
Response to comment by A. Kerkweg:

Please add the name (LS-ADP ? ) and a version number for your algorithm in the title upon your
revised submission to GMD.

Thank you for this note, we added the name and the version of the model (LS-APC v1.0) into the title of the article.
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Response to Reviewer #1:

We would like to thank you for providing us with detailed reviews of our paper. We have considered all the comments
and notes and we are glad that we can submit a revised version of our paper. In the following text, we will respond
to all comments.

This paper provides an interesting description of a Variational Bayesian approach to source term
estimation that allows for the tuning of the hyper-parameters to be performed, based on the infor-
mation content of the measurements. The paper is a valuable contribution, in that the optimization
of the uncertainty hyper-parameters does not require pre-speci�ed or pre-optimized uncertainties,
as is often the case in Bayesian inversions. However, there are a number of issues that should be
addressed before the paper is ready for publication. The authors have omitted to mention a range
of studies in the literature that have previously addressed the problem of objectively de�ning these
hyper-parameters, and how this work compares to those that have gone before. In addition, the
paper is hindered by a lack of explanation in places, making it occasionally di�cult to follow. A more
thorough description of how this work compares to other hyper-parameter estimation approaches
is required, along with the remedying of other issues outlined below, in order for a more polished
manuscript to be produced.

1 Speci�c Comments:

1. Page 1, Line 24: �. . .this two-pronged approach. . .� What exactly is meant by this? Top-down
inversion studies are normally performed independently of the compilation of bottom-up inventory
studies.

We agree to this and have extended this sentence to: For determining the emissions of greenhouse gases into the
atmosphere, such an approach has become very common. In particular, total greenhouse gas emissions are the
result of both anthropogenic and natural emissions. Bottom-up inventories for anthropogenic emissions should,
at least in principle, be quite accurate but a veri�cation using top-down methods is desirable (Stohl et al., 2009;
Bergamaschi et al., 2015). Natural emissions are often poorly constrained with bottom-up methods and thus the
role of top-down methods is even more important (Tans et al., 1990; Rayner et al., 1999).

2. Page 2, Line 4: Could the authors be more speci�c as to what �other bottom-up information�
entails?

We agree that this formulation was a bit vague and have replaced "other bottom-up information can be very
incomplete or ..." with "information on the magnitude of the emissions, their temporal variations and, occasionally,
the emission altitude, can be very incomplete or ...."

3. Page 2, Lines 20-23: The authors have neglected to mention that many studies do not select these
tuning parameters subjectively, and there have been a number of studies that have de�ned objective
criteria for this purpose. For known location source-term estimation, examples include Davoine and
Bocquet (2007) or Winiarek et al. (2012). In trace gas inversions Michalak et al. (2005) optimized
covariance parameters using maximum likelihood estimation, and a similar approach was used in
Berchet et al. (2013). In a perhaps more closely related approach to variational Bayes, Ganesan et
al. (2014) used an MCMC method to estimate the hyper-parameters using the data. A discussion
of these other approaches is needed, in order to contextualise this work.

Thank you very much for this valuable comment. We studied the recommended papers and their followups. All
papers are very relevant and we extended the introduction of our paper. We added discussion on modeling of
covariance parameters from the application point of view to the third paragraph. We also added the word �statistical�
the the next paragraph the emphasize that the forth paragraph is review of statistical literature on the same topic.

4. Page 3, Line 7 & 10: The use of the term �State of the art methodology� is a bit of a push. The
work of Eckhardt et al. (2008) may provide a useful reference to compare to, but there have been
many examples of advances beyond the use of subjectively prescribed uncertainties since then (if
not before, see above).

We agree. What we meant here is not that Eckhardt et al. (2008) have developed the most advanced method, but
rather that it is a typical example of inverse modeling in the atmospheric sciences. We have replaced the term with
"standard methodology".
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5. Page 4, Algorithm 1: The term �stopcond� needs explaining, or some reference made to it in the
text.

First of all, we replaced the term �stopcond� by the symbol δ for consistency (parameters using Greek symbols).
We also added the comment on this stopping condition the the text.

6. Page 4, Line 4: What is meant by the �potential prior mean� and why is this subtracted from
both sides of the equation?

Wee agree that this formulation was misleading and we reformulated it completely. Here, we referred only to a
technical step (from (Eckhardt et al., 2008), Eq. (6) and (7)) where prior knowledge on source term, xa, is included
via change of coordinates M(x − xa) = M x̃. We now give a more general change of coordinates that can also
accommodate for known covariance matrix of observations.

7. Page 4, Line 11: �The method of Eckhardt et al. (2008) has Bayesian interpretation as a maximum
a posteriori probability estimate of the following model:� This sentence did not make sense to me,
please clarify or rephrase.

For a loss function used in an optimization based inference method, it is often possible to �nd a statistical model
that has logarithm equal to that loss function. It is certainly the case with the method of Eckhardt et. al. We
rephrased the introduction and extended description of the positivity enforcement using new equation (5), which
was added in reaction to request of Rev. 2. We hope that this new formulation is clearer.

8. Page 5, Line 8: Could the Variational Bayes approach also be extended to deal with this second
problem?

Indeed, it could be extended to the problem of model M selection. However, the extension is not trivial and is
beyond the scope of this paper. We also commented this in the revised paper.

9. Page 5, Line 10: �Approximate inference of these values does not yield acceptable results�. This
statement is too vague, please expand. Are the authors referring to MCMC approximations, and
if so why would these be unacceptable? As I understand, the advantage of Variational Bayes over
MCMC is mostly a matter of speed, but Variational Bayes may be more susceptible to bias. Perhaps
this could be commented on.

We agree that this formulation was too vague and we reformulated it. For Variational Bayes, there is a computational
problem in analytical solution of the determinant of the covariance matrix. However, it is true that it can be
overcome by MCMC. Probably more important reason for our choice was the ability of the prior to model abrupt
changes. We reformulated the whole paragraph.

10. Page 5. Line 22: �The selection of these constants will be discussed later in this paper.� It would
be helpful to point the reader to the exact section. As it stands, I am not certain that any discussion
on the selection of these constants actually appears in the text.

Indeed, there was little discussion on the choice of these parameters. The only requirement we put on these is
non-informativeness of the prior and therefore negligible impact on the results. These were chosen as 10−10 in
Algorithm 2. The whole sentence was rephrased.

11. Page 6, Lines 15-16: Given that the authors state that the expected values of l_j are either 0 or
-1, is there a need for such an uninformative range on l_j (-1 +/- 100)? What would be the e�ect
of a smaller range on l_j? Similarly what would the e�ect of further relaxation be, and why is this
not recommended?

Once again, we aim at as non-informative choice as possible. Value ±100 was chosen experimentally as a compromise
between non-informativeness and robustness/stability of the methods. Discussion on these prior constants was added
to the paper.

12. Page 7, Algorithm 2, 2 (c) and (d): It is unclear which equations in Appendix B de�ne the
covariance structure. I assume it is Eq. (B1), but this could be made more obvious.

We added the explicit referencing into the Algorithm 2 in order to clarify it.

13. Page 8, Lines 6-7: How much higher is the computational cost expected to be?

Exact increase of the computational cost is hard to evaluate. The dominating operation is inverse of the covariance
matrix which needs to be evaluated, hence, it scales with circa O(n2.4). We added this note into the paper.

14. Page 9, Lines 29-32: In A) what is the Lagrangian timescale? It would be helpful to explain why
di�erent results are expected for di�erent time steps, and what uncertainty running two di�erent
time steps might account for. It was a little surprising to �nd no subsequent discussion of the
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di�erences between con�gurations A and B. Why, for instance, is the artefact in ERA-Interim A not
seen in ERA-interim B?

We added more description for the FLEXPART runs. It is di�cult to explain exactly why simulation results are
di�erent with con�gurations A and B, as only con�guration A is physically correct. It is expected, however, that
con�guration B leads to systematically slightly smaller concentrations as the density di�erences in the boundary
layer are ignored with this option. At individual stations (especially stations close to the source) larger di�erences
can occur simply due to the inaccurate treatment of turbulent dispersion in con�guration B. This also depends on
the meteorological data input, and so it is not surprising to see larger di�erences with one meteorological data set
than with the other.

15. Page 10, Lines 13-14: For the avoidance of doubt please make clear which of 230 kg and 340
kg is the posterior and which is the true source term. Furthermore, there surely must be some
uncertainty on the posterior source term? �Quite similar� is a vague description, and may not be
entirely accurate given one term is 50% larger than the other. Could the authors comment on
whether the results are statistically similar?

Indeed, there is uncertainty in the estimated source term which can be quanti�ed using our algorithm. We added
the uncertainty bounds into the Fig. 4 where the 99% highest posterior density region is shown using gray �ll
region. We also agree that the statement �quite similar� was vague and we reformulated this in the paper. We now
compare the total true source term with highest posterior density region. However, we are aware that statistical
signi�cance of this results is still questionable since the uncertainty in M is not fully quanti�ed.

16. Page 11, Lines 3-4: What do the top rows in Figures 5 & 6 show? It is not immediately obvious
what the graphs are displaying, and it would help to explain this in the text. These graphs need
more explaining both in the text and the �gure caption.

We added the description to these graphs into the text and added a references into the captions. Since the algorithms
rely on tunning parameter α, we computed the source term for α ∈< e−15, e+7 > using each algorithm and then
computed the mean absolute errors between computed source terms and the true source term.

17. Page 11, Lines 18-20: I assume the range of possible solutions is shown by the blue �ll, but this
should be made explicit in the text and the �gure captions.

There was a mistake in the text in description of these �gures and we appreciate that you pointed out this. We
clarify this in the text as well as in captions of �gures.

18. Page 11, Lines 21-23: How long does it take to run, and how much more expensive is it than
the simpler techniques? How would the computational cost scale with the dimension of both the
parameters and data vectors?

We added comments on computational cost to the paper. Speci�cally, we added comment to the discussion on the
LS-APC algorithm in Sec. 3 and further discussion on computational cost on ETEX experiment at the end of Sec.
5.

19. Figure 5 & 6: Which tuning parameter does the x-axis refer to and does it have a unit? Shouldn't
the y-axis in the top panel also have units?

We refer here to the tunning parameter α. We clari�ed this by adding the symbol α to labels of the x-axis. This
parameter is dimensionless. Indeed, the y-axis in the top panel have units (kg) and we added the units to the label
of the axis.

2 Technical Corrections:

20. Throughout the manuscript I believe equations should be referenced as �Eq. (1)�. Similarly �g-
ures should appear as �Fig. 1�. Details of GMD guidelines can be found here: http://www.geoscienti�c-
modeldevelopment.net/for_authors/manuscript_preparation.html

Thank you for this note, we corrected the referencing through the whole paper in order to meet the house standard.

21. Page 9, Line 13: Figure 4 is referenced before �gure 3

This mistake was made during �nalizing the manuscript and is corrected now.

22. Figure 2: The x-axes appear to be missing a label. The dotted lines also appear very faint and
hard to see.
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We added labels �Time step� to the x-axis. Since it is simulated example, there is no need for units. We also
replaced the doted lines by dashed black lines which should be easier to recognize.

23. Figure 3: No x-axis label

We added the x-axis labels.
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Response to Reviewer #2:

We would like to thank you for providing us with detailed reviews of our paper. We have considered all the comments
and notes and we are glad that we can submit a revised version of our paper. In the following text, we will respond
to all comments.

In the paper the authors propose to apply the Variational Bayesian methodology to estimate the
tuning parameters of the objective function given in Eckhardt et al. (2008). The authors describe
the method and the algorithm to compute such tuning parameters. Then they show the performance
of the proposed algorithm using a synthetic dataset, and the ETEX dataset. Its performance in the
ETEX dataset is compared with the performance of other state-of-the art algorithms.

1 Speci�c Comments:

1. page 3, line 20: For clarity, the optimization problem can be written including the non-negative
constrain for x, x = argmin_x (J1 + J2 + J3) s.t. x >= 0

We agree that explicit statement is easier to follow and added a new equation (5) to emphasize it. It also makes
comparison with the probabilistic approach easier.

2. page 4, line 16: The Gaussian assumption is a good choice if, in fact, the errors in the model are
Gaussian. Otherwise, this can cause deviations in the estimation. The authors should justify why
the Gaussian assumption is a reasonable one in this case. Also, this particular regularization enforces
smoothness in the solution. It should be mentioned that it is not suitable for releases generated, for
example, during explosions

Thanks for this suggestion. Indeed, suitability of the prior to abrupt changes was one of our primary motivation.
It is now explicitly mentioned in the text. It is hard to justify the assumption of Gaussian noise since the residue
is of complex nature here. We have added a sentence that this choice is motivated by tractability of its inference.

3. page 5, line 1: gamma(x) should be de�ned more precisely.

The γ term is now de�ned in text as logarithm of the characteristic function. Since this is only a minor illustrative
point, we wanted to avoid the use of formal mathematical approach. The main point is that (9) and (5) are
equivalent problems, which is now explicitly stated.

4. page 5, line 16: why do the authors assume that the variance for all the measurements is the
same? Is it not more reasonable to de�ne w as a vector instead of a scalar?

It is important to distinguish if the covariance matrix of the observations is known or not. If it is known, it can be
used to transform the problem into isotropic noise. The explicit equations for this transformation have been added
to the paper.

A more demanding case is if we assume that the observation variance is unknown. Assuming completely independent
variance for each observation leads to over-parametrization which can be addressed only by introduction of further
restrictive assumptions. It is an interesting topic of future research, however, in our experiments the assumption of
same variance was found to be quite reasonable and robust choice.

5. page 5, line 20: the authors should explain why the gamma distribution is chosen to model w.

The gamma distribution was chosen due to conjugacy to the Gaussian distribution so the prior and the posterior
distribution have the same form in the Variational Bayes procedure which is bene�cial for computational reasons.
We commented this in the text a we added the citation for this model.

6. page 5, line 25: explain in more detail why this particular relaxation has been chosen.

This relaxation was made the preserve the tri-diagonality of the matrix Σx and using this model, each diagonal can
be modeled separately. We added the comment into the text.

7. page 6, line 16: The authors should explain why they conclude that a wider range for that
parameter l_j is not recommended. What are the e�ects if the range is wider?

We agree that this formulation need to be speci�ed. We reformulated the paragraph and discussion on these prior
constants was added to the paper.

8. page 6, line 23: does conditional independence make sense here? The authors should explain why
they are making that assumption.
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Indeed, this assumption seems arbitrary. Its motivation is primarily simple solution of the implied variational
problem. However, experience indicate that estimation of linear models under this assumption yields results very
close to much more expensive MCMC approaches. We added few references to relevant literature.

9. page 7, line 11: the derivation of the parameters is not in the Appendix B. Only the de�nition of
the parameters is given. An explanation on how the authors arrive there is recommended.

Indeed, teh parameers are not derived in Appendix B. Derivation of the parameters is long and routine procedure.
We have now added reference to a book where it is described and replaced he word derived by `given'.

10. page 8, line 1: since local minima exist, good initial points should be taken, or several initial
points may be considered.

Indeed, the initialization of the LS-APC algorithm needs to be selected. We extended description of the proposed
initialization in Algorithm 2. We have good experience with this choice in our experiments, however, it is not the
only possibility. Much more advanced search strategies for global solution using any global optimization method
are possible.

11. page 8, line 8: The authors should also comment on the convergence guarantees of the algorithm.

Actually, the VB algorithm converges only to local extreme as it is now cited in the text.

12. algorithm 2: Step 2 is not clear. Is <x>�(i) equal to <x>? What is exactly the analytic
expression for <x>�(i)?

Thank you for this remark, the description of the iteration indexing < x >(i) is certainly needed. We clarify this
when introducing the initialization of the algorithm. All required moments are given in Appendix A and detailed
references to particular equations have been added.

13. page 8 , line 12: The authors should provide the condition number of the matrix M.

We agree and we added the condition number of the matrix M into the text. Since the matrix is not ill conditioned,
we also reformulated the sentence.

14. Figure 2: x-axis labels are missing

The labels are added now.

15. page 8, line 14. It is not clear if the three 'sets' refer to three di�erent synthetic experiments,
or not.

In the synthetic experiment, the same matrix M was used. The di�erence is in the realization of noise, i.e. in vector
y. We added a comment into the description of the data.

16. page 8 : in the experiments with the synthetic dataset, it would be interesting to compare
the estimated parameters w.r.t their truth value, i.e. as in the case for the source term, a red line
representing the ground truth could be added in the other plots. It will give a more precise idea of
the quality of the estimate of the parameters.

Derivation of the ground truth for these parameter is not very clear. First, there is more ways how to de�ne the
�true prior covariance matrix�. One possible choice is the empirical covariance from the single realization of the
parameter. Then, the matrix has rank=1 and decomposition into choleski factors is not unique. There is a number
of matrices giving the same covariance. Probably the most illustrative example could be display of the implied
covariance as an image, such as:
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However, we are not sure that it would be understandable.

17. Matlab code: the Matlab code provided reproduces the results given by the LS APC algorithm.
To facilitate the reproducibility of all the results in the paper, the authors should include the code
used to generate the results given by the other algorithms as well.
We agree that it will be bene�cial to include also other algorithms into the code posted online. We include our
implemnetation of the LASSO and Tikhonov algorithm into the MATLAB package provided online. Evaluation of
the remaining methods was done using their code. The RegClean algorithm by Martinez-Camara et al., (2014), can
be downloaded as a supplement to their paper (published in GMD). The algorithm from Eckhardt et al., (2008), is
not implemented in MATLAB (see Eckhardt paper for details) so it would not be consistent to provide it together
with the LS-APC algorithm. Therefore, we are not redistributing these algorithms.
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LS-APC v1.0: A tuning-free method for the linear inverse problem
and its application to source term determination
Ondřej Tichý1, Václav Šmídl1, Radek Hofman1, and Andreas Stohl2

1Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic
2NILU: Norwegian Institute for Air Research, Kjeller, Norway

Correspondence to: O. Tichý (otichy@utia.cas.cz)

Abstract. Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is

typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g. concentrations or

deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model

multiplied by the unknown source term vector. Since this problem is typically ill-posed, current state-of-the-art methods are

based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual5

settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a prob-

abilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties.

Replacement of the maximum likelihood solution by full Bayesian estimation allows to estimate also all tuning parameters from

the measurements. The estimation procedure is based on the Variational Bayes approximation which is evaluated by an itera-

tive algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to estimate also10

all tuning parameters from the observations. The proposed algorithm is tested and compared with the state-of-the-artstandard

methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A

MATLAB implementation of the proposed algorithm is available for download.

1 Introduction

Estimating the emissions of a substance into the atmosphere can be done in two alternative ways: The first method, a bottom-15

up approach, is based on a (statistical) model describing the emission process. For greenhouse gases or air pollutants, this is

typically based on detailed country statistics (e.g., about energy use) and some proxy information (e.g., population distribution)

to spatially disaggregate the emissions. The other method, often called top-down approach (Nisbet and Weiss, 2010), makes use

of ambient measurements of the released substance (e.g., atmospheric concentrations) and a model for describing the behavior

of the substance in the atmosphere. The emissions are then constrained to values that are compatible with the measured data.20

The two approaches are complementary, where the top-down approach can be used to verify bottom-up estimates, to identify

problems in bottom-up emission inventories, or to improve these inventories (e.g., Lunt et al., 2015). For determining the

emissions of greenhouse gases into the atmosphere, such an approach has become very common. In particular, total greenhouse

gas emissions are the result of both anthropogenic and natural emissions. Bottom-up inventories for anthropogenic emissions
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should, at least in principle, be quite accurate but a verification using top-down methods is desirable (Stohl et al., 2009;

Bergamaschi et al., 2015). Natural emissions are often poorly constrained with bottom-up methods and thus the role of top-

down methods is even more important (Tans et al., 1990; Rayner et al., 1999).

For other emissions into the atmosphere, such as releases by nuclear accidents (Davoine and Bocquet, 2007; Stohl et al.,

2012), nuclear explosions (Issartel and Baverel, 2003), or for emissions of volcanic ash during volcanic eruptions (Kristiansen5

et al., 2010; Stohl et al., 2011), the problem is very different. While the emission location is often known and sometimes the

emission period can be estimated, other bottom-up information on the magnitude of the emissions, their temporal variations

and, occasionally, the emission altitude, can be very incomplete or, especially in real time, inexistent. In these cases, emission

estimates based on the top-down approach are often the only way to constrain the so-called source term, which quantifies the

emissions of a point source as a function of time and, sometimes, altitude. Still, the source term is one of the largest source10

of errors in modeling and predicting the pollutant dispersion in the atmosphere (Stohl et al., 2012). Since it is key information

for decision making in emergency response situations, any improvement of the reliability of the source term estimation is

important.

The common approach for source term determination is to combine data measured in the environment (e.g., radionuclide

concentrations downwind of the release site) with an atmospheric transport model in a top-down approach. Agreement between15

a model with calculated source term and measurements can be modeled and optimized using various parameter estimating

methods including the Bayesian approach (Bocquet, 2008), maximum entropy principle (Bocquet, 2005b), or cost function

optimization (Eckhardt et al., 2008). For computational reasons, this problem is typically formulated as a variant of linear re-

gression. The vector of measurements is assumed to be explained using a linear model with a known source-receptor-sensitivity

(SRS) matrix determined using an atmospheric dispersion model (Seibert and Frank, 2004) and an unknown source term vec-20

tor. Simple solution via the ordinary least-squares method typically yields a poor solution because the problem is often only

partially determined and ill-constrained by the available measurement data. Many regularization schemes taking into account

physically plausible ranges of parameter values such as non-negativity of the emissions, or other a priori information, for in-

stance on the duration of release, have been proposed providing more realistic solutions. However, especially if the a priori

information is incomplete, the regularization terms can also contain tuning parameters which are often selected manually and25

subjectively. The solution is subsequently highly sensitive to their choice. Therefore, many authors proposed inversion schemes

to reduce the dependency on these parameters. Davoine and Bocquet (2007) formulated the inversion problem as minimization

problem with Tikhonov regularization term. Similar model was used by Winiarek et al. (2012) where covariance matrices of

both, observation errors and source term, are assume to be diagonal with identical elements on each diagonal. The positivity

of the source term is enforced using truncation of negative estimates. Three estimation methods were studied to infer model30

parameters: L-curve, Desroziers’ scheme (Desroziers et al., 2005), and brute force using maximum likelihood screening. Di-

agonal matrices with different diagonal entries were considered in work of Michalak et al. (2005) where maximum likelihood

method was used to infer the model parameters. The model was extended by Berchet et al. (2013) where full covariance

matrices were considered. Desroziers’ scheme and maximum likelihood were used; however, heuristics need to be used due

to divergence of the algorithm after a few iterations. To cope better with full covariance matrix of measurements, Ganesan35
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et al. (2014) follow the work of Michalak et al. (2005) and propose a model for non-diagonal entries using exponential decay

with common autocorrelation timescale parameter weighted by estimated diagonal entries. Similar model was then used by

Henne et al. (2016) for both covariance matrices, measurement and source term; however, with fixed common autocorrela-

tion timescale parameter for non-diagonal entries. In this paper, we propose a probabilistic model that estimates such tuning

parameters from the data using a Bayesian approach with hierarchical prior.5

Most of the existing regularization techniques are based on restricted structure of the prior covariance matrix. Various

covariance structures for linear models have been studied extensively in the statistical literature, see, e.g., reviews (Pourahmadi

et al., 2011; Daniels, 2005). For example, a model of only diagonal structure of the covariance matrix has been proposed to

favor sparse solutions (Tipping, 2001). It is possible to use more complex models of the covariance structure using Cholesky

decomposition (Pourahmadi, 2000), its modifications (Daniels and Pourahmadi, 2002), or more general decompositions (Khare10

et al., 2011). The inference mechanism is usually a variant of Monte Carlo simulations. In this work, we choose the prior

covariance structure to have two main diagonals in modified Cholesky decomposition. The inference of the posterior is achieved

using the Variational Bayes method (Šmídl and Quinn, 2006) which is closely related to algorithms used in this application

domain.

We will illustrate the proposed approach in comparison with the commonly used method of Seibert (2001); Eckhardt et al.15

(2008) and with other state-of-the-art algorithms (Martinez-Camara et al., 2014), least absolute shrinkage and selection oper-

ator (LASSO) (Tibshirani, 1996), and the conventional Tikhonov regularization (Golub et al., 1999). We will show how the

formal Bayesian approach yields an iterative algorithm closely related to that of (Eckhardt et al., 2008). Many heuristic steps

in determining regularization parameters will be replaced by statistical estimates. The most significant advantage over the ref-

erence approach is estimation of the tuning parameters from the data. In effect, the proposed algorithm works without manual20

intervention. The only entries of the proposed algorithm are the vector of measurements and the SRS matrix calculated with

a dispersion model. The MATLAB implementation of the derived algorithm is freely available for download. The resulting

algorithm is tested and compared using real data from the European Tracer Experiment (ETEX).

2 Background

In this Section, we review the state of the art standard methodology, as described e.g. by Eckhardt et al. (2008), which is25

commonly used in source term determination and the Variational Bayes method (Šmídl and Quinn, 2006; Miskin, 2000) which

is the key methodology of this work.

2.1 State of the ArtStandard Methodology

We choose the work of Eckhardt et al. (2008) as a reference. It is only an example from a family of optimization methods

based on linear regression such as (Seibert, 2000), (Seibert, 2001), (Bocquet, 2005b), (Bocquet, 2008), or (Tarantola, 2005).30

The regularization is achieved by formulating a prior knowledge on the solution and using an iterative algorithm for removing

physically unrealistic values in the posterior solution. The basic inverse problem is formulated based on the following linear
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model,

y =Mx, (1)

where y is the vector of measurements (typically observed concentrations or, sometimes, deposition values), M is a known

source-receptor-sensitivity (SRS) matrix (Seibert and Frank, 2004), and x is the unknown source term vector. Solution of the

problem via the ordinary least-squares method is not feasible since matrix M is typically ill-conditioned.5

Regularization of the problem proposed in (Eckhardt et al., 2008) is based on minimization of the cost function J = J1 +

J2 + J3:

J1 =σ−20 (Mx−y)
T

(Mx−y) , (2)

J2 =xTdiag
(
σ−2x

)
x, (3)

J3 =ε(Dx)
T
Dx, (4)10

where the term J1 stands for the deviation of the model from the observation with scalar σ0 to be a standard error of the

observation; however, note that y andM are prone to errors and cumulate uncertainties from measurement and the atmospheric

transport model used for SRS calculations (including errors in the meteorological data used to drive the transport model); J1

therefore includes errors in the model M , mapped into observation space; the term J2 penalizes high values of the solution

where the penalty is inverse proportional to the assumed standard errors of each source term element aggregated in vector σx,15

where symbol diag() denotes a diagonal matrix with an argument vector on its diagonal and zeros otherwise; and the term J3

encourages smooth estimates of the source term x where D is a tridiagonal differential matrix numerically approximating a

Laplacian operator and the scalar ε weights the strength of the smoothness of the solution relative to the other two terms. Note

that we assume the smoothness in time as it is used in (Stohl et al., 2011). This assumption may not be valid in cases such as

explosions, which cause abrupt change in the source term.20

Note that model (1) can be also used for problems with non-zero prior mean x0 and known covariance matrix of the

observations, R. Using Choleski decomposition of the observation covariance matrix, R= ΨΨT , the original model can be

written in form y =Mx+ Ψe, where e is an isotropic noise and x is assumed to have prior mean x0. Then, transformation

x = x−x0, M = Ψ−1M, y = Ψ−1(y−Mx0) maps such a model into form (1) with zero mean prior and isotropic noise

assumption.25

This minimization problem leads to a system of linear equations that is solved for the source term x. Since the solution is

assumed to be positive, the optimization problem is subject to x≥ 0:

〈x〉= argmin
x

(J1 + J2 + J3) , subject to x≥ 0. (5)

This restrictions is achieved in the iterative algorithm by replacing all negative values by an arbitrary small positive number

together with a reduction of their standard errors to force these values closer to the non-negative prior solution. This can be30

formalized by the selection of stop condition for ratio between negative and positive part of solution as
〈x〉neg

〈x〉pos
< δ, where δ is

a selected threshold. For the estimation algorithm, proper values of parameters σ0, σx, and ε need to be preselected manually
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Algorithm 1 The main ideas of algorithm from (Eckhardt et al., 2008).

1. Iterate until sufficient solution 〈x〉 is obtained:

(a) Choose parameters σ0, σx, ε, and stopcond δ.

(b) Iterate until
〈x〉neg

〈x〉pos
< δ or maximum number of iteration is reached:

i. Solve minimization problem given by Eq. (2)–(4).

ii. Change negative parts of x to arbitrary small positive random numbers, reduce related variances σx for negative parts of

solution and increase variance σx for positive parts of solution.

(c) Report estimated source term 〈x〉.

and potentially changed repeatedly until an acceptable solution is obtained. The main ideas of the algorithm are summarized

in Algorithm 1.

2.2 Bayesian Interpretation of the Reference Method

The method of (Eckhardt et al., 2008) can be interpreted as a maximum a posteriori probability estimate of a particular

probabilistic model. Specifically, the Gaussian observation model with truncated Gaussian prior distribution of the source term5

p(y|x) =N (Mx,σ2
0In)∝ exp

(
−1

2
σ−20 (Mx−y)

T
(Mx−y)

)
(6)

p(x|Σx) = tN (0,Σx)∝ exp

(
−1

2
xTΣxx

)
χ(xi > 0), (7)

Σx = (diag
(
σ−2x

)
+ εDTD)−1. (8)

where N (µ,Σ) denotes a multivariate Gaussian distribution with mean µ and covariance matrix Σ, In is the n×n identity

matrix, tN (µ,Σ,〈0,∞〉) is a truncated Gaussian distribution with parameters µ,Σ and support (domain) of physically realistic10

values restricted to positive values of all entries of the vector x = [x1, . . . ,xn], see Appendix A. The choice of Gaussian

distribution is motivated primarily by tractability of its inference.

The logarithm of the posterior probability of the unknown x has the form

logp(x|y) =−1

2
(J1 + J2 + J3) + γ(x) + c, (9)

where γ(x) is the logarithm of the characteristic function term enforcing positivity, (see Appendix A), and c aggregates all15

terms independent of x. Maximization of the log-likelihood is then equivalent to minimization of the cost function of the

reference method (5) where γ(x) is the barrier function of the constraint on x.

While interpretation of positivity by truncated normal distribution is non-standard, it has the same effect as the ‘subject to’

constraint. The maximum likelihood estimate is the value of µ if µ > 0 and it is zero otherwise, Fig. 1.

The maximum likelihood solution is the simplest case of Bayesian inference. Application of full Bayesian inference (i.e.20

evaluation of full posterior distribution and their marginals) can address two important problems:
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1. selection of tuning parameters σ0, σx, and ε which are considered to be hyper-parameters and estimated from the data,

2. selection of the appropriate model M via Bayesian model selection.

We are concerned only with the first problem in this paper while matrix M is considered fixed. Extension of the proposed

methodology to Bayesian model selection is possible (Bishop, 2006), however it is rather long and its proper treatment is

beyond the scope of this paper. Full Bayesian treatment of the unknowns σ0, σx, and ε is not analytically tractable. Approximate5

inference of σ0 and σx is possible, however estimation of ε in represents a challenge since the determinant of the covariance

becomes too complex. Moreover, common variance of temporal derivative of the source term may not be realistic, since it is

subject to abrupt changes cause e.g. by explosions. these values does not yield acceptable results. Therefore, we will present

results for a different and more complex structure of the prior variance Σx that allows stable and reliable estimation of the

source term vector x via the Variational Bayes method.10

3 Probabilistic Model with Unknown Prior Covariance

We formulate the probabilistic model to cope with the linear inverse problem, Eq. (1), and derive an iterative algorithm to

estimate parameters of this model.

3.1 Observation Model

The observation model is identical to Eq. (6), i.e. the isotropic Gaussian noise model1. However, we will consider the precision15

(inverse variance) of the observations to be unknown, parameterized by ω−1 = σ2
0 ,

p(y|x,ω) =Ny

(
Mx,ω−1Ip

)
. (10)

Since ω is unknown and will be estimated, similarly to Tipping and Bishop (1999), we define its own prior distribution in the

form of the Gamma distribution (which is conjugate prior for precision of the Gaussian distribution) as

p(ω) = G (ϑ0,ρ0) , (11)20

with chosen prior constants ϑ0,ρ0. These constants are needed for numerical stability, however, they are set as low as possible

to provide non-informative priorThe selection of these constants will be discussed later in this paper, see Algorithm 2.

Note that the model with different elements on diagonal of the covariance matrix of measurements were also studied in

literature, see e.g. Michalak et al. (2005). Modification of the proposed algorithm to diagonal precision matrix with unknown

elements on the main diagonal is very simple., Hhowever, such a model was found to be susceptible to local optima than the25

presented model. The presented model was found to be more reliable in practical tests.

1Gaussian noise with an arbitrary known covariance matrix can be transformed into this form by scaling of the observations and the SRS matrix.
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3.2 Prior Model

We use the same prior for the source term vector as in Eq. (7), with the exception that the prior covariance of x, denoted as Σx,

is unknown. Note from Eq. (8) that the covariance matrix is a band matrix with predefined structure; tridiagonal matrix in this

case. Relaxing the assumption of knownthe tridiagonal structure we consider the following structure of the prior covariance:

Σx =LΥLT . (12)5

It is composed of diagonal matrix Υ = diag(υ), with unknown positive diagonal entries forming vector υ = [υ1, . . . ,υn] and

zeros otherwise. L is a lower bidiagonal matrix

L=


1 0 0 0

l1 1 0 0

0
. . . 1 0

0 0 ln−1 1

 , (13)

with unknown off-diagonal elements forming a vector l = [l1, . . . ln−1]. This considerations preserve the tridiagonal structure

of the covariance matrix Σx and allow us to model each diagonal separately. The task is to introduce prior models for vectors10

υ and l whose estimates fully determine the decomposition in Eq. (12).

The prior model of the vector υ is selected as

p(υj) = Gυj (α0,β0) , ∀j = 1, . . . ,n, (14)

where α0,β0 are selected non-informative prior constants, see Algorithm 2. The prior model of the vector l is selected in a

problem specific way. Note that for lj = 0, model in Eq. (12) corresponds to Eq. (8) with ε= 0. For lj =−1, model in Eq.15

(12) corresponds to Eq. (8) with ε→∞. Since we expect the result to be within this interval, we define the prior on lj to be

independently Gaussian distributed with unknown precision ψj :

p(lj |ψj) =Nlj
(
l0,ψ

−1
j

)
, (15)

p(ψj) =Gψj
(ζ0,η0) , ∀j = 1, . . . ,n− 1, (16)

where ζ0,η0 are selected prior constants. Since we expect the neighboring values xi and xi+1 to be either uncorrelated (lj = 0)20

or correlated (lj =−1) we choose parameters l0, ζ0,η0 to cover these extremes with preference for a value l0 =−1, and

precision ψj set around this value using selection ζ0 = η0 = 10−2. This allows parameter lj to vary in the range circa−1±100

which we consider to be sufficiently non-informative. Lower values of ζ0 and η0 results in posterior estimates closer to l0.

On the other hand, Ffurther relaxation of these parameters to a wider range results in higher sensitivity to local extremes and

potentially numerical instability.is not recommended.25

The joint model of the full distribution is then:

p(y,x,υ, l,ψ1,...,n−1,ω) = p(y|x,ω)p(x|υ, l,ψ1,...,n−1)p(υn)

n−1∏
i=1

p(υi)p(li|ψi)p(ψi). (17)

Estimation of all unknown parameters can be obtained by the Bayes rule which is however computationally intractable.
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3.3 Iterative Variational Bayes Algorithm

Following the Variational Bayesian methodology (Šmídl and Quinn, 2006), we seek a posterior distribution in a very specific

form, satisfying posterior conditional independence:

p(x,υ, l,ψ1,...,n−1,ω|y)≈ p(x|y)p(υ|y)p(l|y)p(ψ1,...,n−1|y)p(ω|y). (18)

The best possible approximation is defined as a minimizer of the Kullback-Leibler divergence (Kullback and Leibler, 1951)5

between the solution and the hypothetical true posterior. The choice of this form is motivated by simplicity of evaluation and

experience indicates that it is a very good approximation for linear models (Bishop, 2006; Šmídl and Quinn, 2006).

The necessary conditions of the best approximation uniquely determine the form of the posterior distributions. These were

identified to be as follows:

p̃(x|y) =tNx (µx,Σx) , (19)10

p̃(υj |y) =Gυj (αj ,βj) , ∀j = 1, . . . ,n, (20)

p̃(lj |y) =Nlj
(
µlj ,Σlj

)
, ∀j = 1, . . . ,n− 1, (21)

p̃(ψj |y) =Gψj
(ζj ,ηj) , ∀j = 1, . . . ,n− 1, (22)

p̃(ω|y) =Gω (ϑ,ρ) . (23)

The shaping parameters of posterior distributions, Eq. (19)–(23), µx,Σx,αj ,βj ,µlj ,Σlj , ζj ,ηj ,ϑ,ρ, derived according to the15

standard Variational Bayes procedure, see (Šmídl and Quinn, 2006), are derivedgiven in Appendix B. The shaping parameters

are functions of standard moments of posterior distributions, e.g. 〈x〉,
〈
xxT

〉
and

〈
xTx

〉
for the distribution p̃(x|y). Symbol

〈x〉 denotes the expected value with respect to the distribution on the variable in the argument. The shaping parameters and

the required moments form a set of implicit equations which is solved iteratively using Algorithm 2. Good initialization

should be considered since convergence only to the local minima is guaranteed (Šmídl and Quinn, 2006). We propose to20

initialize the algorithm by solution of the ordinary least squares with Tikhonov regularization tuned such that the data and the

regularization term have equal scale. It is achieved by choice of the initial value of the estimate of the precision parameter

〈ω〉(0) = 1
max(MTM)

. Here, superscript (i) is used to denote iteration number of the algorithm. The algorithm will be called

Least Squares with Adaptive Prior Covariance (LS-APC) and is freely available for download from http://www.utia.cz/linear_

inversion_methods.25

Note that the algorithm is closely related to Algorithm 1 of the reference method. It also iteratively solves the least squares

problem but with adaptive tuning of its parameters. The proposed method has the following differences:

1. The algorithm is largely tuning-free, i.e. all hyper-parameters ω,li,υi,ψi are estimated from the data. The results may

slightly differ for different choices of the initial conditions since the Variational Bayes solution may suffer from local

minima. The most sensitive initial value is 〈Υ〉(0) of tuning parameter γ. The sensitivity of the solution to this initial30

choice is very low which will be discussed in Section. 5.2.
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Algorithm 2 Least Square with Adaptive Prior Covariance (LS-APC) algorithm.

1. Initialization

(a) Set prior parameters ϑ0,ρ0,α0,β0 to non-informative values of 10−10 (yielding non-informative priors). Values ζ0,η0 are set

to physically meaningful values of 10−2.

(b) Set initial values (denoted by zero iteration number in superscript (0)) used in computation of the covariance matrix of the source

term, Σx: 〈ω〉(0) = 1
max(MTM)

, 〈Υ〉(0) = γIn, and 〈L〉(0) = In. If γ is not specified use γ = 1.

(c) Set iteration index i= 1.

2. Iterate until convergence or maximum number of iterations is reached:

(a) Compute estimate of the source term 〈x〉(i) using least squares:

Σ(i)
x =

(
〈ω〉(i−1)MTM +

〈
LΥLT

〉(i−1)
)−1

, (24)

µ(i)
x = Σ(i)

x

(
〈ω〉(i−1)MTy

)
, (25)

using moments of the truncated normal distribution, Eq. (A).

(b) Update estimates of 〈Υ〉(i) and 〈L〉(i), using Eq. (B2)–(B4) defined in Appendix B,

(c) Compute precision parameter 〈ω〉(i) using Eq. (B5) in Appendix B.

3. Report estimated source term 〈x〉 and its uncertainty Σx.

2. Since estimating the hyper-parameter values requires the calculation of the variance of the posterior distribution, the

covariance matrix of the least squares problem needs to be evaluated; the cost of this operation is circa O(n2.4) in each

iteration. This implies a slightly higher computational cost compared to Algorithm 1 where this matrix is not needed.

3. The method of positivity enforcement is replaced by moments of the truncated normal distribution.

4 Verification Using a Synthetic Dataset5

To test the proposed LS-APC algorithm and to demonstrate its performance, we design a synthetic dataset before performing

a real data experiment. We generate elements of the matrix M ∈R20×10 as random samples from an uniform distribution

between 0 and 1 and elements less then 0.5 were cropped to 0 to obtain an ill-conditionedreduce the condition number of the

matrix M (which is 6.69 in l2-norm in this dataset). The source term is generated as xtrue = [0,0,0,1,1,1,0,0,0,0] as shown

in Figure. 2, top row, using dashed red line. The vector of measurement data is generated according to the assumed model in10

Eq. (1) as y =Mx+ e where three sets are generated with the same matrix M but with different levels of the noise term e.

Each element ej is generated randomly asN (0, c2k) where the coefficients are set as c1 = 0 for the set 1, c2 = 0.4 for the set 2,
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and c3 = 0.8 for the set 3. Then, negative elements of y are cropped to 0. Note that these data are supplied together with the

LS-APC algorithm as a tutorial example.

The results from the LS-APC algorithm for this dataset are given in Figure. 2. The estimates of the source term are shown

in the uppermost row (solid blue lines) together with the simulated true source term (dashed red line). The estimated values of

the vector 〈υ〉, i.e. the diagonal of the matrix 〈Υ〉, are displayed in the second row. This parameter models the sparsity of the5

solution where a higher value signifies higher confidence that the corresponding element of the solution is zero. The parameter

〈l〉 modeling the smoothness of the solution is shown in Figure. 2, bottom row. Note that at the constant parts of the solution

this parameter is approaching -1, signifying highly correlated neighboring elements, while it is approaching zero at the time

of the step change, indicating uncorrelated neighbors. The two parameters 〈υ〉 and 〈l〉 can also compensate one another, as is

demonstrated on the falling edge of the source term. Instead of the expected zero in the smoothness parameter l6, the posterior10

value is close to the prior. The difference in the data is compensated by the sparsity parameter υ6 which is very low, indicating

very low confidence in this value.

The quality of the reconstruction depends on the noise level, as demonstrated in individual columns of Figure. 2. As expected,

the source term is reconstructed precisely when the data are noise free (Figure. 2, left column). With increasing noise, the

reconstruction departs form the ground truth (Figure. 2, middle column), however, the start and end of the release is still15

estimated with sharp raising and falling edges. The estimate is also sparse, i.e. the estimated values of the source term outside

of the true release window are zero. Note that this result was achieved with standard deviation of the noise equal to 40% of the

released quantity. Naturally, with even higher noise (standard deviation equal to 80% of the released quantity, Figure. 2, right

column), the estimates also depart from the ideal shape and yields undesired artifacts.

5 Experimental Results for the ETEX Data20

The European Tracer Experiment (ETEX) took place at Monterfil in Brittany, France, on 23th October 1994 (Nodop et al.,

1998). Its attractiveness is that it is one of a very few controlled large-scale tracer release experiments with a large amount of

available information, see https://rem.jrc.ec.europa.eu/etex/. During ETEX, two release experiments were made. We use here

only the data from the first experiment (ETEX-I), for which atmospheric dispersion models generally performed much better

than for the second experiment, e.g., (Stohl et al., 1998). During ETEX-I, a total amount of 340 kilograms of perfluoromethyl-25

cyclohexane (PMCH) was released at a constant rate during nearly 12 hours. PMCH is nearly inert in the atmosphere and

does not experience dry deposition or wet scavenging and is thus suitable for testing how well transport models can handle

atmospheric dispersion. Atmospheric concentrations of the released PMCH were monitored across Europe by a network of 168

measurement stations with a sampling interval of 3 hours over a period of 72 hours. The release location and station locations

are shown in Figure. 3. The ETEX data set has been used previously for testing inverse models, e.g., by (Bocquet, 2005a,30

2007), (Krysta et al., 2008), and (Martinez-Camara et al., 2014).

To construct the SRS matrix M , we used version 8.1 of the Lagrangian particle dispersion model FLEXPART (Stohl et al.,

2005, 1998). An earlier version of the model was evaluated against the first ETEX experiment and revealed relatively good
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performance compared to other models (Stohl et al., 1998). We assumed that the release location is known, and that the release

occurred during a 5-day period including the true release time but that the source term (i.e., released amount as a function of

time) is not known. Thus, we performed 120 forward calculations from the release site, each for a hypothetical unit release

during a one-hour period. For each of these unit release simulations, the simulated tracer concentrations were sampled at all the

measurement station locations and during the exact measurement times (in total, 3102 measurements were made), to construct5

the SRS matrix M of the size 3102×120. The SRS matrix was used together with the observation vector, y, of size 3102×1, to

reconstruct the source term, vector x of the size 120× 1. The reconstructed source term can then be compared with the known

true source term, to evaluate the skill of the reconstruction. The same set-up was used by Martinez-Camara et al. (2014) to test

a method to blindly remove outliers.

For running FLEXPART, we have used meteorological input data from the European Center for Medium-Range Weather10

Forecasts (ECMWF). Different data sets are available from ECMWF and we have used two different data sets: 1) Data from

the 40-year re-analysis (ERA-40); 2) Data from the continuously updated ERA-Interim re-analysis. For both meteorological

data sets we have run FLEXPART in two different configurations:

A) with the model time step in the boundary layer limited to less than 20% of the Lagrangian timescale and a maxi-

mum value of 300 s;15

B) with time step only limited by 300 s, which may be chosen for computationally demanding real-time simulations.

The Lagrangian time scale depends on the turbulence conditions in the planetary boundary layer and is computed in FLEX-

PART for every particle at every individual time step. Lagrangian time scales can be very short (order of seconds) and, thus

option A requires very short numerical integration time steps. Close to a source, this is the only accurate way of ensuring

the well-mixed condition and a correct simulation of near-field dispersion. Over longer transport distances, such an accurate20

description of small-scale turbulent transport is often not necessary as transport errors are dominated by other sources of error

(such as errors in large-scale wind fields). Thus, compromises are often made in numerical simulations, especially for real-time

model applications, where longer time steps are used. This is explored with configuration B.

While the differences between these simulations are actually rather small in terms of simulated SRS values, they can serve

as a lower estimate of the uncertainty associated with the SRS calculations and can still produce quite substantial differences25

in the retrieved source terms.

5.1 Source Term Estimation Using LS-APC Algorithm

The task is to estimate the original source term x based only on the available measurement data. The aAlgorithm 2 was applied

to the selected example data ETEX ERA-Interim B and the results are presented in Figure. 4. In the top panel of Figure. 4,

the red line denotes the true source term while the blue line denotes the estimated source term 〈x〉 accompanied by the 99%30

highest posterior density region is given using gray fill region. The estimated sparsity parameter 〈υ〉, i.e. the diagonal of the

matrix 〈Υ〉, is given in the middle panel of Figure. 4, and the estimated smoothness parameter 〈l〉, i.e. second diagonal of the

matrix 〈L〉, is given in the bottom panel. Note that the sparsity parameter is approaching 1010 (value determined by α0 and β0)
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at times when no release occurred; therefore, the posterior mean value is close to the prior value, which is zero. The posterior

mean value of the smoothness parameter lj is −1 when the neighboring values of the solution are close to each other. During

periods of rapid change of the release, the estimate of the smoothness parameter approaches zero.

While the reconstructed source term does not agree exactly with the known source profile, the true total of the source term,

i.e. 340kg, is on the edge of the 99% highest posterior density region which is (120,340)kg. This result is achieved without any5

tuning of the internal parameters of the FLEXPART dispersion model. Also the timing of the release is well captured, although

the reconstructed release shows some variation during the release period, while the true release rate was constant. Furthermore,

the reconstruction suggests some small release to occur also after the true release has ended. The quality of the reconstruction

is comparable to or better than previous reconstructions of the ETEX source term (e.g., Seibert and Stohl, 1999; Bocquet,

2005a, 2007; Martinez-Camara et al., 2014. Note that these results were obtained without setting any tuning parameters, all10

regularization parameters are estimated from the data within the iterative algorithm. The sensitivity of this approach to the

initial values and assumed uncertainties will be studied in comparison with other algorithms.

5.2 Comparison and Sensitivity Study

We compare results from the proposed LS-APC algorithm, Algorithm 2, with those obtained from (Eckhardt et al., 2008),

Algorithm 1, with the RegClean algorithm (Martinez-Camara et al., 2014), the least absolute shrinkage and selection operator15

(LASSO) (Tibshirani, 1996), and the Tikhonov regularization (Golub et al., 1999). Specifically, we study the ability of the

proposed solution to regularize the problem for different choices of the selected tuning parameters. It was found that the results

of Algorithms 1 and 2 are most sensitive to initial values of the sparsity parameters, σx and υ respectively. Similarly, the

RegClean, LASSO, and Tikhonov algorithms also have parameters influencing preference for penalization of large values of the

solution (e.g. the α parameter of the Tikhonov and LASSO regularization). Thus, we run all five algorithms with this selected20

tuning parameter set in points of interval α ∈< e−15,e+7 > for four ETEX datasets. That is, for the methods with diagonal

choice, e.g. the reference method in Algorithm 1, we set σ−2x = αIn. For the LS-APC algorithm, this choice influences only

the initial value of the regularization parameter via γ = α.

All remaining parameters of the other methods were kept at their default values (RegClean) or set to best performing values

(Algorithm 1). Evaluation of the results was performed on the metric of mean absolute error (MAE) between the true and the25

estimated source term:

MAE =
1

n

n∑
j=1

|xj,true−xj,estim|. (26)

The resultscomputed MAEs between the true source term and the estimated source term for all methods atand for the same

range of the tuning parameters α are displayed in Figure. 5 for ETEX ERA-40, and in Figure. 6 for ETEX ERA-Interim, top

rows. The estimates of the total released mass for all methods and for the same range of the tunning parameter α are displayed30

in the bottom row of Figures. 5 and 6. Note that all methods achieve similar results although for different values of the tuning

parameters. This is most obvious in the estimate of the total released mass, where each method has a range of tuning values

yielding the same estimate. This looks like a plateau on the curve. The value of the total released mass at this plateau is very
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similar for all methods. The exception is the experiment ERA-Interim A, where the curves of the estimated total released mass

contain two plateaus. Comparison with the true total released mass of 340 kg is misleading in this case since the plateau at 180

kg is due to an artifact, as discussed below.

Examples of results from all algorithms for all settings of the regularization parameter for ETEX ERA-Interim B are dis-

played in Figure. 7 and for the problematic mode of ETEX ERA-Interim A in Figure. 8. The true source term is denoted by5

the dashed red lines and the estimated source terms are denoted by the same lines as in Figures 5 and 6using blue lines. For

LS-APC, all estimates are overlapping, for algorithms sensitive to this choice, the lines form an area. Note that the ETEX

ERA-Interim A has a strong artifact at the first element of the solution since all receptors have high sensitivity to it (high values

in the first column of the SRS matrix). Thus, non-zero value of the first element of x can explain a part of the observation.

Note that the LS-APC algorithm provides results that are almost insensitive to the value of the tuning parameter (used only10

as a starting point). Moreover, the results of the LS-APC algorithm correspond to the results of other methods with best tuned

parameters. However, the proposed algorithm still suffers form local minima as demonstrated in the case of ETEX ERA-Interim

A. However, the same local minima are visible for the other methods as well. Despite this non-uniqueness, the algorithm still

provides only two possible solutions in contrast to the other algorithms that yield a range of possible solutions for different

settings of the tuning parameters as can be seen in Figures. 7 and 8.15

The computational cost of the proposed algorithm is higher than simple techniques such as LASSO and the Tikhonov

regularization since least squares fit calculations are run in each iteration. The convergence is typically reached in tens of

iterations. All experiments were run with 100 iterations where the equilibrium was always reached. The runtime of the full

iterative algorithm is 3.3 seconds for n= 120 on a conventional PC with Intel Core i7-870 CPU. Scaling of the algorithm to

higher dimension is dominated by the inverse of n×n matrix which scales with O(n2.34).20

6 Conclusions

We present a novel algorithm for the linear inversion problem which is applied to the problem of source term determination for

pollutant releases into the atmosphere. It is closely related to the common optimization based techniques with regularization.

The model is based on a probabilistic formulation with unknown prior covariance matrix. Application of the Variational Bayes

method to the proposed probabilistic model results in an iterative algorithm that is closely related to the existing algorithms.25

The key difference is that the new algorithm estimated all hyper-parameters from the data without human interaction.

The proposed algorithm was validated using data from the ETEX experiment. It was shown that the LS-APC algorithm

provides more consistent estimates of the source term with very little influence from initialization and with no need of human

interaction. Therefore, the algorithm seems particularly suited for real-time applications where there is no time for manually

setting tuning parameters.30
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Code availability

The code for the LS-APC algorithm is available upon request for academic and non-commercial use from the corresponding au-

thor or through the following link: http://www.utia.cz/linear_inversion_methods. The implementation is provided in MATLAB

while no additional toolboxes are required for the algorithm.
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Appendix A: Truncated Normal Distribution

Truncated normal distribution, denoted as tN , of a scalar variable x on interval [a;b] is defined as

tNx(µ,σ, [a,b]) =

√
2exp((x−µ)2)√

πσ(erf(β)− erf(α))
χ[a,b](x), (A1)

where α= a−µ√
2σ

, β = b−µ√
2σ

, function χ[a,b](x) is a characteristic function of interval [a,b] defined as χ[a,b](x) = 1 if x ∈ [a,b]10

and χ[a,b](x) = 0 otherwise. erf() is the error function defined as erf(t) = 2√
π

∫ t
0
e−u

2

du.

The moments of truncated normal distribution are

〈x〉= µ−√σ
√

2[exp(−β2)− exp(−α2)]√
π(erf(β)− erf(α))

, (A2)

〈
x2
〉

= σ+µx̂−√σ
√

2[bexp(−β2)− aexp(−α2)]√
π(erf(β)− erf(α))

. (A3)

For multivariate case, see (Šmídl and Tichý, 2013).15

Appendix B: Shaping Parameters of Posterior Distributions

Σx =
(
〈ω〉MTM +

〈
LΥLT

〉)−1
, µx =Σx

(
〈ω〉MTy

)
, (B1)

α=α0 +
1

2
1n,1, β =β0 +

1

2
diag

(〈
LTxxTL

〉)
, (B2)

Σlj =
(
〈υj〉

〈
x2j+1

〉
+ 〈ψj〉

)−1
, µlj =Σlj (−〈υj〉〈xjxj+1〉+ l0〈ψj〉) , (B3)

ζj =ζ0 +
1

2
, ηj =η0 +

1

2

〈
(lj − l0)2

〉
, (B4)20

ϑ=ϑ0 +
p

2
, ρ=ρ0 +

1

2
tr
(〈
xxT

〉
MTM

)
− 1

2
2yTM〈x〉+ 1

2
yTy. (B5)
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better error statistics for atmospheric inversions of methane surface fluxes, Atmospheric Chemistry and Physics, 13, 7115–7132, 2013.

Bergamaschi, P., Corazza, M., Karstens, U., Athanassiadou, M., Thompson, R., Pison, I., Manning, A., Bousquet, P., Segers, A., Vermeulen,

A., et al.: Top-down estimates of European CH4 and N2O emissions based on four different inverse models, Atmospheric Chemistry and5

Physics, 15, 715–736, 2015.

Bishop, C.: Pattern recognition and machine learning, springer, 2006.

Bocquet, M.: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: Applications, Quarterly Journal of

the Royal Meteorological Society, 131, 2209–2223, 2005a.

Bocquet, M.: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory, Quarterly Journal of the10

Royal Meteorological Society, 131, 2191–2208, 2005b.

Bocquet, M.: High-resolution reconstruction of a tracer dispersion event: application to ETEX, Quarterly Journal of the Royal Meteorological

Society, 133, 1013–1026, 2007.

Bocquet, M.: Inverse modelling of atmospheric tracers: Non-Gaussian methods and second-order sensitivity analysis, Nonlinear Processes

in Geophysics, 15, 127–143, 2008.15

Daniels, M.: A class of shrinkage priors for the dependence structure in longitudinal data, Journal of statistical planning and inference, 127,

119–130, 2005.

Daniels, M. and Pourahmadi, M.: Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika, 89,

553–566, 2002.

Davoine, X. and Bocquet, M.: Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport,20

Atmospheric Chemistry and Physics, 7, 1549–1564, 2007.

Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation, background and analysis-error statistics in observation space,

Quarterly Journal of the Royal Meteorological Society, 131, 3385–3396, 2005.

Eckhardt, S., Prata, A., Seibert, P., Stebel, K., and Stohl, A.: Estimation of the vertical profile of sulfur dioxide injection into the atmosphere

by a volcanic eruption using satellite column measurements and inverse transport modeling, Atmospheric Chemistry and Physics, 8,25

3881–3897, 2008.

Ganesan, A., Rigby, M., Zammit-Mangion, A., Manning, A., Prinn, R., Fraser, P., Harth, C., Kim, K.-R., Krummel, P., Li, S., et al.: Charac-

terization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods, Atmospheric Chemistry and Physics,

14, 3855–3864, 2014.

Golub, G., Hansen, P., and O’Leary, D.: Tikhonov regularization and total least squares, SIAM Journal on Matrix Analysis and Applications,30

21, 185–194, 1999.

Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, I., Meinhardt, F., Steinbacher, M., and Emmenegger, L.: Valida-

tion of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmospheric Chemistry and Physics,

16, 3683–3710, 2016.

Issartel, J.-P. and Baverel, J.: Inverse transport for the verification of the Comprehensive Nuclear Test Ban Treaty, Atmospheric Chemistry35

and Physics, 3, 475–486, 2003.

15



Khare, K., Rajaratnam, B., et al.: Wishart distributions for decomposable covariance graph models, The Annals of Statistics, 39, 514–555,

2011.

Kristiansen, N., Stohl, A., Prata, A., Richter, A., Eckhardt, S., Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T., et al.: Remote

sensing and inverse transport modeling of the Kasatochi eruption sulfur dioxide cloud, Journal of Geophysical Research: Atmospheres

(1984–2012), 115, 2010.5

Krysta, M., Bocquet, M., and Brandt, J.: Probing ETEX-II data set with inverse modelling, Atmospheric Chemistry and Physics, 8, 3963–

3971, 2008.

Kullback, S. and Leibler, R.: On information and sufficiency, Annals of Mathematical Statistics, 22, 79–86, 1951.

Lunt, M., Rigby, M., Ganesan, A., Manning, A., Prinn, R., O’Doherty, S., Mühle, J., Harth, C., Salameh, P., Arnold, T., et al.: Reconciling

reported and unreported HFC emissions with atmospheric observations, Proceedings of the National Academy of Sciences, 112, 5927–10

5931, 2015.

Martinez-Camara, M., Béjar Haro, B., Stohl, A., and Vetterli, M.: A robust method for inverse transport modeling of atmospheric emissions

using blind outlier detection, Geoscientific Model Development, 7, 2303–2311, 2014.

Michalak, A., Hirsch, A., Bruhwiler, L., Gurney, K., Peters, W., and Tans, P.: Maximum likelihood estimation of covariance parameters for

Bayesian atmospheric trace gas surface flux inversions, Journal of Geophysical Research: Atmospheres, 110, 2005.15

Miskin, J.: Ensemble learning for independent component analysis, Ph.D. thesis, University of Cambridge, 2000.

Nisbet, E. and Weiss, R.: Top-down versus bottom-up, Science, 328, 1241–1243, 2010.

Nodop, K., Connolly, R., and Girardi, F.: The field campaigns of the European Tracer Experiment (ETEX): Overview and results, Atmo-

spheric Environment, 32, 4095–4108, 1998.

Pourahmadi, M.: Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika, 87,20

425–435, 2000.

Pourahmadi, M. et al.: Covariance estimation: The GLM and regularization perspectives, Statistical Science, 26, 369–387, 2011.

Rayner, P., Enting, I., Francey, R., and Langenfelds, R.: Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2

observations, Tellus B, 51, 1999.

Seibert, P.: Inverse modelling of sulfur emissions in Europe based on trajectories, Inverse Methods in Global Biogeochemical Cycles, pp.25

147–154, 2000.

Seibert, P.: Iverse modelling with a Lagrangian particle disperion model: application to point releases over limited time intervals, in: Air

Pollution Modeling and its Application XIV, pp. 381–389, Springer, 2001.

Seibert, P. and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmospheric

Chemistry and Physics, 4, 51–63, 2004.30

Seibert, P. and Stohl, A.: Inverse modelling of the ETEX-1 release with a Lagrangian particle model, in: Proceedings of the Third GLOREAM

Workshop, pp. 95–105, 1999.

Šmídl, V. and Quinn, A.: The Variational Bayes Method in Signal Processing, Springer, 2006.

Šmídl, V. and Tichý, O.: Sparsity in Bayesian Blind Source Separation and Deconvolution, in: Machine Learning and Knowledge Discovery

in Databases (ECML/PKDD 2013), edited by Blockeel et al., H., vol. 8189 of Lecture Notes in Computer Science, pp. 548–563, Springer35

Berlin Heidelberg, 2013.

Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer

experiment data, Atmospheric Environment, 32, 4245–4264, 1998.

16



Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version

6.2, Atmospheric Chemistry and Physics, 5, 2461–2474, 2005.

Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B., Lunder, C., Maione, M., Mühle, J., O’doherty, S., et al.: An analytical

inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons,

Atmospheric Chemistry and Physics, 9, 1597–1620, 2009.5

Stohl, A., Prata, A., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., Kristiansen, N., Minikin, A., Schumann, U., Seibert, P., et al.: Determi-

nation of time-and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull

eruption, Atmospheric Chemistry and Physics, 11, 4333–4351, 2011.

Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T.: Xenon-133 and caesium-137

releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion,10

and deposition, Atmospheric Chemistry and Physics, 12, 2313–2343, 2012.

Tans, P., Fung, I., and Takahashi, T.: Observational contraints on the global atmospheric CO2 budget, Science, 247, 1431–1438, 1990.

Tarantola, A.: Inverse problem theory and methods for model parameter estimation, SIAM, 2005.

Tibshirani, R.: Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.

267–288, 1996.15

Tipping, M.: Sparse Bayesian learning and the relevance vector machine, The journal of machine learning research, 1, 211–244, 2001.

Tipping, M. and Bishop, C.: Probabilistic principal component analysis, Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 61, 611–622, 1999.

Winiarek, V., Bocquet, M., Saunier, O., and Mathieu, A.: Estimation of errors in the inverse modeling of accidental release of atmospheric

pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant,20

Journal of Geophysical Research: Atmospheres, 117, 2012.

17



−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

x

p
(x

)

 

 

N(1,1)

tN(1,1,[0,∞])

Figure 1. Example of the normal distribution N (1,1), blue line, and the truncated normal distribution tN (1,1, [0,∞]), red line.
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Figure 2. The results of the LS-APC algorithm on synthetically generated dataset with different levels of noise degradation (increasing from

left to right; ej = N (0, c2k), where ck = 0 for the set Synthetic 1, ck = 0.4 for the set Synthetic 2, and ck = 0.8 for the set Synthetic 3). In

the top panel, the true source term is given by the red line while the estimated source term is given by the blue line. The estimated sparsity

parameters, vectors 〈υ〉, are given in the middle panel using full line while prior values are given using dotteddashed black lines and the

estimated smoothness parameters, vectors 〈l〉, are given in the bottom panel while prior values are given using dotteddashed black lines.
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Figure 4. The results of the LS-APC algorithm for the ETEX experiment (ETEX ERA-Interim B). In the top panel, the true source term

is given by the red line while the estimated source term is given by the blue line associated with the 99% highest posterior density region

using gray filled regions. The estimated sparsity parameter, vector 〈υ〉, is given in the middle panel and the estimated smoothness parameter,

vector 〈l〉, is given in the bottom panel.
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Figure 5. Comparison of sensitivity of the tested algorithms to the setting of the selected tuning parameter α measured in terms of the mean

absolute error metric (top row), Eq. (26), and total estimated mass of the source term (bottom row) on data ETEX ERA-40 A and B.
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absolute error metric (top row), Eq. (26), and total estimated mass of the source term (bottom row) on data ETEX ERA-Interim A and B.
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Figure 7. Comparison of the estimated source term for data ETEX ERA-Interim B for all settings (221 values) of the regularization tuning

parameter α using all algorithms. For LS-APC, all estimates are overlapping, for algorithms sensitive to this choice, the lines for different

value of the tuning parameter are plotted next to each other forming an area. The true source term is denoted by the dashed red line.
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Figure 8. Comparison of the estimated source term for data ETEX ERA-Interim A for all settings (221 values) of the regularizationtuning

parameter α using all algorithms. For LS-APC, all estimates are overlapping, for algorithms sensitive to this choice, the lines for different

value of the tuning parameter are plotted next to each other forming an area. The true source term is denoted by the dashed red line.
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Abstract. Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is

typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g. concentrations or

deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model

multiplied by the unknown source term vector. Since this problem is typically ill-posed, current state-of-the-art methods are

based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual5

settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a prob-

abilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties.

Replacement of the maximum likelihood solution by full Bayesian estimation allows to estimate also all tuning parameters from

the measurements. The estimation procedure is based on the Variational Bayes approximation which is evaluated by an itera-

tive algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to estimate also10

all tuning parameters from the observations. The proposed algorithm is tested and compared with the state-of-the-artstandard

methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A

MATLAB implementation of the proposed algorithm is available for download.

1 Introduction

Estimating the emissions of a substance into the atmosphere can be done in two alternative ways: The first method, a bottom-15

up approach, is based on a (statistical) model describing the emission process. For greenhouse gases or air pollutants, this is

typically based on detailed country statistics (e.g., about energy use) and some proxy information (e.g., population distribution)

to spatially disaggregate the emissions. The other method, often called top-down approach (Nisbet and Weiss, 2010), makes use

of ambient measurements of the released substance (e.g., atmospheric concentrations) and a model for describing the behavior

of the substance in the atmosphere. The emissions are then constrained to values that are compatible with the measured data.20

The two approaches are complementary, where the top-down approach can be used to verify bottom-up estimates, to identify

problems in bottom-up emission inventories, or to improve these inventories (e.g., Lunt et al., 2015). For determining the

emissions of greenhouse gases into the atmosphere, such an approach has become very common. In particular, total greenhouse

gas emissions are the result of both anthropogenic and natural emissions. Bottom-up inventories for anthropogenic emissions

1



should, at least in principle, be quite accurate but a verification using top-down methods is desirable (Stohl et al., 2009;

Bergamaschi et al., 2015). Natural emissions are often poorly constrained with bottom-up methods and thus the role of top-

down methods is even more important (Tans et al., 1990; Rayner et al., 1999).

For other emissions into the atmosphere, such as releases by nuclear accidents (Davoine and Bocquet, 2007; Stohl et al.,

2012), nuclear explosions (Issartel and Baverel, 2003), or for emissions of volcanic ash during volcanic eruptions (Kristiansen5

et al., 2010; Stohl et al., 2011), the problem is very different. While the emission location is often known and sometimes the

emission period can be estimated, other bottom-up information on the magnitude of the emissions, their temporal variations

and, occasionally, the emission altitude, can be very incomplete or, especially in real time, inexistent. In these cases, emission

estimates based on the top-down approach are often the only way to constrain the so-called source term, which quantifies the

emissions of a point source as a function of time and, sometimes, altitude. Still, the source term is one of the largest source10

of errors in modeling and predicting the pollutant dispersion in the atmosphere (Stohl et al., 2012). Since it is key information

for decision making in emergency response situations, any improvement of the reliability of the source term estimation is

important.

The common approach for source term determination is to combine data measured in the environment (e.g., radionuclide

concentrations downwind of the release site) with an atmospheric transport model in a top-down approach. Agreement between15

a model with calculated source term and measurements can be modeled and optimized using various parameter estimating

methods including the Bayesian approach (Bocquet, 2008), maximum entropy principle (Bocquet, 2005b), or cost function

optimization (Eckhardt et al., 2008). For computational reasons, this problem is typically formulated as a variant of linear re-

gression. The vector of measurements is assumed to be explained using a linear model with a known source-receptor-sensitivity

(SRS) matrix determined using an atmospheric dispersion model (Seibert and Frank, 2004) and an unknown source term vec-20

tor. Simple solution via the ordinary least-squares method typically yields a poor solution because the problem is often only

partially determined and ill-constrained by the available measurement data. Many regularization schemes taking into account

physically plausible ranges of parameter values such as non-negativity of the emissions, or other a priori information, for in-

stance on the duration of release, have been proposed providing more realistic solutions. However, especially if the a priori

information is incomplete, the regularization terms can also contain tuning parameters which are often selected manually and25

subjectively. The solution is subsequently highly sensitive to their choice. Therefore, many authors proposed inversion schemes

to reduce the dependency on these parameters. Davoine and Bocquet (2007) formulated the inversion problem as minimization

problem with Tikhonov regularization term. Similar model was used by Winiarek et al. (2012) where covariance matrices of

both, observation errors and source term, are assume to be diagonal with identical elements on each diagonal. The positivity

of the source term is enforced using truncation of negative estimates. Three estimation methods were studied to infer model30

parameters: L-curve, Desroziers’ scheme (Desroziers et al., 2005), and brute force using maximum likelihood screening. Di-

agonal matrices with different diagonal entries were considered in work of Michalak et al. (2005) where maximum likelihood

method was used to infer the model parameters. The model was extended by Berchet et al. (2013) where full covariance

matrices were considered. Desroziers’ scheme and maximum likelihood were used; however, heuristics need to be used due

to divergence of the algorithm after a few iterations. To cope better with full covariance matrix of measurements, Ganesan35
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et al. (2014) follow the work of Michalak et al. (2005) and propose a model for non-diagonal entries using exponential decay

with common autocorrelation timescale parameter weighted by estimated diagonal entries. Similar model was then used by

Henne et al. (2016) for both covariance matrices, measurement and source term; however, with fixed common autocorrela-

tion timescale parameter for non-diagonal entries. In this paper, we propose a probabilistic model that estimates such tuning

parameters from the data using a Bayesian approach with hierarchical prior.5

Most of the existing regularization techniques are based on restricted structure of the prior covariance matrix. Various

covariance structures for linear models have been studied extensively in the statistical literature, see, e.g., reviews (Pourahmadi

et al., 2011; Daniels, 2005). For example, a model of only diagonal structure of the covariance matrix has been proposed to

favor sparse solutions (Tipping, 2001). It is possible to use more complex models of the covariance structure using Cholesky

decomposition (Pourahmadi, 2000), its modifications (Daniels and Pourahmadi, 2002), or more general decompositions (Khare10

et al., 2011). The inference mechanism is usually a variant of Monte Carlo simulations. In this work, we choose the prior

covariance structure to have two main diagonals in modified Cholesky decomposition. The inference of the posterior is achieved

using the Variational Bayes method (Šmídl and Quinn, 2006) which is closely related to algorithms used in this application

domain.

We will illustrate the proposed approach in comparison with the commonly used method of Seibert (2001); Eckhardt et al.15

(2008) and with other state-of-the-art algorithms (Martinez-Camara et al., 2014), least absolute shrinkage and selection oper-

ator (LASSO) (Tibshirani, 1996), and the conventional Tikhonov regularization (Golub et al., 1999). We will show how the

formal Bayesian approach yields an iterative algorithm closely related to that of (Eckhardt et al., 2008). Many heuristic steps

in determining regularization parameters will be replaced by statistical estimates. The most significant advantage over the ref-

erence approach is estimation of the tuning parameters from the data. In effect, the proposed algorithm works without manual20

intervention. The only entries of the proposed algorithm are the vector of measurements and the SRS matrix calculated with

a dispersion model. The MATLAB implementation of the derived algorithm is freely available for download. The resulting

algorithm is tested and compared using real data from the European Tracer Experiment (ETEX).

2 Background

In this Section, we review the state of the art standard methodology, as described e.g. by Eckhardt et al. (2008), which is25

commonly used in source term determination and the Variational Bayes method (Šmídl and Quinn, 2006; Miskin, 2000) which

is the key methodology of this work.

2.1 State of the ArtStandard Methodology

We choose the work of Eckhardt et al. (2008) as a reference. It is only an example from a family of optimization methods

based on linear regression such as (Seibert, 2000), (Seibert, 2001), (Bocquet, 2005b), (Bocquet, 2008), or (Tarantola, 2005).30

The regularization is achieved by formulating a prior knowledge on the solution and using an iterative algorithm for removing

physically unrealistic values in the posterior solution. The basic inverse problem is formulated based on the following linear
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model,

y =Mx, (1)

where y is the vector of measurements (typically observed concentrations or, sometimes, deposition values), M is a known

source-receptor-sensitivity (SRS) matrix (Seibert and Frank, 2004), and x is the unknown source term vector. Solution of the

problem via the ordinary least-squares method is not feasible since matrix M is typically ill-conditioned.5

Regularization of the problem proposed in (Eckhardt et al., 2008) is based on minimization of the cost function J = J1 +

J2 + J3:

J1 =σ−20 (Mx−y)
T

(Mx−y) , (2)

J2 =xTdiag
(
σ−2x

)
x, (3)

J3 =ε(Dx)
T
Dx, (4)10

where the term J1 stands for the deviation of the model from the observation with scalar σ0 to be a standard error of the

observation; however, note that y andM are prone to errors and cumulate uncertainties from measurement and the atmospheric

transport model used for SRS calculations (including errors in the meteorological data used to drive the transport model); J1

therefore includes errors in the model M , mapped into observation space; the term J2 penalizes high values of the solution

where the penalty is inverse proportional to the assumed standard errors of each source term element aggregated in vector σx,15

where symbol diag() denotes a diagonal matrix with an argument vector on its diagonal and zeros otherwise; and the term J3

encourages smooth estimates of the source term x where D is a tridiagonal differential matrix numerically approximating a

Laplacian operator and the scalar ε weights the strength of the smoothness of the solution relative to the other two terms. Note

that we assume the smoothness in time as it is used in (Stohl et al., 2011). This assumption may not be valid in cases such as

explosions, which cause abrupt change in the source term.20

Note that model (1) can be also used for problems with non-zero prior mean x0 and known covariance matrix of the

observations, R. Using Choleski decomposition of the observation covariance matrix, R= ΨΨT , the original model can be

written in form y =Mx+ Ψe, where e is an isotropic noise and x is assumed to have prior mean x0. Then, transformation

x = x−x0, M = Ψ−1M, y = Ψ−1(y−Mx0) maps such a model into form (1) with zero mean prior and isotropic noise

assumption.25

This minimization problem leads to a system of linear equations that is solved for the source term x. Since the solution is

assumed to be positive, the optimization problem is subject to x≥ 0:

〈x〉= argmin
x

(J1 + J2 + J3) , subject to x≥ 0. (5)

This restrictions is achieved in the iterative algorithm by replacing all negative values by an arbitrary small positive number

together with a reduction of their standard errors to force these values closer to the non-negative prior solution. This can be30

formalized by the selection of stop condition for ratio between negative and positive part of solution as
〈x〉neg

〈x〉pos
< δ, where δ is

a selected threshold. For the estimation algorithm, proper values of parameters σ0, σx, and ε need to be preselected manually
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Algorithm 1 The main ideas of algorithm from (Eckhardt et al., 2008).

1. Iterate until sufficient solution 〈x〉 is obtained:

(a) Choose parameters σ0, σx, ε, and stopcond δ.

(b) Iterate until
〈x〉neg

〈x〉pos
< δ or maximum number of iteration is reached:

i. Solve minimization problem given by Eq. (2)–(4).

ii. Change negative parts of x to arbitrary small positive random numbers, reduce related variances σx for negative parts of

solution and increase variance σx for positive parts of solution.

(c) Report estimated source term 〈x〉.

and potentially changed repeatedly until an acceptable solution is obtained. The main ideas of the algorithm are summarized

in Algorithm 1.

2.2 Bayesian Interpretation of the Reference Method

The method of (Eckhardt et al., 2008) can be interpreted as a maximum a posteriori probability estimate of a particular

probabilistic model. Specifically, the Gaussian observation model with truncated Gaussian prior distribution of the source term5

p(y|x) =N (Mx,σ2
0In)∝ exp

(
−1

2
σ−20 (Mx−y)

T
(Mx−y)

)
(6)

p(x|Σx) = tN (0,Σx)∝ exp

(
−1

2
xTΣxx

)
χ(xi > 0), (7)

Σx = (diag
(
σ−2x

)
+ εDTD)−1. (8)

where N (µ,Σ) denotes a multivariate Gaussian distribution with mean µ and covariance matrix Σ, In is the n×n identity

matrix, tN (µ,Σ,〈0,∞〉) is a truncated Gaussian distribution with parameters µ,Σ and support (domain) of physically realistic10

values restricted to positive values of all entries of the vector x = [x1, . . . ,xn], see Appendix A. The choice of Gaussian

distribution is motivated primarily by tractability of its inference.

The logarithm of the posterior probability of the unknown x has the form

logp(x|y) =−1

2
(J1 + J2 + J3) + γ(x) + c, (9)

where γ(x) is the logarithm of the characteristic function term enforcing positivity, (see Appendix A), and c aggregates all15

terms independent of x. Maximization of the log-likelihood is then equivalent to minimization of the cost function of the

reference method (5) where γ(x) is the barrier function of the constraint on x.

While interpretation of positivity by truncated normal distribution is non-standard, it has the same effect as the ‘subject to’

constraint. The maximum likelihood estimate is the value of µ if µ > 0 and it is zero otherwise, Fig. 1.

The maximum likelihood solution is the simplest case of Bayesian inference. Application of full Bayesian inference (i.e.20

evaluation of full posterior distribution and their marginals) can address two important problems:
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1. selection of tuning parameters σ0, σx, and ε which are considered to be hyper-parameters and estimated from the data,

2. selection of the appropriate model M via Bayesian model selection.

We are concerned only with the first problem in this paper while matrix M is considered fixed. Extension of the proposed

methodology to Bayesian model selection is possible (Bishop, 2006), however it is rather long and its proper treatment is

beyond the scope of this paper. Full Bayesian treatment of the unknowns σ0, σx, and ε is not analytically tractable. Approximate5

inference of σ0 and σx is possible, however estimation of ε in represents a challenge since the determinant of the covariance

becomes too complex. Moreover, common variance of temporal derivative of the source term may not be realistic, since it is

subject to abrupt changes cause e.g. by explosions. these values does not yield acceptable results. Therefore, we will present

results for a different and more complex structure of the prior variance Σx that allows stable and reliable estimation of the

source term vector x via the Variational Bayes method.10

3 Probabilistic Model with Unknown Prior Covariance

We formulate the probabilistic model to cope with the linear inverse problem, Eq. (1), and derive an iterative algorithm to

estimate parameters of this model.

3.1 Observation Model

The observation model is identical to Eq. (6), i.e. the isotropic Gaussian noise model1. However, we will consider the precision15

(inverse variance) of the observations to be unknown, parameterized by ω−1 = σ2
0 ,

p(y|x,ω) =Ny

(
Mx,ω−1Ip

)
. (10)

Since ω is unknown and will be estimated, similarly to Tipping and Bishop (1999), we define its own prior distribution in the

form of the Gamma distribution (which is conjugate prior for precision of the Gaussian distribution) as

p(ω) = G (ϑ0,ρ0) , (11)20

with chosen prior constants ϑ0,ρ0. These constants are needed for numerical stability, however, they are set as low as possible

to provide non-informative priorThe selection of these constants will be discussed later in this paper, see Algorithm 2.

Note that the model with different elements on diagonal of the covariance matrix of measurements were also studied in

literature, see e.g. Michalak et al. (2005). Modification of the proposed algorithm to diagonal precision matrix with unknown

elements on the main diagonal is very simple., Hhowever, such a model was found to be susceptible to local optima than the25

presented model. The presented model was found to be more reliable in practical tests.

1Gaussian noise with an arbitrary known covariance matrix can be transformed into this form by scaling of the observations and the SRS matrix.

6



3.2 Prior Model

We use the same prior for the source term vector as in Eq. (7), with the exception that the prior covariance of x, denoted as Σx,

is unknown. Note from Eq. (8) that the covariance matrix is a band matrix with predefined structure; tridiagonal matrix in this

case. Relaxing the assumption of knownthe tridiagonal structure we consider the following structure of the prior covariance:

Σx =LΥLT . (12)5

It is composed of diagonal matrix Υ = diag(υ), with unknown positive diagonal entries forming vector υ = [υ1, . . . ,υn] and

zeros otherwise. L is a lower bidiagonal matrix

L=


1 0 0 0

l1 1 0 0

0
. . . 1 0

0 0 ln−1 1

 , (13)

with unknown off-diagonal elements forming a vector l = [l1, . . . ln−1]. This considerations preserve the tridiagonal structure

of the covariance matrix Σx and allow us to model each diagonal separately. The task is to introduce prior models for vectors10

υ and l whose estimates fully determine the decomposition in Eq. (12).

The prior model of the vector υ is selected as

p(υj) = Gυj (α0,β0) , ∀j = 1, . . . ,n, (14)

where α0,β0 are selected non-informative prior constants, see Algorithm 2. The prior model of the vector l is selected in a

problem specific way. Note that for lj = 0, model in Eq. (12) corresponds to Eq. (8) with ε= 0. For lj =−1, model in Eq.15

(12) corresponds to Eq. (8) with ε→∞. Since we expect the result to be within this interval, we define the prior on lj to be

independently Gaussian distributed with unknown precision ψj :

p(lj |ψj) =Nlj
(
l0,ψ

−1
j

)
, (15)

p(ψj) =Gψj
(ζ0,η0) , ∀j = 1, . . . ,n− 1, (16)

where ζ0,η0 are selected prior constants. Since we expect the neighboring values xi and xi+1 to be either uncorrelated (lj = 0)20

or correlated (lj =−1) we choose parameters l0, ζ0,η0 to cover these extremes with preference for a value l0 =−1, and

precision ψj set around this value using selection ζ0 = η0 = 10−2. This allows parameter lj to vary in the range circa−1±100

which we consider to be sufficiently non-informative. Lower values of ζ0 and η0 results in posterior estimates closer to l0.

On the other hand, Ffurther relaxation of these parameters to a wider range results in higher sensitivity to local extremes and

potentially numerical instability.is not recommended.25

The joint model of the full distribution is then:

p(y,x,υ, l,ψ1,...,n−1,ω) = p(y|x,ω)p(x|υ, l,ψ1,...,n−1)p(υn)

n−1∏
i=1

p(υi)p(li|ψi)p(ψi). (17)

Estimation of all unknown parameters can be obtained by the Bayes rule which is however computationally intractable.
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3.3 Iterative Variational Bayes Algorithm

Following the Variational Bayesian methodology (Šmídl and Quinn, 2006), we seek a posterior distribution in a very specific

form, satisfying posterior conditional independence:

p(x,υ, l,ψ1,...,n−1,ω|y)≈ p(x|y)p(υ|y)p(l|y)p(ψ1,...,n−1|y)p(ω|y). (18)

The best possible approximation is defined as a minimizer of the Kullback-Leibler divergence (Kullback and Leibler, 1951)5

between the solution and the hypothetical true posterior. The choice of this form is motivated by simplicity of evaluation and

experience indicates that it is a very good approximation for linear models (Bishop, 2006; Šmídl and Quinn, 2006).

The necessary conditions of the best approximation uniquely determine the form of the posterior distributions. These were

identified to be as follows:

p̃(x|y) =tNx (µx,Σx) , (19)10

p̃(υj |y) =Gυj (αj ,βj) , ∀j = 1, . . . ,n, (20)

p̃(lj |y) =Nlj
(
µlj ,Σlj

)
, ∀j = 1, . . . ,n− 1, (21)

p̃(ψj |y) =Gψj
(ζj ,ηj) , ∀j = 1, . . . ,n− 1, (22)

p̃(ω|y) =Gω (ϑ,ρ) . (23)

The shaping parameters of posterior distributions, Eq. (19)–(23), µx,Σx,αj ,βj ,µlj ,Σlj , ζj ,ηj ,ϑ,ρ, derived according to the15

standard Variational Bayes procedure, see (Šmídl and Quinn, 2006), are derivedgiven in Appendix B. The shaping parameters

are functions of standard moments of posterior distributions, e.g. 〈x〉,
〈
xxT

〉
and

〈
xTx

〉
for the distribution p̃(x|y). Symbol

〈x〉 denotes the expected value with respect to the distribution on the variable in the argument. The shaping parameters and

the required moments form a set of implicit equations which is solved iteratively using Algorithm 2. Good initialization

should be considered since convergence only to the local minima is guaranteed (Šmídl and Quinn, 2006). We propose to20

initialize the algorithm by solution of the ordinary least squares with Tikhonov regularization tuned such that the data and the

regularization term have equal scale. It is achieved by choice of the initial value of the estimate of the precision parameter

〈ω〉(0) = 1
max(MTM)

. Here, superscript (i) is used to denote iteration number of the algorithm. The algorithm will be called

Least Squares with Adaptive Prior Covariance (LS-APC) and is freely available for download from http://www.utia.cz/linear_

inversion_methods.25

Note that the algorithm is closely related to Algorithm 1 of the reference method. It also iteratively solves the least squares

problem but with adaptive tuning of its parameters. The proposed method has the following differences:

1. The algorithm is largely tuning-free, i.e. all hyper-parameters ω,li,υi,ψi are estimated from the data. The results may

slightly differ for different choices of the initial conditions since the Variational Bayes solution may suffer from local

minima. The most sensitive initial value is 〈Υ〉(0) of tuning parameter γ. The sensitivity of the solution to this initial30

choice is very low which will be discussed in Section. 5.2.
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Algorithm 2 Least Square with Adaptive Prior Covariance (LS-APC) algorithm.

1. Initialization

(a) Set prior parameters ϑ0,ρ0,α0,β0 to non-informative values of 10−10 (yielding non-informative priors). Values ζ0,η0 are set

to physically meaningful values of 10−2.

(b) Set initial values (denoted by zero iteration number in superscript (0)) used in computation of the covariance matrix of the source

term, Σx: 〈ω〉(0) = 1
max(MTM)

, 〈Υ〉(0) = γIn, and 〈L〉(0) = In. If γ is not specified use γ = 1.

(c) Set iteration index i= 1.

2. Iterate until convergence or maximum number of iterations is reached:

(a) Compute estimate of the source term 〈x〉(i) using least squares:

Σ(i)
x =

(
〈ω〉(i−1)MTM +

〈
LΥLT

〉(i−1)
)−1

, (24)

µ(i)
x = Σ(i)

x

(
〈ω〉(i−1)MTy

)
, (25)

using moments of the truncated normal distribution, Eq. (A).

(b) Update estimates of 〈Υ〉(i) and 〈L〉(i), using Eq. (B2)–(B4) defined in Appendix B,

(c) Compute precision parameter 〈ω〉(i) using Eq. (B5) in Appendix B.

3. Report estimated source term 〈x〉 and its uncertainty Σx.

2. Since estimating the hyper-parameter values requires the calculation of the variance of the posterior distribution, the

covariance matrix of the least squares problem needs to be evaluated; the cost of this operation is circa O(n2.4) in each

iteration. This implies a slightly higher computational cost compared to Algorithm 1 where this matrix is not needed.

3. The method of positivity enforcement is replaced by moments of the truncated normal distribution.

4 Verification Using a Synthetic Dataset5

To test the proposed LS-APC algorithm and to demonstrate its performance, we design a synthetic dataset before performing

a real data experiment. We generate elements of the matrix M ∈R20×10 as random samples from an uniform distribution

between 0 and 1 and elements less then 0.5 were cropped to 0 to obtain an ill-conditionedreduce the condition number of the

matrix M (which is 6.69 in l2-norm in this dataset). The source term is generated as xtrue = [0,0,0,1,1,1,0,0,0,0] as shown

in Figure. 2, top row, using dashed red line. The vector of measurement data is generated according to the assumed model in10

Eq. (1) as y =Mx+ e where three sets are generated with the same matrix M but with different levels of the noise term e.

Each element ej is generated randomly asN (0, c2k) where the coefficients are set as c1 = 0 for the set 1, c2 = 0.4 for the set 2,
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and c3 = 0.8 for the set 3. Then, negative elements of y are cropped to 0. Note that these data are supplied together with the

LS-APC algorithm as a tutorial example.

The results from the LS-APC algorithm for this dataset are given in Figure. 2. The estimates of the source term are shown

in the uppermost row (solid blue lines) together with the simulated true source term (dashed red line). The estimated values of

the vector 〈υ〉, i.e. the diagonal of the matrix 〈Υ〉, are displayed in the second row. This parameter models the sparsity of the5

solution where a higher value signifies higher confidence that the corresponding element of the solution is zero. The parameter

〈l〉 modeling the smoothness of the solution is shown in Figure. 2, bottom row. Note that at the constant parts of the solution

this parameter is approaching -1, signifying highly correlated neighboring elements, while it is approaching zero at the time

of the step change, indicating uncorrelated neighbors. The two parameters 〈υ〉 and 〈l〉 can also compensate one another, as is

demonstrated on the falling edge of the source term. Instead of the expected zero in the smoothness parameter l6, the posterior10

value is close to the prior. The difference in the data is compensated by the sparsity parameter υ6 which is very low, indicating

very low confidence in this value.

The quality of the reconstruction depends on the noise level, as demonstrated in individual columns of Figure. 2. As expected,

the source term is reconstructed precisely when the data are noise free (Figure. 2, left column). With increasing noise, the

reconstruction departs form the ground truth (Figure. 2, middle column), however, the start and end of the release is still15

estimated with sharp raising and falling edges. The estimate is also sparse, i.e. the estimated values of the source term outside

of the true release window are zero. Note that this result was achieved with standard deviation of the noise equal to 40% of the

released quantity. Naturally, with even higher noise (standard deviation equal to 80% of the released quantity, Figure. 2, right

column), the estimates also depart from the ideal shape and yields undesired artifacts.

5 Experimental Results for the ETEX Data20

The European Tracer Experiment (ETEX) took place at Monterfil in Brittany, France, on 23th October 1994 (Nodop et al.,

1998). Its attractiveness is that it is one of a very few controlled large-scale tracer release experiments with a large amount of

available information, see https://rem.jrc.ec.europa.eu/etex/. During ETEX, two release experiments were made. We use here

only the data from the first experiment (ETEX-I), for which atmospheric dispersion models generally performed much better

than for the second experiment, e.g., (Stohl et al., 1998). During ETEX-I, a total amount of 340 kilograms of perfluoromethyl-25

cyclohexane (PMCH) was released at a constant rate during nearly 12 hours. PMCH is nearly inert in the atmosphere and

does not experience dry deposition or wet scavenging and is thus suitable for testing how well transport models can handle

atmospheric dispersion. Atmospheric concentrations of the released PMCH were monitored across Europe by a network of 168

measurement stations with a sampling interval of 3 hours over a period of 72 hours. The release location and station locations

are shown in Figure. 3. The ETEX data set has been used previously for testing inverse models, e.g., by (Bocquet, 2005a,30

2007), (Krysta et al., 2008), and (Martinez-Camara et al., 2014).

To construct the SRS matrix M , we used version 8.1 of the Lagrangian particle dispersion model FLEXPART (Stohl et al.,

2005, 1998). An earlier version of the model was evaluated against the first ETEX experiment and revealed relatively good
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performance compared to other models (Stohl et al., 1998). We assumed that the release location is known, and that the release

occurred during a 5-day period including the true release time but that the source term (i.e., released amount as a function of

time) is not known. Thus, we performed 120 forward calculations from the release site, each for a hypothetical unit release

during a one-hour period. For each of these unit release simulations, the simulated tracer concentrations were sampled at all the

measurement station locations and during the exact measurement times (in total, 3102 measurements were made), to construct5

the SRS matrix M of the size 3102×120. The SRS matrix was used together with the observation vector, y, of size 3102×1, to

reconstruct the source term, vector x of the size 120× 1. The reconstructed source term can then be compared with the known

true source term, to evaluate the skill of the reconstruction. The same set-up was used by Martinez-Camara et al. (2014) to test

a method to blindly remove outliers.

For running FLEXPART, we have used meteorological input data from the European Center for Medium-Range Weather10

Forecasts (ECMWF). Different data sets are available from ECMWF and we have used two different data sets: 1) Data from

the 40-year re-analysis (ERA-40); 2) Data from the continuously updated ERA-Interim re-analysis. For both meteorological

data sets we have run FLEXPART in two different configurations:

A) with the model time step in the boundary layer limited to less than 20% of the Lagrangian timescale and a maxi-

mum value of 300 s;15

B) with time step only limited by 300 s, which may be chosen for computationally demanding real-time simulations.

The Lagrangian time scale depends on the turbulence conditions in the planetary boundary layer and is computed in FLEX-

PART for every particle at every individual time step. Lagrangian time scales can be very short (order of seconds) and, thus

option A requires very short numerical integration time steps. Close to a source, this is the only accurate way of ensuring

the well-mixed condition and a correct simulation of near-field dispersion. Over longer transport distances, such an accurate20

description of small-scale turbulent transport is often not necessary as transport errors are dominated by other sources of error

(such as errors in large-scale wind fields). Thus, compromises are often made in numerical simulations, especially for real-time

model applications, where longer time steps are used. This is explored with configuration B.

While the differences between these simulations are actually rather small in terms of simulated SRS values, they can serve

as a lower estimate of the uncertainty associated with the SRS calculations and can still produce quite substantial differences25

in the retrieved source terms.

5.1 Source Term Estimation Using LS-APC Algorithm

The task is to estimate the original source term x based only on the available measurement data. The aAlgorithm 2 was applied

to the selected example data ETEX ERA-Interim B and the results are presented in Figure. 4. In the top panel of Figure. 4,

the red line denotes the true source term while the blue line denotes the estimated source term 〈x〉 accompanied by the 99%30

highest posterior density region is given using gray fill region. The estimated sparsity parameter 〈υ〉, i.e. the diagonal of the

matrix 〈Υ〉, is given in the middle panel of Figure. 4, and the estimated smoothness parameter 〈l〉, i.e. second diagonal of the

matrix 〈L〉, is given in the bottom panel. Note that the sparsity parameter is approaching 1010 (value determined by α0 and β0)
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at times when no release occurred; therefore, the posterior mean value is close to the prior value, which is zero. The posterior

mean value of the smoothness parameter lj is −1 when the neighboring values of the solution are close to each other. During

periods of rapid change of the release, the estimate of the smoothness parameter approaches zero.

While the reconstructed source term does not agree exactly with the known source profile, the true total of the source term,

i.e. 340kg, is on the edge of the 99% highest posterior density region which is (120,340)kg. This result is achieved without any5

tuning of the internal parameters of the FLEXPART dispersion model. Also the timing of the release is well captured, although

the reconstructed release shows some variation during the release period, while the true release rate was constant. Furthermore,

the reconstruction suggests some small release to occur also after the true release has ended. The quality of the reconstruction

is comparable to or better than previous reconstructions of the ETEX source term (e.g., Seibert and Stohl, 1999; Bocquet,

2005a, 2007; Martinez-Camara et al., 2014. Note that these results were obtained without setting any tuning parameters, all10

regularization parameters are estimated from the data within the iterative algorithm. The sensitivity of this approach to the

initial values and assumed uncertainties will be studied in comparison with other algorithms.

5.2 Comparison and Sensitivity Study

We compare results from the proposed LS-APC algorithm, Algorithm 2, with those obtained from (Eckhardt et al., 2008),

Algorithm 1, with the RegClean algorithm (Martinez-Camara et al., 2014), the least absolute shrinkage and selection operator15

(LASSO) (Tibshirani, 1996), and the Tikhonov regularization (Golub et al., 1999). Specifically, we study the ability of the

proposed solution to regularize the problem for different choices of the selected tuning parameters. It was found that the results

of Algorithms 1 and 2 are most sensitive to initial values of the sparsity parameters, σx and υ respectively. Similarly, the

RegClean, LASSO, and Tikhonov algorithms also have parameters influencing preference for penalization of large values of the

solution (e.g. the α parameter of the Tikhonov and LASSO regularization). Thus, we run all five algorithms with this selected20

tuning parameter set in points of interval α ∈< e−15,e+7 > for four ETEX datasets. That is, for the methods with diagonal

choice, e.g. the reference method in Algorithm 1, we set σ−2x = αIn. For the LS-APC algorithm, this choice influences only

the initial value of the regularization parameter via γ = α.

All remaining parameters of the other methods were kept at their default values (RegClean) or set to best performing values

(Algorithm 1). Evaluation of the results was performed on the metric of mean absolute error (MAE) between the true and the25

estimated source term:

MAE =
1

n

n∑
j=1

|xj,true−xj,estim|. (26)

The resultscomputed MAEs between the true source term and the estimated source term for all methods atand for the same

range of the tuning parameters α are displayed in Figure. 5 for ETEX ERA-40, and in Figure. 6 for ETEX ERA-Interim, top

rows. The estimates of the total released mass for all methods and for the same range of the tunning parameter α are displayed30

in the bottom row of Figures. 5 and 6. Note that all methods achieve similar results although for different values of the tuning

parameters. This is most obvious in the estimate of the total released mass, where each method has a range of tuning values

yielding the same estimate. This looks like a plateau on the curve. The value of the total released mass at this plateau is very

12



similar for all methods. The exception is the experiment ERA-Interim A, where the curves of the estimated total released mass

contain two plateaus. Comparison with the true total released mass of 340 kg is misleading in this case since the plateau at 180

kg is due to an artifact, as discussed below.

Examples of results from all algorithms for all settings of the regularization parameter for ETEX ERA-Interim B are dis-

played in Figure. 7 and for the problematic mode of ETEX ERA-Interim A in Figure. 8. The true source term is denoted by5

the dashed red lines and the estimated source terms are denoted by the same lines as in Figures 5 and 6using blue lines. For

LS-APC, all estimates are overlapping, for algorithms sensitive to this choice, the lines form an area. Note that the ETEX

ERA-Interim A has a strong artifact at the first element of the solution since all receptors have high sensitivity to it (high values

in the first column of the SRS matrix). Thus, non-zero value of the first element of x can explain a part of the observation.

Note that the LS-APC algorithm provides results that are almost insensitive to the value of the tuning parameter (used only10

as a starting point). Moreover, the results of the LS-APC algorithm correspond to the results of other methods with best tuned

parameters. However, the proposed algorithm still suffers form local minima as demonstrated in the case of ETEX ERA-Interim

A. However, the same local minima are visible for the other methods as well. Despite this non-uniqueness, the algorithm still

provides only two possible solutions in contrast to the other algorithms that yield a range of possible solutions for different

settings of the tuning parameters as can be seen in Figures. 7 and 8.15

The computational cost of the proposed algorithm is higher than simple techniques such as LASSO and the Tikhonov

regularization since least squares fit calculations are run in each iteration. The convergence is typically reached in tens of

iterations. All experiments were run with 100 iterations where the equilibrium was always reached. The runtime of the full

iterative algorithm is 3.3 seconds for n= 120 on a conventional PC with Intel Core i7-870 CPU. Scaling of the algorithm to

higher dimension is dominated by the inverse of n×n matrix which scales with O(n2.34).20

6 Conclusions

We present a novel algorithm for the linear inversion problem which is applied to the problem of source term determination for

pollutant releases into the atmosphere. It is closely related to the common optimization based techniques with regularization.

The model is based on a probabilistic formulation with unknown prior covariance matrix. Application of the Variational Bayes

method to the proposed probabilistic model results in an iterative algorithm that is closely related to the existing algorithms.25

The key difference is that the new algorithm estimated all hyper-parameters from the data without human interaction.

The proposed algorithm was validated using data from the ETEX experiment. It was shown that the LS-APC algorithm

provides more consistent estimates of the source term with very little influence from initialization and with no need of human

interaction. Therefore, the algorithm seems particularly suited for real-time applications where there is no time for manually

setting tuning parameters.30
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Code availability

The code for the LS-APC algorithm is available upon request for academic and non-commercial use from the corresponding au-

thor or through the following link: http://www.utia.cz/linear_inversion_methods. The implementation is provided in MATLAB

while no additional toolboxes are required for the algorithm.
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Appendix A: Truncated Normal Distribution

Truncated normal distribution, denoted as tN , of a scalar variable x on interval [a;b] is defined as

tNx(µ,σ, [a,b]) =

√
2exp((x−µ)2)√

πσ(erf(β)− erf(α))
χ[a,b](x), (A1)

where α= a−µ√
2σ

, β = b−µ√
2σ

, function χ[a,b](x) is a characteristic function of interval [a,b] defined as χ[a,b](x) = 1 if x ∈ [a,b]10

and χ[a,b](x) = 0 otherwise. erf() is the error function defined as erf(t) = 2√
π

∫ t
0
e−u

2

du.

The moments of truncated normal distribution are

〈x〉= µ−√σ
√

2[exp(−β2)− exp(−α2)]√
π(erf(β)− erf(α))

, (A2)

〈
x2
〉

= σ+µx̂−√σ
√

2[bexp(−β2)− aexp(−α2)]√
π(erf(β)− erf(α))

. (A3)

For multivariate case, see (Šmídl and Tichý, 2013).15

Appendix B: Shaping Parameters of Posterior Distributions

Σx =
(
〈ω〉MTM +

〈
LΥLT

〉)−1
, µx =Σx

(
〈ω〉MTy

)
, (B1)

α=α0 +
1

2
1n,1, β =β0 +

1

2
diag

(〈
LTxxTL

〉)
, (B2)

Σlj =
(
〈υj〉

〈
x2j+1

〉
+ 〈ψj〉

)−1
, µlj =Σlj (−〈υj〉〈xjxj+1〉+ l0〈ψj〉) , (B3)

ζj =ζ0 +
1

2
, ηj =η0 +

1

2

〈
(lj − l0)2

〉
, (B4)20

ϑ=ϑ0 +
p

2
, ρ=ρ0 +

1

2
tr
(〈
xxT

〉
MTM

)
− 1

2
2yTM〈x〉+ 1

2
yTy. (B5)
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Figure 1. Example of the normal distribution N (1,1), blue line, and the truncated normal distribution tN (1,1, [0,∞]), red line.
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Figure 2. The results of the LS-APC algorithm on synthetically generated dataset with different levels of noise degradation (increasing from

left to right; ej = N (0, c2k), where ck = 0 for the set Synthetic 1, ck = 0.4 for the set Synthetic 2, and ck = 0.8 for the set Synthetic 3). In

the top panel, the true source term is given by the red line while the estimated source term is given by the blue line. The estimated sparsity

parameters, vectors 〈υ〉, are given in the middle panel using full line while prior values are given using dotteddashed black lines and the

estimated smoothness parameters, vectors 〈l〉, are given in the bottom panel while prior values are given using dotteddashed black lines.
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Figure 4. The results of the LS-APC algorithm for the ETEX experiment (ETEX ERA-Interim B). In the top panel, the true source term

is given by the red line while the estimated source term is given by the blue line associated with the 99% highest posterior density region

using gray filled regions. The estimated sparsity parameter, vector 〈υ〉, is given in the middle panel and the estimated smoothness parameter,

vector 〈l〉, is given in the bottom panel.

21



10
−5

10
0

3

4

5

6

m
e
a
n
 a

b
s
o
lu

te
 e

rr
o
r

o
f 
e
s
ti
m

a
te

d
 s

o
u
rc

e
 t
e
rm

 (
k
g
)

ETEX ERA−40 A

 

 

10
−5

10
0

0

100

200

300

400

500

ETEX ERA−40 A

setting of tuning parameter α

s
o
u
rc

e
 t
e
rm

 (
k
g
)

10
−5

10
0

2

4

6

8

ETEX ERA−40 B

10
−5

10
0

0

200

400

600

800

1000

ETEX ERA−40 B

setting of tuning parameter α

LS−APC

RegClean

LASSO

Tikhonov

Eckhardt

Figure 5. Comparison of sensitivity of the tested algorithms to the setting of the selected tuning parameter α measured in terms of the mean

absolute error metric (top row), Eq. (26), and total estimated mass of the source term (bottom row) on data ETEX ERA-40 A and B.
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Figure 6. Comparison of sensitivity of the tested algorithms to the setting of the selected tuning parameter α measured in terms of the mean

absolute error metric (top row), Eq. (26), and total estimated mass of the source term (bottom row) on data ETEX ERA-Interim A and B.
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Figure 7. Comparison of the estimated source term for data ETEX ERA-Interim B for all settings (221 values) of the regularization tuning

parameter α using all algorithms. For LS-APC, all estimates are overlapping, for algorithms sensitive to this choice, the lines for different

value of the tuning parameter are plotted next to each other forming an area. The true source term is denoted by the dashed red line.
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Figure 8. Comparison of the estimated source term for data ETEX ERA-Interim A for all settings (221 values) of the regularizationtuning

parameter α using all algorithms. For LS-APC, all estimates are overlapping, for algorithms sensitive to this choice, the lines for different

value of the tuning parameter are plotted next to each other forming an area. The true source term is denoted by the dashed red line.
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