where jlph , and jao, are the 13C fractionation ratio for region j for land and ocean fluxes, 246 

respectively. In the joint inversion system, we treat lS  and oS as the state variables and Dj as 247 

predetermined parameters that vary in space (region) and time (monthly). It is therefore prerequisite 248 

to estimate accurately these parameters as well as other isotopic parameters on the right hand side of 249 

Eq. 8.  250 

For land regions, BEPS is used to calculate all land variables in Eq. 8, including
P

lNS , Flb, εlph, 251 

Rlb,  lb  and
e

lb for each region and month. For ocean regions, εao=-2‰, and empirical equations 252 

developed by Ciais et al. (1995b) are used to calculate Foa and 
e

a   as functions of sea surface 253 

temperature on 1°×1° grids.  254 

for land 

for ocean 
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The 13CO2 concentration time series (cm+1, … cm+k) in Eq. 6 in ppm‰ is the numerical 255 

realization of the right hand side of Eq. 8 and is computed with the following equation: 256 





5
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d
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  257 

In Eq.10, 
dt

d
C

ia
ia

,
,


 can be calculated with observed CO2 concentration and 13C composition at two 258 

consecutive times, t and t+1, using the following equation:

 

259 

)(
2
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,
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1

,,
,

t

ia

t

ia

t

ia

t

iaia
ia

CC

dt

d
C 





 



                (11) 

260 

where iaC ,   is the mean concentration of  CO2 at each observation station i between t and  t+1, and 261 

δa,i  is the 13C composition at station i, and its derivative with time is taken as its difference between t 262 

and t+1. This derivative represents the δa  growth rate that is the combined outcome of the various 263 

isofluxes in Eq. 7. The term


5

1

,13

k

ik

k
dt

dC
 is the sum of 13δ  changes due to fossil fuel and biomass 264 

burning, prior land 13C discrimination flux, land 13C disequilibrium flux, prior ocean 13C 265 

discrimination flux, ocean 13C disequilibrium flux, corresponding to the terms  in Eq.8.   13δk 266 

represents 13δ value (‰) for each term in Eq.8, and 
dt

dC ik ,
 is the change of concentration (ppm) 267 

calculated with the flux of each term in Eq.8 according to the atmospheric transport function M in 268 

Eq.6.    269 

 The uncertainty of ci as part of  the uncertainty matrix R includes the uncertainties of the six 270 

terms on the right hand side of Eq. 10. The uncertainty for the first term is based on the measurement 271 

error (see next Section 2.1.4) and its global average is 3.08 ppm‰/month. The uncertainties of terms 272 

2 to 6 are estimated to be 0.95, 3.17, 0.87, 0.12, and 2.69 ppm‰/month, respectively. The total 273 
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uncertainty for ci is therefore 5.33 ppm‰/month as a global average, taking as the square root of the 274 

sum of the square of the six uncertainties. As an approximation, this total uncertainty is distributed to 275 

each station and each month according to the spatial and temporal patterns of uncertainty of the first 276 

term. 277 

 The inversion system defined by Eq. 6 can be implemented in three ways using (1) CO2 278 

concentration only by excluding the appended matrices for 13CO2, (2) 13CO2 data only by using 279 

13CO2-related matrices only, and (3) both CO2 and 13CO2 data. Through using the data in these three 280 

ways, the information content of 13CO2 measurements for CO2 can be systematically investigated. 281 

In order to investigate the influences of the isotopic discrimination and disequilibrium over 282 

land and ocean on the inversion results, we conduct five sets of inversions for the following cases: 283 

Case I:  The spatial variations of all isotopic compositions and the discrimination and disequilibrium 284 

fluxes in Eq. 8 are considered for both land and ocean. This is the ideal case as the basis to 285 

investigate other cases; Case II: The photosynthetic discrimination ( lph ) over land is taken as a 286 

constant of -14.1‰, which is the global average obtained by BEPS, and therefore Dj=-14.1‰. This is 287 

a case to ignore regional differences in isotopic discrimination over land;  Case III: All isotopic 288 

variables are the same as Case I, but the land disequilibrium term in Eq. 8 is ignored. This is a case to 289 

investigate the influence of the land isotopic disequilibrium on the CO2 flux inversion; Case IV: All 290 

isotopic variables are the same as Case I, but the ocean disequilibrium term in Eq. 8 is ignored. This 291 

is a case to investigate the influence of the ocean isotopic disequilibrium on the CO2 flux inversion; 292 

and Case V: Both land and ocean disequilibrium terms are ignored, but all other isotopic variables in 293 

Eq. 8 are same as Case I. This is a case to investigate the importance of the total disequilibrium flux 294 

in CO2 flux inversion at the global scale. Cases III to V are useful not only for evaluating the 295 
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performance of the joint inversion system but also for assessing the impacts of errors in isotopic 296 

disequilibrium estimation on the CO2 flux inversion. 297 

2.1.4 Covariance matrixes for the CO2 flux and CO2 and 13CO2 concentration 298 

measurements 299 

In the joint inversion using both CO2 and 13CO2 measurements, the covariance matrix (Q) for 300 

the CO2 flux remains the same as that in the CO2 only inversion (Eq. 3) but the error matrix (R) for 301 

concentration measurements is expanded to the dimension of 16980×16980 to include 60 months of 302 

13CO2 observations at 73 stations. Following Deng and Chen (2011), we use an uncertainty of 2.0 Pg 303 

C y-1 for the total global land surface CO2 flux, and this total uncertainty is spatially distributed to the 304 

39 regions according to the annual total NPP of these regions simulated by BEPS. For each region, 305 

the annual total uncertainty is further distributed to each month according to the simulated seasonal 306 

variation in NPP. The global total uncertainty (standard deviation) is spatially and temporally 307 

distributed in such a way that the total variance is preserved after the distributions, following the 308 

principle of TRANSCOM 3 (Gurnay et al., 2003). The uncertainty for the total ocean flux is 309 

prescribed as 0.67 Pg C y-1 (Deng and Chen, 2011).  In this way, all the diagonal elements (Qii) in the 310 

uncertainty matrix Q are determined, while off-diagonal values are assigned to zero, meaning that no 311 

flux covariances between regions and months are assumed.  The uncertainty of CO2 measurements in 312 

the R matrix is the same as that described in Deng and Chen (2011), following the approach of 313 

Peters et al. (2005) and Bakers et al. (2006). In this approach, the uncertainty of a monthly CO2 314 

measurement at a site is estimated as 
2 2

ii constR GVsd  , where constant portion const in ppm is 315 

assigned according to site category: Antarctic (0.15) , oceanic (0.30), land and tower (1.25), 316 

mountain (0.90), and aircraft (0.75), while the site-specific variable portion GVsd is obtained from 317 
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the GLOBALVIEW-CO2 2008 database. The 13CO2 measurement uncertainty is calculated in a 318 

similar way: the variable portion is obtained from the GLOBALVIEW-13CO2 2008 database, while 319 

the constant portion is taken as constaR   in ppm first, where Ra is the ratio of 13CO2 to CO2 in the air 320 

(~0.011147), and then converted to ‰.  The average standard deviation of δ¹³C observations 321 

determined in this way for 73 stations is 0.0685‰.   322 

 323 

2.2  Prior CO2 and 13CO2 flux estimation  324 

2.2.1 CO2 flux  325 

Terrestrial biosphere fluxes 326 

A process-based terrestrial ecosystem model called the Boreal Ecosystem Productivity Simulator 327 

(BEPS) (Chen et al., 1999; Liu et al., 1997) is used in this study to estimate the net terrestrial CO2 328 

flux and its components including the gross primary productivity (GPP), net primary productivity 329 

(NPP), heterotrophic respiration (Flb), and net ecosystem productivity (NEP). GPP is calculated using 330 

the Farquhar’s leaf-level model (Farquhar et al, 1980) upscaled to the canopy level using a recently 331 

refined two-leaf approach (Chen et al., 2012). NPP is taken as 45% of GPP (Ise et al., 2010) as 332 

global biomass data and its components (stem, foliage, root) are lacking for reliable computation of 333 

the autotrophic respiration. Flb is calculated as the sum of the decompositional CO2 release from 9 334 

soil carbon pools, namely coarse and dead wood detritus pool, surface structural pool, surface 335 

metabolic pool, surface microbial pool, fine-root structural litter pool, fine-root metabolic pool, soil 336 

microbial pool, slow carbon pool, and passive carbon pool. The sizes of these pools for each cover 337 

type in each 1º grid are estimated using a model spin-up approach based on simulated NPP in 2000 to 338 

create a global land sink of 3.73 Pg C y-1. The total NPP for each 1º grid is taken as a weighted sum 339 
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of NPP of 7 aggregated land cover types, and the weights are proportional to the areal fractions of the 340 

cover types determined using the GLC2000 land cover map at 1 km resolution (Chen et al., 2012). 341 

Remotely sensed LAI [Deng et al., 2006] at 1 km resolution and a clumping index map at 6 km 342 

resolution (Chen et al., 2005) and a soil textural map (Webb et al., 1991) are aggregated to 1º grids 343 

for each cover type based on GLC2000 land cover and used as input to BEPS. National Center of 344 

Environmental Prediction (NCEP) reanalyzed data [Kalnay et al., 1996; Kanamittsu et al.,2002] are 345 

the meteorological drivers for BEPS to simulate hourly carbon fluxes. The output of BEPS used as 346 

the prior flux in the inversions is NEP, which does not include carbon emission due to disturbance.  347 

Ocean fluxes 348 

The daily flux of CO2 across the air-water interface used in this study is constructed based on 349 

the results of daily CO2 fluxes simulated by the OPA-PISCES-T model [Buitenhuis et al., 2006]. 350 

This model is a global ocean general circulation model (OPA) [Madec et al., 1998] coupled to an 351 

ocean biogeochemistry model (PISCES-T) [Aumont et al., 2003; Buitenhuis et al., 2006]. PISCES-T 352 

represents the full cycles of C, O2, P, Si, total alkalinity and a simplified Fe cycle. It also includes a 353 

representation of two phytoplankton, two zooplankton and three types of dead organic particles of 354 

different sinking rates. OPA-PISCES-T is forced by daily wind stress and heat and water fluxes from 355 

the NCEP reanalyzed data [Kalnay et al., 1996, Kanamittsu et al.,2002]. Hourly So (
13C) is calculated 356 

with gridded optimum interpolation sea surface temperature of NOAA National Climate Data Center 357 

(Reynolds and Smith, 1994; Reynolds et al., 2002). 358 

Fossil-fuel emissions 359 

The fossil fuel emission field (2000-2004) used in this study (http://carbontraacker.noaa.gov) 360 

is constructed based on (1) the global, regional and national fossil-fuel CO2 emission inventory from 361 

1871 to 2006 (CDIAC) [Marland et al., 2009], and (2) the EDGAR 4 database for the global annual 362 

http://carbontraacker.noaa.gov/
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CO2 emission on a 1˚ grid [Olivier et al., 2005].  The 13CO2 flux from fossil-fuel consumption is 363 

calculated from CO2 emissions of different fuel types multiplied by their respective 13C/12C ratios 364 

with consideration of their latitudinal distributions based on Andres et al. (2000).   365 

Fire emissions 366 

CO2 emissions due to vegetation fires are an important part of the carbon cycle [van der Werf 367 

et al., 2006]. Each year, vegetation fires emitted around or more than 2 PgC of CO2 into the 368 

atmosphere, mostly in the tropics. The fire emission field used in this study is based on the Global 369 

Emissions Fire Database version 2 (GFEDv2) (Randerson et al., 2007; van der Werf et al., 2006) 370 

2.2.2 13CO2 flux 371 

Based on the initial work of Chen et al. (2006), BEPS is further developed to include a 372 

capacity to compute the global distribution of the terrestrial 13CO2 flux. Following the principle of 373 

multi-stage 13C fractionation in the pathway through leaf boundary layer, stomates, messophyll and 374 

chloroplast initially proposed by Farquhar et al. (1984,   1989) and implemented globally by Suits et 375 

al. (2005), we developed a module in BEPS for computing the total photosynthetic fractionation and 376 

the resultant 13CO2 flux. Specifically, the photosynthetic discrimination for C3 plants (ΔPC3) is 377 

calculated from 378 
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     (12) 379 

where Δb, Δs, Δdiss, Δaq, and Δf are the rates of discrimination against 13CO2 through leaf boundary 380 

layer, stomates, dissolution in mesophyll water, transport in aqueous phase, and fixation in 381 

chloroplast, respectively, and are assigned values of 2.9‰, 4.4‰, 1.1‰, 0.7‰ and 28.2‰, 382 

respectively (Suits et al., 2005). A is the photosynthetic rate in mol m-2 s-1 and p equals to 383 

0.022624Ta/(273.16P)  with the dimension of m3mol-1, where Ta is air temperature in ºK and P is the 384 
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standard air pressure at 1.013Bar. Ca and Cc are the CO2 concentrations in mol mol-1 in the free air 385 

and leaf chloroplast, respectively. For C4 plants, the photosynthetic discrimination (ΔPC4) is taken as 386 

a constant of 4.4‰ (Suits et al., 2005). 387 

The leaf boundary-layer (gb) is calculated with the following equation 388 

l

N
gb

5.0


           (13) 389 

where α is the diffusivity of CO2 in dry air in m2s-1 calculated as 10-6(0.129+0.007Ta) and Ta is the 390 

air temperature in ºC; l is the leaf characteristic dimension in m, taken as a constant of 0.1 m; and N 391 

is the Nusselt number equal to (udl/υ)0.5, where ud is the wind speed in m s-1at the vegetation 392 

displacement height (80% of the average vegetation height) and υ is the kinematic viscosity of dry air 393 

in m2 s-1 calculated as 10-6(0.133+0.007Ta). ud is derived from the wind speed above the canopy 394 

based on LAI and vegetation height assigned according to plant functional type (Table 1). 395 

As part of the GPP calculation, the stomatal conductance (gs) computed separately for sunlit 396 

and shaded leaves using the Ball-Berry equation (Ball, 1988),  397 
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where  fw is a scaling factor depending on soil moisture and texture (Chen et al., 2012); hs is the air 399 

humidity at the leaf surface; Cs is the CO2 concentration at the leaf surface; p is the same as in Eq. 12; 400 

and m and b are the slope and intercept in this linear relationship, and they are assigned values 401 

according to plant function type (Table 1) (Chen et al., 2012). 402 

The mesophyll conductance gm is calculated based on the method of Harley (1992):   403 
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where A is the photosynthetic CO2 assimilation rate; Ci is partial pressure of CO2 in the air spaces 405 

inside leaves; Rd is the respiration rate occurring during the day not related to photorespiration; Г is 406 

the CO2 compensation point in the absence of Rd; and J is the rate of photosynthetic electron 407 

transport.  These parameters are the same as those used in computing the CO2 flux.  408 

Our methods of computing stomatal and mesophyll conductances differ from previous studies 409 

(Suits et al., 2005; Scholz et al., 2008; Rayner et al., 2008) in the following ways: (1) these 410 

conductances are calculated separately for sunlit and shaded leaves because BEPS is a two-leaf 411 

model, in which the total GPP of a canopy is taken as the sum of sunlit and shaded leaf GPP; and (2) 412 

the mesophyll conductance mechanistically depends on a set of parameters rather than being treated 413 

as a constant or to be proportional to the stomatal conductance. Since it has been demonstrated that 414 

sunlit and shaded leaf separation is essential for accurate modeling of canopy-level photosynthesis 415 

(Chen et al., 1999; Sprintsin et al., 2011), it is expected that this separation is also essential for 13CO2 416 

flux estimation. We found that the use of Harley’s method for computing the mesophyll conductance 417 

makes the calculated 13C photosynthetic fractionation stable for its global application, while the 418 

simpler method of treating the mesophyll conductance in proportion with the stomatal conductance 419 

often incurs abnormally large or small values of 13C photosynthetic fractionation.   420 

The photosynthetic 13CO2 flux is in disequilibrium with the respiratory 13CO2 flux because of 421 

the change in atmospheric 13CO2 concentration since the preindustrial time (Ciais et al., 1995b; Fung 422 

et al., 1997). The heterotrophic respiratory flux from the decomposition of organic matter of different 423 

ages carries the memory of the past atmospheric 13CO2 concentration, while the photosynthetic 13CO2 424 

flux is affected by the current atmospheric 13CO2 concentration. The isotopic composition of each of 425 

the 9 soil carbon pools (δ13Csoil, i) is estimated with following formula:  426 
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δ13Csoil, i =δ13Ca (2003-τi) – εlph                                       (16) 427 

where δ13Ca is the isotopic composition of carbon in atmosphere CO2 in the past as determined by the 428 

ice-cord record (Francey et al., 1999); εlph is the annual mean of photosynthetic discrimination in 429 

2003; and τi is the age of carbon pool i (Table 2) (Ju et al., 2005). In the calculation of the mean age 430 

of a carbon pool, we have considered the ages of various carbon pools at the time of entering the pool 431 

(Potter et al., 1993), so that the mean age is considerably larger than the turnover time determined by 432 

the decomposition rate (Fung et al., 1997). The mean δ13Csoil is taken as the flux-weighted δ13Csoil,i 433 

for the 9 carbon pools. The results of δ13Csoil for the globe are shown in Figure 5. The 13C 434 

composition of the biosphere lb  in Eq. 8 is taken as the mean δ13Csoil, while the biospheric 13C 435 

composition 
e

lb  in equilibrium with the current atmosphere is taken as a - εlph.  436 

 The accuracy of the BEPS model in simulating atmospheric 13CO2 concentration was 437 

previously tested (Chen et al., 2006; Chen and Chen, 2007) against measurements over a boreal 438 

forest at Fraserdale, Ontario, Canada (49◦52’29.9’’N, 81◦34’12.3’’W). Flask measurements of δ13Ca 439 

were made 40 times in both daytime and nighttime on a tower at a height of 20 m during a 3-day 440 

campaign on 21-23 July 1999. BEPS simulated these measurements with RMSE=0.34‰ and r2=0.76.  441 

2.3 Transport modeling 442 

A transport-only version of the atmospheric chemistry and transport model TM5 (Krol et al., 443 

2003; Krol et al., 2005) is used for CO2 and 13CO2 transport modeling to produce a fully linear 444 

operator on these fluxes. The spatial resolution of TM5 is 6˚×4˚ for the globe and 3˚×2˚ for North 445 

America, and the atmosphere is divided vertically into 25 layers with 5 layers in the planetary 446 

boundary layer. Tracer transport (advection, vertical diffusion, cloud convection) in TM5 is driven 447 

by offline meteorological fields taken from the European Centre for Medium Range Weather 448 
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Forecast (ECMWF) model. All physical parameterizations in TM5 are kept the same as the ECMWF 449 

formulation to achieve compatibility between them. The four background fluxes from terrestrial 450 

ecosystems, oceans, fossil-fuel burning, and biomass burning are individually inputted to TM5 to 451 

calculate the contributions of these fluxes to the atmospheric CO2 and 13CO2 concentrations. Since 452 

the main purpose of this study is to develop a joint inversion system, only one transport model is 453 

used, the transport matrix M is assumed to be free of errors. 454 

2.4  CO2 and 13CO2 datasets  455 

Monthly CO2 and 13CO2 concentration data from 2000 to 2004 are compiled from the 456 

GLOBALVIEW CO2 and 13CO2 database. Though the GLOBALVIEW database consists of both 457 

extrapolated and interpolated data that were created based on the technique devised by Masarie and 458 

Tans [1995], we selected the synchronized and smoothed values of actual observations to compile 459 

our concentrations datasets. Only direct measurements of CO2 from the GlobalView dataset are used 460 

in our inversion after using a time-frequency weighting scheme (Deng and Chen, 2011).  There are 461 

5431 monthly data from 209 sites for 42 months used for CO2 (5431 out of 8778, i.e. 209×42), and 462 

3066 monthly data from 73 sites for 13CO2 (i.e. 73×42 monthly data). Since the number of 13CO2 463 

observation sites is much smaller than that of CO2 sites, all monthly data at 73 sites are used for 464 

13CO2, and the missing 13CO2 data are filled with the reference data provided in the same 465 

GlobalView dataset. The filled data may have introduced an additional error to the dataset as shown 466 

in Figure 15b.      467 

 To minimize the nonlinear aggregation effects of the large regions (Pickett-Heaps, 2007), the 468 

contributions of the four background fluxes are subtracted from the above monthly concentrations.  469 

So the matrix c in Eqs. (3) and (4) is expressed as 470 
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obs ff bio ocn firec = c -c -c -c -c         (17) 471 

where obsc is the monthly CO2 and 13CO2 concentrations obtained from GLOBALVIEW, and ffc , 472 

bioc , ocnc , and firec are simulated contributions of CO2 and 13CO2 concentrations from the terrestrial 473 

biosphere, ocean, fossil-fuel, and fire fluxes, respectively. 474 

 475 

3. Results 476 

3.1 Prior CO2 and 13CO2 fluxes 477 

Terrestrial ecosystem models integrate many sources of information, including vegetation 478 

structure, soil, and meteorology, to estimate carbon exchange of the land surface with the atmosphere. 479 

Prior CO2 and 13CO2 fluxes produced by a model can therefore provide indispensible constraints to 480 

the otherwise ill-posed inversion based on CO2 and 13CO2 concentration observations alone. 481 

Depending on the assigned relative magnitudes of the error matrixes of these observations and these 482 

prior fluxes (i.e., R and Q in Eq. 3), these prior fluxes can have equal or even dominant importance 483 

to these observations in the inversion results. We have therefore paid a great attention in modeling 484 

these prior fluxes, in order to minimize the total inversion errors. Figure 2a shows an example of the 485 

global terrestrial GPP distribution in 2003 modeled by BEPS. The total GPP in this year is 132±22 486 

Pg C y-1 (Chen et al., 2012). This value is larger than some of the recent estimates, such as 123 Pg C 487 

y-1 by Beer et al. (2010), mostly because the LAI values used as input to BEPS are generally larger 488 

than those of the MODIS product (Garrigues et al., 2008). Our LAI values are larger because we 489 

used a global clumping index map derived from a multi-angle satellite sensor POLDER (Chen et al., 490 

2005). Clumping increases shaded leaves which contributed about 35% to the total GPP globally. 491 

Without considering this clumping effect, the shaded leaf area is underestimated, resulting in an 492 
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underestimation of the global GPP by 9% (Chen et al., 2012). As the spatial distribution of clumping 493 

is not uniform (boreal and tropical forests are most clumped and crops and grasses are least clumped), 494 

this refinement in the GPP spatial distribution would have some effects on the inversion results 495 

between regions.  496 

The net ecosystem productivity (NEP), which is the difference between GPP and ecosystem 497 

respiration modeled by BEPS, is shown in Figure 2b for 2003. Even though GPP has a large 498 

uncertainty (globally 22 Pg C y-1 by BEPS), the uncertainty in NEP is much smaller (globally 2 Pg C 499 

y-1 by BEPS) because a model spin-up approach is used to estimate the soil carbon pool sizes based 500 

on a dynamic equilibrium assumption. Under this assumption, the annual heterotrophic respiration 501 

(Flb) equals annual NPP during the preindustrial period, and the soil carbon pool sizes are derived 502 

from Flb by solving a set of differential equations describing the decomposition and interactions 503 

among the pools (Govind et al., 2011). In this way, Flb is forced to depend on NPP and the systematic 504 

biases in GPP are not carried into NEP estimation. NEP is non-zero after the preindustrial period 505 

because of the changes in climate and atmospheric composition (CO2 and nitrogen) as well as 506 

disturbance. In our regional modeling, both disturbance and non-disturbance effects are considered 507 

for Canada (Chen et al., 2003) and USA (Zhang et al., 2012) forests. However, in our global model 508 

spin-up from 1901 (taken as the end of preindustrial period) to 2000, only the non-disturbance effects 509 

are considered because of lack of spatially explicit disturbance data outside of North America, while 510 

carbon emission due to fire disturbance in the study period from 2000 to 2004 is considered 511 

separately using the GFED dataset (Randerson et al., 2007; van der Werf et al., 2006). The prior net 512 

CO2 fluxes for the globe for the years 2002-2004 are given in Table 3 with inversion results with and 513 

without the 13C constraint.  514 
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   The global distribution of the total photosynthetic discrimination (  apt CC 1313  ) modeled 515 

by BEPS is shown in Figure 3. Forests, such as those in North America, Russia, Europe, Amazon, 516 

central Africa, central China and southeast Asia,  generally have high photosynthetic discrimination 517 

rates (>16‰), while grassland and cropland (in particular C4 grasses and crops) have low 518 

discrimination rates. Also shown in Figure 3 is the ocean diffusive discrimination against 13CO2. The 519 

discrimination over ocean is much smaller than that over land. This difference between land and 520 

ocean discrimination may be considered as the largest signal of 13CO2 observations on the global 521 

carbon cycle (Tans et al., 1990; Rayner et al., 2008) and is considered in our inversion using 522 

different 13CO2 discrimination rates for ocean and land regions (see Eq. 6). 523 

To estimate the disequilibrium between photosynthetic and respiratory discrimination against 524 

13CO2, the global distribution of the mean soil carbon age is computed after weighting the ages of the 525 

9 soil carbon pools against their fluxes due to decomposition (Figure 4). Forests at high latitudes 526 

have the soil carbon age of about 40-60 years, while the tropical forests have much lower values in 527 

the range from 10 to 30 years. This latitudinal distribution pattern is mostly determined by soil 528 

temperature. In low latitudes, high temperature induces fast turnovers of detritus and fast soil carbon 529 

pools, while at high latitudes, low temperature maintains relatively large fractions of slow and 530 

passive soil carbon pools. Cropland and grassland also have larger fractions of fast and detritus 531 

carbon pools than forest cover types and therefore have younger soil carbon on average. This spatial 532 

distribution of soil carbon age has a strong influence on the total respiratory discrimination against 533 

13C ( rC13 ) calculated by BEPS (Figure 5). Respiration from older carbon at high latitudes carries the 534 

memory of the older atmosphere with less 13CO2 concentration and hence has lower discrimination 535 

rates (larger rC13  or smaller absolute value). However, respiration would mostly depend on the 536 
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photosynthetic discrimination rates as soil organic matter originates from photosynthetic production. 537 

As a result, forested areas have higher respiratory discrimination rates (lower rC13  or larger absolute 538 

value). Most of the high values of rC13  in Figure 5 are associated with large fractions of C4 plants 539 

in the grid, such as the corn belt in the USA, cropland in northeast China, southern border of Sahara 540 

desert, and southeast South America. The global distribution of the disequilibrium between 541 

photosynthetic and respiratory discrimination, taken as the difference between Figure 3 and Figure 5, 542 

is shown in Figure 6. The disequilibrium is the largest at high latitude boreal forests in North 543 

America and Eurasia because their soil carbon is the oldest, as shown in Figure 4. The spatial 544 

distribution pattern of the disequilibrium is similar to those of Ciais et al. (1995b) and Fung et al. 545 

(1997) but the magnitude is larger because the date of our result in 2000 is more recent than these 546 

two previous studies. As the time lapses, the atmosphere is getting lighter in terms of the isotopic 547 

composition of CO2 resulting from the increased air-borne CO2 from fossil fuel consumption.   Also 548 

shown in Figure 6 is the disequilibrium over the ocean estimated using the method of Ciais et al. 549 

(1995b). This ocean disequilibrium has a large latitudinal gradient because of the gradients in sea 550 

surface temperature gradient and the fluxes of CO2 and 13CO2. The spatial distribution in the 551 

disequilibrium and the differences in disequilibrium between ocean and land may be considered to be 552 

the secondary signal of 13CO2 observations on the global carbon cycle. The effects of these 553 

disequilibria on the carbon flux are considered in our inversion through presubtracting their 554 

contributions to the measured 13CO2 composition in Eq. 10.   555 

3.2 Inverse modeling results 556 

Although the inversions were made for the 2000-2004 period, the results of the first two years are not 557 

included in the analysis because they are affected by the assumption of uniform global distributions 558 
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of CO2 and 13CO2 concentrations at the start of our transport modeling using TM5. An 18-24 month 559 

period is usually considered to be necessary for the simulated distributions to reach realistic states 560 

with reasonably accurate prior surface fluxes from ocean and land and atmospheric transport 561 

simulations (Rödenbeck et al., 2003; Deng and Chen, 2011). The following results are therefore 562 

summarized as the average for the 2002-2004 period. 563 

3.2.1 Partition between ocean and land sinks with and without 13CO2 constraint 564 

To investigate the usefulness of 13CO2 observations in partitioning between ocean and land 565 

sinks, we conducted inversions with and without 13CO2 constraint as expressed in Eq. 6, i.e. with and 566 

without the 13C-related expansions of the matrixes. The CO2-only inversion increases the land sink 567 

from the prior of 2.61 PgC y-1 to 3.40 PgC y-1 while decreasing the ocean sink from the prior of 2.13 568 

PgC y-1 to 1.48 PgC y-1 (Table 3). These results are similar to those of Deng and Chen (2011). The 569 

results from the joint inversion are considerably different: the posterior sinks for land and ocean 570 

become 2.53 and 2.36 PgC y-1 (Table 3), respectively, suggesting that the use of 13CO2 observations 571 

in the inversion considerably influenced the partition between land and ocean fluxes. The ratio 572 

between land and ocean sinks is 1.07. The joint inversion system developed in this study may be 573 

regarded as a different form of double deconvolution. Using the double deconvolution method with 574 

the global average disequilibrium coefficients of 0.49‰ and 0.78‰ and the disequilibrium fluxes of 575 

26.8 PgC y-1 ‰ and 66 PgC y-1 ‰ for land and ocean derived in this study (Table 4), respectively, 576 

we also calculated the land and ocean sinks to be 2.90 and 2.36 PgC y-1, respectively. The ratio 577 

between land and ocean sinks is 1.23, which is close to the value of 1.07 derived from the joint 578 

inversion system, indicating that the joint inversion can effectively perform double deconvolution. 579 

Our joint inversion system differs from previous double deconvolution systems (Siegenthaler and 580 

Oeschger, 1987; Keeling et al., 1989a; Francey et al., 1995; Randerson et al., 2002) in the following 581 
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ways: (1) the estimation of CO2 fluxes for the land and ocean is additionally constrained by the prior 582 

fluxes for the land and ocean rather than entirely dependent on measured CO2 concentration and 583 

13CO2 composition; and (2) the spatio-temporal variations in all parameters associated with isotopic 584 

discrimination and disequilibrium are considered in the estimation of the CO2 flux using a 585 

mechanistic biospheric model rather than global average values or simple models based on covariates. 586 

These differences in methodology as well as the differences in the mean disequilibrium fluxes may 587 

explain why the ocean and land sinks from the joint inversion system differ from the various double 588 

deconvolution results.  589 

The impacts of 13CO2 data on the joint inversion can also be evaluated from the view point of 590 

global 13CO2 mass budget. Table 5 shows the budgets and its components for the prior, double 591 

deconvolution, CO2-only inversion and joint inversion cases. In these cases, the isofluxes due to 592 

fossil fuel emission, land and ocean disequilibrium, and atmospheric storage change are the same, 593 

and only those due to discrimination over land and ocean are adjusted. The prior case shows a global 594 

imbalance of -5.0 PgC y-1 ‰, indicating that either the prior land or ocean fluxes or both are 595 

inconsistent with 13CO2 measurements. Through double deconvolution, this imbalance is greatly 596 

reduced to 0.8 PgC y-1 ‰, mostly by an increase in the discrimination flux over land because of its 597 

large discrimination rate. The CO2-only inversion increases the land discrimination flux while 598 

decreasing the ocean discrimination flux, resulting in no improvement in the global isotopic balance. 599 

The joint inversion optimized both ocean and land fluxes in the direction consistent with 13CO2 600 

measurements, reducing the imbalance considerably to 1.8 PgC y-1 ‰. These cases illustrate clearly 601 

that the global isotopic mass balance is very sensitive to the partition between ocean and land fluxes 602 

because of the large difference in the discrimination rate between land and ocean. In this analysis, the 603 
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disequilibrium fluxes are not adjusted, but the influences of the uncertainties in these fluxes on the 604 

inversion results are analyzed in Section 3.2.4.    605 

Existing estimates for the ocean sink for anthropogenic CO2 in 2000’s varies from 1.94 to 2.6 606 

Pg C y-1 (Wanninkhof et al., 2013; Landchuster et al., 2014; Majkut et al., 2014; DeVries, 2014). The 607 

average ocean sink for the 2002-2004 period summarized by the Global Carbon Project (GCP) (Le 608 

Quéré et al., 2013) is 2.4 Pg C y-1, while the land sink in the same period is 2.7 Pg C y-1 as the 609 

residual of the global carbon budget after including the emission due to land use change as a source 610 

of carbon. Although the prior estimates of these sinks in our inversions are similar to these values, 611 

our CO2-only inversion considerably increases the land sink and decreases the ocean sink. The 612 

addition of 13CO2 measurements to the inversion significantly decreases the land sink and increases 613 

the ocean sink, pulling the inversion results in the direction to agree with these existing estimates 614 

(Figure 7). This may indicate that the use of 13CO2 measurements in the joint inversion has improved 615 

the CO2 estimation. In this comparison, we have not considered the unknown small amount (0.1-0.3 616 

Pg C y-1) of lateral carbon transport in rivers from land to ocean. This amount is included in some of 617 

the estimates of the ocean sink used by GCP, and therefore should be subtracted from the ocean sink 618 

and added to the land sink by GCP in order to compare with our atmospheric inversion results. 619 

3.2.2 Influence of 13CO2 constraint on the spatial distribution of the inverted carbon flux 620 

The 13CO2 constraint not only modified the partition between ocean and land fluxes but also 621 

their spatial distribution patterns. Figure 8 shows the result of the CO2-only inversion (i.e. without 622 

the 13CO2 constraint), as the net carbon flux over land and ocean averaged for the period of 2002-623 

2004. Figure 9 shows the difference between inversions with and without the 13CO2 constraint, i.e. 624 

the result of CO2+
13CO2 inversion minus that of CO2–only inversion. The general patterns of the 625 
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inverted carbon flux are similar between these two inversions because these inversions depend 626 

primarily on the CO2 concentration, the prior flux, the error matrixes of the prior flux, and 627 

concentration observations. However, there are several large or notable differences: (1) The Amazon 628 

region (Region 31) is changed from a carbon source to a sink (Figure 10. Note: a reduction in sources 629 

is shown as a negative value); (2) the carbon sink in the tropical Asia (Region 37) is noticeably 630 

reduced (by about 10-20 gC m-2y-1 from a sink magnitude of about 80-100 gC m-2y-1); (3) The sink in 631 

Asia (Region 36) decreases pronouncedly by about 10-20 gC m-2y-1, while the sinks in Russia 632 

(Region 35)  and Europe (Region 39) are also reduced by some extents ( about 5-20 gC m-2y-1); (4) 633 

most small regions in the southern part of North America show increases in sinks, but those in the 634 

northern part (Canada and  Alaska) show increases in sources  (see also Figure 11). The overall sink 635 

in North America decreases from 0.67 to 0.54 Pg C y-1 (Figure 10); and (5) most ocean regions at 636 

mid-latitudes have small gains in sink.  637 

It is of particular importance to note that the 13CO2 constraint changed the Amazon region 638 

from a carbon source of 0.43±0.46 Pg C y-1 to a carbon sink of 0.08±0.38 Pg C y-1 with a notable 639 

reduction in the posterior uncertainty, which is higher than uncertainty reductions in most other 640 

regions (Figure 10). This change is likely caused by the relatively large addition of information from 641 

13CO2 in this tropical region where CO2 observations are sparse, causing large uncertainties in the 642 

inverted flux in this region in the CO2-only inversion. Potter et al. (2009) simulated the net 643 

ecosystem productivity (NEP) of the Amazon region using the CASA model driven by remote 644 

sensing inputs and found that the NEP for the region was slightly negative (-0.07 Pg C y-1) over the 645 

2000-2004 period. Davidson et al. (2012) summarized from various inventory-based studies that 646 

mature forests in the region was accumulating carbon at a rate of 0.29-0.57 Pg C y-1 over the decade 647 

before 2005, meaning that NEP is positive. Since the fire emission is estimated to be 0.50 Pg C y-1 648 
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(Richey et al., 2002), the Amazon region would be either net source of carbon or about carbon 649 

neutral. Since spatially explicit fire emission is considered together with fossil fuel emission as a 650 

source in our study, the inverted carbon flux corresponds to –NEP, and therefore the result from our 651 

joint inversion is in broad agreement with Potter’s and Davidson’s results. Without the 13CO2 652 

constraint, our inversion result shows an unreasonably large source of carbon in the Amazon region. 653 

 3.2.3 Influence of the spatial distribution of photosynthetic discrimination on the inverted carbon 654 

flux  655 

The joint inversion results shown in Figures 9 to 11 are from Case I with the best estimates of 656 

the 13C discrimination and disequilibrium fluxes and therefore represent a baseline study to which 657 

other cases are compared for the purpose of investigating the importance of accurate consideration of 658 

the spatial distributions of isotopic discrimination and disequilibrium over land and ocean. Case II is 659 

designed to investigate the importance of considering the spatial distribution of the photosynthetic 660 

isotopic discrimination over land for inverting the CO2 flux by fixing the discrimination at a constant 661 

over land. Figure 12a shows the spatial distribution of the difference in the total isotopic 662 

discrimination, i.e. jlphjD , , among 39 land regions between Case I and Case II, calculated as Case 663 

I minus Case II. Regions with positive differences in jD are shown with positive differences in the 664 

inverted CO2 flux (Figure 12b), meaning larger sinks (negative values) in Case II, and vice versa. 665 

This is because a smaller discrimination rate (smaller than -14.1‰) means a larger CO2 flux from the 666 

atmosphere to the surface (more negative value) for the same change in 13CO2 concentration in the 667 

atmosphere. Under the same condition, a larger discrimination induces a smaller sink (less negative). 668 

The absolute regional differences between Case I and Case II are considerable (Figure 12b), e.g. up 669 

to 18 g C m-2y-1, showing increases in sinks in Africa, Asia and Australia and decreases in sinks in 670 
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Amazon, Europe,  Russia and most of the small regions in North America. However,  the total global 671 

sink values of Case II after ignoring the spatial distribution of the disequilibrium rate over land 672 

change very little from those of Case I (Table 3):  from 2.53±0.93 to 2.49±0.95 Pg C y-1 for land and 673 

from 2.36±0.49 to 2.35±0.48 Pg C y-1 for ocean. This is because the global mean discrimination rates 674 

are the same between these two cases.  675 

3.2.4 Influence of the uncertainties in disequilibrium fluxes on the inverted carbon flux 676 

The average disequilibrium coefficients and fluxes for land and ocean derived in this study are 677 

comparable to published results (Table 4), although the estimates of the disequilibrium flux over 678 

ocean in previous studies vary in a large range. The uncertainty in the estimated land and ocean 679 

disequilibrium fluxes mainly arises from two sources: the estimated disequilibrium coefficient and 680 

one-way CO2 flux from the surface. Mathematically, the total uncertainty in the disequilibrium flux, 681 

denoted as Δ(δ∙F), equals 22 )()( FF   . For land, the first source depends on the modeled 682 

mean soil carbon age by BEPS, which is estimated to be ±5 years, causing an error in the 683 

disequilibrium coefficient to be ±0.11‰ based on the slope of a against time at about 1979 (the 684 

flux-weighted global mean soil carbon age is 24 years). The second source is estimated to be 9.5 PgC 685 

y-1 in NPP, which is taken as 45% of the error in GPP, i.e. 21 PgC y-1 (Chen et al., 2012).  With 686 

NPP=59.4 PgC y-1 and the mean disequilibrium efficient of 0.49‰, the uncertainty in the estimated 687 

land disequilibrium flux is therefore 22 )5.949.0()4.5911.0(  = 8.0 PgC y-1 ‰. For ocean, the 688 

error in the modeled disequilibrium coefficient is mostly caused by sea surface temperature (SST), if 689 

the coefficients in the equation developed by Ciais et al. (1995b) are assumed to be accurate. With an 690 

error of 1.0K in SST, the error in the calculated global average disequilibrium coefficient is ±0.12‰. 691 

The error in one-way the ocean flux is difficult to estimate, but we use the value of 10 PgC y-1 692 
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inferred from the global isotopic budget uncertainty by Alden et al. (2010). Their inferred range of 693 

the ocean disequilibrium flux is from 92.3 to100.2 PgC y-1 ‰, and we use our disequilibrium 694 

coefficient of 0.78‰ to calculate this one-way flux uncertainty. Based on the OPA-PISCES-T model, 695 

the one-way flux from ocean to atmosphere is 84.6 PgC y-1, and the uncertainty in the estimated 696 

ocean disequilibrium flux is therefore 22 )1078.0()6.8412.0(   = 12.7 PgC y-1 ‰.  697 

Case III, Case IV and Case V are conducted to investigate the relative importance of the 698 

disequilibrium fluxes over land and ocean (Table 3) in the CO2 flux inversion.  In Case III, where the 699 

disequilibrium over land is ignored while other settings remain the same as Case I, the land sink 700 

increases by 1.05 PgC y-1, while the ocean sink decreases by 0.08 PgC y-1 in comparison with Case I. 701 

When the disequilibrium over ocean is ignored instead (Case IV), the land sink increases by 0.13 702 

PgC y-1, while the ocean sink increases by 2.08 PgC y-1, in comparison with Case I. When the 703 

disequilibria over both land and ocean are ignored, the land sink increases by 1.18 PgC y-1, while the 704 

ocean sink increases by 1.96 PgC y-1, in comparison with Case I. Results from these case studies 705 

suggest that in the joint inversion using both CO2 and 13CO2 measurements, the inverted CO2 flux 706 

can be significantly influenced by the disequilibrium fluxes of land and ocean. The carbon sinks over 707 

land and ocean increase when these disequilibrium fluxes are ignored because the photosynthetic and 708 

diffusive sources of 13CO2 have to increase to make up for the shortfall due to ignoring the 709 

disequilibrium sources. These pronounced influences of the disequilibrium fluxes on the CO2 sink 710 

inversion suggest that 13CO2 data contain strong signals for the global carbon cycle. In the joint 711 

inversion, these data can have the power to distort the global CO2 mass balance if the 13CO2 mass 712 

budget (Eq. 8) is not properly simulated. The influence of 13CO2 on the joint inversion depends only 713 

weakly on the estimated uncertainty in the 13CO2 data. We found that if the uncertainty is reduced by 714 
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half, the sum of the land and ocean sink deviates from the CO2-only case by 2-6% for all scenarios, 715 

suggesting that the mean disequilibrium fluxes play the dominant roles in the joint inversion.   716 

The impacts of these disequilibrium fluxes on the inverted CO2 flux determined in Case III, 717 

Case IV and Case V are similar to previous results using the double deconvolution technique (Tans et 718 

al., 1993; Ciais et al., 1995b; Randerson et al., 2002). However, the influences of these 719 

disequilibrium fluxes on the joint inversion could possibly be compromised due to the small number 720 

of 13C observation sites relative to the number of CO2 observation sites used in the joint inversion. 721 

The number of linear equations for CO2 concentration in our joint inversion system (Eq. 6) greatly 722 

exceeds the number for 13C composition, with a potential of dampening the impact of 13C data on the 723 

inverted results. To investigate the possibility of this dampening effect, we conducted a set of 724 

inversions using 13C data alone (Table 6) and found that the impacts of the disequilibrium fluxes on 725 

the inversion results are similar to those of the joint inversion. In Case V shown in Table 6, for 726 

example, ignoring the disequilibrium fluxes causes the land sink to increase by 1.06 PgC y-1 and 727 

ocean sink to increase by 2.37 PgC y-1, resulting in a total increase of 3.43 PgC y-1, which is similar 728 

to the total difference of 3.14 PgC y-1 produced by the joint inversion. These similar results suggest 729 

that 13C data used in the way described by Eqs. 6-8 have played the expected role in the joint 730 

inversion. By comparing results shown in Tables 3 and 6, it is also encouraging to see that inversions 731 

using 13C data alone can produce reasonable results for the CO2 flux, although we believe that the 732 

joint inversion results shown in Table 3 are more reliable. Our finding on the usefulness of the small 733 

13CO2 dataset somewhat confirms the claim of Enting et al. (1993 and 1995) that the temporal trend 734 

in 13CO2 concentration is the major signal constraining the partition between ocean and land sinks. 735 

According to the difference of the inverted flux between Case III to Case I, the uncertainty of 736 

8.0 PgC y-1 ‰ in the land disequilibrium flux would cause an uncertainty of 0.47 PgC y-1 in the land 737 
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flux. According to the comparison between Case IV to Case I, the uncertainty of 12.7 PgC y-1 ‰ in 738 

the ocean disequilibrium flux would cause an uncertainty of 0.54 PgC y-1 in the ocean flux. These 739 

uncertainties in the land and ocean fluxes are 17% and 24% of the jointly inverted fluxes for land and 740 

ocean (Case I in Table 3), respectively. The impact of the uncertainty in the disequilibrium flux over 741 

land is only slightly smaller than the posterior uncertainty of the inverted land flux, but the impact 742 

over ocean is larger than the posterior uncertainty.  743 

Discussion 744 

After the CO2 fluxes are optimized through the inversions, the posterior CO2 concentration at 745 

all stations in each month can be calculated from Eq. 2, and similarly the posterior 13CO2 746 

composition can also be calculated from Eq. 10 by replacing the prior discrimination fluxes with 747 

posterior discrimination fluxes. One way to evaluate the effectiveness of the joint inversion is to 748 

examine the improvement in the posterior CO2 and 13CO2 concentrations against measurements. 749 

Figure 13 shows concentrations for 10 randomly selected stations from different regions, which are 750 

indicated in Figure 1. The CO2 and 13CO2 concentrations produced using the prior fluxes 751 

considerably deviate from observations at all stations. The posterior CO2 concentration from the 752 

CO2-only inversion shows great improvements over the prior concentration in comparison with 753 

observations. The posterior CO2 concentration from the joint inversion does not differ significantly 754 

from that of the CO2-only inversion. At some stations the joint inversion produces slightly lower root 755 

mean square differences (RMSD) against observations, but in some stations the opposite is true, as 756 

indicated by the RMSD values shown in the header of each plot. It is expected that in some stations, 757 

the posterior CO2 concentration in the joint inversion can be slightly worsened because of the 758 

influence of 13CO2. The posterior 13CO2 concentration is pronouncedly improved over the prior in 759 

comparison with observations and almost mimics the observed magnitudes and temporal variations, 760 
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indicating that the joint inversion system can forcefully adjust CO2 fluxes to match with 13CO2 761 

observation through the prescribed discrimination rates. The posterior CO2 concentrations for either 762 

CO2-only or joint inversion show larger seasonal amplitudes than observations at northern 763 

hemisphere stations, although the means are about the same as observations. This suggests that both 764 

carbon uptake during the growing season and ecosystem respiration in the non-growing season might 765 

have been overestimated, even though the annual net carbon flux may be unbiased. Further work is 766 

needed to constrain the large photosynthetic and respiratory fluxes separately rather than the net flux 767 

only. 768 

In order to provide a comprehensive evaluation, the posterior CO2 and 13CO2 concentrations at 769 

all stations are shown in Figures 14 and 15 against observations. In Figure 14, we see pronounced 770 

improvements in the posterior concentrations from both the CO2-only and joint inversions over the 771 

prior case. However, the improvements of these two inversions are similar (the joint inversion has a 772 

smaller intercept and a slope closer to one, but the CO2-only inversion has a slightly larger r2 value). 773 

This is in agreement with the cases shown for the individual stations: some stations are improved and 774 

some worsened by the use of 13CO2 data, manifesting the force of this additional data on the 775 

inversion. In Figure 15, the posterior 13CO2 concentration from the joint inversion is shown to be 776 

greatly improved from the prior case. In the joint inversion, the increase of the posterior land and 777 

ocean sinks over the prior sinks that remove CO2 from the atmosphere logically corrects for the 778 

positive bias in the CO2 concentration produced using the prior fluxes (Figure 14a). The posterior 779 

concentration correlation with observation is stronger for 13CO2 than for CO2, indicating that 780 

isofluxes are effectively optimized in the joint inversion according to 13CO2 data.  However, some 781 

points in Figure 15b scatter greatly from the 1:1 line, and these points are mostly likely the missing 782 
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data filled with the reference data (Section 2.4). As other error sources cannot be excluded, these data 783 

are retained in our inversion.  784 

After adding 13CO2 data to the inversion system, the uncertainty in the inverted CO2 flux 785 

increased from 0.84 to 0.93 PgC y-1 for land and from 0.40 to 0.49 PgC y-1 for ocean (Table 3, 786 

difference between the CO2-only case and Case I), i.e. 11% and 23% increases in uncertainty for land 787 

and ocean, respectively. The relative error in preprocessed 13CO2 measurements used in the joint 788 

inversion is considerably larger than that in CO2 measurements, causing these increases in the 789 

uncertainty of jointly inverted CO2 fluxes from the CO2-only case. The 13CO2 measurements were 790 

preprocessed before the inversion as the remaining concentration after removing the contributions of 791 

fossil fuel emission and prior land and ocean discrimination and disequilibrium fluxes (Eq. 10), and 792 

therefore they contain uncertainties from these contributions in addition to measurement 793 

uncertainties. Errors in modeling the spatial and temporal variations of the 13CO2 flux stem from 794 

many sources including errors in modeling the discrimination, which is affected by the fractionation 795 

of the 13CO2 flow through leaf boundary layer, stomata, mesophyll, etc., and the disequilibrium, 796 

which depends on the sizes of 9 soil carbon pools and their ages. Although the ocean 13CO2 797 

discrimination is small, its disequilibrium has a strong latitudinal gradient, which is approximately 798 

calculated using the mean monthly temperature. The error in the calculated ocean disequilibrium 799 

coefficient is estimated to be±1.2‰ for the monthly values at a given location and ±0.12‰ for the 800 

global annual total. Because of these errors, we estimate that the relative uncertainty in the prior 801 

13CO2 fluxes is similar to that of the prior CO2 flux over both land and ocean.  802 

 803 

4. Conclusion 804 
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The usefulness of atmospheric 13CO2 measurements at 73 stations for global carbon cycle 805 

estimation is explored through their use as an additional constraint on an atmospheric inversion of 806 

the surface carbon flux using CO2 observations.  The following conclusions are drawn from this 807 

study: 808 

1. This 13C constraint on the joint inversion considerably alters the partition between land and 809 

ocean sinks obtained from CO2-only inversion, decreasing the land sink from 3.40±0.84 to 810 

2.53±0.93 Pg C y-1, while increasing the ocean sink from 1.48±0.40 to 2.36±0.49 Pg C y-1 for 811 

the 2002-2004 period. Over land, this alteration induces the largest sink increases in the 812 

Amazon region and largest source increases in southern Africa and Asia, where CO2 813 

observations are sparse and therefore the additional signal from 13CO2 data becomes most 814 

important. Over ocean, sink increases are found broadly at middle and high latitudes in both 815 

hemispheres. 816 

2. The spatial distribution of the 13CO2 discrimination rate over land has considerable impacts 817 

on the spatial distribution of the inverted CO2 sink over land (up to 15% in some regions), 818 

suggesting that reliable models for simulating the spatial distribution of the 13C discrimination 819 

rate over land are needed for effective use of 13CO2 data for global carbon cycle inversion.  820 

3. The joint inversion is sensitive to the 13CO2 disequilibrium fluxes over both land and ocean. 821 

Ignoring these fluxes in the joint inversion causes the inverted total land and ocean sink to 822 

increase by 1.18 and 1.96 PgC y-1, respectively. The uncertainty in our disequilibrium flux 823 

calculation is estimated to be 8.0 PgC y-1 ‰ and 12.7 Pg C y-1 ‰ for land and ocean, 824 

respectively, inducing an uncertainty in the inverted flux of 0.47 Pg C y-1 for land and 0.54 Pg 825 

C y-1 for ocean.  826 
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Table 1. Biophysical parameters are assigned by plant functional types in BEPS. References for the 1163 

chosen values of these parameters are found in Chen et al. (2012). 1164 

Parameters *
    Broadleaf 

Evergreen     
Broadleaf 

Deciduous     
Evergreen 

Conifers    
Deciduous 

Conifers    
Shrub C4 Plants    Others 

Vcmax mol m-2
 s-1

 

(at 25°C) 
29.0±7.7 57.7±21.2 62.5±24.7 39.1±11.7 57.9±19.6 100.7±36.6 90.0±89.5 

Jmax mol m-2
 s-1 55.1 123.7 135.2 79.2 124.1 193.1 200.0 

N g m-2
  2.17±0.8 1.74±0.71 3.10±1.35 1.81±0.64 1.86±0.84 1.62±0.61 1.69±0.69 

n  m2
  g-1 0.48 0.59 0.33 0.56 0.57 0.62 0.60 

Slope (m) 8 8 8 8 8 4 8 
Intercept (b),  

mol m-2
 s-1 

0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 

LAI 4.07±2.02 3.14±1.99 3.05±1.62 2.42±1.45 1.49±1.06 1.55±1.22 1.64±1.15 
Clumping Index 0.66±0.045 0.70±0.047 0.74±0.057 0.78±0.051 0.75±0.059 0.75±0.050 0.76±0.059 
Canopy height 

(m) 
23 23 20 20 4 4 4 

Where Vcmax is the leaf maximum carboxylation rate at 25°C, Jmax is the maximum electron transport rate, N is the leaf nitrogen content, n is the slope 1165 
of Vcmax variation with N, and m and b are the slope and intercept in the Ball-Berry equation. The peak growing season LAI and clumping index are 1166 
given as the mean and standard deviation for each plant functional type. 1167 
 1168 

 1169 

 1170 
Table 2.  Global average ages of soil carbon pools computed by BEPS with consideration of the 1171 

influences of temperature and soil moisture on the decomposition rates of these pools. 1172 
 1173 

 1174 
Soil carbon 

pool  i 

Name Global Average Age 

i  (yr) 

1 Surface structural leaf litter 5.0 

2 Surface metabolic leaf litter 2.3 

3 Soil structural litter 4.4 

4 Soil metabolic litter 2.3 

5 Woody litter 34.9 

6 Surface microbe 11.1 

7 Soil microbe 28.5 

8 Slow carbon 35.5 

9 Passive carbon 667.9 

 1175 
1176 
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Table 3. Inverted fluxes (Pg C y-1), averaged for 2002 –2004, for land and ocean regions with (CO2 + 1177 
13CO2) and without (CO2 only) 13C constraint. The negative sign denotes the flux from the 1178 

atmosphere to the surface (sink). Various treatments are made to 13C discrimination and 1179 

disequilibrium fluxes represented by the following cases: 1180 

Case I:  Full consideration of the regional differences in discrimination and disequilibrium;   1181 

Case II:  Same as Case I, but the annual photosynthetic discrimination ratio is set at a constant of -1182 
14.1‰, although it’s monthly variation pattern as modeled by BEPS is retained; 1183 

Case III:  Same as Case I, but the disequilibrium flux over land is ignored;  1184 

Case IV: Same as Case I, but the disequilibrium flux over ocean is ignored;   1185 

Case V: Same as Case I, but the disequilibrium flux over both land and ocean is ignored.  1186 

 1187 

     1188 

Region 

 

Prior flux 

 

 

Double De-

convolution 

Inverted CO2 flux 

CO2  data 

 

CO2 + 13CO2  data 

Case I Case II Case III Case IV Case V 

Land 

-2.61 

±2.07 

-2.90 -3.40 

±0.84 

-2.53 

±0.93 

-2.49 

±0.95 

-3.58 

±0.93 

-2.66 

±0.93 

-3.71 

±0.93 

Ocean 

-2.13 

±0.67 

-2.36 -1.48 

±0.40 

-2.36 

±0.49 

-2.35 

±0.48 

-2.24 

±0.49 

-4.44 

±0.49 

-4.32 

±0.49 

        1189 

 1190 

  1191 
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Table 4. Comparison of land and ocean disequilibrium coefficients and disequilibrium fluxes 1192 

calculated in this study with those in previous studies. 1193 

 1194 

1195 

Studies Year Land 

Disequilibrium 

Coefficient (‰) 

Land 

Disequilibrium 

Flux 

(PgC y-1 ‰) 

Ocean 

Disequilibrium 

Coefficient (‰) 

Ocean 

Disequilibrium 

Flux 

(PgC y-1 ‰) 

This study 2002-2004 0.49 26.8 0.78 66 

Fung et al. 

(1997) 

1988 0.33 N/A N/A N/A 

Randerson et 

al. (2002) 

1981-1994 0.33 20 0.6 55 

Alden et al. 

(2010) 

1991-2007 0.45-0.61 22.7-30.6 N/A 92.3-100.2 

(globe total) 

Van der Velde 

et al. (2013) 

1991-2007 0.486 25.4 N/A 48.7 

Francey et al. 

(1995) 

1987 0.43 25.8 0.48 43.8 
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Table 5. Global isotopic mass budgets averaged for the 2002-2004 period for the prior, double de-1196 
convolution, CO2-only inversion, and joint inversion (unit: Pg C y-1 ‰). Also shown are ocean and 1197 
land net fluxes (unit Pg C y-1) for these cases for comparison purposes. For the prior fluxes, the 1198 
component of each flux are indicated in the brackets. The isotopic coefficients are same among the 1199 

cases. 1200 
Isotopic terms Prior Double 

de-

convolution 

CO2 –only 

inversion 

Joint 

inversion 

-Ca d(δa)/dt 15.0 
[750 Pg C×(-0.02‰ y-1)] 

15.0  15.0 15.0 

Ff ( δf  - δa)* -153.7 
[8.9 Pg C y-1×(-17.27‰)]  

-153.7  -153.7  -153.7 

-(Flph  - Flb)εlh 36.7 
 [2.6 Pg C y-1×(-14.10‰)]   

40.9 47.9 39.5 

Flb(δlb  - δlbe) 26.8 
[54.7 Pg C y-1×(-0.49‰)]   

26.8  26.8 26.8 

-(Fao  - Foa)εao 4.2 
  [2.1 Pg C y-1×(-2.00‰)]    

4.8  3.0  4.6  

Foa (δ
e
oa - δoa) 66.0 

[84.6 Pg C y-1×(-0.78‰)]    
66.0  66.0  66.0  

Global Budget -5.0  0.8  -5.0  1.8  

(Flph  - Flb), Pg C y-1 -2.6  -2.9  -3.4  -2.8  

(Fao  - Foa), Pg C y-1 -2.1  -2.4  -1.5  -2.3 

*Ff is the carbon emission from fossil fuel and biomass burning, 6.9 and 2.1, Pg C y-1, respectively, 1201 

and δf is weighted average 13C composition for fossil fuel and biomass burning, being 25.27‰, and δa=-8.0‰.  1202 

  1203 
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 1204 

Table 6. Inverted fluxes (Pg C y-1), averaged for 2002 –2004, for land and ocean regions using 13C 1205 

data only. The negative sign denotes the flux from the atmosphere to the surface (sink). Various 1206 

treatments are made to 13C discrimination and disequilibrium fluxes represented by the cases outlined 1207 

in Table 3. 1208 

 1209 

Region 

 

Prior flux 

 

Inverted CO2 flux 

 13CO2  data     

Case I Case II Case III Case IV Case V 

Land 

-2.61 

±2.07 

-2.60 

±0.96 

-2.56 

±0.99 

-3.61 

±0.96 

-2.65 

±0.96 

-3.66 

±0.96 

Ocean 

-2.13 

±0.67 

-2.28 

±0.53 

-2.27 

±0.54 

-2.28 

±0.53 

-4.65 

±0.53 

-4.65 

±0.53 

 1210 

 1211 

  1212 
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 1213 

Figures 1214 

 1215 

Figure 1. A global nested inversion system with a focus in North America, in which oceans are 1216 

divided into 11 regions and land areas are divided into 9 large and 30 small regions outside and 1217 

within North America, respectively.  Also shown are CO2 and 13CO2 observation stations included in 1218 

the GlobalView database and used in this study. 10 of the stations are marked with their names 1219 

because they are selected to compare prior and posterior concentrations in Figure 11. 1220 
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           1225 

  1226 

  1227 

Figure 2. (a) gross primary productivity (GPP) distribution in 2003 computed using remote sensing 1228 

LAI and land cover maps and climate and soil data, and (b) net ecosystem productivity (NEP) 1229 

distribution in 2003. Both are calculated using the BEPS model. Annual NEP maps from 2000 to 1230 

2004 are used to as the prior flux in the inversions. This GPP map is used to distribute the flux 1231 

uncertainty among the 39 land regions.1232 

(a) 

(b) 
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 1233 

Figure 3. The annual mean of the total photosynthetic 13C discrimination (Δ in Eq. 7) in 2003.   1234 
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 1235 

 1236 

Figure 4. Global distribution of the flux-weighted mean age of soil carbon pools (Eq. 8). 1237 
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 1242 

Figure 5. Global δ13C distribution over land (annual flux-weighted average in 2003). 1243 
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 1245 

 1246 

Figure 6. Disequilibria between 13C fluxes to and from the land or ocean surface in 2000. At the land 1247 

surface, the disequilibrium is the difference between photosynthetic and respiratory discriminations 1248 

against 13C, and at the ocean surface, it is the difference in 13C discrimination between the one-way 1249 

diffusive downward and upward fluxes. 1250 
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 1252 

Figure 7. Comparison of land and ocean carbon sinks derived from inversions with and without the 1253 

13CO2 constraint against the Global Carbon Project results (Le Quéré et al., 2013).  1254 
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 1257 

Figure 8. Global distribution of inverted CO2 flux using CO2 data only (2002-2004 average). 1258 
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 1263 

Figure 9. Difference of the inverted CO2 flux between using CO2 +
13CO2 data and using CO2 data 1264 

only (2002-2004 average). 1265 
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 1274 

 1275 

Figure 10. Comparison between inversion results with and without 13CO2 constraint for 21 regions of 1276 

the globe for the periods of 2002-2004. 1277 
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 1280 

 1281 

Figure 11. Comparison between inversion results with and without 13CO2 constraint for 30 regions in 1282 

North America.  1283 
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          (b) 

 

 1286 

Figure 12. (a) Difference in lph (‰) and (b) the inverted CO2 flux (gC m-2y-1) between Case I and 1287 

Case II, i.e. Case I minus Case II. See Section 2.1.3 for the description of these cases. 1288 
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 1291 

 1292 

Figure 13.  Left panel: comparison of CO2 concentrations calculated using the prior flux (solid red) 1293 

and from CO2-only inversion (dashed purple) and joint inversion (dashed green) against observations 1294 

(blue) at 10 randomly selected stations from different regions. The header of each plot indicates the 1295 

station ID and the root mean square difference (RMSD) for the prior, joint and CO2-only inversions 1296 

against observations. Right panel: comparison of 13CO2 composition from the prior (solid red) and 1297 

joint inversion (dashed green) against observations (blue). The header of each plot indicates the 1298 

station ID and RMSD of the prior and the joint inversion against observations. 1299 
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 1303 

 1304 

Figure 14. CO2 concentrations from (a) prior, (b) posterior from the CO2-only inversion, and  (c) 1305 

posterior from the joint inversion in comparison with observations. The prior concentration is 1306 

obtained through transport modeling with prior CO2 fluxes from the terrestrial ecosystems, oceans, 1307 

fossil fuel emission, and biomass burning. 1308 
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 1314 

Figure 15. Comparison of prior (a) and posterior (b) 13CO2 compositions with observations. The prior 1315 

composition is obtained through transport modeling with prior 13CO2 fluxes from the terrestrial 1316 

ecosystems, oceans, fossil fuel emission, and biomass burning, and the posterior composition is 1317 

obtained with the CO2-
13CO2 joint inversion (Case I).  1318 
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