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Abstract. Large-eddy simulation (LES) and Lagrangian stochastic efiimg) of passive particle dispersion were applied to
the scalar flux footprint determination in stable atmosfhieoundary layer. The sensitivity of the LES results to that&l
resolution and to the parameterizations of small-scal®iance was investigated. It was shown that the resolvegarizlly
resolved "subfilter-scale" eddies are mainly responsilig@éarticle dispersion in LES, implying that substantiapimovement
may be achieved by using recovery of small-scale velocitgtdlations. In LES with the explicit filtering this recovegin
consists of application of the known inverse filter operaitre footprint functions obtained in LES were compared \lith
functions calculated with the use of first-order single iglrtLagrangian stochastic models (LSM), zeroth-orderrbagian
stochastic models - the random displacement models (RDiM) aaalytical footprint parameterisations. It was obsebat
the value of the Kolmogorov consta@t, = 6 provided the best agreement of the one-dimensional L&Mslts with LES,
however, also that different LSMs can produce quite difiefeotprint predictions. According to presented LES tharse
area and footprints in stable boundary layer can be suligitgmore extended than those predicted by the modern toally

footprint parameterizations and LSMs.

1 Introduction

Micrometeorological measurements of vertical turbuleratiar fluxes in the atmospheric boundary layer (ABL) are Ugua
carried out at altitudes;; > 1.5 m due to technological limitations of the eddy covaraneethod. The measurement results
are often attributed to the exchange of heat, moisture asebgat the surface. This procedure is not justified for intgemeous
surfaces because of large area contributing to the flux, acduse of variability of the second moments with height. The
relationship between the near-surface fluxz,y,0) and the fluxts () = (w's’), with angle brackets denoting the ensemble
averaging, measured in poinf,; at some distance from the ground can be formalized via thipfimb function f,(z,y,xa):

o0

FS(:cM)z/ /fs(a:,y,:cM)Fg(a:,y,O)da:dy. 1)

— 00 —00
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The measurements of the functignin natural environment are restricted (e.g., Finn et al96l . eclerc et al., 1997, 2003;
Nicolini et al., 2015) due to the necessity to conduct thession and detection of artificial tracers. Besides, suctsoreanents
are not available for the stably stratified ABL where the arethe surface influencing the point of measurements ineseas

Most often, only the one-dimensional footprint functigfisare measured. These functions are defined as

fU(at zn) = < / ff(-rd,ydeM)dyd> ; )
o0 TMLYM

where the angle brakets with indeces denote averaging #herappropriate variables, i.e. integrating 2-D footifitalong

cross-wind direction and averaging over the coordinateb®fmeasuring points in horizontally homogeneous casesg:(he

fd (x4 y? 2 0r) = fs(x,y,20r) is the footprint expressed in coordinatgs= x; —  andy? =y — y).

Stochastic models, used for a footprint calculation, sucsirggle particle first-order Lagrangian stochastic mobatsed on
generalized Langevin equation (LSM) and zeroth-ordertgtstic models (also known as the random displacement models
RDM) (see the reviews listed in the papers (Wilson and Salyfd¥96), (Wilson, 2015) and the monograph (Thomson anddwijls
2013)), as well as analytical models (e.g., Horst and W8B21 Kormann and Meixner, 2001; Kljun et al., 2004, 2015)dtio
be calibrated against the data considered to be repreisertéteal processes. Results of these models depend ohdingec
of universal functions in the ABL or in the surface layer (rdimensional velocity and scalar gradients, non-dimeraio
dissipation, dispersion of the velocity components e@ommonly, the applicability of these models is limited bycafistant
flux layer" simplification, assuming that the measuremeighte ,, is much less than the thickness of the ABL However,
under the strongly stable stratification the thickngssiay be several meters, therefore, the vertical gradientsomhentum
and scalars fluxes near the surface can be large. It can léacaotwect functioning of the models designer for, and & ste
the data gathered under different conditions.

Large eddy simulation (LES), employing Eulerian approamtilie transport of scalars, was first time applied for a footp
calculation in (Leclerc et al., 1997). Modern computatideahnologies allow to combine Eulerian and Lagrangianhoes
for turbulence simulation and particles transport (e.ceil\at al., 2004; Steinfeld et al., 2008; Cai et al., 2010;Isteh et al.,
2015) and to perform detailed calculations of averageddimeensional footprints under different types of stratificas in
ABL and footprintsf,(x,y,x ) over heterogeneous surfaces (for example, urban surfaceuafaces with alternating types
of vegetation). Some examples of such calculations arengivéSteinfeld et al., 2008; Hellsten et al., 2015).

Lagrangian transportin LES is complicated by the problenhestcription of small-scale (unresolved) fluctuations effhr-
ticle velocity, which is similar to the problem of subgrid dwlling of Eulerian dynamics. A common approach for Lagrang
subgrid modelling in LES is the application of subgrid LSMsg(, Weil et al., 2004; Steinfeld et al., 2008; Cai et al1@0
Shotorban and Mashayek, 2006). This approach requires bernwhadditional calculations for each particle (e.geipbla-
tions of subfilter stresses; and subgrid dissipatioainto the particle positio?). In addition, it is necessary to generate a
three-component random noise for each particle, that ime-tionsuming computational operation. Numerically staiolu-
tion to the generalized Langevin equation (see Sect. 2.3%)jn LES requires a smaller time steps than the stepditico
of Eulerian equations, because local Lagrangian decdtioelame T, (P, t) can be very small.
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The statistics of simulated turbulence in LES may signifilyadiffer from the statistics of real turbulence. For exde)p
the use of dissipative numerical schemes or low-order fulifference schemes usually results in a suppression dtifitions
over almost the entire resolved spectral ranges of disotetiels (see e.g., Fig. 16 in Piotrowski et al., 2009). Twbufluxes
(in the Eulerian representation) associated with theséutitions are restored by subgrid closure. However, in terhike
Lagrangian transport the effects of distortion of sma#itegart of the spectrum are most often not considered.

Numerical simulations of Lagrangian transport in LES asodimited by the low scalability of parallel algorithms. i§h
is due to the impossibility of uniform loading of processors joint solution to the Euler and Lagrangian equationsygd
number of interprocessor exchanges and unstructuredbdistn of characteristics required for Lagrangian adiogcin the
computer RAM memory.

Thus, all methods of numerical and analytical determimatibthe functionsf, have individual drawbacks. At the same
time, due to the lack of sufficient amount of experimentabdatd due to their low accuracy there are no clear criteria for
evaluation of different models.

According to the need of computational cost reduction, dribeobjectives of this study is to establish the role of ktastic
subgrid modelling in the correct description of the paetictlispersion in LES. Is it possible to simplify the calcigiatand to
avoid the introduction of stochastic terms without the loaccuracy in some integral characteristics, such as thgprfioits
or the concentration of pollutants emitted from the poinirses? The role of subgrid fluctuations is reduced with arease
of spatial LES resolution. Therefore, the independencesilts from the mesh size is used as a criterion for checkiag t
quality of Lagrangian transport procedures in LES. It wédldemonstrated that the subgrid stochastic modelling ind¢dthe
omitted in most cases. Instead, we propose "computatipocladlap” procedure of inverse filtering supplemented byrdet
correction of Eulerian velocity to replace the subgrid bstic modelling in LES (see description below).

Subgrid transport is especially significant near the serfawd/or under the stable stratification — all are the cases@ted
with small eddies size. That is why the stable ABL was setkbatethe key test scenario in this study. We slightly modified t
setup of the numerical experiment GABLS (Beare et al., 28@6his purpose.

LES results are used as the input data for the stochasticle@®Ms and RDMs). These data are pre-adjusted using known
universal dependencies and taking into account an incaenp@resentation of turbulent energy in LES. The comparigo
results of different stochastic models and the results ft&8 allows to specify the parameters for the LSMs and pertoits
identify the differences between LSMs and RDMs under thalitmmms which have not been tested previously.

The paper is organized as follows. Section 2 contains theriggisn of some common features of approaches: the imple-
mented numerical algorithm for footprint estimation in LBS8d LS models (Sect. 2.1); LES governing equations and the
definitions of some terminology used for the small-scale eflod) description and for the testing of particles tranggSect.
2.2); the definitions of stochastic models (LSMs and RDMsgJ painting to some problems connected with uncertainty of
the choice of turbulent statistics for them (Sect. 2.3 ad)l. Bection 3 contains short description of the numerigd@thms
and the turbulent closure for LES model used in this studgt(S1) and the description of the different approachestfer
Lagrangian particles transport in LES tested here (Se2}. Sect. 4 is mainly devoted to the testing of ability of LESdel
with rough spatial resolution to reproduce particle disper correctly. For this sake we implemented special sefupe
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numerical experiment (see Sect. 4.1) permitting to compaggangian and Eulerian statistics (see Sect. 4.2.2). dbesf
was made on the approaches with the limited use of subgrithastic modelling (see Sect. 4.2.1 where the sensitivith®f
computed footprints to the spatial resolution was inveséd). The footprints computed with LES model with simplbgid

LSM (traditional approach) are presented in Sect. 4.2.3-@isnensional footprints are shown in Sect. 4.3. Due todaen-
sitivity of LSMs to the turbulent statistics we emphasizéadareparation for them using LES results, measuremerdasashat
similarity laws in Sect. 5.1. Section 5 contains the resoft®otprint modelling with the use of the set of different RIB

and LSMs (specified in Sect. 5.2) in comparison with LES rssigee Sect. 5.3). Section 6 is devoted to the comparison of
footprints, computed in LES with the analytical footprimrameterisations based on a scaling approach by Kljun ¢G04,
2015). Section 7 summarises the results.

In addition to the basic calculation, we carried out a sesig®sts (see Supplement Sect. S1) under unstable strédifica
in ABL with the different grid steps in LES model. This allowscompare the results presented here with the similarteesul
obtained in previous studies (e.g., Steinfeld et al., 2008 et al., 2004) and to verify the performance of our LES elod
in footprint evaluation. Furthermore, we demonstrate #muits of footprint calculations above the inhomogeneouise
(Supplement Sect. S2), which imitates the lake of a smadl siarrounded by forest. Computational aspects of techyace
discussed as well.

2 Modelling approaches
2.1 Numerical evaluation of footprints

Computational methods for determination of footprint®@ofteduce to the implementation of Lagrangian transportarked
particles. Each particle can contain a number of attrihutesuding its initial coordinate:f, and timet};. Choose two small
horizontal plategs andd,, for averaging in the neighborhood of zero with the argasndS,,, respectively. Define the time
intervalT), = [to,t2], during which new particles are ejected near the groundthihntensityH (hereH is the mathematical
expectation of the new particles number emitted per uni ger unit time) and the intervdl, = [t1,t2] (t1 > to), when
particles are detected near the point of measurementidfsufficiently large for the ensemble averaged flux to attaimstant
value in time, and’, is quite large for statistically significant averaging,ritike footprintf, can be evaluated by the formula

fs(xs,ys, e, ynr, 200) =
—1

1 1 nsm = » - ' d /d , wP IP (3)
R g 7 7 to)dx —
Sm Ta 2= 5/ (70 +, 40 +9/,To)dr dy Jwp |5
s

whereng,s is the number of particles, the trajectories of which attlease crossed the plane-= z,, at horizontal coordinates
a (2} — v —ym) € 0u intime intervalT,, 12, = 1 if the initial coordinateszf) of such particle satisfy the condition
(2} —2f) — (xmr —zs), (W) —yh) — (ym —ys)) € 6s and I%,, = 0 otherwise. Herew? is the vertical component of the
particle velocity at the moment of crossing the plane z,,. In the horizontally homogeneous case one can calculatpriad
f.(x?,y%, 25r) performing averaging over statistically equivalent caoates of sensor position (hewe = (zy; — z,yar —
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y,z)). For this averaging in LES with periodic domain one can gribg the coordinate@e s, yas) to the domain center and
select the areég to be equal to whole domain size. Analogical methods can pkebwhen using LSMs or RDMs, whereas

in the case of RDMs patrticle displacement should be useckitth 3 instead of velocity.

2.2 Lagrangian particles embedded into LES

Lagrangian particle velocity? and the particle positiom? can be computed in LES models as follows:

uf = ﬂz(-p ) 4 u? da?’ = uldt. 4)

Hereaz(.p) is the interpolation of the resolved Eulerian velocity ithe particle positiony””? are the small-scale unresolved
Lagrangian velocity fluctuations associated with Euleralocity fluctuations belonging to "subgrid" and "subfittscales.
Here and later we shall use the designation "subfilter" tatkethe fluctuations which belong to the resolved spectrajea
of the discrete model, but are not reproduced numericaily,the designation "subgrid” for the fluctuations which cahbe
represented on the grid due to smallness of the scales. L&Srgng equations for filtered velocity are:

o - 0w, Oy, om0 am ®)

ou; . 8ﬂiﬂj 8Tij 8]_)

whereF? comprises Coriolis and buoyancy forces; = w;u; — u; w; denotes the modeled "subgrid/subfilter" stress tensor.
System of equations (5) can be supplemented by the Eulegizations of scalars transport:

s _ o5 o
8t n 8331 (95(’2

+Qs, (6)

whereQ), denotes sources intensity; = su; —u; s are the parameterized "subgrid/subfilter" fluxes. Usutily fluctuations
u’? are defined to be dependent on some random funétiontroduced in order to provide the missing part of mixing.
The particular approaches for computing of unresolved gigparticle velocity will be discussed and tested in thedaing
sections.

There is a great practical interest in the calculation otfoats, as well as of spatial and temporal characteristfgsol-
lution transport from localized sources above heterogesisarfaces and in the areas with complex geometry (in thenurb
environment, over the surfaces with complex terrain or dheralternating types of vegetation). LES of such flows bexom
a routine procedure with increasing performance of computdowever, the calculation of statistical charactersstf La-
grangian trajectories is complicated in this case by thel wéé&ransport of huge number of tracers (e.g., Hellsten.e2all5).
For example, it is necessary to calculate the trajectofiabaut10° particles (see Supplement Sect. S2) to obtain the foofprint
above the "lake" (the task similar to that presented in (Glax and Stepanenko, 2015)).

On the other hand, a large number of particles (see, e.gpl@upnt Fig.S2.1b) allows to estimate the local instardase
spatially filtered concentration of the scalar:

sp@t)= Y Gla—a’(1), @)

p=1,N
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whereG is the function which coincides with the convolution ker¢ILES filter operator andV is the total number of
particles in the domain. If the mathematical expectatipnof a number of new particles appearing in a unit volume during
unit time interval is proportional to the Eulerian concetitin source strengt), (z,t) = CQ, (x,t), thens,(x,t) ~ C3(z,t).
One can perform the same operations with the "Lagrangiantemtratiors, (x,t) as the operations with the Eulerian scalar
5. Below, we will compare the averaged valuesspfands and their spatial variability. Besides, we will use the stiion of
concentratiors, (z, t) for correcting the particles velocities (see, Sect. 3Rdk. (33),(34)), in order to approximate the effect

of subgrid turbulence.
2.3 Single particle first-order Lagrangian stochastic mods (LSM)

Another approach (more widespread due to a lower computdtemst) is the replacement of the entire turbulent compbne
of velocity by a random process (Lagrangian stochastic tsqti&M)):

uf = <u£p)> +uf, da?’ = uldt. (8)

Here <u§p)> is the ensemble averaged Eulerian velocity at peintIn the single particle first-order LSM velocity? is
defined as a Markovian process and is the solution of gemethliangevin equation:

du' " = a; (P, uP t)dt + bij(xP,uP, t)Er, 9)
where¢ stays for the delta-correlated (usually Gaussian) randaiserwith the variancét
(e (€] (t+1')) = 010,m0(t )t (10)

and with the zero averadé¢?) = 0; a;, b;; are the functions depending on the Eulerian charactesisfiturbulence and on the
Lagrangian velocity of the particle. Typically; is calculated by the formula

bij = 51']‘ YV 006, (11)

where,e denotes the energy dissipation rate, averaged for a fixedicade,Cy is the Kolmogorov constant. This kind of
random term (arguments are given in (Thomson, 1987) andf(Bawl993)) is defined by Lagrangian velocity structure
function in the inertial range (see Monin and Yaglom, 1975):

D (1) = (it + 1) = wi(8)) (u; (¢ + 1) = ; (1)) = 6i; Coet’ (12)

if 7, <t < Tr (r, = (v/€)'/? is the Kolmogorov microscald;s = E? /e is energy containing turbulent time scalejs the
turbulent kinetic energy).

The functiona; (drift term) determines the behavior of particles at laigeest ~ T, ~ Ty (hereTy, is the Lagrangian
decorrelation time scale). For spatially inhomogeneouk statistically non-stationary turbulent flows, includiAg@L, the
choice ofa; is usually done according to the well mixed condition (WMQ@iomson, 1987). In general WMC does not lead



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-34, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 29 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

to a unique solution fos;. Different LSMs are constructed by introducing the addiéibphysical assumptions and can lead to
inequivalent results.
Lagrangian models are very sensitive to the choice of usaldunctions that define the normalized RMS of the vertical
velocity 6, = <w'2>1/2/U* and non-dimensional dissipatién= ez /U2 (hereU., is the friction velocity). Besides, the sim-
5 ulation results are affected by the choice of a "universabktant" Cj. It can be shown (e.g., Durbin, 1984; Wilson and Yee,
2007 ) that for one-dimensional LSM, these parameters d@terthe eddy diffusivity’, for the scalar in the diffusion limit

(whent > T7,, i.e. at large distances from the source):

204 254
K,=—%=_"YU,xz. 13
Coe  Cot *~ (13)

The data of measurements in the ABL demonstrate large iaridor example, the values 6f, range from1.0 to 3.1 (see
10 Table 1in Banta et al., 2006). According to Eq. (13) it impliee change oK', by more than nine times.

There is no consensus on the valueigf Formally,Cy has the meaning of a universal constant in Eq. (12). The asbm
of this constant for an isotropic turbulence using the détilmoratory measurements and DNS provides an intefyak
6.4 0.5 (see Lien and D’Asaro (2002)). However, the valtgs~ 3 — 4 are often used for LSM of particle transport in ABL.
For instance, the valu€, = 3.1 for a one-dimensional LSM corresponds to calibration penfed in (Wilson et al., 1981)

15 according to observation data (Barad, 1958; Haugen, 19%83. calibration (see Wilson, 2015) assumes that the tartiul
Schmidt numbefc = K,,,/ K, = 0.64 near the surface (hef€,, is the eddy viscosity). It is known that determination of the
turbulent Prandtl numbe?r = K,,,/ K, (K}, - heat transfer eddy diffusivity) and Schmidt number basedlzservation data is
complicated by large statistical errors associated wighpitoblem of self-correlation (Anderson, 2009; Gracheu.e207).
Therefore, the existing estimation 6f can not be considered as final and should be confirmed by fstudées. Below we

20 show that the value af', significantly affects the results of footprint calculatson

2.4 Zeroth-order Lagrangian stochastic models or random diplacement models (RDM)

A simplest approach for development of the models of particspersion entails replacement of Eulerian advectiffusion

equation
0(s) L\ O(s) 0 0(s)
o ) B = 50 K,

25 by the stochastic equation for particle position (randospldicement models (RDM)):

+ Qs (14)

dr? = (u;) dt + %dt-’- V2K L. (15)
o
Probability density of particle positioR is connected with scalar field concentratigi as follows:
t
(s(a,)) = / / Qs (@0, t0) P, o, to)d*wodto. (16)
R3 —o0

Using the Fokker-Planck equation it can be shown that the(Eg). is equivalent to the Eq. (14) from the point of view of
30 concentration transport when the time stpends to zero (Durbin, 1983; Boughton et al., 1987).
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RDM has some major disadvantages. First, it shares thealimit of Eulerian eddy-diffusion treatment of turbulergpr-
sion, i.e. "K-theory". Correspondingly, it is not able tosdabe the non-diffusive near field of a source. Also, RDM pah
be applied for the convective ABL, where the counter-gnatieansport is observed. Besides, it requires the exaoegabf

diffusion coefficient’s, which can not be measured directly.

3 Details of LES model used in this study
3.1 Numerical algorithms and turbulent closure

System of equations (5 - 6) is discretized using explicitéidifference scheme with the second-order temporal appadion
(Adams-Bashforth method) and fourth-order (fully-coneerfor advective terms) spatial approximation of veloeityl scalars
on staggered grid (Morinishi et al., 1998).

Mixed model (Bardina et al., 1980), expressed as the sumeofStinagorinsky and scale-similarity models, is used for
calculation of turbulent stress tensor:

T = S = —2(CGA)P[S[S; + (W g — s uy), (17)

7 — iy
whereS;; is the filtered strain rate tensar, is the dynamically determined (Germano et al., 1991) direress coefficient
which depends on time and spatial coordinates.

The procedure of calculation of the coefficieatéz, t) = (CsA)? reduces to minimization of the Euclidean nofeg;, ;)
of the residual of the overdefined system of equations

—

(XM7) - aQX(MEj“) = Lij — Hij +¢ij, (18)

obtained by substitution of mixed model (Eq. 17) into ther@ano identity as

o~ o~

— Ep— = =
Tij—Tij:Ui uj—ui Uj. (19)

HereT;; are subgrid/subfilter stresses for the smoothed veltﬁ;iqbtained by successive application of baSjeand testr’x

spatial filterso = ﬁ/Z is the ratio of the filters widths. Tensaokg’, M.

;0 M7, Lij andH,; are calculated as follows:

= == — (20)
) - (7

W Uy — T 05 ) -

The generalized solution to the discrete analogue of Eq.ig¢k®arched using the iterative conjugate gradients (C&hoa
with diagonal preconditioner. To do this, the problem isueetl to a linear system of equations

AZNAAXA = AR RA, (21)

whereX 4 is the the desired solution (a vector of dimensiér= N, N, N, with the values defined in the center of grid cells);
Aa andRa = La — Ha are the discrete analogues of the operator and the rightdideaf Eq. (18) correspondinglyt’; is
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the transpose matrix. The diagonal preconditiaferfor CG method was selected as follows:

Pa = (O/*MgMg* + u(MIME — 2a2M§Mg*)) : (22)

whereu = const ~ 1 is the empirical coefficient independent on time and spptaltion. The solutionX A contains negative
values (unconditional minimization of the functional ised}, however, mixed model (Eq. 17) reduces their relativalmer
compared with the dynamic Smagorinsky model. In the algorjinegative values are replaced by zeroes. In fact, thiardyn
procedure is close to approach proposed in (Ghosal et &5)1@%ith the difference that the mixed model was appliec&her
and iterative method was replaced by a faster CG method.

Eddy diffusion models are used for subgrid heat and conagoitrtransfer:
05 = —Khsubg’”g—ji, (23)
hereK,,*"*9" = (1/Sc¢*b97)(C,A)?|[S| is the eddy diffusivity, which is independent on the type @dlar. Subgrid turbulent
Schmidt and Prandtl numbers are fixge“*9" = Prsubsr = (.8,

A distinctive feature of this model is that the discrete Epditter operatotF’y = F, Fy, F’, is explicitly involved in calculation

of stresses. The following discrete basic filter is selected

Fi ()i = (1/8)pi-1,5k + (3/4)pi gk + (1/8)pit1,5,k5 (24)

herei, j, k denote a grid cell numbep,is any variable. Similar filtering is applied along the cdoedesy andz. It is reasonable
to expect that we get the velocity, smoothed according to specified filtering operator as disolto Eq. (5) supplemented
by the mixed closure (Egs. 17 - 21). Since the discrete filteoiperator is invertible, we can find the following velodityany
point and time:

u;" = Filﬂzy (25)

which better reflects the small-scale spatial variabififyproximate inverse filter is calculated as a series (Vate@jt1931):

Pl m =) (1 Fy)h, (26)
k=0

where! is a unity operator; in the calculations presented below sedu = 5. Spatial spectra of "defiltered" velocity*
under the neutral, unstable and stable stratification wbtaireed earlier (Glazunov, 2009; Glazunov and Dymnikow,.20
Glazunov, 2014). It was found in all cases that this procedmnproves the small-scale parts of the spectra according to
dependencé ~ k~°/3, leads to better coincidence of spectra calculated withdifferent spatial resolution and improves
convergence of non-dimensional spectra if proper lengilesare used for normalization.

3.2 Methods for Lagrangian particle transport in LES
3.2.1 Subgrid and subfiler modelling

Below, the subgrid and subfilter modelling methods usedfersimulations in the current study are listed. These meathaltl
be used also in combinations as defined in Sect. 4.2.



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-34, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 29 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

(1) Improvement of Lagrangian transport using inverse filtering of Eulerian velocity field

First, we will use the recovery of "subfilter" fluctuationsy®E 25, 26) in order to transport Lagrangian particles moegeipely:
u? = u*® (27)

Note that for the use of such a procedure LES models shouidietie properties of model with an explicit filtering. Silaui
approach was recently applied by Michalek et al. (2013) it viith approximate deconvolution subgrid model (ADM, see,
Stolz et al., 2001) which can be also considered as the matrekwplicit filtering. In most cases, the suppression of kma
scale fluctuations in LES (particularly in those that useve-twder numerical schemes) occurs as a result of combiriectef
of approximation errors and the subgrid closure. Therethie shapes of effective spatial filters of most models cdy lo@
determined by aposteriori analysis of the calculationltssu

(2) Lagrangian stochastic subgrid/subfilter model

Second, we will apply the subgrid stochastic model propasé8hotorban and Mashayek, 2006):

71
dul = (_ gf - _@@)) dt + \/Coee?. (28)
i L

When using dynamic mixed model (Egs. 17 - 21), a value ©f not calculated directly, and then it is assumed that the

dissipation is locally balanced by shear production andybaooy production or sink. In addition, since the model (1&h) ¢
produce a local generation of kinetic energy, the averagiraghorizontal plane was performed to avoid negative vabies
dissipation:

< g <)
€= (=5 )y + g (05 )0y (29)
whered? is the vertical subgrid flux of potential temperature g, is the buoyancy parameter. Time sc&lewas evaluated
as:

Ty = (Esubgr _|_Esubf)/ (% + %OO> €. (30)

Thus, the total unresolved kinetic energy was calculatedesum of "subfilter" energy
SU ]' * —
Eeubl — 3 <(uZ —ui)2>my (32)

and "subgrid" energy:

0 3 - —2/3
RS / E(k)dk ~ =Cxe?/3 [ — : (32)
2 A,

kmin
To evaluate the valug*“*9" it was supposed that "subgrid" fluctuations belong to quitéde inertial range with the spectrum
E(k) = Cxe*?k=>/3, and that the minimal wavenumber for these fluctuations, = 7/A, corresponds to a wavelength in

two grid steps.
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(3) Divergent correction of the Eulerian velocity field

Third, in order to find out whether the subgrid mixing is onelhaf key processes in the dispersion of Lagrangian tracers, w

introduced an additional correction to the particle veiesi

ul) gy, =0+, (33)
wherewy;, is the deterministic divergent additive to the velocitydial:

sp
Udiv,i = s (34)
Sp

with the imposed restriction;, ; = 0 if s, = 0. Here, the "subgrid" flux);” is calculated using the same closure as the
closure for Eulerian scalas with the only difference that the concentratigy estimated by the number of particles in a
grid cell, is used in formula (23).The applicability of thigsocedure is determined by the large number of particlesiied in
simulation (in all the cases described below we have at ssastral dozens of particles in each grid cell).

Correction given by Egs. (33), (34) does not provide truellsatale mixing, but only introduces an additional "sttetg"
or "compression” of the small volumes filled with particleglgrovides concentration fluxes across the borders of giig ¢
close to "subgrid" fluxes in Eulerian model. Using this cofi@n, we are guaranteed to get a high correlation between th
"Eulerian" and "Lagrangian" concentrations (in all ourlpnénary tests<§’s;>wy/, / <§’2> <s'§> ~ 0.9).

The idea of such a correction was based on the assumptioddteits of the mechanism of subgrid mixing have a little
influence on the statistics of trajectories at sufficiendlsge distances from the source and at the big enoughttimevas
assumed that the quick mixing on small spatial scales camphcitly substituted by the approximation errors arisinghe
procedures of interpolation and by the errors of discrebetiem to the advection equation. Correction brings an toll
systematic effect to reduce incorrect particle transppihle large eddies.

3.2.2 Simplified velocity interpolation

In preliminary tests it became clear, that trilinear intégtion of each velocity component provides no advantage®btprint
calculation in comparison with the following simplified &ar interpolation on a staggered grid:

_ Tit1/2,5,k — P P — Ti—1/2,5,k

ul?) = Uin1/246— Ar F U120k v
_ Yij+1/2.k — Y7 _ YP = Yij—1/2,k

v® = Vij1/2,k Ay F U128 Ay (35)
_ Zijkr1/2 — 20 2P — 2 i k—1/2

w?) = Wigh—1/27"" A +Wijht12— TV

where position(i, j, k) is the center of a grid cell containing the particle. Trilinénterpolation and interpolation (35) provide
nearly the same concentration fluxes across the borders 1idl @ejl, but the latter does not result in additional substd
smoothing of velocity. An exception was made for the gridelaglosest to the surface! < A,) where the mean velocity
components were adjusted according to the Monin-Obukhmilagity theory with the dimensionless functions takennfro
(Businger et al., 1971).
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4 LES of stable ABL and footprint calculations
4.1 The setup of numerical experiment

Stable boundary layer at the latitude®?8in close to the steady state conditions was consideredcdloalations were carried
out according to the GABLS scenario (Beare et al., 2006} wie difference that the geostrophic wibl, has been rotated
35° clockwise such that the wind direction near the surface@pprately coincides with the axis. The duration of runsis 9
hours. The initial wind velocity coincides with geostrophielocity U ;| = 8 m/s. The initial potential temperatuéis equal
to the surface temperatué |;—o = 265 K up to the height 100 m and increases linearly with the d&¢d- = 0.05 K/m if

z > 100 m. During the calculations, the surface temperature deesdnearly with timed®, /dt = —0.25 K/hour. Dynamical
and thermal roughness parameteyandzgg are set to 0.1 m. The calculations were performed at the etaid grids with
stepsA, =2.0 m, 3.125 m, 6.25 m and12.5 m. The size of the horizontally periodic computational domaas equal to
400 x 400 x 400 m?. The last hour of numerical experiments was used for avegagfithe results and subsequent analysis.

The mean wind velocity and the potential temperature, ¢afled with different spatial steps,, are shown in Fig. 1. The
model slightly overestimates the height of the boundargiat coarse grids, however, the wind velocity near the saria
approximately the same in all runs.

Passive Lagrangian tracers were transported simultalyawitls the calculations of dynamics. Each particle, whesctgng
a lateral boundary of domain, is returned from the oppositendary in accordance with periodic conditions. The refbect
condition is used at the ground. The particles are ejectéukabeightzo = 0.1 m (one particle per each grid cell adjacent to
surface) with regular time intervalSt.; = 1 s. The position of the new particle within a grid cell is setdamly with uniform
probability. The ejection of particles takes place corimsly from the seventh to the ninth hour of the experiment.

To limit the number of the particles involved in the calcidatthe absorption condition is applied at the height of 100
meters within ABL. It was verified previously that the uppeundary condition does not have a large impact on the results
calculations of footprints for the heights, up to 60 m. This formulation of numerical experiment alloviredt comparison
of the concentration of particles, estimated by Eq. (7), and the scalar concentragjaralculated by the Eulerian approach
(Eq. 6). For this purpose, additional scatas calculated from 7-th till 9-th hour with a constant suddlux F, = const =1,
zero initial condition and the Dirichlet condition= 0 at the altitude 100 m.

In the last hour of simulation the averaged number of pasiah each cell of the grid near the surface was approximately
equal to 700-800, 350-400,180-200 and 110-130 for grigsssig=12.5m, 6.25 m, 3.125 m and 2.0 m, respectively. Having
such number of particles one can estimate the concentrdtian ; ., t,,,) at each time step, wheug ; ;. is the center of a grid
cell. It was assumed, that each particle contributes todheentratiors, (x;,; ) with the weight} ., = (VP (Vi %)/ Vi k.
whereV'? is rectangular neighborhood of its position with the sillg (V?(V; k) is the volume of intersection with grid
cell, V; ; « is the cell volume. This averaging is close to the filteringaferian scalar (Eq. 24). The additional normalization is
performed as followss,, = 5,At.;/A.. The concentratios, corresponds to the number of particles in one cubic metegmund
the condition that one particle per square meter per secoected near the surface. Concentratipis numerically equal

12



10

15

20

25

30

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-34, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 29 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

(excluding errors, determined by different methods ofspeott) to the concentration of the scalar figld scalar surface flux
Fy=1.

Figure 2 shows the resolved and the parameterized compookfitix (w’s’) in runs with different grid steps. It is seen
that the calculation time is not large enough to reach a gtetade (the total flux is not constant with the hight, so therage
concentration continues to grow during the last hour). Hergt was checked that the flux footprint close to the serssoot
affected by nonstationarity. Besides, we can compare theesafs ands,, because the boundary and initial conditions are
identical for them.

The unresolved fraction of the fluk:* = (93) is an essential part of the total flux** = (3 w) + (¥3). Accordingly, the
vertical transport of Lagrangian particles by resolveduiy w may be significantly underestimated. Thus, we have "hard"
enough test to verify Lagrangian transport in LES with ppadsolved velocity field.

4.2 Sensitivity of LES results on methods of particle transprt and spatial resolution
4.2.1 Footprint calculation with limited application of subgrid stochastic modelling in LES

Figure 3 shows the scalar flux footprints averaged in crasddirectionf? (xzy — x, zas) computed by different methods and
with different grid steps. All footprints are normalizedl:txmt/fg(a:)da: =1.

In all cases, we have avoided using the subgrid scale stiicimagdelling except calculating the velocity of the padi&
located within the first grid layes” < A . For the curves marked "$t" , the resultant velocity of the particles near the sugfac
was calculated as follows:

uP =u®) 4 (1—2P/A,)u"?, (36)

wherew'? is the random velocity component, calculated using the in(@&8). To take into account the memory effects in
Langevin equation, the model (28) was implemented insiddeyer” < 3A,, so (because of the smallness of sc&l¢ this
procedure does not lead to significant distortions in the@amncomponent of the velocity.

If the particles are advected by the filtered veloaityvithout any correction then the vertical mixing is too wealddhe
maxima of footprintsf? are strongly underestimated and shifted at the large disgafrom the sensor position. Divergent
correction of Eulerian velocity (Egs. 33, 34) partially iropes the results (squares in Fig. 3a,b). For example, manxiwf
footprint f¥ for the sensor height,;=30 m (near the fifth computational level) occurs to be cloghé maxima of footprints,
computed at fine grids, but it is still shifted. Thus, the ection (33, 34) alone is not sufficient. Primarily this is doghe
weak mixing below the first computational level, where thetdbution of the subgrid velocity is crucial.

The inclusion of stochastics within the first layer improttesresult (dashed curves in Fig. 3a,b). However, it is notigh
to determine footprints at altitudes comparable to the gpicing.

The advection of particles by the velocity leads to close matching of functiorf$, calculated with different grid steps
(solid lines of different thickness in Fig. 3c,d). The difeces between these footprints are not significant fronaetipal
point of view, and can be equally explained by means of theriiect Lagrangian particles transport, as well as by meéns o
the insufficiently accurate solution to the Eulerian equagion the coarse grid.
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4.2.2 Spatial variability of scalar concentration inferred by Eulerian and Lagrangian methods

While the particles were advected by the "defiltered" flow \aeehalso used the correction (33, 34). In this case the sibgri
diffusion coefficient was reduced twide;*"*9" = cK:"“*", ¢ = 0.5 (coefficientc = 0.5 was chosen because about a half of
subgrid flux can be restored using "defiltering’sw*) — (s w) &~ 0.5 (95)). We note that when the particles are advected by
velocity u*(P) then the presence or absence (crosses in Fig. 3c,d) of tiorréras no significant effect on the functigi.
Nevertheless, this procedure may be useful for the follgw@asons.

In the inertial range of three-dimensional turbulence glaiith the kinetic energy the variance of a passive scalac&on
tration is transferred from large scales to small scaleb thi¢ formation of the spatial spectrush = Ke,e~1/3k~5/3 (see
(Obukhov, 1949)) (here; is the dissipation rate of the variance of concentrationsed by molecular diffusion). Lagrangian
transport of particles by a divergence-free velocity fiefdwith the truncated small-scale spectrum is equivalent tiertan
advection of concentrationwithout any dissipation. The absence of subgrid-scaleqfatte velocity spectrum will lead to
reduction of the forward cascade and to the accumulatioadnces?, in vicinity of the smallest resolved scales.

Figure 4a shows the variances of "Eulerian” concentratidn) = <§’2>wyt computed at different grids, and the variances
of "Lagrangian" concentratiomﬁp(z) = <s,,’2>wyt. One can see that if particles are advected by the velacity (crosses),
varianceo?, is much larger thaw?. If the velocity u*® +u® is used (black circles), the values o}, ando? become
closer to each other. Besides, the correction (33, 34) @#se®the correlation cd®; s, ) = <§’s;>ryt/(o—spas) of two fields
calculated by means of "Eulerian" and "Lagrangian" appneac

One can expect that in more complicated cases (e.g., thelémtbflow around geometric objects and the formation of
quasi-periodic eddies) the accumulation of small-scalsenim the concentration field may lead to the incorrect ative®f
concentration by the resolved eddies. This effect may beiaiportant for inertial particles when the nonphysicali@ace
of concentration can directly affect dynamics. In the addal tests it was found that correction (33, 34) preventtigias
stagnation in zones with unresolved turbulence while thdetimg of urban-like environment. Thus, this correctisiesirable

for a number of reasons as a practical replacement of susigrithastics which requires large computer resources.
4.2.3 Particle advection and footprint determination in LES with subgrid LSM

One can obtain footprints close to those presented at Figy r@dans of application of the stochastic subgrid model (Egs.
28-32). The calculations for this model have been carrigébtine grids with steps 3.125m, 6.25 m and 12.5 m (solid lofes
different thickness in Fig. 5a,b). One can note the defetti®&tochastic subgrid modelling in LES, which can not bected

by studying of the mean characteristics. In the previouseciion the recovered "subfilter" part of velocity = u* —w and so

the subfilter Lagrangian velocity”®) were highly correlated with the resolved velocityin time and space. On the contrary,
additional mixing in the stochastic model (28-32) is dueandom fluctuations which are not relatedudstrictly. When one
uses coarse grids, the energy of these Lagrangian fluatgattoould be large enough to restore mixing in vertical divac
This is accompanied by an excessive suppression of thebilayi@af concentratiors, near the surface, where the contribution
of subgrid mixing is large (stars in Fig. 4a). The correlati@tween "Eulerian” concentration and "Lagrangian” cateréon
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is reduced simultaneously (see Fig. 4b). Probably, thisdeff employed Lagrangian stochastic model is connectéleto
horizontal averaging in evaluation of "subgrid" dissipatand energy. Nevertheless, this result shows that in sasesdhe
stochastic subgrid modelling can prevent correct reprooinof the resolved spatial variability of particle cont@tion in

LES along with improvement of the mean transport.
4.3 Two-dimensional footprints

The trajectories of large number of particles 1.8 x 10%) were simultaneously computed in LES with grid step 2.0 m- Ac
cordingly, one can get statistically grounded estimatifiwo-dimensional footprint functiong, (z — x s, vy — yar, 2ar). These
functions, computed for the sensor heights=10 m andz,,=30 m are shown in the Fig. 6a,b. One can see, that the area with
the negative values of footprint exists. The negative \@afdootprints are typical (e.g., Cai et al., 2010; Steidfed al., 2008)

for the convective boundary layer due to fast upward adeedty the narrow thermal plumes and slow downward adveation i
the surroundings. Here, the negative values of the fungticaare connected to the Ekman spiral and to the mean transport of
the particles elevated to large altitudes in the directiemppndicular to the near-surface wind. The contributiothefnegative

part of the flux to the "measured” flux is significant, as shawhig. 6c,d, where cumulative footprints, defined as

zd
F(:CdVZM): / fg(l’/,ZM)dZ(J/, (37)
are separated into positive and negative pAtsy, — x,zp) = FT + F~.

5 Stochastic modelling and the comparison with LES
5.1 Preparation of turbulence data from LES for LSMs and RDMs

The LES results with grid step,=2.0 m were used for data preparation. To apply LSM (Eqgs. 8h@Yollowing Eulerian
characteristics are required: the mean wind velocity camepés(u) and(v), the second momen(scgu;> and the dissipation

e. Stochastic models are even more sensitive to some of thesaateristics than the advection of particles in LES. For
example, the underestimated values of the turbulent kiregtergy in LES are the consequence of the suppression off smal
eddies. Nevertheless, these eddies exert relatively émflaktnce on the mixing of scalar, because the effective elftlysivity
associated with theri;me! ~ E!/2 jsmall js not large due to small spatial scale. However, the turtiideergy which is

substituted into LSM affects results independently of teesand has to be evaluated with good accuracy.
5.1.1 Mean velocity

Mean wind velocity at the height < z < A, was computed using log-linear law:

(u;) = U, (%ln (%) T Qﬂ%) % <|1:;'|>

, C =05, (38)
z=0Ag/2
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and(u;) =0 at z < 2. Here,U, is the friction velocity,x = 0.4 denotes the von Karman constahtis the Obukhov length
at the surface (note, that the von Karman constant is natdiec in the definition of the length here and later). The linear

interpolation of velocity was used if > A,.
5.1.2 Momentum fluxes

The fluxes(uju);) = (ujw;) + /7™ (i # j) were interpolated linearly and additionally smoothedrgwiaere in the domain.

These fluxes are shown in Fig. 7a.
5.1.3 Variances of velocity components

The variances of velocity component$ = (u/?) were estimated by formula:

of =((w)*), .+ gEsubg, (39)
where E5“9 s the subgrid energy (Eq. 32) arﬁ(iu;ﬁ’ﬁ) are the variances of recovered velocity components. Thicaer
velocity variance has the greatest impact on the functjgngigure 7b shows the comparison of evaluated normalized RMS
Gw = 0w /|T|Y/? (solid line) with the SHEBA data (symbols; see descriptior{Grachev et al., 2013, fig. 15b); data kindly
provided by Dr A. Grachev). The data are shown in dependemc®ndimensional stability parametes xz /A, where

A(z) = _VP;% (40)

is the local Obukhov length, determined using values of Btofenomentunir| and temperatur€ at the given height (local
scaling in stable ABL (Nieuwstadt, 1984)). The measuremienggest that the mean value of normalized R#Sx 1.33

if value ¢ is small. Figure 7b shows, that our estimation of RMS is sligless than the measured values in the interval
0.03 < £ < 0.2. Respectively, the final values of vertical velocity vadardesigned for the substitution in stochastic models
were corrected as follows?, = 1.332|7| if £ < 1. At the higher levels the estimation (39) was applied.

The final estimations of the variances of velocity composeme shown in Fig. 7c¢ by the solid lines. Dashed lines are
the filtered resolved velocity; variances. The estimation of the variancg using formula (39) is shown by the circles. One
can see that significant parts of variances were not repesdexplicitly in LES and were recovered using abovementione
assumptions.

5.1.4 Turbulent energy dissipation rate

Usual interpolation is not applicable to the calculatiomisipation rate near the surface, where 1/ . Besides, the values

of dissipationea, computed in LES at the levelg = (k — 1/2)A, are approximately equal to the averaged values inside the
layers(k —1)A, < z < kA, but not to the physical dissipation at given altitudes. élntie assumption thét| is constant
with height and neglecting the stratification inside firstedg one can get the following corrected valueeddit the height
z=N7y/2:

€la=n, /2 = 2ea1/In(Ay/20) (41)
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(OMOM

Additional analysis showed thatif< 0.25z; then the local balance of turbulent energy is well satisfied:S + B, where
S andB are shear and buoyancy production. Therefore, the nondimreal dissipation can be approximated by a formula

o @y (BY_2_ L e _q2
S E T S o
where

o(u)| =z 1 A2
" — S yCoAZ 43
¢ ‘ 0z | |7|v/? /Q+ ™A (43)

is the nondimensional velocity gradiedt? = 5, according to the observation data (e.g., Grachev et a324nd LES results
(e.g., Glazunov, 2014). Here, the assumption is used teattbad (u) /0= and the stress are collinear.

Discrete values of nondimensional dissipatiou, z;. /|7|*/% are shown in Fig. 8a by circles. Dashed straight line is the
universal function (Eg. 42). One can see, that the corneddd) makes the dissipation values closer to the functi@). (4
Finally, the profile of dissipatior. (=) for LSM was corrected as follows (see Fig. 8b). The dissipatvas set to be constant
below some height,., and was replaced by universal functios é|7|3/2/z up to the level withz/A = 1. The height:, was
chosen in a such way to equalize values of the dissipatioragee in a layed < z < A, and the dissipationa;. Figure 8b
shows that the corrected dissipatian (solid line) is very close to "discrete” dissipatier;, (circles), except for the first

computational level.
5.1.5 Diffusion coefficients

Random displacements model (Eq. 15) requires the estimafieddy diffusion coefficienk’,. Note, that due to anisotropy
one should use tensor diffusivify’/ in a general case. Neglecting this fact, let us assume tagrthcipal axes of the tensor
K are aligned with the coordinate axes. The correspondeffiaients K%, K“* and K" (see Fig. 7d) can be calculated

as follows:
9(3)
K" = —(w's' 44
=)/ (52, (a4)
4 4
K= Tugee, g = Tu e (45)
O—U) Jw

The horizontal eddy diffusivitie&** and K’V are estimated taking into account the expression (13).

One can see that the formula (13) provides a good approxamédr the coefficient{’" if one sets the valu€y, = 6. We
note, that the data of LES were substantially corrected tohje estimation. Very fine grids simulations are neededetify
and to justify the given value. There is no guarantee thatdbnstant is actually universal under different stratiftcain ABL.

5.2 Specification of LSMs and RDMs tested against LES

The following stochastic models were tested using the datpgred as described above.
(1) RDMO is the random displacements model with uncorrelatedpmments. Particle position is computed by the formula
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similar to Eq. (15) but with direction-dependent coefficgefsee, Eqgs. (44), (45) and Fig. 7d). The components of this<tan
random noise satisfy the condition (10).
(2) RDM1 differs from RDMO by using the noise with inter-compaeorrelations:

(€0 +00) = 95, )t (46)

i0j

1/2
whereo; = <u’2> .

7

(3) LSMO is the Lagrangian stochastic model without WMC:

. 9202
du'? = — ldt—&—\/COe Ti = O“Z. (47)
0€

(4) LSM1 is based on the one-dimensional well-mixed model:

wP 1002 (wP)? 202
p_— | 4 W D w _ 2w
dw < 5 T35, <1+ g dt ++/Coe&?, T} Coc’ (48)

w

supplemented by uncorrelated horizontal mixing similaEtp (47) with the appropriate variance$ ando? .

(5) LSMT is three-dimensional Lagrangian stochastic modédfyéng WMC, which is proposed by Thomson (1987). For the
incompressible turbulent fluid in a steady state and undectmdition of zero mean vertical velocity this model (Thoms
1987, formula (32)) reads:

(p)
107y n Mu/p 4 l(rfl)l‘@uﬂ‘)u’p
291, dz; 7 20 Moy itE “

du't = aPdt + \/Cye€?,

wherer—! is the tensor inverse to the stress tensor.

1
Clp = —551']‘006(7'7 )zku k + =

The setups of numerical experiments with RDMs and LSMs wiergecto particle advection conditions in LES (absorbtion
at the altitude 100 m, ejection af = 0.1m and reflection at = 0). The particles were generated continuously within tworBou
of modelling. The last hour was used for averaging. The n®d8MO0 and LSM1 use the valug, = 6. Three-dimensional
model LSMT was applied witly = 6 andCy = 8.

5.3 Modelling results

Figure 9 shows one-dimensional footprirftsand the corresponding cumulative footpriditscomputed by LES (bold solid
lines, A,=2.0 m) and by stochastic models described above. Foaietshown for the sensor heightg = 10, 30 and 60
m.

The models RDMO, RDM1 and LSM1 provide very similar resufiaster mixing is observed in stochastic models below
the altitudez,; = 10 m in comparison to LES. These differences are not cracidlare compensated in a cumulative footprints
at the distances — x5, ~ 1000 m. The differences can be explained either by insufficiebgsd mixing in LES or by inexact
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procedure of the data preparation for stochastic modeNfagy weak sensitivity of the models with respect to cortielas of
particle velocity components is observed as well. Thusrdlalts close to LES were obtained in stochastic modelsgatie
"diffusion limit" with the same or close vertical diffusi@oefficient. The significant advantages of LSMs comparedd¥R
were not observed in this particular flow.

The substantial disagreements to LES were obtained usieg-timensional Thomson model (Eq. 49) with = 6 and the
model LSMO. The last one is designed for the isotropic tuieboé and does not satisfy WMC under the conditions considere
here. This model leads to overestimated mixing, and suchdzias not vanish at large altitudes.

LSMT (Eqg. 49) was proposed in (Thomson, 1987) as one of thsilplesvays to satisfy WMC in three dimensions. In our
simulations the error of LSMT is substantial and grows wéhsor height. This was shown by Sawford and Guest (1988), who
derived the diffusion limit of Thomson’s multidimensiomabdel for Gaussian inhomogeneous turbulence and showetthéha
implied effective eddy diffusivity for vertical dispersias:
2(oy, + (u'w')?)

K =
C()E

(50)

Taking into account this expression and Eq. (13) which iglvfal the one-dimensional LSM, one can estimate the apfatepr
value ofC,, for LSMT under the conditions considered hefg:~ 6(1.33* +1)/1.33* ~ 8 (we assume that,, /| (v'w') |*/? ~
ow/|T|*? 2 1.33). The results of LSMT withC;, = 8 are in a close agreements with the results of other stochrastilels and
with the results of LES (open triangles in Fig. 9a,c,e).

Turbulent PrandtPr and SchmidtSc numbers computed using Eulerian approach are shown in Big. These numbers
coincide and are approximately equal to 0.8 up to the akitsldyhtly less then 100 m, where the boundary condition for a
scalar is applied. Schmidt numbe$s were calculated also using the concentrations and the floixeagrangian particles.
The models RDMO and LSM1 provide the valuessSefclose to the results of Eulerian model. Calculations by LM’ = 6)
resultinSc~ 0.5 — 0.6, that is also the sign of the overestimated vertical mixing.

Two-dimensional footprintg.(x — x s,y — yar, 20 ), computed by the models RDMO, RDM1 and LSM1 (pictures are not
shown here) were very close to LES results presented in Fitn @rticular, this fact argues that the mechanism of fdiona
of the region with negative values ¢f has a simple nature, which can be easily reproduced in theefrark of the diffusion
approximation.

The cross-wind mixing can be characterized by RMS of trarsstecoordinates of the particles depending on the mean
distance from the sourc#™?(X?) = ((y? — YP)2>1/2, whereX? = (z7) andY? = (y?) are the mathematical expectations of
the particle position. Functiori$’”?(X?) are shown in Fig. 10b. The models RDMO, RDM1, LSM1 and LSMTigwiy = 6)
result in close horizontal dispersion. All the stochastadels predict slightly less intensive mixing in comparisohES, that
can be a consequence of the inaccurate data preparatioittadgoas well. If one neglects the anisotropy of eddy diffitg
than this dispersion would be substantially underestithétee short-dashed line in Fig. 10b, computed by RDM with the
coefficientsK** = K¥¥ = K*"). One can see, that the choiCg = 8 in LSMT (open triangles) does not improve its overall
performance because the improved vertical mixing is aceonagl by the reduced dispersion of particles in the horedont
direction.
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Wind direction rotation leads to widening of concentrattoarce from the point source (see thin dashed line in Fig. 10b,
computed with one-dimensional LSM). At larger distancesrfrthe source in the Ekman layer the crosswind dispersion of
pollution should be defined by the joint effect of the windatiin and vertical mixing but not by the horizontal turbulen

mixing.

6 \Validation of analytical footprint parameterisations

Footprint parameterisations that are assumed to be valid fwoad range of boundary layer conditions and measurement
heights over the entire planetary boundary layer were megan (Kljun et al., 2004) and recently in (Kljun et al., 2015
These parameterisations are based on a scaling approaeipafémeters for these analytical models were evaluated usi
backward Lagrangian stochastic particle dispersion mbB&M-B (Kljun et al., 2002). In turn, LPDM-B is based on the
forward single particle Lagrangian stochastic model ($Ratdch et al., 1996) and (de Haan and Rotach, 1998)) saiisfyi
WMC. The value of Kolmogorov constaft, which was selected for LPDM-B stochastic model was set t@8 (Kljun et al.,
2002)). In parameterisation of LPDM-B, the turbulent stiéts and the wind velocity were assumed to be universal epdrtl

on the surface heat and momentum fluxes, the roughness farand the boundary layer height. The exact formulas for all
the universal non-dimensional functions under the statiédification are not presented in (Kljun et al., 2015) arfeénences
therein, therefore direct comparison of the turbulencéilesowith LES is not possible. Nevertheless, the final apjpnations
(Kljun et al., 2004) and (Kljun et al., 2015) contain the ihparameters, which can be determined from LES: the boundary
layer heightz; ~ 180 m, Obukhov lengthL /s ~ 120 m, friction velocityU. ~ 0.27 m/s and roughness parametgr= 0.1 m.
These values were substituted into parameterisationgr{t€lj al., 2004) and (Kljun et al., 2015). Fig. 11 shows the garison

of the crosswind averaged footprint functioffsand cumulative footprint$’, obtained by different models. The Thomson’s
model was used with’y = 6,4, and 3 for the comparison.

Parametric models provide results which differ substéiptieom all the abovementioned approaches. Both of the rn®de
(Kljun et al., 2004) and (Kljun et al., 2015) predict fasteixing. One can see, that LSMT, which is itself too dispersive
comparison with 1-D LSMs and RDMs, does not reach the valuedigted by parameterisations from (Kljun et al., 2004) and
(Kljun et al., 2015), even if one chooses the smaller vali&syo It means, that parameterisations of turbulence profilest mu
have significant impact and are one of the reasons for dewi&gtween models from (Kljun et al., 2004) and (Kljun et al.,
2015) and LES. Besides, in the Fig. 11 it is seen that the topdbary condition (absorbtion of particles at the height &0
does not affect presented footprints.

7 Conclusions

Scalar dispersion and flux footprint functions within thaldé atmospheric boundary layer were studied by means ofandS
stochastic particle dispersion modelling.
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It follows from LES results that the main impact on the péetidispersion can be attributed to the advection of padibie
resolved and partially resolved "subfilter-scale” eddiesnsures the possibility to improve the results of pagscdvection
in discrete LES by the use of recovering of small-scale pliytresolved velocity fluctuations. If one uses the LES medth
the explicit filtering, then this recovering is straighti@rd and consists of application of the known inverse filigerator.
Apparently, a similar method can be implemented for othe® vithen the spatial filter is not specified in an explicit form.
This would require, however, the prior analysis of the medelpectra to identify an effective spatial resolution dredectual
shape of the implicit filter. For substantial improvemenpafticle transport statistics, it is enough to use subgagrangian
stochastic model within the first computational layer onligere LES model becomes equivalent to simplified RANS-model

When the particles are advected by a divergence-free embuélocity field then the variance of the particles coneitn
can be accumulated at small spatial scales. In the consdidease it does not affect directly the particles advectiorthiay
large eddies and gives no significant influence on the restiftsotprint calculations. In those cases when the insteedas
characteristics of the scalar field of particle concentratire important, the additional correction to particldseities may be
required. It can be done both through the introduction oflséstics, resulting in the diffusion of concentration, &mwugh
the "computationally inexpensive" divergent correctiémh@ Eulerian velocity field.

Under the stable stratification, to calculate the flux fointipit is preferable to use stochastic models, which desdhe par-
ticles dispersion close to the process of scalar concamirdiffusion with the effective coefficiedit™ (z) = — (w's’) /({ds) /dz)
in a vertical direction. RDM and one-dimensional "well-mik LSM tested in this study are the examples of such stoichast
models. The optimal value for the "universal constafiy'is found to be close to 6. This value coincides with the ediivnaof
the value of Kolmogorov Lagrangian constant in isotropimlegeneous turbulence. Stochastic models that use smalllersy
Cp = 4 (this choice is widespread now) may produce extra mixingthedhorter footprints, correspondingly.

One-dimensional stochastic models can be supplementdeiotizontal particles dispersion in a simple way. Inticiehn
of the correlation between particle displacement comptiarRDM does not improve or change results substantiathyvH
ever, the coefficients of horizontal diffusidgn!* and K’ for RDMs can be evaluated through the vertical diffusionfiicient
K™ multiplied by the square of velocity components varianegi®r

Model LSM1, constructed as a combination of independerhststic models in each direction (well-mixed in the veltica
direction only) gives reasonable results although thisehddes not satisfy WMC in general. In contrast, the thremedtisional
Thomson model with WMC and', = 6 provides overestimated vertical mixing, which is maniéeksin a too small Schmidt
number values and in a reduced lengths of the footprintsmBom model withCy = 8 produces true mixing in vertical
direction, but underestimates the mixing in crosswindadioz.

Accordingly, one can recommend another well-mixed staohasodel proposed in (Kurbanmuradov and Sabelfeld, 2000).
It was developed under the assumption that the verticalteriin does not depend on the horizontal velocity componants
the vertical component of this model coincides with LSMIioPto use, this model should be modified in an appropriate way
to take into account the variation of momentum fluxes wittghei

According to presented LES the source area and footpringginle ABL can be substantially more extended than those
predicted by the modern analytical footprint parametéiors and LSMs. The following reasons were identified in #tisly:
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1) too small values of the Kolmogorov constdrif are used; 2) the possible overestimated vertical mixingigeal by some
stochastic models based on well-mixed condition; 3) usiedunctions for turbulent statistics that are likely toisa additional
deviation in the case of stable turbulent Ekman boundamrlagudied here.

8 Code availability/Data availability

The code of LES model is available by request for the sciemgearches in cooperation with first author (and.glas@goia).

The data from LES are attached to the supplement. These dataprepared as it was discussed in Sect. 5.1 and can be
used for the stochastic models evaluation. Besides, sugpiecontains the data for cross-wind averaged footprimdstao-
dimensional footprints obtained in LES (see, Fig.6 and®ig.
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Figure 1.Mean wind velocity(u) (a) and temperatur@) (b) in runs with different grid steps (spatial step is poihite legend).
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Figure 3.Crosswind averaged scalar flux footprirftsin stable ABL, computed by the different methods and witlfedént grid steps;(a,c)
sensor height,=10 m, (b,d)z»,=30 m. Grid steps and methods are indicated in the legeRngbarticles are transported by a filtered LES
velocityw; u* - particles are transported by recovered veloaity= F ~'@; cor div - the additional correction of velocity (Eqgs. 33, 34)16t

- stochastic subgrid model (28) is applied for the partigléhin the first computational grid layer.
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Figure 4.(a) Variancer? = <§’2> of concentration of Eulerian scalar (solid lines) and vaxriarfp = <sp’2> of concentratiors,,, determined
by Lagrangian particles (symbols); grid steps and the nustiod calculations are shown in legend, symbolic notatioestlze same as in
Fig. 3; stars - stochastic model (28-32) is used throughoutain. (b) Correlation cofE, sp) = (E’s@w,ut/(aspas) between "Eulerian”

and "Lagrangian” concentrations. For remaining notatemesthe caption of Fig. 3.
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Figure 5. Crosswind averaged scalar flux footprirfts, computed using stochastic subgrid model (28-32); (a)sdmsghtz,,=10 m, (b)
zm=30 m. Grid steps are given in the legend. Crosses denoteriioist computed with subgrid LSM applied for the particlathim the first

grid layer only.

28



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-34, 2016 Geoscientific ¢
Manuscript under review for journal Geosci. Model Deyv. Model D evelopment % EG U
Published: 29 February 2016 - : %
© Author(s) 2016. CC-BY 3.0 License. Discussions &

50
40
30 ~
20 E ¢
10 5
Ea—— 4
4 > 3
3 > 2
2 1
1
0.5 |
|
|
I IR NI . N IR RS BRI 1
-2000 -1000 4QQOOO -3000 -2000 -1000 0
X-X_M (m) X-X_M (m)
121 30m o )
1,14 3~30m “(d)- e
o] —r (d). .
094 = =F R 7
0,8 - 4

=== T

Figure 6. Two-dimensional footprintss(z — xar,y — yar, 2 ) (x107°m™2) for sensor height,=10 m (a) andz,=30 m (b) and the
corresponding cross-wind integrated cumulative footpri(z s — z) (c) and (d); long dashed lineF™ (impact of the area with positive
values off;); short dashed line £~ (impact of area with negative values).
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Figure 7.(a) Total momentum fluxes obtained in LES with,=2.0 m. (b) Normalized RMS of vertical velocity, = o, /|7|'/? depend-

ing on a dimensionless parametgfA (solid line - estimation using LES data, = ((w*?) +2/3Esubgr)"/?; symbols - measurements

(Grachev et al., 2013) at different altitudes). (c) Variemof velocity components (dashed line - resolved fluctnasgolid lines - the final

estimation for LSM; bold lines - vertical component, thevas of medium thickness - cross-wind component, thin lideagitudinal com-

ponent, circles - evaluation of2, by the formula (39)). (d) Vertical effective eddy diffudiyix’* (solid line - coefficient calculated by the

gradient and flux of scalar; dashed line - estimation of caieffit using formula (13) witltCy = 6); estimations of diffusion coefficients in

cross-wind directior,” (dash-dot line) and coefficient in longitudinal directiaif'* (dash-dot-dot line).
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Figure 8.(a) Discrete (LES) nondimensional dissipatiow. z; /|7|*/? (circles), corrected values (solid line), universal fimet(Eq. 42)

(dashed straight line). (b) Simulated discrete dissipatio. (circles) and corrected dissipatiesy (z) for LSM (solid line). Dashed horizontal

line denotes the height, which was chosen in order to equalize the integral valugseo€orrected dissipation and the discrete dissipation.
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Figure 9.0One-dimensional footprintg? (a,c,e) and cumulative footprints (b,d,f) for sensor heighty; = 10 m (a,b)zas = 30 m (c,d) and
zy =60 m (e,f). Solid lines - LES with grid stefs,=2.0 m. Black triangles - LSMT (Thomson, 1987) witly = 6, open triangles - LSMT
with Cy = 8. Short-dashed line - LSMO (Lagranian stochastic modelauthvell-mixed condition). Black circles - LSM1 (LSM with W®I

for vertical mixing). Open circles - RDMO (uncorrelated dam displacements model). Dash-dot line - RDM1 (randomlaégments model

with correlation between displacement components).

32



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-34, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 29 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

. a
e ) ( ) —LES (b)
—-—RDMI
251 O RDMO >
501 --- Pr LES © - RDM K™=K"'=K*" - .
—Sc LES 20 RDM K:\UZK:\,:O O,p K N
® LSMI _‘O,‘ LA
— 60+ ScP — A LSMTC=6 3 R
E * LES \E, 15 4 LSMT C,=8 ‘O" A A
T\I’ A LSMT o ‘o"DA R A
T O RDMO R 7z
® e Lsm1 > 10 S
A .
£n
.AEA .
20 5| / f e
0 0 : : : :
00 04 08 12 16 0 100 200 300 400 500 600
Sc, Pr X*(m)

Figure 10. (a) Prandtl numberPr (dashed line) and Schmidt numbsk: (solid line), computed using Eulerian scalars. Symbols -
Schmidt numbersSe, computed using the Lagrangian particles in LES, LSMs and/ROb) RMS of the crosswind position of parti-
cleY” = ((y* — YP)Q>1/2 depending on the mean longitudinal positi&i# = (x”). Dashed lines - RDM with{** = K¥¥ = K" and

one-dimensional RDMK " = KJ¥ = 0.
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Figure 11.0One-dimensional footprintg? (a,c,e) and cumulative footprins (b,d,f) for sensor heighta; = 10 m (a,b),zas = 30 m (c,d)

andzyr = 60 m (e,f). Solid lines - LES with grid stes,=2.0 m. Triangles - LSMT (Thomson (1987) modeT), = 6, absorbtion at z=100
m. Orange curves LSMT,, = 6, absorbtion at z=300 m. Dashed blue lines - LSMIF,= 4. Solid blue lines - LSMT(, = 3. Red lines -

parameterisation (Kljun et al., 2004). Green lines - pataneation (Kljun et al., 2015).
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