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We appreciate Anonymous Referee #1 and #2 for your careful reviewing and positive comments and encouragements. 

We revised the manuscript following your comments. Point-by-Point replies to your comments are as follows. 
 

 

Reply Comments for referee #1 5 

 

 

1) The paper does not seem to reference enough previous work in the scalability problems of EnKF systems at high 

resolution/ensemble size  

 10 

[Reply] 
Thank you for the suggestion. We add some references. 
 
[Changes] 
We add following sentences (p. 2, l. 30); 15 
Humrud et al. (2015) have pointed out the limitation of scaling by using file I/O in the European Centre for Medium-
range Weather Forecasts’ (ECMWF) semi-operational Ensemble Kalman filter (EnKF) system. On the contrary, 
Houtekamer et al. (2014) showed satisfactory scalability in a Canadian operational EnKF DA system by using parallel 
I/O. 
 20 
 
2) An important aspect for this type of applications are the load balancing issues, especially in connection with 
inhomogeneous observing systems.  
 

[Reply] 25 
There is a trade-off between computational load balancing and data movement. Miyoshi et al. (2010) changed grid point 
allocation to each node while paying attention to the load balancing. In our study, we revert this change to avoid the 
data movement by global communication. The ratio of floating point operations to memory accesses in LETKF analysis 
is large. This type of calculation is expected to become faster by performance enhancement of the future processor. It is 
easier than the improvement of throughput in global communication with massive nodes. We should select the best 30 
method for load barancing according to the number of nodes, the number of observation, the analytical method used in 
the LETKF, and the performance of computer system. 
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[Changes] 
We add following sentences (p 7, l. 19); 
No satellite observation was used in this study. The number of observations will increase by one or two orders of 
magnitude if we use satellite observations. When high-resolution data assimilation is conducted with frequent 
assimilation cycles (e.g., three hours for the assimilation window), the inhomogeneity of the observation becomes larger 5 
and the load-balancing issue more critical. There is a trade-off between computational load balancing and data 
movement. It is worth considering the balancing technique described by Humrud et al. (2015). On the other hand, we 
argue that the speedup in computation in the LETKF is easier than that of global communication with massive nodes. 
The ratio of floating point operations to memory accesses in LETKF analysis is large. This type of calculation is 
expected to become faster by performance enhancement in future processors. We should select the best method for load 10 
balancing according to the number of nodes used, the number of observations, the analytical method used in the LETKF, 
and the performance of computer system. 
 
 

Reply Comments for referee #2 15 

 

 

1) It seems from Figure 4 that the biggest gain going from the old to the new setup is for StoO. Could this gain not have 

been accomplished by integrating the StoO code into the model (perhaps with a coupler)? Both model and StoO are 

independent between different ensemble members.  20 

 

[Reply] 
In this study, the program of StoO is separated from the atmospheric model and is executed individually. The gain of 
the StoO from old to new setup is mainly come from the improvement of poor I/O throughput and the collision of I/O 
requests. Following Miyoshi et al. (2010), multiple time slots of the observation and model output are used for StoO 25 
calculation in the data assimilation system of this study. The amount of model data inputted in the StoO is 7 times larger 
than that in the LETKF. For the LETKF, elapse times of both file I/O and MPI communication are decreased in the new 
framework. 
 
[Changes] 30 
We add following sentences (p 7, l. 5); 
In particular, a significant reduction was observed in the time needed for StoO. In this study, multiple time slots of the 
observation and the model output were used for StoO calculation following Miyoshi et al. (2010). Thus, input data size 
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in the StoO was seven times larger than that in the LETKF. The improvement in I/O throughput largely contributed to 
the performance gain in StoO. 
 
 
2) The timings presented are without any user output what so ever as far as I can see. In a operational scenario you 5 
would assume that at least the final analysis need to be output in a form that is suitable for producing maps,verification 
and to provide initial states for an ensemble forecast. This would entail moving the data from local storage to global and 
"gluing" together the parts of the globe. The time this takes and its scaling behaviour would also need to taken into 
account.  
 10 

[Reply] 
We agree that the scalability should be discussed according to the operational scenario. We did not take the time for 
post-processes of data assimilation cycle into account. This is because that such processes will be executed on the other 
nodes. We can choose appropriate time to copy the local data to global file system and/or the other node. Thus, the post-
processes do not block the sequential cycle of the data assimilation.  15 
The post-processes should be executed by the multiple nodes. Remapping of the grid system is one of the most time-
consuming part in the post-processes. We remap the variables from the icosahedral grid to the geodesic grid. This 
process takes similar time to the StoO program. Initial data for an ensemble forecast, which usually has higher spatial 
resolution than the ensemble analysis, is also prepared by remapping. 
 20 
 
3) Related to 2/ above is the issue of resilience of the cycling system. If one of the nodes on which this assimilation 
system is cycling crashes and its data is lost we need somewhere to have a backup from which the data can be restored 
on a different node.  
 25 

[Reply] 
As discussed in the reply of comment 2), we can copy the data as a background process from the local storage to the 

global storage at the time when the data files are not busy. If the data assimilation cycle is stopped due to the node 

failure, we can restart the cycle by using the latest dataset in the global storage.  

[Changes] 30 
We add following sentences (p 8, l. 17); 
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The resilience of the DA cycle is also an important issue. It is better to backup analysis data during the cycle. We can 

copy the data as a background process from the local FS to the global FS when the data files are not busy. If the DA 

cycle is stopped due to the node failure, we can restart by using the latest data in the global FS. 

 
 5 
4) One thing that is not clear in the presentation is the amount of observations used and if this is representative of 
today’s operational data assimilations schemes (typically of the order of 10.000.000 observations/6 hour period). It is 
possible, if this number is much lower in the experiments presented, the issue of load-balancing , acknowledged by the 
authors, might become a much more important factor. The statement that the observation coverage will become 
homogeneous with the introduction of more satellite platform is dubious. This may be true in a time averaged sense, say 10 
over a day, but may not be true if the observation window is reduced to let say 3 hours in order to produce more 
frequent forecasts.  
 

[Reply] 
Thank you for the valuable comment. We agree what you pointed out. When we conduct high-resolution data 15 

assimilation with frequent assimilation cycle, the inhomogeneity of the observation become larger. This is true even if 

we use satellite observations. We explain it in revision. The amount of the observation data per 6 hour period in this 

study was about 50,000. This is the number after the quality check and thinning from 1,000,000 observations. 

We received similar comment from referee #1. There is a trade-off between computational load balancing and data 

movement. The best setting is also depends on the machine. The number of observation and model resolution in this 20 

study will be insufficient to evaluate the future operational DA system. We will push forward the performance study of 

dynamic load balancing such as the technique described in Humrud et al. (2015) in the future. On the other hand, we 

argue that the speedup in computation in the LETKF is easier than that of global communication with massive nodes. 

The ratio of floating point operations to memory accesses in LETKF analysis is large. This type of calculation is 

expected to become faster by performance enhancement in future processors. 25 

[Changes] 
We add the specification of the number of observation used (p 6, l. 22); 

 (50,000 per six hours on average) 

We add following sentences (p 7, l. 19); 
No satellite observation was used in this study. The number of observations will increase by one or two orders of 30 
magnitude if we use satellite observations. When high-resolution data assimilation is conducted with frequent 
assimilation cycles (e.g., three hours for the assimilation window), the inhomogeneity of the observation becomes larger 



5 
 

and the load-balancing issue more critical. There is a trade-off between computational load balancing and data 
movement. It is worth considering the balancing technique described by Humrud et al. (2015). On the other hand, we 
argue that the speedup in computation in the LETKF is easier than that of global communication with massive nodes. 
The ratio of floating point operations to memory accesses in LETKF analysis is large. This type of calculation is 
expected to become faster by performance enhancement in future processors. We should select the best method for load 5 
balancing according to the number of nodes used, the number of observations, the analytical method used in the LETKF, 
and the performance of computer system. 
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Abstract. In this paper, we propose the design and implementation of an ensemble data assimilation (DA) framework for 10 

weather prediction at a high resolution and with a large ensemble size. We consider the deployment of this framework on the 

data throughput of file input/output (I/O) and multi-node communication. As an instance of the application of the proposed 

framework, a Local Ensemble Transform Kalman Filter (LETKF) was used with a Non-hydrostatic Icosahedral Atmospheric 

Model (NICAM) for the DA system. Benchmark tests were performed using the K computer, a massive parallel 

supercomputer with distributed file systems. The results showed an improvement in total time required for the workflow as 15 

well as satisfactory scalability of up to 10 K nodes (80 K cores). With regard to high-performance computing systems, where 

data throughput performance increases at a slower rate than computational performance, our new framework for ensemble 

DA systems promises drastic reduction of total execution time. 

1 Introduction 

Rapid advancements in high-performance computing (HPC) resources in recent years have enabled the development of 20 

atmospheric models to simulate and predict the weather at high spatial resolution. For effective use of massive parallel 

supercomputers, parallel efficiency becomes a common but critical issue in weather and climate modeling. Scalability for 

several large-scale simulations has been accomplished to a certain extent thus far. For example, the Community Earth 

System Model (CESM) performs high-resolution coupled climate simulations by using over 60 K cores of an IBM Blue 

Gene/P system (Dennis et al., 2012). Miyamoto et al. (2013) generated the first global sub-km atmosphere simulation by 25 

using a Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with 160 K cores of the K computer. 

Climate simulations at such high resolutions need to be able to handle the massive amounts of input/output (henceforth, I/O) 

data. Since the throughput of file I/O is much lower than that of the main memory, I/O performance is important to 

maintaining the scalability of the simulations as well as guaranteeing satisfactory computational performance. Parallel I/O is 
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necessary to improve the total throughput of I/O. In order to improve performance, a few libraries have been developed for 

climate models, e.g., the application-level parallel I/O (PIO) library, which was developed (Dennis et al., 2011) and applied 

to each component model of the CESM. The XML I/O server (XIOS, http://forge.ipsl.jussieu.fr/ioserver) was used in 

European models, such as the EC-EARTH (Hazeleger et al. 2010). XIOS distinguishes the I/O node group from the 

simulation node group, and asynchronously transfers data for output generated by the latter group to the former. With the 5 

development of models at increasing spatial resolution, the use of parallel I/O libraries will become more common. 

In addition to the simulation that is generated, the performance of the data assimilation (DA) system plays an important role 

in the speed of numerical weather prediction. Many DA systems have been developed, e.g., variational methods, Kalman 

filters, particle filters, etc. In particular, two advanced DA methods—the four-dimensional variational (4D-Var) method 

(Lorenc, 1986), and the ensemble Kalman filter (EnKF, Evensen, 1994; 2003)—are used at operational forecasting centers. 10 

Hybrid ensemble/4D-var systems have also been recently developed (Clayton et al., 2013). 4D-Var systems require an 

adjoint model that relies heavily on the simulation model. On the contrary, DA systems using the EnKF method are 

independent of the model. Ensemble size is a critical factor in obtaining statistical information regarding the simulated state 

in an ensemble DA system. Miyoshi et al. (2014; 2015) performed 10,240-member EnKF experiments, and proposed that the 

typical choice of an ensemble size of approximately 100 members is insufficient to capture the precise probability density 15 

function and long-range error correlations. Thus, it is reasonable to increase not only the resolution of the model, but also its 

ensemble size in accordance with performance enhancement yielded by supercomputers. However, this enhancement in 

model resolution and ensemble size leads to a tremendous increase in total data input and output. For example, prevalent DA 

systems operating at high resolution with a large numbers of ensemble members require terabyte-scale data transfer between 

components. In the future, the volume of data in large-scale ensemble DA systems is expected to reach the petabyte scale. 20 

In such cases, data movement between the simulation model and the ensemble DA systems will become the most significant 

issue. This is because data distribution patterns for inter-node parallelization in the two systems are different. The processes 

of a simulation model share all global grids of a given ensemble member. On the contrary, the DA system requires all 

ensemble members for each process. Even if the simulation model and the DA system use the same processes, the data 

layout in each is different and, hence, needs to be altered between them. Thus, a large amount of data exchange through 25 

inter-node communication or file I/O is required. This problem needs to be addressed in order to enhance the scalability of 

the ensemble DA system. 

As described above, data throughput between model simulations and ensemble DA systems becomes much larger than that 

for single atmospheric simulations. We are now confronted with the problem of data movement between the two components. 

Humrud et al. (2015) have pointed out the limitation of scaling by using file I/O in the European Centre for Medium-range 30 

Weather Forecasts’ (ECMWF) semi-operational Ensemble Kalman filter (EnKF) system. On the contrary, Houtekamer et al. 

(2014) showed satisfactory scalability in a Canadian operational EnKF DA system by using parallel I/O. This study aims to 

investigate the performance of ensemble DA systems by focusing on reducing data movement. NICAM (Satoh et al., 2014) 

and Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) were used as reference cases for the model and 
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the DA system, respectively. In Section 2, we summarize the design and implementation of the conventional framework for 

ensemble DA systems, and illuminate the problem from the perspective of data throughput. To solve the problem, we 

propose our framework for DA systems in Section 3. In order to test the effectiveness of our framework, we describe 

performance and scalability in the case of NICAM and LETKF on the K computer, which has a typical mesh torus topology 

for inter-node communication, in Section 4. We summarize and discuss the results in Section 5.  5 

 

2 NICAM–LETKF DA system 

NICAM (Satoh et al., 2014) is a global non-hydrostatic atmospheric model developed mainly at the Japan Agency for 

Marine-Earth Science and Technology, the University of Tokyo, and RIKEN Advanced Institute for Computational Science. 

With the aid of state-of-the-art supercomputers, NICAM has been contributing to atmospheric modeling at high resolutions. 10 

The first global simulations with a 3.5-km horizontal mesh were carried out on the Earth Simulator. The simulations showed 

a realistic multi-scale cloud structure (Tomita et al. 2005; Miura et al. 2007b). The K computer allowed many more 

simulations at the same or higher resolutions. Miyakawa et al. (2014) showed using several case studies that the skill score of 

the Madden–Julian Oscillation (MJO) (Madden and Julian 1971, 1972) improved by using a convection-resolving model in 

comparison with other models. As a climate simulation, the 30-year AMIP-type simulation was conducted with a 14-km 15 

horizontal mesh (Kodama et al., 2015). The global sub-km simulation revealed that the essential change in convection 

statistics occurred at a grid spacing of approximately 2 km (Miyamoto et al. 2013). NICAM employs fully compressible non-

hydrostatic dynamics, where the finite volume method is used for discretization on the icosahedral grid system. The grid 

point method has the advantage of reducing data transfer between computational nodes over a spectral transform method, 

which requires global communication between nodes and constitutes one of the bottlenecks in a massively parallel machine. 20 

The LETKF (Hunt et al., 2007) is an advanced data assimilation method based on the local ensemble Kalman filter (LEKF; 

Ott et al. 2004), where the ensemble update method of the ensemble transform Kalman filter (ETKF; Bishop et al. 2001) is 

applied to reduce computational cost. The LETKF has been coupled with a number of weather and climate models. For 

example, Miyoshi and Yamane (2007) applied the LETKF to the global spectral model AFES (Ohfuchi et al. 2004), Miyoshi 

et al. (2010) applied it to an operational global model developed by the Japan Meteorological Agency (JMA), and Miyoshi 25 

and Kunii (2012) constructed the WRF (Skamarock et al. 2005)–LETKF system. Kondo et al. (2009) were first to conduct 

simulation experimentssimulations under the perfect model scenario by using the LETKF with NICAM. Terasaki et al. 

(2015) developed a NICAM–LETKF system for experiments with real data. In addition to its impressive physical 

performance, a reason for why many prevalent DA systems employ the LETKF lies in its massive parallel computation 

ability, where the analysis of calculation is separately executed for each grid. The NICAM–LETKF system is based on the 30 

code for the LETKF by Miyoshi (2005). Miyoshi and Yamane (2007) applied a parallel algorithm to the LETKF for efficient 

parallel computation, and Miyoshi et al. (2010) addressed load imbalance in the algorithm. 
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The following is devoted to an explanation of the current NICAM-LETKF and a clarification of the problem. Figure 1 shows 

a flow diagram of the DA system with the LETKF and an atmospheric model. In this DA system, three application programs 

are used: an atmospheric simulation model, a simulation-to-observation converter (henceforth, StoO), and the LETKF. These 

programs are executed sequentially in a DA cycle. Most atmospheric models often use aggregated data for file I/O. This 

framework also assumes that each member has only a single file containing the simulated state. The numbers of 5 

computational nodes to be used are separately set for each program component. Since no component contains knowledge of 

the process used for file I/O, the output should be located in the shared file system; otherwise, the components cannot share 

information with one another. The StoO program reads the simulation results [Xf] and observation data [y] as a first guess. 

The simulation results are diagnostically converted into observed variables [H(xf)]. By using information regarding the 

horizontal and vertical locations, the model grid data are interpolated to data at the position of observation. Variable 10 

conversions, such as radiation calculations, are also applied when necessary. Following the conversion, the difference 

between the converted simulation results and the observations [H(xf)-y] is calculated for the output. The StoO program is 

independently executed for each ensemble member. In the first version of the NICAM–LETKF system, raw simulation data 

on the icosahedral grid are once converted to fit the latitude–longitude grid. Following this interpolation, the StoO program 

generates variables at the observational point using another interpolation. Although this enables the use of existing DA code, 15 

the redundant interpolation incurs time and yields additional interpolation error. Terasaki et al. (2015) improved this by 

directly using data on the icosahedral grid for interpolation at the observation point, instead of using pre-converted data from 

the icosahedral to the latitude-longitude grid system. The LETKF program reads the simulation and the results of the StoO. 

Processes equal in number to the ensemble size are selected to read the simulation results in parallel. Each selected process 

reads a member of the simulation result [Xf] and distributes grid data to all other processes by scatter communication. 20 

Following the data exchange, the main computational part of the LETKF is separately executed in each process. The results 

are exchanged once again by gathering communication among all processes to generate the new initial grid states [Xa] from 

the selected processes in parallel.  

The workflow described above has the following three bottlenecks: 

1) Limitation in the total throughput of I/O 25 

2) Collision of I/O requests due to a shared file system (FS) 

3) Global communication of large amounts of data 

Improvement in the parallel efficiency of the LETKF has thus far been made from the viewpoint of computation (Miyoshi 

and Yamane 2007, Miyoshi et al., 2010). The three bottlenecks above are related to data movement. We discuss them in 

detail. First, the number of nodes for the input simulated state is limited to the number of ensemble members. With a 30 

simulation model of increasing resolution, the amount of output data increases. Nevertheless, the number of available nodes 

is limited to the ensemble size in the DA system. This limitation is due to the assumption that the model output is a single 

file. As a result, the time to read grid data increases in the absence of scalability. Second, the use of a shared file system (FS) 

causes I/O communication to slow down. I/O performance is related not only to throughput, but also to inundation of the I/O 
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request. Many HPC systems adopt distributed parallel FS, such as Lustre (http://lustre.org/), that enable parallel disk access 

and improve I/O throughput. However, a latent bottleneck in the metadata server occurs when a large number of processes 

simultaneously access the file system to write data. Third, global communication takes a long time with a large amount of 

data. This problem becomes more serious in high-resolution and large ensembles. A greater number of grid data items take 

longer to distribute to all processes. The increase in the total number of processes also requires time to complete data 5 

exchange. Note that this is more or less true of any network topology. The scalability of the ensemble DA system on massive 

parallel supercomputers worsens due to these bottlenecks.  

3 Proposed NICAM–LETKF framework 

To solve the three problems with the current workflow stated and explained in Section 2, we design and implement a 

framework for the NICAM–LETKF system. The key concepts of data handling in the new framework are shown in Fig. 2. 10 

This framework is based on the I/O pattern of NICAM, which handles horizontally divided data such that each process 

separately reads and writes files. In an ensemble simulation, the total number of processes is equal to the horizontally 

divided processes multiplied by the ensemble size. This is equal to the number of output files. Output data from each process 

is written to a local disk. We assume that this local disk is not shared by any other process. In this framework, we use the 

same number of processes in each of the three program components. All processes are used for I/O in every program. We 15 

use MPI_Alltoall to exchange grid data (we call this “shuffle”) in StoO and the LETKF. The processes of ensemble members 

in the same positions in the grids are grouped for MPI communication. All ensemble members in the same local region are 

included in the same group. This grouping can minimize the number of communication partners and reduce the total data 

transfer distance. We can hence avoid a global shuffle, which is the third problem with conventional frameworks. Following 

the computation of the LETKF, the data for analysis are shuffled again. Data for the next simulation are then transferred to 20 

the local disk, in the reverse order of the input stage. 

The above concepts of the proposed framework can be applied to any simulation model. The model can use any grid system, 

structured or unstructured. Based on these concepts, the method of implementation in NICAM–LETKF is a typical example 

of models with a structured and complicated grid system. NICAM adopts the icosahedral grid configuration, where the grids 

quasi-homogeneously cover the sphere, and are horizontally divided into groups called “regions” (Tomita et al., 2008). One 25 

or more regions are assigned to each process. The global grid is constructed by a recursive method (Tomita et al 2002, 

Stuhne and Peltier, 1999). The regions are also constructed with a rule similar to the recursive division method. Thus, the 

structure of the local grids is kept in the region. We also adopt the same method for grid distribution in each shuffling group. 

Figure 3 shows the schematic picture of grid division. By using a mini-region as a unit, we can retain the grid mesh structure. 

This method is advantageous when we interpolate the grid data from the icosahedral grid system to the location of 30 

observation in StoO. However, this rule limits the available number of processes in the shuffling group, which is equal to the 

number of ensemble members. In the case of NICAM, there are 10 × 4n regions, where n is an integer greater than zero. We 
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can use a divisor of the total number of regions as the number of regions to assign to each process. The number of mini-

regions depends on the number of regions in a process. For example, we can configure the horizontal grid as follows; the 

total number of regions is set to 160. Two regions are assigned to each process, and 16 × 16 grids are contained in each 

region. At this setting, we can use 1, 2, 4, 8, 16, 32, 64, 128, 256, or 512 as ensemble size. We can choose any division 

method of a local grid group, but assign priority to the efficiency of interpolation calculation and load balancing in this study. 5 

In the proposed framework, only the master process of all MPI processes manages the I/O of the observation data and the 

results of the StoO. Global communication is used to broadcast and aggregate these data items. In this study, the size of these 

data items is smaller than 50 MB, because of which the time needed for I/O and the communication of these data items is 

short. We leave issues arising from a large amount of observation data as part of future research, and reflect on it in our 

discussion. 10 

4 Performance evaluation 

In this section, we describe experiments to test the proposed framework on the K computer. This computer system is 

equipped with both global and local FS. The user enters initial data from the global FS to the local FS through the staging 

process. The local FS in a node has a shared directory with all other nodes, and a local (rank) directory used only by the node. 

Although the shared directory allows all nodes to access one another, its throughput is degraded by the frequency of requests 15 

for I/O from them. On the contrary, the local directory can maximize the efficiency of total I/O bandwidth because any 

conflict in I/O between nodes is avoided by reducing the load on the metadata server. In our comparative case study, the old 

framework used a shared directory in the conventional manner while the new framework used only the rank directory. 

Table 1 summarizes the experimental setup: the resolutions, the number of ensembles, the number of processes, and so forth. 

As the observational data was assimilated into the results of the model, the NCEP PREPBUFR (available at 20 

http://rda.ucar.edu/data sets/ds337.0) observation dataset was used. Data thinning was applied according to a 112-km mesh, 

and the same number (50,000 per six hours on average) of total observations were used for all experiments. Covariance 

localization was adopted by using a Gaussian function within 400 km in the horizontal and 0.2 ln(p) in the vertical directions, 

where p represents pressure. Note that the simulation with a 28-km mesh employed a more sophisticated cloud microphysics 

scheme. 25 

Figure 4 shows the breakdown of elapsed time for a DA cycle in the case involving 256 members. The blue bar shows 

NICAM, whereas the green and red bars show StoO and the LETKF, respectively. The shaded part represents the time taken 

for communication and I/O. As reference, we confirmed that the 112 km mesh experiment took comparable times in model 

simulation and data assimilation when using the 2,560 processes. The computation times for the StoO and the LETKF 

increased fourfold in the 56-km mesh experiments, as shown in Fig. 4. This was reasonable in light of the increase in 30 

horizontal resolution. On the contrary, the time required for the simulation increased almost eightfold. If we halve the grid 

spacing, we have to halve the Δt. Therefore the number of simulation steps doubles. A higher resolution incurred longer 
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execution time than that needed for data assimilation. Thus, we need to increase the number of computation nodes to shorten 

elapsed time. For example, as shown in Fig. 4, the number of nodes increased fourfold. Although we expected a fourfold 

reduction in time, the old framework could not attain effective reduction in data assimilation due to the bottleneck associated 

with I/O and the communication components. By contrast, the proposed framework yielded the scalability in terms of 

computation, IO, and communication. In particular, a significant reduction was observed in the time needed for StoO. In this 5 

study, multiple time slots of the observation and the model output were used for StoO calculation following Miyoshi et al. 

(2010). Thus, input data size in the StoO was seven times larger than that in the LETKF. The improvement in I/O throughput 

largely contributed to the performance gain in StoO. 

From the viewpoint of computational efficiency, we obtained 36 TFLOPS of sustained performance in a DA cycle with 

10,240 processes that corresponded to 81,920 cores. The ratio of computation time to total time improved from 0.44 in the 10 

conventional framework to 0.76 in the proposed framework. From Fig. 4, we see that the computation time of the LETKF in 

the proposed framework increased in comparison with that in the old framework. This is because of load imbalance in the 

former. The number of observational data items used for data assimilation at each grid point depended on the localized 

radius in the LETKF and the spatial homogeneity of the observational data. The conventional framework can avoid this 

imbalance by shuffling the grid among all nodes (Miyoshi et al., 2010). However, the proposed framework cannot avoid it 15 

because each process manages its spatially localized region. In other words, the proposed framework reduces data movement 

at the cost of load balancing. We argue that this deficiency is not a problem in light of anticipated assimilation of satellite 

data: satellite data is distributed homogenously across the globe, and its use will increase, with the consequence that the 

imbalance in the amount of computations will decreaseNo satellite observation was used in this study. The number of 

observations will increase by one or two orders of magnitude if we use satellite observations. When high-resolution data 20 

assimilation is conducted with frequent assimilation cycles (e.g., three hours for the assimilation window), the 

inhomogeneity of the observation becomes larger and the load-balancing issue more critical. There is a trade-off between 

computational load balancing and data movement. It is worth considering the balancing technique described by Humrud et al. 

(2015). On the other hand, we argue that the speedup in computation in the LETKF is easier than that of global 

communication with massive nodes. The ratio of floating point operations to memory accesses in LETKF analysis is large. 25 

This type of calculation is expected to become faster by performance enhancement in future processors. We should select the 

best method for load balancing according to the number of nodes used, the number of observations, the analytical method 

used in the LETKF, and the performance of computer system. 

Figure 5 shows the elapsed time for one DA cycle for all experiments listed in Table 1. We can confirm that any resolution 

experiment could yield satisfactory scalability. This suggests that the new framework provides effective procedures for high-30 

resolution and large-ensemble experiments on massively parallel computers. 

5 Summary and discussion 
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In this paper, we proposed a framework that maintains data locality and maximizes the throughput of file I/O between the 

simulation model and the ensemble DA system. Each process manages data in a local disk. Separated parallel I/O is effective 

not only for read/write operations, but also for access to the metadata server. To reduce communication time, we changed the 

global communication of grid data to smaller group communication. The movement of data is strongly related to energy 

consumption as well as computational cost. Our approach is based on the concept of reducing the size and distance of 5 

moving data in the entire system. We assessed the performance of our framework on the K computer. Since the K computer 

is constructed as a distributed FS with a 3D mesh torus, it is not clear whether the approach proposed in this paper is 

effective with other FS and inter-node network topologies. However, the underlying concept—that minimizing data 

movement leads to better computational performance—will hold for most other supercomputer systems. This suggests that 

the cooperative design and development of the model and the DA system are necessary for optimization. 10 

To improve I/O throughput for tentative use of disk storage, large HPC systems are being equipped with high-speed disks or 

non-volatile memory, such as a solid-state drive (SSD) with nodes (e.g., “Catalyst” at the Lawrence Livermore National 

Laboratory, TSUBAME2.5 in Tokyo Tech.). We propose using these “buffer disks” in future HPC systems. Each process 

occupies the local disk of its own node, and access collision can hence be avoided. We can also use the main memory as 

buffer storage depending on problem size. If memory is sufficient, we can facilitate the exchange of data between the 15 

simulation model and the LETKF without any disk I/O. If we have a limited number of ensemble members to execute at the 

same time, we should use storage. We can store more than one set of output file to the buffer storage. The resilience of the 

DA cycle is also an important issue. It is better to backup analysis data during the cycle. We can copy the data as a 

background process from the local FS to the global FS when the data files are not busy. If the DA cycle is stopped due to the 

node failure, we can restart by using the latest data in the global FS. 20 

The observation-space data files used in this study were not distributed because these files were relatively small (e.g., < 1 

MB for observation data, < 26 MB for sim-to-obs data involving 256 members). However, the amount of observational data 

continues to increase. For example, massive multi-channel satellites, such as the Atmospheric Infrared Sounder (AIRS, 

Aumann et al, 2003), provide massive amounts of data for large areas. The geostationary satellite Himawari 8 generates 

approximately 50 times more data than its predecessor. Several hundred megabytes of observation data and several gigabytes 25 

of converted data by StoO are used in each assimilation instance. A node of a massive parallel supercomputer does not have 

sufficient memory to store these amounts of observation data. The time required by the master node to read such volumes of 

data will become a bottleneck. We thus need to consider a division between observation data and their parallel I/O. The 

number of observational data items required by each process varies according to the number of divided parts of the 

simulation data and the spatial distribution of observation. Each process of the StoO program applies a conversion within the 30 

assigned area. By contrast, each process of the LETKF requires that the data be converted through multiple processes in the 

StoO according to the spatial localization range. Data exchanged using a library, such as MapReduce, is effective for such 

altering many-to-many relationships. In order to increase the speed of data assimilation systems in the future, preprocessing 

of the observation data, such as dividing, grouping, and quality check, will be incorporated into our framework. 
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6 Code availability 

Information concerning NICAM can be found at http://nicam.jp/. The source code for NICAM can be obtained upon request 

(see http://nicam.jp/hiki/?Research+Collaborations). The source code for the LETKF is open source and available 

at https://code.google.com/archive/p/miyoshi/. The previous version of NICAM-LETKF DA system was based on this 

LETKF code and the tag version “NICAM.13” of the NICAM code. The new version of the DA system proposed in this 5 

study is based on tag version “NICAM.15,” which includes LETKF code. 
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Figure legends 

Figure 1. Schematic flow of the DA system with the LETKF. 

Figure 2. Schematic diagram of the proposed framework in NICAM–LETKF. 

Figure 3. The concept of grid division. 

Figure 4. The time taken by NICAM–LETKF on the old and the new frameworks. 5 

Figure 5. The time taken by NICAM–LETKF on the new framework. 

 

Table Captions 

Table 1. Configurations of DA experiment used to measure time taken on the K computer.  
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Table 1. Configurations of DA experiment used to measure time taken on the K computer. 

EXP. 
Name 

Horizontal 
mesh size 

[km] 

Number of 
vertical 
layers 

Number of 
horizontal 
grids (per 

PE) 

Number of 
horizontal 

grids 
(total) 

Number of 
PE (per 

member) 

Number of 
ensemble 
members 

Number o� 
PE (total) �  

Number of 
horizontal grids (per 

PE, shuffled) 

G7R0E3 56 40 16900 169000 10 64 640  324 

G7R1E3 56 40 4356 174240 40 64 2560  100 

G7R2E3 56 40 1156 184960 160 64 10240  36 

          

G7R0E4 56 40 16900 169000 10 256 2560  100 

G7R1E4 56 40 4356 174240 40 256 10240  36 

          

G6R0E3 112 40 4356 43560 10 64 640  100 

G6R1E3 112 40 1156 46240 40 64 2560  36 

          

G8R1E3 28 40 16900 676000 40 64 2560  324 

G8R2E3 28 40 4356 696960 160 64 10240 �  100 
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Figure 1. Schematic flow of the DA system with the LETKF. 
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Figure 2. Schematic diagram of the proposed framework in NICAM–LETKF. 
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Figure 3. The concept of grid division. 
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Figure 4. The time taken by NICAM–LETKF on the old and the new frameworks. 
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Figure 5. The time taken by NICAM–LETKF on the new framework. 
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