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Abstract. The impact of topography on Earth systems variability is well recognised. As numerical simulations evolved to 

incorporate broader scales and finer processes, accurately assimilating or transforming the topography to produce more exact 

land-atmosphere-ocean interactions, has proven to be quite challenging. Numerical schemes of Earth systems often use 10 

empirical parameterisation at sub-grid scale with downscaling to express topographic endogenous processes, or rely on 

insecure point interpolation to induce topographic forcing, which creates bias and input uncertainties. DEM (digital elevation 

model) generalisation provides more sophisticated systematic topographic transformation, but existing methods are often 

difficult to be incorporated because of unwarranted grid quality. Meanwhile, approaches over discrete sets often employ 

heuristic approximating which are generally not best performed. Based on DEM generalisation, this article proposes a high-15 

fidelity multiresolution DEM model with guaranteed grid quality for Earth systems. The generalised DEM surface is initially 

approximated as a triangulated irregular network (TIN) via selected feature points and possible input features. The TIN 

surface is then optimised through an energy-minimised centroidal Voronoi tessellation (CVT). By devising a robust discrete 

curvature as density function and exact geometry clipping as energy reference, the developed curvature CVT (cCVT) 

converges, the generalised surface evolves to a further approximation to the original DEM surface, and the points with the 20 

dual triangles become spatially equalised with the curvature distribution, exhibiting a quasi-uniform high quality and an 

adaptive variable-resolution. The cCVT model was then evaluated on real LiDAR-derived DEM datasets and compared to 

the classical heuristic model. The experimental results show that the cCVT multiresolution model outperforms classical 

heuristic DEM generalisations in terms of both surface approximation precision and surface morphology retention. 

1 Introduction 25 

1.1 Topography in Earth systems 

Topography is one of the main factors controlling processes operating at or near the surface layer of the planet (Florinsky 

and Pankratov, 2015; Wilson and Gallant, 2000). With the success of Earth and environment systems with these scale 

diversified processes, there exist persistent demands for extending their utility to new and expanding scopes (Ringler et al., 

2008; Tarolli, 2014; Wilson, 2012), as exemplified by lapse-rate controlled functional plant distributions (Ke et al., 2012), 30 
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orographic forcing imposed on oceanic and atmospheric dynamics (Nunalee et al., 2015; Brioude et al., 2012; Hughes et al., 

2015), topographic dominated flood inundations (Bilskie et al., 2015; Hunter et al., 2007), and many other geomorphological 

(Wilson, 2012), soil (Florinsky and Pankratov, 2015), and ecological (Leempoel et al., 2015) examples from Earth systems. 

However, as numerical simulation systems evolved to incorporate broader scales and finer processes to produce more exact 

predictions (Ringler et al., 2011; Weller et al., 2016; Wilson, 2012; Zarzycki et al., 2014), how to accurately assimilate or 5 

transform the fine resolution topography has proven to be a quite difficult task (Bilskie et al., 2015; Chen et al., 2015; Tarolli, 

2014). 

Earth and environmental simulations usually adopt sub-grid schemes to express topography heterogeneous processes (Fiddes 

and Gruber, 2014; Kumar et al., 2012; Wilby and Wigley, 1997). The sub-grid schemes are designed for the empirical 

parameterisation rather than accurate topography representation, which often leads to mixed-up uncertainties and bias of 10 

endogenous variability (Jiménez and Dudhia, 2013; Nunalee et al., 2015). However, under-resolved representation could be 

improved by variable-resolution enhancement, and bias of simulations can be justified by more fidelity topography 

transformation (Nunalee et al., 2015; Ringler et al., 2011). Topography is also commonly treated as a static boundary layer in 

dynamics simulations, where different interpolation strategies and mesh refinement techniques are used to convey terrain 

variation (Guba et al., 2014; Kesserwani and Liang, 2012; Nikolos and Delis, 2009; Weller et al., 2016). But a mesh 15 

constructed from interpolated vertices does not necessarily comply with the terrain relief, and elevation errors are frequently 

reported as an input uncertainty (Bilskie and Hagen, 2013; Hunter et al., 2007; Nunalee et al., 2015; Wilson and Gallant, 

2000). Although there are many situations where dynamic conditions are stressed as stronger impacts on predictions (Cea 

and Bladé; Budd et al., 2015), the underlying topography is still very important due to its increasingly improved fidelity to 

the Earth’s surface (Bates, 2012; Tarolli, 2014), and a sophisticated topography transformation would be beneficial to reduce 20 

discrepancies arisen from physical inconsistencies (Chen et al., 2015; Glover, 1999; Ringler et al., 2011). 

1.2 Multiresolution DEM model 

Systematic scale transformation of topographic data has long been studied under terrain generalisation, where precise surface 

approximation and terrain structural feature retention have both been pursued (Ai and Li, 2010; Chen et al., 2015; Guilbert et 

al., 2014; Jenny et al., 2011; Weibel, 1992; Zhou and Chen, 2011). Triangulated irregular networks (TIN) are generally 25 

chosen as a substitute for the regularly spaced grids (RSG), and terrain feature points (critical points or salient points from 

some significance metric) are selected for constructing the network. Triangular networks are used for their adaptiveness to 

locally enhanced multiresolution schemes. Critical points or salient points are selected because they can effectively improve 

the approximation precision (Heckbert and Garland, 1997; Zakšek and Podobnikar, 2005; Zhou and Chen, 2011).  

As surface approximation precision and terrain feature retention are competitive for the redistribution of feature points, DEM 30 

(digital elevation model) generalisation is differentiated from terrain generalisation by its emphasis on surface approximation 

as a whole, with the aim of providing precise surface interpolation (Guilbert et al., 2014). Terrain generalisation emphasises 

geomorphology or landform depiction, where map generalisation measures (such as abstracting, smoothing) are drawn to 
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produce progressive data reduction, with the effect that the main relief features are strongly stressed while non-structural 

details are massively suppressed (Ai and Li, 2010; Guilbert et al., 2014; Jenny et al., 2011). Since the static topographic 

layers are commonly composed directly from DEM datasets for diverse simulation interests, maintaining precise surface 

approximation for rigorous boundary conditions is often more important than ‘sparse’ geomorphology representation. While 

DEM datasets are usually used interchangeably with topography or terrain in Earth systems, we will use DEMs and 5 

topography indiscriminately hereafter. 

Existing DEM generalisations can be catalogued into two broad classes, namely, heuristic refinements and smooth-fittings, 

according to differences in surface approximation strategy. The first class of approaches is due to the computational 

feasibility consideration, for selecting a TIN surface that best approximates the original DEM surface from exhaustively 

enumerating (of triangular combinations) requires exponential time (Chen and Li, 2012; Heckbert and Garland, 1997). It 10 

thus forces existing researches to employ some heuristic strategy, in which insertion (or deletion) refinements on feature 

points are adopted, to find a sub-optimal approximation that is computationally practical. In each insertion (or deletion), 

rearranging the entire existing grid to obtain a better approximation is also computationally prohibitive and thus not adopted 

(Chen et al., 2015; Heckbert and Garland, 1997; Lee, 1991); this may result in the clustering of feature points (Chen and Li, 

2012). Among those existing heuristic approaches, trenching the pre-extracted terrain features (drainage streamlines, for 15 

example) into the TIN surface seems quite appealing (compound method) (Chen and Zhou, 2012; Zhou and Chen, 2011), but 

the quality of the generalised TIN surface cannot be guaranteed, and the existence of sliver triangles makes it difficult to be 

incorporated with simulation numerical stability (Kim et al., 2014; Weller et al., 2009). The second class of approaches 

recognised the TIN surface constructed from locally computed feature points as not-well approximation to the original DEM 

surface. Much research thus considered global approximation instead of relying on an elaborate feature point selection 20 

scheme, such as bi-linear, bi-quadric, multi-quadric, Kriging, or general radial base function-based fitting (Aguilar et al., 

2005; Chen et al., 2015; Schneider, 2005; Shi et al., 2005). The proposed multi-quadric method (Chen et al., 2012; Chen et 

al., 2015), for example, well approximates the original DEM surface with a high-order smooth surface, and the smooth 

surface provides a kind of rejection mechanism to cure the feature point clustering problem. However, the high-order radial 

base function is computationally expensive when a broad scenario is involved (Chen et al., 2015; Mitášová and Hofierka, 25 

1993). In brief, existing DEM transformations are neither well performing with respect to loyalty to the original terrain 

surface nor easily incorporated by the numerical schemes. 

1.3 Aims and contributions 

The purpose of this article is to devise a multiresolution DEM model that optimises surface approximation and guarantees 

grid quality that can be easily incorporated into the simulation systems. Multiresolution is an effective paradigm to model 30 

scale diversity (Du et al., 2010; Guba et al., 2014; Ringler et al., 2011; Weller et al., 2016). Amongst a number of promising 

approaches, we are especially fascinated by the centroidal Voronoi tessellations (CVTs) method as an intuitive way to 
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redistribute samples with a designated function (Du et al., 1999; Du et al., 2010; Ringler et al., 2011) to develop an 

optimised surface transformation method to realise multiresolution terrain models. 

CVT is essentially a two-step optimisation loop, i.e., spatial domain equalisation from Voronoi tessellation and property 

domain equalisation from barycentre computation (Du et al., 1999). To make this general optimisation method work for 

DEM transformation, we made the following contributions: 5 

(1) The generalised DEM surface is initially approximated by a triangular grid constructed from selected feature points. The 

selection of feature points have important morphological structures embedded (in the form of serialised points 

sequences), for computed (such as D8 flow algorithm) or auxiliary input morphological lines has been proved to have 

significant influence on the quality of the transformed DEM surface (Zhou and Chen, 2011). The proposed method 

keeps the structural lines in the optimisation loop and makes it different to existing CVT implementations where 10 

stationary points are commonly not considered. 

(2)  For the discrete TIN surface, we compute robust mean curvature on each facet. The attached curvature acts as a 

frequency distribution. In this discrete spatial domain and frequency domain, the CVT loops and makes sample facets 

equalised from both domains. Spatial equalisation warrants a quasi-uniform grid quality, while the curvature domain 

equalisation warrants adaptive distribution conforming to the terrain relief. It is thus a totally different DEM 15 

generalisation approach, and we called it curvature CVT (cCVT). 

(3) Existing CVT implementations often undertake a clustering approach. However, clustering over discrete sets suffers 

from numerical issues such as zigzag boundaries, invalid cluster cells (Valette et al., 2008) and limited grid quality. By 

devising an exact geometry clipping technique, this article develops a dedicated CVT algorithm for DEM transformation 

that helps to improve or avoid the numeric problems listed above. 20 

The cCVT works on discrete sets but has a global optimisation mechanism. It promises an optimised surface approximation 

and quality grid, which can be used to build a high-fidelity multiresolution terrain model. From this terrain model, reliable 

surface variables can be estimated under a coupled system, or improved computational mesh can be constructed and refined 

to possible dynamic conditions. 

1.4 Organisation of the article 25 

The rest of the article is organised as follows. In Section 2, the theory behind CVT for optimised DEM surfaces is introduced, 

techniques for incorporating DEM generalisation principles and fast convergence are presented, and the differences between 

the cCVT implementation and classical clustering approach are discussed. In Section 3, the cCVT model is tested with real 

LiDAR-derived terrain datasets. Section 4 discusses some considerations, comparable results, possible causes, and 

interpretations of the cCVT model. Finally, Section 5 briefly presents a short conclusion and outlook. 30 
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2. Curvature centroidal Voronoi tessellation on DEM surface 

2.1 Definition 

Centroidal Voronoi tessellation is a space tessellation for each Voronoi cell’s geometrical centre (in the spatial domain) that 

coincides with its barycentre from the abstract property domain (Du et al., 1999). Here, the property domain is analogous to 

the frequency domain. For the vertex set t {𝑣𝑖}𝑘
1  in Ω ⊂ 𝑅3, the Voronoi tessellation graph is defined as 5 

𝑉𝑖 = {𝑝 ∈ Ω: |𝑝 − 𝑧𝑖| < |𝑝 − 𝑣𝑗|, 𝑗 = 1. . 𝑘, 𝑗 ≠ 𝑖}, i = 1. . k.        (1) 

That is, a Voronoi cell 𝑉𝑖 is the set of points whose distance to 𝒗𝒊 is less than that to any other vertices. | ∙ | is the Euclidean 

norm. Every vertex and its corresponding dual cell commonly have some intensity scalar 𝝆 attached from some abstract 

property domain, which is called a density function. The total potential energy of the Voronoi graph V of a terrain surface 

can be computed by summing up the potential energies of all cells 𝑽𝒊: 10 

𝐸 = ∑ ∬ 𝜌 ∙ |𝑝 − 𝑣𝑖|
2 ∙ 𝑑𝜎𝑘

𝑖=1 .          (2) 

The energy minimiser is 

�̅� =
∬ 𝑥∙𝜌∙𝑑𝜎

∬ 𝜌∙𝑑𝜎
;  �̅� =

∬ 𝑦∙𝜌∙𝑑𝜎

∬ 𝜌∙𝑑𝜎
; 𝑧̅ =

∬ 𝑧∙𝜌∙𝑑𝜎

∬ 𝜌∙𝑑𝜎
,          (3) 

which minimises the surface’s total potential, since 𝑣�̅� = (�̅�, �̅�, 𝑧̅) satisfies 

∂𝐸

∂𝑝
= 2(𝑝 − 𝑣𝑖) ∙ ∬ 𝜌 ∙ 𝑑𝜎 = 0.          (4) 15 

In other words, when 𝒗𝒊 coincides with the barycentre  �̅�𝒊 , each cell’s potential effect on the property domain (gravity) 

becomes equalised to a stable energy state. 

2.2 Lloyd Relaxation 

The most classical energy minimisation process of centroidal Voronoi tessellation is expressed by Lloyd‘s Relaxation (Lloyd, 

1982). The main idea of this algorithm is to first tessellate the surface, and then perform density integration over the area to 20 

find a ‘gravity’ barycentre for each tessellated cell, which is used as the new site for the iteration. The pseudo code of this 

procedure is shown below. 

Algorithm1 Lloyd_relaxation 

Inputs: vertex set 𝑵 = {𝒗𝒊}𝒌
𝟏 

 25 
while (∆𝑬 > 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅)  

{    

use the k vertices to tessellate the surface, obtain Voronoi cells {Vi}; 

clear N; 

 30 
    for each Vi in {Vi}  

       { 
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          Compute barycentre of Vi: �̅� =
∬ 𝒙∙𝝆∙𝒅𝝈

∬ 𝝆∙𝒅𝝈
;  �̅� =

∬ 𝒚∙𝝆∙𝒅𝝈

∬ 𝝆∙𝒅𝝈
; �̅� =

∬ 𝒛∙𝝆∙𝒅𝝈

∬ 𝝆∙𝒅𝝈
; 

          push (�̅�,  �̅�) to N; 

     } 

      compute E； 

} 5 
 

We follow Lloyd’s elegant idea. The barycentre of a 2-dimensional Voronoi cell may fall outside this surface patch, so an 

additional calculation may be needed. Du et al. suggested projecting the barycentre onto a nearest facet and using instead the 

constrained projection point for the new site (Du et al., 2003). Others suggest quadric interpolations over all the facets of the 

cluster for more accurate site calculations (Valette et al., 2008). 10 

2.3 Fast convergence to DEM equilibria 

2.3.1 Clustering CVTs 

Lloyd’s Relaxation requires Voronoi tessellation on a discrete 2-dimensional surface, but direct Voronoi tessellation on a 

piecewise smooth surface requires costly geodesic computation and may be challenged by complicated numerical issues 

(Cabello et al., 2009; Kimmel and Sethian, 1998). Du et al. suggested that CVT could be realised through some clustering 15 

approaches (Cohen-Steiner et al., 2004; Du et al., 1999; Du et al., 2003), that is, using the associated property as density 

function to cluster facets and then find the clustered cells’ barycentres to create new clustering sites. Through this heuristic 

iteration, the new sites along with the new tessellations compose better and better approximation to the original surface, with 

their spatial distribution conforming to the pre-defined density function. 

The clustering approach avoids geodesic tessellation by direct facet combination, which is computationally light. The 20 

greatest expenditure then comes from global distance computation for identifying every cell to its cluster centre. However, 

this k-means like clustering over discrete facets suffers from some numeric issues, such as zigzag cluster cell boundaries - 

since no geodesic Voronoi tessellation was used, and invalid clusters due to disconnected set of facets (Valette and Chassery, 

2004; Valette et al., 2008). Furthermore, the key to the quick clustering algorithm is that it avoids generating new sites (to 

avoid surface reconstruction) and relies on existing sites (or facets). Thus, the generated grid cells may not be well qualified. 25 

2.3.2 Curvature as density function 

Terrain surface critical points such as peaks, pits, and saddles are treated as gravity equilibria and key elements depicting the 

surface geometry in the large (Banchoff, 1967; Milnor, 1963); a further extension of the critical points on a second-order 

surface derivatives will describe a more fundamental terrain geometry shape (Jenny et al., 2011; Kennelly, 2008). When 

constructing a generalised DEM surface, these feature points are commonly used as a base set, and additional input points, or 30 

pre-extracted terrain structures are embedded for further approximation (Guilbert et al., 2014; Zakšek and Podobnikar, 2005; 

Zhou and Chen, 2011). The additional input points or pre-extracted terrain structures of interest are also commonly required 

in numerical simulation setups for cross-checking or validation purposes.  
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Based on these observations, and considering requirements of the CVT variational framework, this article proposes a feature 

point based scheme (including boundary points, feature points, and pre-extracted structural points of interest) as initial 

Voronoi sites. For optimised spatial distribution of these sample points, we calculate a robust discrete mean curvature as 

density function, which is based on the recognition of curvature’s flexibility in capturing shape characteristics and capability 

in conducting shape evolution (Banchoff, 1967; Kennelly, 2008; Pan et al., 2012). Curvature’s ability to flexibly describe 5 

terrain morphology has been appreciated by many researchers. For example, P. J. Kennelly noted that, compared to the 

results of the flow accumulation model, curvature based delineation of drainage networks is not limited to one pixel 

thickness and requires no depression filling (Kennelly, 2008). The robust discrete curvature calculation is referred to Meyer 

et al. (2003).  

2.3.3 Improved CVT implementation from approximation 10 

The Lloyd Relaxation demonstrates an effective way for heuristic approximation. To follow this elegant approximation, an 

edge bi-sectioning based dual operation (Du et al., 2010) approach is utilised. That is: from the sample points, an initial TIN 

surface is constructed. We compute its dual mesh and take this space tessellation as approximated Voronoi cells. The 

approximated Voronoi tessellation is then optimised within the cCVT iteration. But different to clustering approach, we use 

each approximated Voronoi cell to (vertically) clip the original dense DEM surface, called referring patch. From this exactly 15 

clipped referring patch, we compute accurate energy estimations for the new sites. The global clipping computation is 

localised using a kd-tree structure. 

The localisation and accurate referring energy computation makes the cCVT iteration converge fast. The efficiency of the 

cCVT approximation as a whole is comparable to that of the elegant clustering approach (also has kd-tree fast location 

embedded). We go no further with the complexity analysis, but provide an implementation of the classical clustering 20 

algorithm with the same settings as the cCVT method in the attachment. The pseudo-code of this improved cCVT iteration is 

described as follows. 

 

Algorithm2 cCVT_iteration 

Input: vertices 𝑵 = {𝒗𝒊}𝒌
𝟏, scale-transformation Ratio. 25 

 

1) Construct the original DEM surface oriPd from vertices N, compute density function  based on robust mean-curvature estimation; 

2) Extract and mark boundary points B, mark stationary control points, check points as C, extract and mark the feature points F; 

3) Perform constrained Delaunay triangulation on point set {B, C, F}, with boundary {B} and structural terrain features {C} as constraints; 

obtain an initial approximated TIN surface; 30 

4) While (∆𝑬 > 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅)  

{ 4.1) Compute TIN’s dual TD; 

 4.2) For the n vertices rj in TD, extract its direct incident facets as 𝑭𝑺 = {𝑻𝒊}𝒏
𝟏; 

 4.3) For each Tj in FS 
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 { 

  4.3.1) Compute its minimal bounding box BBoxj, quickly compute its intersection with oriPd using a kd-tree, obtain a 

narrowed reference geometry narrPd; 

  4.3.2) Compute exact intersection of Tj and narrPd, push the result into reference sets REF={refj}; 

 } 5 

 4.4) For each refj in REF 

 { 

  4.4.1) Compute approximated Voronoi barycentre: �̅� =
∑ 𝝆∙𝒙∙𝒂𝒓𝒆𝒂(𝒓𝒆𝒇𝒋)

∑ 𝝆∙𝒂𝒓𝒆𝒂(𝒓𝒆𝒇𝒋)
;  �̅� =

∑ 𝝆∙𝒚∙𝒂𝒓𝒆𝒂(𝒓𝒆𝒇𝒋)

∑ 𝝆∙𝒂𝒓𝒆𝒂(𝒓𝒆𝒇𝒋)
;  �̅� =

∑ 𝝆∙𝒛∙𝒂𝒓𝒆𝒂(𝒓𝒆𝒇𝒋)

∑ 𝝆∙𝒂𝒓𝒆𝒂(𝒓𝒆𝒇𝒋)
; 

  4.4.2) Use kt-tree for fast intersection computation of point (�̅�, �̅�, �̅�) and oriPd, with the result used as the projected 

nearest point; push it into the new candidate point set 𝑭’; 10 

 } 

 4.5) Using {B, C} as constraints, Delaunay triangulate point set {B, C, F’} and obtain reconstructed TIN’; 

 4.6) Compute E on TIN’; 

} 

 15 

Here, we illustrate this algorithm using a numerical mountain model. The analytic equation is 

𝑧 = (4𝑥2 + 𝑦2) ∙ 𝑒−𝑥2−𝑦2
 .          (5) 

It has two peaks, two saddles and a pit. We rasterise it with a 4949=2401 regular grid (Figure 1, left). For effectiveness, we 

set the transformation scale to 0.1 (Ratio = 0.1), that is, there are approximately 240 points left. The sample set includes 56 

boundary points, 5 critical points, and an additional 169 random points for visual saturation purposes (Figure 1, left; the red 20 

points are randomly generated points, the blue points are boundary points, and the green points are critical points). Relief 

feature points are always abundant in a real terrain dataset, so additional random points are rarely needed. A robust mean 

curvature estimation is computed on the original high-resolution surface oriPd (Figure 1, right), from which we can clearly 

distinguish critical points as peaks, saddles, and pits. The initially approximated TIN surface from the sample set is shown in 

Figure 2 (left), and its generated dual mesh is shown in Figure 2 (right), which corresponds to step 3 of Algorithm2. Figure 3 25 

shows the dual cell of the sample points, which is the key idea of the cCVT approximation. Figure 4 and Figure 5 show the 

algorithm steps 4.3.1 and 4.3.2, respectively, where the exact clipping is completed on the original DEM surface. Figure 6 

and Figure 7 show the final computation on the reference patch of the first sample point, which corresponds to the algorithm 

steps 4.4.1 and 4.4.2. Figure 8 exhibits the result of the first iteration, compared to that of the final iteration, with the initial 

sample points included (top). A comparison of the constructed approximate TIN grids of the initial state and final state is 30 

illustrated in the middle, while the curvature distribution that represents the terrain feature comparison is illustrated at the 

bottom. 

The results show how the embedded stationary points (control points and boundary points), feature points, and random 

points are spatially equalised (Figure 8). Additionally, the cCVT generated a variable-resolution terrain grid (middle right); 
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the convergent TIN grid exhibited nearly uniform high quality, and the convergence process generally resembled Lloyd’s 

Relaxation (Figure 9). 

Notably, the direct reference on the original DEM surface is realised by the exact geometry clipping, which linearly 

interpolated the high-resolution surface. This clipping technique has several important benefits: it guarantees accurate energy 

estimation, it avoids the generation of invalid clustering cells or zigzagging cells, and it promises exact site position 5 

calculation, which will result in improved grid quality. 

3 Multiresolution DEM Experiments 

3.1 Experimental datasets 

Two sites with significant geomorphological characteristics were selected. Experimental site 1 is Mount St. Helens, located 

in Skamania County, W.A., USA. This mountain is an active volcano whose last eruption occurred in May 1980, and deep 10 

magma chambers have been observed recently (Hand, 2015). This site was selected for its typical mountain morphology 

along cone ridges and evident fluvial features downhill, where heavy pyroclastic materials and deposits are present. These 

two distinctively different terrain structures mingle together, posing challenges for DEM generalisation. 

The St. Helens dataset was selected from the Puget Sound LiDAR dataset 

(http://wagda.lib.washington.edu/data/type/elevation/lidar/st_helens/). This LiDAR dataset was collected in late 2002. The 15 

selected dataset is a 29243894 regular grid with a 3 m cell size and covers an area of approximately 102 km2. The elevation 

ranges from 855.32 to 2539.34 m. The image and hillshade views of these data are illustrated in Figure 10. 

Experimental site 2 is the Columbia Plateau, USA. This area has been labelled UTM zone 11, so we hereafter call it UTM11 

(http://gis.ess.washington.edu/data/raster/tenmeter/). This LiDAR dataset was collected in 2009. The selected site is located 

on the border between Columbia County and Walla Walla County, WA. The southeastern corner is located in the Wenaha-20 

Tucannon Wilderness, Umatilla National Forest. This area contains rugged basaltic ridges with steep canyon slopes at high 

elevations (average of 1700 m). The northwestern area is located near Dayton City, which is a vast agricultural and ranching 

area with relatively smoother morphology at low elevations (average of 500 m). This site is selected due to the coexistence 

of these two different prominent surface morphologies. If the generalisation scheme emphasises the high-elevation areas 

with sharp variations, the surface interpolation as a whole might be unbalanced, which may result in smoothing of the low-25 

elevation areas. 

The selected UTM11 dataset is a 3875  3758 grid with a 10 m cell size and covers an area of over 1456 km2. The elevation 

ranges from 3533 to 19340 cm. The image and hillshade views of these data are shown in Figure 11. 

http://wagda.lib.washington.edu/data/type/elevation/lidar/st_helens/
http://gis.ess.washington.edu/data/raster/tenmeter/
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3.2 Comparison method 

As previously mentioned, DEM generalisation has long been studied in geoscience, and numerous methods have been 

proposed over time. One of the most classical approaches is the hierarchical insertion (or decimation) of feature points to 

construct a TIN grid under a destination scale. This type of heuristic feature point refinement (HFPR) performs very well in 

terms of surface approximation and terrain structure retention. For this reason, although HFPR methods generally cannot 5 

guarantee high-quality grids, these methods are suitable for comparison purposes. 

A typical HFPR starts with four corner points from a dense DEM image and constructs a Delaunay triangular grid that 

contains two triangles. The rest of the points are weighted according to their distances from the triangular surface or other 

error criteria and then queued. The point with the highest priority in the queue is selected, and the grid is modified using 

incremental Delaunay triangulation. This process repeats until some error threshold is satisfied (Heckbert and Garland, 1997). 10 

Michael Garland provided a classical HFPR implementation (http://mgarland.org/software.html), and many other variants 

are available in GIS, meshing, and visualisation tool suites. 

3.3 Quantitative comparisons 

We performed the processes from Algorithm2 for the two experimental datasets, including triangulation and curvature 

estimation, boundary point extraction and marking, feature point extraction based on curvature significance and marking, 15 

and optimisation loop through cCVT. For effectiveness, the transformation Ratio was set to range from 5% to 0.1% point 

density (comparable to the 3.1% to 0.6% setting in (Zhou and Chen, 2011)). 

The accuracy of the surface approximation determines the final surface interpolation precision and is thus a basic quality 

comparison index. Here, we applied a statistical interpolation method to measure the surface approximation precision. From 

each triangle on the cCVT-generated quasi-uniform TIN grid, a random point is selected and a vertical line is introduced to 20 

intersect the original dense DEM surface and the HFPR generalised TIN at the same time. Error estimates for the surface 

approximation could be obtained from these intersection points. We computed the mean error, maximum error, and root 

mean squared error (RMSE) for this elevation interpolation (TIN interpolation); the results are listed in Table 1. Furthermore, 

we computed the aspect ratios of the triangles for both generalised TIN surfaces to measure the grid quality, which are also 

listed in Table 1. RMSEs with various transformation Ratios are listed in independent rows and columns in Table 1. 25 

From the results in Table 1, we can conclude that under the same resolution (point density), the transformed DEM surface 

obtained using the cCVT method is generally more precise than that obtained using the HFPR method. In all cases, surface 

approximation precision (compared to the original) decreased as the resolution coarsened. 

3.4 Qualitative comparison 

A qualitative index is usually measured from the aspect of terrain structure retention. According to the resulting TINs from 30 

the two experimental datasets, both the cCVT and HFPR methods performed well based on visual examination. However, 
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upon closer inspection, the surface generated by cCVT has a smoother transition effect than that generated by HFPR (Figure 

12). HFPR accumulated more samples around sharp features (c.f. Figure 13), and its surface exhibited clearer impressions 

because flat details were smoothed out. From visual examination, it may be concluded that under the same transformation 

conditions, HFPRs may exert a stronger generalisation effect than cCVTs.  

However, a stronger generalisation effect actually decreases the precision of the general approximation, which may result in 5 

structural distortion or misconfiguration. Figure 14 illustrates a closer examination of St. Helens. Some structural details on 

the original surface were recovered by the cCVTs but not by the HFPRs. This terrain structure loss occurred on both smooth 

areas and steep areas, as illustrated in Figure 14. Figure 15 illustrates similar structural detail losses by the HFPRs in the 

UTM11 dataset. 

Terrain structural features could also be measured from DEM derivatives such as the slope, aspect, and hydrological 10 

structural lines. Here, we used contours to compare the generalisation accuracy using experimental site 2. For the same 

configurations (80 m elevation increments), we generated contours for the original dense TIN (rendered in red), the cCVT-

generated TIN (rendered in blue), and the HFPR-generated TIN (rendered in black), and overlaid the three sets of contours 

for comparison (Figure 16). The illustrations demonstrate that in most cases (Figure 16 b, c), the contours from the cCVT-

generalised surface accurately conform with those from the original dense surface, while the contours from the HFPR-15 

generalised surface generally did not, except for some cases in steeper areas with sharp curvature variations (Figure 16 d). 

This result can be explained by the HFPR’s stronger accumulation of sample points near sharp features, which guaranteed an 

edging out, if we noticed that the inspection area d is much smaller than b or c. 

4 Discussion 

Topography transformation of DEM surfaces has been a deeply studied topic in geoscience, simplification techniques and 20 

generalisation principles are widely realised and adopted. Extracting terrain feature points and using these points to construct 

a generalised surface has proven to be one valuable approach; its success may be due to the feature points’ strong capability 

to capture terrain structures. However, discrete surface as TIN grids that are constructed purely from feature points may not 

be best approximated to the original high-resolution surfaces. Take the mountain equation in Figure 1 as an example. It has 

at least two peaks, two saddles, and one pit close to the zero level. Assume that the scale transformation requires that only 25 

two critical points are left; selecting both peak points is more reasonable than selecting the pit point, even if the pit point has 

a stronger quantitative index (curvature in this case) than the peak points. This observation implies that if global surface 

interpolation precision is of more importantly demanded, a robust approach that has overall considerations on surface 

approximation and terrain feature retention should be adopted. 

Among those classical DEM generalisation approaches, heuristic feature point refinement is an outstanding example. As 30 

illustrated by Table 1, Figure 12, and Figure 16, HFPR methods perform excellently in terms of surface approximation and 

surface morphology retention. For the treatment of feature points, these methods use a heuristic strategy by incremental 
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Delaunay triangulation, which considers the point with the largest error with respect to the constructed TIN. However, the 

impact of the insertion of a new feature point on the inserted feature points is not considered due to computational burden. 

That is, modifications are only taken place on the triangle where the point with largest vertical error locates on. As a result, 

feature points may cluster around reliefs with sharp variations, as shown in Figure 12. Too many feature points accumulating 

near sharp features means that relatively few feature points are present in flat areas, which will eventually lead to terrain 5 

structure misconfiguration, as shown in Figure 14, Figure 15, and Figure 16. Sometimes, this type of structural loss is 

unacceptable. For example, the terrain relief at high elevation under the studied scale (10 m cell spacing) in experimental site 

2 exhibited a fiercer landform than at lower elevations. The accumulation of too many sample points in high-elevation areas 

may result in the distortion of the smooth anthropogenic terrain morphology in low-elevation areas. 

cCVT starts by constructing a terrain-adaptive variable-resolution grid. The cCVT iteration uses a robust mean curvature as 10 

density function which is based on the curvature’s capability to characterise shapes and conduct shape evolution. Under the 

curvature guidance, the two-step optimisation (c.f. Algorithm1 in Section 2.2) loops both to spatial equalisation and 

frequency equalisation. The process of spatial equalising of feature points has been seldom considered by classical 

approaches, which may explain why cCVT generally prevails over HFPRs (c.f. Table 1). Notably, the triangles from the 

spatial equalisation exhibited a maximum aspect ratio that was less than 5.0, which implies that the constructed terrain grid 15 

satisfied the numerical stability requirement from classical finite element or finite volume computations. 

On the other hand, CVT is an approach within variational framework. The result of the iteration depends on the boundary 

conditions and initial conditions. Hence, this article employed a feature point scheme (with additional input points 

considered) as a relatively stationary initial condition to maintain algorithm stability. The requirement of embedding feature 

points of interest, along with consideration of avoiding the problematic k-means like clustering, prompted us to develop a 20 

non-clustering approach with an exact energy referring method. Experiments on ten million DEM points demonstrated that 

the exact clipping approach performed comparably to the elegant clustering approach.  

5 Conclusions 

In this article, a high-fidelity multiresolution DEM model was proposed. The variable-resolution with high-fidelity was 

achieved by the developed curvature-based CVT. cCVT optimisation increases the precision of surface approximation 25 

compared to existing heuristic DEM generalisations, while the equalisation of feature points from the spatial domain 

guarantees a high-quality grid. 

Multiresolution models are essential tools to incorporate more scales, while a high-fidelity generalised DEM model can be 

used to construct a concrete topographic layer from which fine endogenous or exogenous processes can be assessed under 

proper scale conditions. Evaluation of the cCVT multiresolution DEM model on Earth and environmental systems over 30 

wide-ranged domains and scales is a topic for future studies. Furthermore, considering the topography over a wider range 
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may require re-implementing cCVT on the geographical coordinate base instead of on the currently used projection 

coordinate base. 
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Code Availability 

We implement the cCVT and the comparing classical k-means clustering CVT algorithm using c++ on the open-source 

Visualisation Toolkit (The VTK, https://www.vtk.org). The approximated dual operation through edge bi-sectioning is based 

on the implementation of Valette et al. (2008). If anyone is interested in the technical details of the implementation, please 

contact the corresponding author for the source codes, demo datasets and necessary guide for compilation. 5 
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Table 1 Quantitative comparison of the grid quality at scale transformation Ratio 1% 

Dataset 
Dense DEM 

Points 

Random 

Interpolation 

Points 

Approx. 

Method 

Mean 

Error 

(m) 

Max 

Error 

(m) 

RMSE (m) 

Max. 

Aspect 

Ratio 

St. Helen 3 m 11,386,056 230,909 
cCVT 0.0353 23.05 1.6145 3.23 

HFPR 0.1107 191.31 2.3714 9255 

UTM11 10 m 14,562,250 301,255 
cCVT 0.5773 37.70 3.77313 4.09 

HFPR 0.8765 487.81 6.71214 8426 

 

Interpolated elevation RMSEs (m) at varied scale transformation Ratios 

Dataset 
Approx. 

Method 
5%* 1% 0.5% 0.1% 

St. Helens 3 m 
cCVT 0.636 1.614 2.455 5.772 

HFPR 1.028 2.371 4.006 11.779 

UTM11 10 m 
cCVT 1.239 3.773 6.593 19.997 

HFPR 3.087 6.712 10.137 28.460 

* The Ratio percent number means n% points left. 
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Figure 1  High-resolution grid of a mountain equation (5). Left: original grid oriPd in 49×49 resolution, rendered in mean curvature. The 

sample points were also rendered on oirPd; the blue points are boundary points, the green points are critical points, and the red points are 

random points. Right: robust mean curvature estimation. The saddle terrain features, peaks, and pits can be distinguished, compared to the 

depiction on the left. 

 

Figure 2  Initial TIN surface (left) and its dual grid TD (right). The initial sample points on the dual grid are also rendered. 
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Figure 3  The triangles incident towards the first vertex ri on the dual grid comprise an initial approximated Voronoi cell (rendered as a 

blue wireframe); the centre vertex is rendered in red.  

 

Figure 4 A triangle Tj (rendered in semi-transparent blue) with its minimal bounding box’s intersection part narrPd with the original grid 

on the approximate grid (left), the localised intersection part narrPd (middle), and the intersection part on the original grid oriPd (right).  

 

Figure 5  Exact clipping steps of narrPd with Ti. The sequence from left to right illustrates the edge clipped results. 
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Figure 6  Reference patch refj on the original DEM surface of an initial Voronoi cell, with the centre at ri (left). Right: refj on the original 

DEM surface oriPd. 

 

Figure 7  Barycentre computation based on the reference patch refj; the original site is the white block in the circle, and the projection on 

oriPd of the newly computed site is depicted as the blue block in the circle. 
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Figure 8  Comparison of converged results. Top left: reconstructed TIN surface from one iteration, with the initial points presented. Top 

right: the converged TIN surface with the initial sites, after approximately 140 loops. Middle: the initial approximated TIN surface (left) 

and the final TIN surface (right). Bottom: curvature distribution on the original surface (left) and the generalised grid (right). 

   
Figure 9 Trajectories of point convergences. The red points indicate the initial sample set, and the trajectories show the convergence trends, 

with closer gaps between candidate points. The right side shows a close view of the convergence of two points. These trends imply that the 

cCVT’s convergence complies with Lloyd Relaxation linear convergence. 
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Figure 10  Experimental Site 1: Mount St. Helens. Left: image view. Middle: hillshade view. It is a 2924x3894 grid with a 3 m cell size. 

   

Figure 11 Experimental Site 2: UTM11 Zone. Left: image view. Middle: hillshade view. It is a 3875 x 3758 grid with a 10 m cell size. 
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Figure 12  Visual examination of St. Helens. Top: cCVT grid. Bottom: HFPR grid. The latter grid appears more rigid than the former, 

which implies a stronger generalisation effect. 
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Figure 13  Grid quality from an intuitive comparison. Top: cCVT-generalised grid with nearly uniform triangles. Bottom: HFPR 

generalised grid with irregular triangles. 
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Figure 14  Detail loss of the HFPR generalisation grid. The inspected area in the experimental site is bounded by the white rectangle (a); 

the magnified inspection area on the original dense TIN (b); the area on the cCVT-generalised TIN (c); and the area on the HFPR-

generalised TIN (d). From the close-up view, it can be seen that the HFPR method generates a rougher grid than the CVTs. Thus, 

structural distortion or misconfiguration might be introduced. 
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Figure 15  Detail loss from the HFPR method in the UTM11 dataset. (a) The inspection area in the entire experimental site. The magnified 

view of the inspection area is shown on the original dense DEM (b), on the cCVT-generalised TIN (c), and on the HFPR-generated TIN 

surface (d). The fold morphology in the white ellipse was recovered by the cCVT method but not by the HFPR method. 
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Figure 16  Comparison of the derived contour lines. The contours from the dense UTM11 dataset are shown in (a) and rendered in red. 

Three areas in the boxes were magnified to show the differences in the contour configurations. The blue contour lines are from the cCVT-

generalised TIN surface, and the black lines are from the HFPR-generated TIN surface. According to the illustrations in (a) and (b), the 

contours that were derived from the cCVT grid (rendered in blue) are more in line with those from the original dense surface (rendered in 

red). The contours from the HFPR grid (rendered in black) may sometimes edge out on areas with steep slopes, as shown in (d), because 

the HFPR method accumulated a relatively abundant of sample points around these areas. 
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