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Abstract. Large-eddy simulation (LES) and Lagrangian stochastic eliimg) of passive particle dispersion were applied to
the scalar flux footprint determination in stable atmosjghieoundary layer. The sensitivity of the LES results to thatil
resolution and to the parameterizations of small-scatadence was investigated. It was shown that the resolvegartilly
resolved ('subfilter-scale’) eddies are mainly resporsibt particle dispersion in LES, implying that substantighrovement
may be achieved by using recovery of small-scale velocitgtdlations. In LES with the explicit filtering this recovegin
consists of application of the known inverse filter operaidie footprint functions obtained in LES were compared \ilitd
functions calculated with the use of first-order single iptLagrangian stochastic models (LSM), zeroth-orderraagian
stochastic models - the random displacement models (RDMja@otprint parameterisations. According to presented tHeS
source area and footprints in stable boundary layer can lhetamtially more extended than those predicted by the nmoder

footprint parameterizations and LSMs.

1 Introduction

Micrometeorological measurements of vertical turbuleratiar fluxes in the atmospheric boundary layer (ABL) are Ugua
carried out at altitudes,,; > 1.5 m due to technological limitations of the eddy covareanethod. The measurement results
are often attributed to the exchange of heat, moisture asebgat the surface. This procedure is not justified for intgemeous
surfaces because of large area contributing to the flux, aduse of variability of the second moments with height. The
relationship between the surface fliix(z,y,0) and the fluxFs(xar, yar, 20 ), measured in point s = (zar,yar, 2ar), €AN

be formalized via the footprint functiofy:

[ oo o}

Fs(zar,ym,zam) = / / fs(@,y, 20,900, 200) Fs(2,y,0)dzdy. (1)
Traditionally, footprint functiong'd(z?,y?, 2 ;) = fs(x,y,x ) are expressed in local coordinate system with the origiivhi
coincides with the sensor position (heté,= z,, — « is the positive upwind distance from the sensor ahe: i, — y is the
crosswind distance, see Fig. 1a). In horizontally homogsmase these functions do not depend gnandy,,. In ABL the
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surface area contributing to the flux is elongated in win@dction, therefore the crosswind-integrated footprintction f¥
defined as

FY(at zar) = / ity )y, @)

is one of the most required characteristics for the praatisa.

The measurements of the scalar flux footprint functions tanadenvironmentare restricted (e.g., Finn et al., 19%&lérc et al.,
1997, 2003; Nicolini et al., 2015) due to the necessity tadumt the emission and detection of artificial tracers. Besiduch
measurements are not available for the stably stratified Afdiere the area of the surface influencing the point of measur
ments increases.

Modelling approaches used for footprint calculation inlgwstochastic models, such as single particle such as gagle
ticle first-order Lagrangian stochastic models based oremgdimed Langevin equation (LSM) and zeroth-order stohas
models (also known as the random displacement models, RB&&) the reviews listed in the papers (Wilson and Sawford,
1996), (Wilson, 2015) and the monograph (Thomson and Wjl264 3)). Besides, one can use the analytical models (e.g.,
Horst and Weil, 1992; Kormann and Meixner, 2001) and the rpatarizations based on the scaling approach (Kljun et al.,
2004, 2015). All of these models should be calibrated agj#tiesdata considered to be representative of real proceEseis
results depend on the choice of universal functions in the 8Bn the surface layer (hon-dimensional velocity and acgla-
dients, non-dimensional dissipation, dispersion of tHeaity components etc.). Commonly, the applicability of #nalytical
models is limited by a "constant flux layer" simplificatiossaming that the measurement height is much less than the
thickness of the ABLz;. However, under the strongly stable stratification thekihissz; may be several meters, therefore,
the vertical gradients of momentum and scalars fluxes neasutface can be large. It can lead to incorrect functionfrige
models designer for, and tested on the data gathered urigedt conditions.

Large eddy simulation (LES), employing Eulerian approamtitie transport of scalars, was first time applied for a footp
calculation in (Leclerc et al., 1997). Modern computatideahnologies allow to combine Eulerian and Lagrangianhoes
for turbulence simulation and particle transport (e.g.jl\&kal., 2004; Steinfeld et al., 2008; Cai et al., 2010; kgl et al.,
2015) and to perform detailed calculations of averageddimoensional footprints under different types of stratificas in
ABL and footprintsf,(x,y,x ) over heterogeneous surfaces (for example, urban surfacseuafaces with alternating types
of vegetation). Some examples of such calculations arangivéSteinfeld et al., 2008; Hellsten et al., 2015).

Lagrangian transportin LES is complicated by the probleihasicription of small-scale (unresolved) fluctuations effiar-
ticle velocity, which is similar to the problem of subgrid dwlling of Eulerian dynamics. A common approach for Lagrang
subgrid modelling in LES is the application of subgrid LSMsg(, Weil et al., 2004; Steinfeld et al., 2008; Cai et al1@0
Shotorban and Mashayek, 2006). This approach requires heruhadditional calculations for each particle (e.g.gipbla-
tions of subfilter stresses; and subgrid dissipatioainto the particle positiore?). In addition, it is necessary to generate a
three-component random noise for each particle, that ime-tionsuming computational operation. Numerically staiolu-
tion to the generalized Langevin equation (see Sect. 2.39n LES requires a smaller time steps than the stepstdico
of Eulerian equations, because local Lagrangian decdioelame T, (P, t) can be very small.
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The statistics of simulated turbulence in LES may signifilyadiffer from the statistics of real turbulence. For exde)p
the use of dissipative numerical schemes or low-order fuifference schemes usually results in a suppression dtifitions
over almost the entire resolved spectral ranges of disoretiels (see e.g., Fig. 16 in Piotrowski et al., 2009). Twebtiluxes
(in the Eulerian representation) associated with thesé¢utitions are restored by subgrid closure. However, in terhike
Lagrangian transport the effects of distortion of sma#lteart of the spectrum are most often not considered.

Numerical simulations of Lagrangian transport in LES asodimited by the low scalability of parallel algorithms. i§h
is due to the impossibility of uniform loading of processora joint solution to the Euler and Lagrangian equationsyrgd
number of interprocessor exchanges and unstructuredbdisbn of characteristics required for Lagrangian adiogcin the
computer RAM memory.

Thus, all methods of numerical and analytical determimatibthe functionsf, have individual drawbacks. At the same
time, due to the lack of sufficient amount of experimentabdaid due to their low accuracy, there are no clear criteria fo
evaluation of different models.

According to the need of computational cost reduction, dribeobjectives of this study is to establish the role of ktstic
subgrid modelling in the correct description of the paetidispersion in LES. Is it possible to simplify the calcuwatiand to
avoid the introduction of stochastic terms without the loaccuracy in some integral characteristics, such as thgprfioits
or the concentration of pollutants emitted from the poinirses? The role of subgrid fluctuations is reduced with arease
of spatial LES resolution. Therefore, the independencesilts from the mesh size is used as a criterion for checkiag t
quality of Lagrangian transport procedures in LES. It wédldemonstrated that the subgrid stochastic modelling ind¢dthe
omitted in most cases. Instead, we propose 'computatipnhéap’ procedure of inverse filtering supplemented byrdizet
correction of Eulerian velocity to replace the subgrid bestic modelling in LES (see description below).

Subgrid transport is especially significant near the serfatd/or under stable stratification — all are the cases iassdc
with small eddies size. That is why the stable ABL was setbatethe key test scenario in this study. We slightly modified t
setup of the numerical experiment GABLS (Beare et al., 28@6this purpose.

LES results are used as the input data for the stochasticle@®Ms and RDMs). These data are pre-adjusted using known
universal dependencies and taking into account an incaemm@resentation of turbulent energy in LES. The comparigo
results of different stochastic models and the results ft&8 allows to specify the parameters for the LSMs and perits
identify the differences between LSMs and RDMs under thalitmmms which have not been tested previously.

The paper is organized as follows. Section 2 contains theriggisn of some common features of approaches: the imple-
mented numerical algorithm for footprint estimation in LBS8d LS models (Sect. 2.1); LES governing equations and the
definitions of some terminology used for the small-scale ellody description and for the testing of particle transg&ect.
2.2); the definitions of stochastic models (LSMs and RDMsJ painting to some problems connected with uncertainty of
the choice of turbulent statistics for them (Sect. 2.3 adjl Bection 3 contains short description of the numeriga@thms,
the turbulent closure for LES model used in this study (S&df) and the description of the different approaches for the
grangian particles transport in LES tested here (Sect. S&)t. 4 is mainly devoted to the testing of ability of LES rabd
with rough spatial resolution to reproduce particle dispmr correctly. For this sake, we implemented special sefupe
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numerical experiment (see Sect. 4.1) permitting to compaggangian and Eulerian statistics (see Sect. 4.2.2). dbesf
was made on the approaches with the limited use of subgrithastic modelling (see Sect. 4.2.1 where the sensitivithef
computed footprints to the spatial resolution was inveséd). The footprints computed with LES model with simplbgnid
LSM and RDM (traditional approach) are presented in Se2t34and Sect. 4.2.4. Two-dimensional footprints are shawn i
Sect. 4.3. Due to large sensitivity of LSMs to the turbuléatistics we emphasize data preparation for them using eEdts,
measurements data and similarity laws in Sect. 5.1. SeBtammtains the results of footprint modelling with the uséhaf set
of different RDMs and LSMs (specified in Sect. 5.2) in companiwith LES results (see Sect. 5.3). Section 6 is devotdukto t
comparison of footprints, computed in LES with the footpparameterisations based on a scaling approach by Kljun et a
(2004, 2015). Section 7 summarises the results.

In addition to the basic calculation, we carried out a sesfassts (see Supplement Sect. S1) under unstable stridifi¢a
ABL with different grid steps in LES model. This allows to cpare the results presented here with similar results oddain
in previous studies (e.g., Steinfeld et al., 2008; Weil t2004) and to verify the performance of our LES model in joiit
evaluation. Furthermore, we demonstrate the results dpfon calculations above the inhomogeneous surface (8ot
Sect. S2), with a huge number of particles involved in catahs simultaneously. Computational aspects of teclyyodwe
discussed as well.

2 Modelling approaches
2.1 Numerical evaluation of footprints

Computational methods for determination of footprinteofteduce to the implementation of Lagrangian transportarked
particles. Each particle can contain a number of attrihutesuding its initial coordinate:f, and timet},. Choose two small
horizontal plate$s andd,, for averaging in the neighborhood of zero with the ar€asindSy,, respectively. Define the time
intervalT,, = [to,t2], during which new particles are ejected near the groundthéhntensityH (hereH is the mathematical
expectation of the new particle number emitted per unit peeanit time) and the intervdl, = [t1,t2] (t1 > to), when particles
are detected near the point of measuremennt. i sufficiently large for the ensemble averaged flux to attaimstant value in
time, and7, is quite large for statistically significant averaging,riiibe footprintf; can be evaluated by the formula

fs(Ts,ys,xar,ynr, 20r) =
—1

1 1 nsm " v ;o ' J /d , wP IP (3)
S el ) 7t Tl 19
SV ; 5/ (o + 2", y0 + ' to)da'dy wp| M
S

whereng), is the number of intersections of the plane- z), by the particle trajectories at horizontal coordinaigs:

(2 — 2z, 98 —ymr) € O in time interval T, I%,, =1 if the initial coordinatesef of such particle satisfy the condition
() —af) — (e —xs), (W) — ) — (ym —ys)) € 6s and I%,, = 0 otherwise. Herew? is the vertical component of the
particle velocity at the moment of crossing the plane z;;. Schematic representation of the algorithm for the footpri
function determination in LES is shown in Fig. 1. In accorcawith Eq. (3) and the description above, the particle éngss
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the test aread,, brings the impact into the valug (zs,ys,xa ), then the beginning of its modified trajectory shifted in a
such way to superpose the poiit with sensor positior ,, belongs to the test arég. For example (see, Fig. 1b), when the
footprint value is calculated at the poifats,ys) only the red particle is counted, but not the blue particlectSalgorithm of
averaging was selected because it permits to refine therfobtpsolution on the vicinity of sensor independently ba area
of §,; using the assumption of some spatial homogeneity.

In the horizontally homogeneous case one can calculateriootfd (x4, y?, 2,,) performing averaging over statistically
equivalent coordinates of sensor position. For this avegaip LES with periodic domain one can prescribe the coatdia
(zar,ynr) to the domain center and select the afedo be equal to whole domain size. Analogical methods can péeab
when using LSMs or RDMs, whereas in the case of RDMs partidplacement should be used in the Eq. (3) instead of
velocity.

Nonuniform Cartesian grid:; = (xf,y¢) (where,—20 <i < 160; —120 < j < 120), stretched with the distance from the
sensor position, was selected for the footprint functicsuenulation in the following sections of this paper. Gridswae-
scribed as(zd, yd) = (0,0); 24 = A,oyli/|i| andyd = Ayoyl'5 /1] if i £ 0 andyj # 0; Ang = Ayo = 2 M; , =7, = 1.05.
This grid is independent of the LES model resolution and @digs with the footprint grids selected for all runs with LSM
and RDMs.

2.2 Lagrangian particles embedded into LES

Lagrangian particle velocity? and the particle positiom? can be computed in LES models as follows:

uP =a 4", dal = uldt. (4)

Hereal(.p) is the interpolation of the resolved Eulerian velocity ithe particle positiony””? are the small-scale unresolved
Lagrangian velocity fluctuations associated with Eulesiatocity fluctuations belonging to "subgrid" and "subfiltecales.
Here and later we shall use the designation "subfilter" tatkethe fluctuations which belong to the resolved spectrajea
of the discrete model, but are not reproduced numerically,the designation "subgrid" for the fluctuations which cahbe

represented on the grid due to smallness of the scales. L&ESrgng equations for filtered velocity are:
ou; 8ﬂiﬂ7‘ 87}‘7‘ 8}_7 — otu;
ot~ 0w, 0z, om0 am ®)

where F;? comprises Coriolis and buoyancy forcgsis normalized pressure ang; = w;u; — ; u; denotes the modeled

"subgrid/subfilter" stress tensor. System of equationsgB)be supplemented by the Eulerian equations of scalaspiva:
Js _ 05 00U

E - 81‘1 81"1

+Qs, (6)

whereQ, denotes sources intensity; = su; — @; 5 are the parameterized "subgrid/subfilter” fluxes. Usutily fluctuations
u/’? are defined to be dependent on some random funétiartroduced in order to provide the missing part of mixingeT
particular approaches for computing the unresolved papasficle velocity will be discussed and tested in the follogv
sections.
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There is a great practical interest in the calculation ofgidats, as well as of spatial and temporal characterisfip®llution
transport from localized sources above heterogeneouscasind in the areas with complex geometry (in the urbam@nvi
ment, over the surfaces with complex terrain or over theradting types of vegetation). LES of such flows becomes arreut
procedure with increasing performance of computers. Hewelre calculation of statistical characteristics of laaggian tra-
jectories is complicated in this case by the need of tranigfitiuge number of tracers (e.g., Hellsten et al., 2015)ekample,
it is necessary to calculate the trajectories of ali6liparticles (see Supplement Sect. S2) to obtain the foogaimbve the in-
homogeneous surface with the explicitly prescribed olessg(the task similar to that presented in (Glazunov andeiepko,
2015)).

On the other hand, a large number of particles (see, e.gpl@upnt Fig.S2.1b) allows to estimate the local instardase
spatially filtered concentration of the scalar:

sp(a,t)= Y Gl@—ar(t)), )

p=1,N

whereG is the function which coincides with the convolution ker¢ILES filter operator andV is the total number of
particles in the domain. If the mathematical expectaéipnof a number of new particles ejected in a unit volume durinig un
time interval is proportional to the Eulerian concentrat&murce strengtiy),(z,t) = CQ,(x,t), thensp(z,t) ~ C3(z,t).
One can perform the same operations with the "LagrangiamCexatratiors p (x,t) as the operations with the Eulerian scalar
5. Below, we will compare the averaged valuesgfands and their spatial variability. Besides, we will use the mstiion of
concentrations p(x,t) for correcting the particle velocities (see, Sect. 3.2ds.K34),(35)), in order to approximate the effect
of subgrid turbulence.

2.3 Single particle first-order Lagrangian stochastic modis (LSM)

Another approach (more widespread due to a lower computtamst) is the replacement of the entire turbulent compbne
of velocity by a random process (Lagrangian stochastic fsqtd&M)):

3

WP = <u§p)> +uf, daz? = uldt. (8)

Here<u§p)> is the ensemble averaged Eulerian velocity at psihtNote, that LSMs are assumed to be also applicable under
the temporal evolution of turbulence statistics. In thipgrawe shall consider ABL as it approaches a quasi-steady. sta
Therefore, due to assumption of ergodicity, ensemble gisgacan be replaced by averaging in time and in the direstadn
spatial homogeneityip) ~ (¢),, , ;-
Single particle first-order LSM is formulated as followslagity «'? is described by the stochastic differential equation:

du';? = a;(xP uP t)dt + b;j(xP ,uP )b, 9)
where¢ stays for the delta-correlated (usually Gaussian) randaiserwith the variancét

(EP(E)EN(t+1)) = 65 6pnd(t)dt (10)
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and with the zero averadé¢?) = 0; a;, b;; are the functions depending on the Eulerian charactesisfiturbulence and on the
Lagrangian velocity of the particle. Typically; is calculated by the formula

bij = 51']' V 006, (11)

where,e denotes the energy dissipation rate, averaged for a fixedlic@ade,Cy is the Kolmogorov constant. This kind of
random term (arguments are given in (Thomson, 1987) andf®awl993)) is defined by Lagrangian velocity structure
function in the inertial range (see Monin and Yaglom, 1975):

Dij(#') = ((ui(t ') = ua(t)) (u; (t + 1) —u;(£))) = 655 Coet! (12)

if 7, <t/ <Tg (1, = (v/€)'/? is the Kolmogorov microscalé,z = E? /¢ is the energy containing turbulent time scale and
E'is the turbulent kinetic energy.

The functiong; (drift term) determines the behavior of particles at largeest ~ T, ~ T (hereTy, is the Lagrangian
decorrelation time scale). For spatially inhomogeneous statistically non-stationary turbulent flows, includiAg@L, the
choice ofa; is usually done according to the well mixed condition (WMQiomson, 1987). In general WMC does not lead
to a unique solution fo#;. Different LSMs are constructed by introducing the addi@ibphysical assumptions and can lead to
inequivalent results.

Lagrangian models are very sensitive to the choice of usaldunctions that define the normalized RMS of the vertical
velocity 5, = <w’2>1/2 /U, and non-dimensional dissipatién= ez /U2 (herelU, is the friction velocity). Besides, the simu-
lation results are affected by the choice of value’gf It can be shown (e.g., Durbin, 1984; Wilson and Yee, 200 tbr
one-dimensional LSM, these parameters determine the affdgidity K, for the scalar in the diffusion limit (wheth> T7,,

i.e. at large distances from the source):

208 2524
Ky=—""=—2U,z. 13
006 OoEU i ( )

The data of measurements in the ABL demonstrate large iaridor example, the values 6f, range from1.0 to 3.1 (see
Table 1 in Banta et al., 2006). According to Eg. (13) it impliee change oK by more than nine times.

There is no consensus on the valugigfas well. Formally(y has the meaning of a universal Kolmogorov constant in Eq.
(11). The estimation of this constant for an isotropic tlebge using the data of laboratory measurements and DN$dgov
an intervalCy = 6. £ 0.5 (see, Lien and D’Asaro (2002)). However, the valags~ 3 — 4 are often used for LSM of particle
transport in ABL independently from the type of the stratifion. These values have been obtained by the differentadsth
For instance, the valu€, = 3.1 for a one-dimensional LSM corresponds to a calibrapieriormed in Wilson et al. (1981)
according to observation data Barad (1958); Haugen (19%83. calibration (see, Wilson (2015)) assumes that theutarti
Schmidt numbeiSc = K,,,/ K = 0.64 near the surface (hetkE,, is the eddy viscosity). It is known that determination of
the turbulent Prandtl numbé?r = K,,,/ K}, (K}, - heat transfer eddy diffusivity) and Schmidt number basedlservation
data is complicated by large statistical errors associattidthe problem of self-correlation (Anderson, 2009; Grexet al.,
2007). Therefore, this method of estimation(@f cannot be considered as final and should be confirmed by fstudées. In
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Rizza et al. (2010) the values 6f, were determined using the LES-based evaluations of theitglstructure functions and
the Lagrangian spectra in convective and neutrally-§igdtABLS. In this study the LES model had relatively low regain,
which can be insufficient for accurate determination of tuastant in the inertial subrange (see discussion on tlodutesn
requirements in Lien and D’Asaro (2002)). Nevertheless vdlueCy ~ 3, in the paper by Rizza et al. (2010) is relevant for
LSMs applied to the convective ABL, in that case the constalso responsible for the energy containing time scalastwh
are well resolved in LES. The detailed overview of the meshaictHetermination of the constafiy can be found in Poggi et al.
(2008), where the discussion on the disagreements of tferelit approaches is also included. The results of the LS¥Is a
very sensitive to the choice far, as it was shown earlier by Du et al. (1995), Rotach et al. (L98@son (2015) and many

others. Below we show that the commonly used valu€p#- 3 — 4 can be greatly underestimated for the use as a parameter

in LSMs applied to the stably stratified ABL.
2.4 Zeroth-order Lagrangian stochastic models or random diplacement models (RDM)

A simplest approach for development of the models of particspersion entails replacement of Eulerian advectidfusion

equation

a(s) L\ O(s) 0 d(s)
o T G T T

by the stochastic equation for particle position (randospldicement models (RDM)):

+ Qs (14)

dz? = (u;)dt + %dt + /2K &P (15)
Zj
Probability density of particle positioR is connected with scalar field concentratigi as follows:
t
<S(£L’,t)> = / / QS(QZQ,to)P(w7t|w07t0)d33§0dto. (16)
R3 —00

Using the Fokker-Planck equation it can be shown that the(Eg).is equivalent to the Eq. (14) from the point of view of
concentration transport when the time stipends to zero (Durbin, 1983; Boughton et al., 1987).

RDM has some major disadvantages. First, it shares thealiimit of Eulerian eddy-diffusion treatment of turbulergpir-
sion, i.e. "K-theory". Correspondingly, it is not able tosdebe the non-diffusive near field of a source. Also, RDM pah
be applied for the convective ABL, where the counter-gnatieansport is observed. Besides, it requires the exaaegabf
diffusion coefficient’,, which can not be measured directly.

3 Details of LES model used in this study

3.1 Numerical algorithms and turbulent closure

System of equations (5 - 6) is discretized using explicitéhtifference scheme with the second-order temporal appadion
(Adams-Bashforth method) and fourth-order (fully-conserfor advective terms) spatial approximation of veloaityl scalars
on staggered grid (Morinishi et al., 1998).
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Mixed model (Bardina et al., 1980), expressed as the sumeofStinagorinsky and scale-similarity models, is used for
calculation of turbulent stress tensor:

T = 7 e = —3(C,R)[S[By + (W ~ T ), (17)

o iy

whereS;; is the filtered strain rate tensdr, is the dynamically determined (Germano et al., 1991) dirioeresss coefficient
which depends on time and spatial coordinates. The a pésts sing the data of laboratory measurements show tHat sca
similarity models with Gaussian or box filters provide ctati®n typically as high as 80% between real and modeledstise
(see overview in Meneveau and Katz, 2000). The significarttqfethis correlation can be attributed to non-ideality bét
spatial filter and use of common information for computinghothe real and modeled stresses (Liu et al., 1994). Theadescr
spatial filter used in this study has a smooth transfer fondti spectral space, so it can be supposed that the scalarityn
part of Eq. (17) is mainly responsible for the influence obedly fluctuations belonging to "subfilter" scales.

The procedure of calculation of the coefficiemgx,t) = (CsA)? reduces to minimization of the functiondl(X) =
Jogij(x) €4 (x)dx whereQ is the model domain and; () is the the residual of the overdefined system of equations

—

(XM) — X (M) = Lij — Hij + €35, (18)

)

obtained by substitution of mixed model (Eq. 17) into ther@ano identity as

—

Ty =7 =0 @ — 0 U (19)

HereT;; are subgrid/subfilter stresses for the smoothed veltﬁ;iqbtained by successive application of baSjeand testr’y

spatial filterso = i/Z is the ratio of the filters widths. Tensokg’, M.

;v M, Lij andH,; are calculated as follows:

. = == e (20)
Lij:uiuj—uiuj, Hij: uiuj—uiuj —(uiuj—uiuj).

The generalized solution to the discrete analogue of Eq.i¢k®arched using the iterative conjugate gradients (C&hoal
with diagonal preconditioner. To do this, the problem isueetl to a linear system of equations

ANAAXA = AARA, (21)

whereX 4 is the the desired solution (a vector of dimensiér= N, N, N, with the values defined in the center of grid cells);
Aa andRa = La — Hp are the discrete analogues of the operator and the rightdideaf Eq. (18) correspondinglyt’; is
the transpose matrix. The diagonal preconditiafgrfor CG method was selected as follows:

% —1
Py — (a4M§M§ + u(MIME — 2a2M§Mg*)) , (22)

wherepu = const ~ 1 is the empirical coefficient independent on time and spptialtion. The solutiodX A contains negative
values (unconditional minimization of the functional issd¥, however, mixed model (Eq. 17) reduces their relativaler
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compared with the dynamic Smagorinsky model. In the algorjinegative values are replaced by zeroes. In fact, thiardyn
procedure is close to approach proposed in (Ghosal et &5)1@%ith the difference that the mixed model was appliedgher
and iterative method was replaced by a faster CG method.

Eddy diffusion models are used for subgrid heat and conagoitrtransfer:
05 = —Khsubgrg—ai, (23)
here K;,*“%9" = (1/Sc*b97)(C,A)?|S] is the eddy diffusivity, which is independent on the type cdlar. Subgrid turbulent
Schmidt and Prandtl numbers are fixge“*9" = Prsubsr = (.8,

A distinctive feature of this model is that the discrete Epditter operatotF'x = F,. F F’, is explicitly involved in calculation

of stresses. The following discrete basic filter is selected

Fuo(@)ik = (1/8) i1,k + (3/4)pi gk + (1/8)pit1,5k, (24)

herei, j, k denote a grid cell numbep,is any variable. Similar filtering is applied along the cdoedesy andz. It is reasonable
to expect that we get the velocity, smoothed according to specified filtering operator as aisolto Eq. (5) supplemented
by the mixed closure (Egs. 17 - 21). Since the discrete filteoiperator is invertible, we can find the following velodityany
point and time:

u;" = Fz_lﬂu (25)

which better reflects the small-scale spatial variabifyproximate inverse filter is calculated as a series (Vate@jt1931):

FlaFp it = i(I—Fx)k, (26)
k=0

where! is a unity operator; in the calculations presented below sedu = 5. Spatial spectra of "defiltered" velocity*

under the neutral, unstable and stable stratification wbtaireed earlier (Glazunov, 2009; Glazunov and Dymnikow,.20

Glazunov, 2014). It was found in all cases that this procedonproves the small-scale parts of the spectra according to

dependence ~ k~5/3, provides better agreement of spectra calculated with iffiereht spatial resolution and improves

convergence of non-dimensional spectra if proper lengilesare used for normalization.
3.2 Methods for Lagrangian particle transport in LES
3.2.1 Subgrid and subfiler modelling

Below, the subgrid and subfilter modelling methods usediersimulations in the current study are listed. These metinalt
be used also in combinations as defined in Sect. 4.2.

(1) Improvement of Lagrangian transport using inverse filtering of Eulerian velocity field
First, we will use the recovery of "subfilter" fluctuationsy&E 25, 26) in order to transport Lagrangian particles mogeipely:

u? = u*® (27)
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Note, that for the use of such a procedure, LES models shahlifiethe properties of model with an explicit filtering.r&ilar
approach was recently applied by Michalek et al. (2013) irsvidith approximate deconvolution subgrid model (ADM, see
Stolz et al., 2001), which can be also considered as the mgttebxplicit filtering. In most cases, the suppression om
scale fluctuations in LES (particularly in those that usevadwder numerical schemes) occurs as a result of combiriect ef
of approximation errors and the subgrid closure. Therettie shapes of effective spatial filters of most models cdy lo@
determined by aposteriori analysis of the calculationlissu

(2) Lagrangian stochastic subgrid/subfilter model

Second, we will apply the subgrid stochastic model propas¢éghotorban and Mashayek, 2006):

duf=< L _(p)>df+\/Ooe£p (28)

ox; Tp,
The paramete€, was specified to be equal to 6, because the stochastic p ofiddel (Eq. 28) is mainly responsible for
spatial and time scales in an isotropic inertial subrangdefurbulence. When using dynamic mixed model (Egs. 17 - 21)
a value ofe is not calculated directly, and then it is assumed that thsipfiition is locally balanced by shear production and
buoyancy production or sink. In addition, since this model produce a local generation of kinetic energy, the avegaigi a
horizontal plane was performed to avoid negative valuesssightion:

€= <—§ij’7'ij> + @—0 <19@> oy (29)
wherey? is the vertical subgrid flux of potential temperature g1i@, is the buoyancy parameter. Time scajewas evaluated
as:

Ty, = (B2 + b1 (% + %00) €. (30)

Thus, the total unresolved kinetic energy was calculatedesum of "subfilter" energy

1

Esubf _ 5 <(u: _ﬂi)2>ry (31)
and "subgrid" energy:
. 0o 3 T —-2/3
subgr ~ N e 2/3 .
prav =g [ swam=3oer S () 7

kmin; i=1,3

To evaluate the valug*"*9" it was supposed that "subgrid" fluctuations belong to quitgide inertial range with the

component-wise velocity spectf(k;) = C}(ez/?’k;5/3, and that the minimal wavenumbers for these fluctuationsn,; =

/A, correspond to wavelengths in two grid steps. Héxg, is the grid step in the appropriate direction &g = %CK =

0.5 is the Kolmogorov constant (her@x ~ 1.5 is the Kolmogorov constant associated with three-dimeradiwavenumbers).
All the values required for a application of this model wenearly interpolated into the particle position everywdercept

at heights: < A, /2, where we use the constant valigg A, /2) ande(A,/2). This procedure is rather arbitrary, but it does
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not have large impact on the results due to the small deedioeltimeT,(A,/2). Besides, there are no physically grounded
reasons for the justification of such interpolations in LEE®duse the resolved velocity in the vicinity of surface isatly
corrupted by the approximation errors. Such procedureglglio® considered as an adjustments depending on the nameric
scheme and on the subgrid closure.

(3) Random displacement subgrid/subfilter model

Third, the RDM specified in Sect. 2.4 will be adopted for thgtaangian particles subgrid dispersion. In this case wd gkal
the same subgrid diffusiviti, *“*9" both for the Eulerian scalars (Eq. 23) and for the particlsgldcement calculations:

3K§ubgr(p) .
da? =aP dt + i + /2K bor(®)¢p, (33)
)

This model does not contains the arbitrary specified pamimekcept those which were already used in the Eulerian TES.
coefficienti $°9" was linearly interpolated into the particle positions dghész > z, with the assumption that 5% (z,y,0) =
0. A constant valugl $4097 (x,y, z) = K497 (x,y, 29) was used for < z.

(4) Divergent correction of the Eulerian velocity field

Finally, in order to find out whether the subgrid mixing is aféhe key processes in the dispersion of Lagrangian trasers
introduced an additional correction to the particle veiesi

ul) o=u® +al) (34)

cor_div div?’

wherew,;, is the deterministic divergent additive to the velocitydia:

s
Udiv,i = i—i: (35)
with the imposed restriction;, ; = 0 if sp = 0. Here, the "subgrid" flux};” is calculated using the same closure as the
closure for Eulerian scalags with the only difference that the concentratiop, estimated by the number of particles in a
grid cell, is used in Eqg. (23).The applicability of this pealure justified because of the large number of particledvedoin
simulation (in all the cases described below we have at ssastral dozens of particles in each grid cell).

Correction given by Egs. (34), (35) does not provide truelksatale mixing, but only introduces an additional "sttretg"
or "compression" of the small volumes filled with particleglarovides concentration fluxes across the borders of giig ¢
close to "subgrid" fluxes in Eulerian model. Using this cofi@n, we are guaranteed to get a high correlation between th
"Eulerian" and "Lagrangian" concentrations (in all ourlpnénary tests(g’s;>wy/ <§’2> <s’f}> ~ 0.9).

The idea of such a correction was based on the assumptioddteits of the mechanism of subgrid mixing have a little
influence on the statistics of trajectories at sufficienlsge distances from the source and at long enough tinitewas
assumed that the quick mixing on small spatial scales camp#citly substituted by the approximation errors arisinghe
procedures of interpolation and by the errors of discrebetiem to the advection equation. Correction brings an il
systematic effect to reduce incorrect particle transppthke large eddies.

12



10

15

20

25

3.2.2 Simplified velocity interpolation

In preliminary tests it became clear, that trilinear intdgpion of each velocity component provides no advantagef®btprint
calculation in comparison with the following simplified &ar interpolation on a staggered grid:

_ Tip1/2,46 — TP _ TP =T 1725k

ul?) = Uin1/2k A T Wil/25 kT A
_ Yigij2e — Y _ Y —Yiji-1/2.k

vP) = vi,jq/z,kT + Uzyj+1/2,kT7 (36)
_ Zijkt1/2 — A0 2P — 2 i k—1/2

wP) = Wigh-1/2—" 7 TWijht1/2— A

where position(i, j, k) is the center of a grid cell containing the particle. Trilménterpolation and interpolation given by Eq.
(36) provide nearly the same concentration fluxes acrosbdhaers of a grid cell, but the latter does not result in adalél
substantial smoothing of velocity. An exception was madetie grid layer closest to the surface (< A,) where the mean
velocity components were adjusted according to the Mortbov similarity theory with the dimensionless functidaken
from (Businger et al., 1971).

4 LES of stable ABL and footprint calculations
4.1 The setup of numerical experiment

Stable boundary layer at the latitude®78 in almost steady state conditions was considered. Thellediens were carried
out according to the GABLS scenario (Beare et al., 2006); wie difference that the geostrophic wibh, has been rotated
35° clockwise such that the wind direction near the surface@pprately coincides with the axis. The duration of runsis 9
hours. The initial wind velocity coincides with geostrophielocity |U ,| = 8 m/s. The initial potential temperatu@eis equal
to the surface temperatuég |;—o = 265 K up to the height 100 m and increases linearly with the d&¢d- = 0.05 K/m if
z > 100 m. During the calculations, the surface temperature deesdnearly with timed©, /dt = —0.25 K/hour. Dynamical
and thermal roughness parameteysandzpg are set to 0.1 m. The calculations were performed at the et grids with
stepsA, =2.0 m, 3.125 m, 6.25 m and12.5 m. The size of the horizontally periodic computational domaas equal to
400 x 400 x 400 m3. The last hour of numerical experiments was used for aveggtye results and subsequent analysis.
This setup is based on the observation data (see, Kbaod Curry (2000)). As it was shown in (Beare et al., 200@®) [tBS
results obtained under the same conditions with the difterendels converged with the higher grid resolutions. L les case
was used for testing the LES models e.g. in (Maronga et al52Bhou and Chow, 2012; Bhaganagar and Debnath, 2015)
and many others and for the improvement of subgrid mode#igg in (Basu and Porté-Agel, 2006; Zhou and Chow, 2011;
Kitamura, 2010). The LES model presented here was testdéidraander the non-modified setup of GABLS in (Glazunov,
2014), where the turbulent statistics above a flat surfadeadove an urban-like surface were investigated. In all e§¢h
studies, LES results were in agreement with the known siityileelationships for the stable ABL. This allows to coresid
the LES data for GABLS as a reference case for testing of theoaghes utilizing the statistical averaging of the tuebak
(e.g., see Cuxart et al. (2006), where the intercomparigsimgle-column models was performed). Several of nondsiwral
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relationships in stable ABL were collected and presentddilitinkevich et al., 2013). Considered case is also ideld in the
LES database for this study and fits well with the differeabsity regimes after the appropriate normalization. Hfere, the
results obtained in this particular case can be generalarechany cases due to similarity of the stable ABLs. Besidles,
presented simulations are easily reproducible and theypearepeated using any LES model which contains the Lagrangia
particle transport routines.

The mean wind velocity and the potential temperature, ¢aied with the different spatial ste@s,, are shown in Fig. 2
The model slightly overestimates the height of the bountiargr at coarse grids, however, the wind velocity near thtaesa
is approximately the same in all runs. As one can see from i@ Rhe results of simulation are in good agreement with
the results from other LES presented in (Beare et al., 2G@®), (ttp://gabls.metoffice.com for more information) adevind
profile computed in accordance with (Hogstrém, 1996) is shimwrig. 2 by the vertical dashes, in the surface layer patief
domain this "standard" profile for the stable conditions@dtrcoincides with the longitudinal velocity obtained in&.E

Passive Lagrangian tracers were transported simultalyawitls the calculations of dynamics. Each particle, wheactang
a lateral boundary of domain, is returned from the oppositendary in accordance with periodic conditions. The refbect
condition is used at the ground. The particles are ejectdueadteightzyo = 0.1 m (one particle per each grid cell adjacent to
surface) with regular time intervalst.; = 1 s. The position of the new particle within a grid cell is setdamly with uniform
probability. The ejection of particles takes place corimsly from the seventh to the ninth hour of the experiment.

To limit the number of the particles involved in the calcidatthe absorption condition is applied at the height of 100
meters within ABL. It was verified previously that the uppeuibdary condition does not have a large impact on the results
calculations of footprints for the heightg, up to 60 m and for the distances-z, considered in this paper (see Appendix Al
and the test with LSM shown by the orange curves in 12). Thimfdation of numerical experiment allows direct companiso
of the concentration of particles>, estimated by Eq. (7), and the scalar concentrajaralculated by the Eulerian approach
(Eq. 6). For this purpose, additional scafds calculated from 7-th till 9-th hour with a constant suddlux F; = const =1,
zero initial condition and the Dirichlet conditigh= 0 at the altitude 100 m.

In the last hour of simulation the averaged number of pasiah each cell of the grid near the surface was approximately
equal to 700-800, 350-400,180-200 and 110-130 for grigssig=12.5m, 6.25 m, 3.125 m and 2.0 m, respectively. Having
such number of particles one can estimate the concentrdtian ; ., t,,) at each time step, wheug ; . is the center of a grid
cell. It was assumed, that each particle contributes todheentratiors p(z; ;) with the weight} . , = (VP (Vi ;1) / Vi j k.
whereV? is rectangular neighborhood of its position with the silg (V?(V; ;) is the volume of intersection with grid
cell, V; ; 1 is the cell volume. This averaging is close to the filteringzaferian scalar (Eq. 24). The additional normalization
is performed as followss p = §pAt.;/A.. The concentrationp corresponds to the number of particles in one cubic meter
under the condition that one particle per square meter pemnskis ejected near the surface. Concentratiois numerically
equal (excluding errors, determined by different methddsamsport) to the concentration of the scalar figifilscalar surface
flux Fy, = 1.

Figure 3 shows the resolved and the parameterized compookfitix (w’s’) in runs with different grid steps. It is seen
that the calculation time is not large enough to reach a gtstade (the total flux is not constant with the hight, so therage
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concentration continues to grow during the last hour). Hargt was checked that the flux footprint close to the serssoot
affected by nonstationarity. Besides, we can compare theesafs andsp, because the boundary and initial conditions are
identical for them.

The unresolved fraction of the fluk:* = (13) is an essential part of the total flux°* = (3 w) + (95). Accordingly, the
vertical transport of Lagrangian particles by resolveduiy w may be significantly underestimated. Thus, we have "hard"
enough test to verify Lagrangian transport in LES with ppadsolved velocity field.

4.2 Sensitivity of LES results on methods of particle transprt and spatial resolution
4.2.1 Footprint calculation with limited application of subgrid stochastic modelling in LES

Figure 4 shows the scalar flux footprints averaged in crasdwlirectionf¥(xy — x,z57) computed by different methods
and with different grid steps. In all cases, we have avoidgdguthe subgrid scale stochastic modelling except cdiogléhe
velocity of the particles located within the first grid lay€r< A,. For the curves marked "&t", the resultant velocity of the
particles near the surface was calculated as follows:

uP = u® 4 (2P )u"?, (37)

where the function(z?) is defined ag(2?) = (1 — 2P /A,) if z, < Ay, r(2?) =0 2, > A, andu”? is the random velocity
component, calculated using the stochastic subgrid mdgtgl 28). To take into account the memory effects in Langevin
equation, the stochastic model was implemented insideatyer t? < 3A, so (because of the smallness of scElg this
procedure does not lead to significant distortions in thed@amcomponent of the velocity.

If the particles are advected by the filtered veloaityvithout any correction then the vertical mixing is too wealddhe
maxima of footprintsf? are strongly underestimated and shifted at the large aistafrom the sensor position. Divergent
correction of Eulerian velocity (Egs. 34, 35) partially iropes the results (squares in Fig. 4a,b). For example, manxiwf
footprint f¥ for the sensor height,,=30 m (near the fifth computational level) occurs to be closté maxima of footprints,
computed at fine grids, but it is still shifted. Thus, the egation (Eq. 34, 35) alone is not sufficient. Primarily thislige to the
weak mixing below the first computational level, where thatdbution of the subgrid velocity is crucial.

The inclusion of stochastics within the first layer improtlesresult (dashed curves in Fig. 4a,b). However, it is notigh
to determine footprints at altitudes comparable to the gjiacing.

The advection of particles by the velocity leads to close matching of functiorf§, calculated with different grid steps
(solid lines of different thickness in Fig. 4c,d). The diffaces between these footprints are not significant fronaetipal
point of view, and can be equally explained by means of theriect Lagrangian particles transport, as well as by meéns o
the insufficiently accurate solution to the Eulerian equadion the coarse grid.
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4.2.2 Spatial variability of scalar concentration inferred by Eulerian and Lagrangian methods

While the particles were advected by the "defiltered" flow vegehalso used the correction (Egs. 34, 35). In this case the
subgrid diffusion coefficient was reduced twigg*"*Y" = ¢k """, ¢ = 0.5 (coefficientc = 0.5 was chosen because about a
half of subgrid flux can be restored using "defilteringsw*) — (s w) ~ 0.5 (¥5)). We note that when the particles are advected
by velocityu* (), then the presence or absence (crosses in Fig. 4c,d) ottiorrdas no significant effect on the functigi.
Nevertheless, this procedure may be useful for the follgweasons.

In the inertial range of three-dimensional turbulence glarith the kinetic energy the variance of a passive scalar con
centration is transferred from large scales to small seaitrsthe formation of the spatial spectruh ~ e,e~1/3k=5/3 (see
(Obukhov, 1949)) (here, is the dissipation rate of the variance of concentrationsed by molecular diffusion). Lagrangian
transport of particles by a divergence-free velocity fieldwith the truncated small-scale spectrum is equivalent tierftan
advection of concentrationwithout any dissipation. The absence of subgrid-scalegdfatte velocity spectrum will lead to
reduction of the forward cascade and to the accumulatioménces?, in vicinity of the smallest resolved scales.

Figure 5a shows the variances of "Eulerian" concentratidn) = <§’Q>Iyt computed at different grids, and the variances
of "Lagrangian” concentratioanﬁp(z) = <SP/2>;Eyt' One can see that if particles are advected by the velacity (crosses),
variancer?, is much larger than?. If the velocityw*® + uff;i is used (black circles), the valuesaf, ando? become closer
to each other. Besides, the correction (Egs. 34, 35) ineseti® correlation coff,sp) = <§’s},>wyt/(aspas) of two fields
calculated by means of "Eulerian" and "Lagrangian" appneaq 5b).

One can expect that in more complicated cases (e.g., thelémtbflow around geometric objects and the formation of
quasi-periodic eddies) the accumulation of small-scalsenim the concentration field may lead to the incorrect ative©f
concentration by the resolved eddies. This effect may b®iaiportant for inertial particles when the nonphysicali@ace
of concentration can directly affect dynamics. In addisibiests it was found that the correction given by Egs. (34) @)
prevents particle stagnation in zones with unresolvedierize during the modelling of urban-like environment. $hthis
correction is desirable for a number of reasons as a praogigiacement of subgrid stochastics which requires lacgeputer
resources.

4.2.3 Particle advection and footprint determination in LES with subgrid LSM

One can obtain footprints close to those presented at Figy mdans of application of the stochastic subgrid model (Egs.
28-32). The calculations for this model have been carrigdabthe grids with steps 3.125 m, 6.25 m and 12.5 m (solid lines
in Fig. 6a,b). One can note the defect of the stochastic &lilbbgodelling in LES, which can not be detected by studying
of the mean characteristics. In the previous subsectionrebevered "subfilter" part of velocity” = u* —u and so the
subfilter Lagrangian velocity”®) were highly correlated with the resolved velocilyin time and space. This is due to the
specifics of spatial filter (Eq. 24) used for the recoveringegiby Egs. (25,26). This filter has a smooth transfer fundtio
spectral space. The analogous effects of nhon-ideal filtetEiS which lead to the high correlations between modelletl an
measured turbulent stresses were obtained and discussied iealiu et al. (1994) and Meneveau and Katz (2000), where
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the laboratory data of turbulent flows were studied. On thereoy, additional mixing in the stochastic model (Eqs.328-is
due to random fluctuations, which are not relatedzststrictly. When one uses coarse grids, the energy of thesehg@n
fluctuations should be large enough to restore mixing ineardirection. This is accompanied by an excessive sugjmesf
the variability of concentrationp near the surface, where the contribution of subgrid mixgtaige (stars in Fig. 5a). The
correlation between "Eulerian" and "Lagrangian" concatian is reduced simultaneously (see Fig. 5b). Probahlydibfect
of employed Lagrangian stochastic model is connected tbdhizontal averaging in evaluation of "subgrid" dissipatand
energy. Nevertheless, this result shows that in some casesdchastic subgrid modelling can prevent correct reprah of
the resolved spatial variability of particle concentratio LES along with improvement of the mean transport.

4.2.4 Footprints in LES with subgrid RDM and the comparison d different methods

In Fig. 7 footprints obtained in LES with intermediate regwn A, = 6.25 m are shown. We choose this resolution because
LES dynamics is still reproduced sufficiently well, but tHéeets from the subrgrid/subfilter Lagrangian parametiiwaare
already clearly visible. In addition to the approaches Whiere already discussed above we applied the subgrid RDM (Eq
33) and the subgrid RDM in combination with the velocity reeong (Egs. 25,26) and the correction (Egs. 34, 35). In the
former case we restricted the activity of the subgrid RDM ly multiplying of the diffusivity coeﬁicieanL“bgr(p) in (Eq.

33) on the following ramp function(z?) = (1 — 27 /A,) if 2P < A, andr(z?) =0if 22 > A,

Generally, results are in close agreement with the restiltE8 with the fine grid except of some details. One can see the
intrinsic defect of the RDM when it is applied to the dispersof particles in near field of a source. Namely, as the RDMas t
approximation of the the diffusion process with the infirsipeed of the signal prorogation, this model overestimaikeeg of
f¥ in the vicinity of the measurements point location (see Fid, where this effect is highlighted in the logarithmic sjal
Nearly the same effect was obtained in Wilson (2015) (seg. Bi@ in its paper, where the footprints from RDM are alsftsti
leftin comparison with the other models). It was also obsdithat, along with the overestimated vertical mixing, sib8DM
leads to the propagation of some portion of the particlebénupwind direction (the functiofiy (x5 — x, 2y = 10) has the
small but the positive values if;; — x < 0). In LES with the intermediate resolution the mentionedresémated mixing
exceeds the similar effect in RDM standing alone (see S8(tbecause the coefficief(t,‘j“bw is highly variable in time and
space and it can attend even larger local values then theitndgof the averaged turbulent diffusiviy;, . At the higher levels
of z)r = 30 m andz,, = 60 m, the footprints are formed as a results of averaging ofuti®itent motions over the large spatial
distances and over long temporal intervals, and the ddfuapproximation becomes to be acceptable. As it will be shiow
Sect.5.3, RDM applied alone gives a very close results toghalts of LSMs in this particular case of the stable ABL.

In contrast to the subgrid LSM and to the methods of velocityrection proposed above, the advantage of the subgrid
RDM consists in the absence of the arbitrary prescribednpeters and in the absence of the need to involve the additiona
suppositions. In terms of Eulerian statistics, this modetientical to the Eq. (6) (in the limift — 0 and with the precision
defined by the spatial approximations). From this point efwsubgrid RDM can be considered as the "ideal" model, becaus
it is determined by the coefficients which are consistertt wES dynamics of the stratified flow (the same subgrid diffiasi
is used for the potential temperature which defines the mayyand the interchanges between the kinetic and the alailab
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potential energy). Thus, we have one more confirmation of/étdity of the results, except of the invariance with resgge
the grid steps.

The impact from the subgrid RDM is reduced when it is appliéthiw the first grid layer only. In this case, the footprints
are approximately the same as the footprints computed tisengther approaches.

4.3 Two-dimensional footprints

The trajectories of large number of particles 1.8 x 10%) were simultaneously computed in LES with grid step 2.0 m- Ac
cordingly, one can get statistically grounded estimatiftvo-dimensional footprint functiong, (z — xar, y — yar, 2ar). These
functions, computed for the sensor heights=10 m andz,,=30 m are shown in the Fig. 8a,b. One can see, that the area with
the negative values of footprint exists. The negative \@bfdootprints are typical (e.g., Cai et al., 2010; Steidfef al., 2008)
for the convective boundary layer due to fast upward adeediy the narrow thermal plumes and slow downward advection
in the surroundings. Here, the negative values of the fangti are connected to the Ekman spiral and to the mean transport
of the particles elevated to large altitudes in the directierpendicular to the near-surface wind. The negativeegadfi scalar
flux footprint show that the vertical turbulent transportloé scalar emitted in the relevant area is basically dicefttam the
upper levels down to the surface. For example, the positikface concentration flux in this area will lead to negativeraaly
of the turbulent flux measured in the sensor position. Thissdwot contradict the diffusion approximation of the tudmil
mixing, because mean crosswind advection at the uppesleaal produce the positive vertical concentration gradeettie
right of near-surface wind.

The contribution of the negative part of the flux to the "meadu flux is significant, as shown in Fig. 8c,d, where cumutati
footprints, defined as

Fla®,2) = / !z, (38)

are separated into positive and negative pBXt8y; — z,2p) = FT + F~.

5 Stochastic modelling and the comparison with LES
5.1 Preparation of turbulence data from LES for LSMs and RDMs

The LES results with grid step,=2.0 m were used for data preparation. To apply LSM (Egs. 8h@Yollowing Eulerian
characteristics are required: the mean wind velocity camepts(u) and(v), the second momen(&éu}) and the dissipation

e. Stochastic models are even more sensitive to some of thegaateristics than the advection of particles in LES. For
example, the underestimated values of the turbulent kiregtergy in LES are the consequence of the suppression off smal
eddies. Nevertheless, these eddies exert relatively &mflaktnce on the mixing of scalar, because the effective elftlysivity
associated with theri small ~ E'/2 small js not large due to small spatial scale. However, the turtiiéeergy which is
substituted into LSM affects results independently of #eesand has to be evaluated with good accuracy.
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5.1.1 Mean velocity

Mean wind velocity at the height < z < A, was computed using log-linear law:

(u;) = U, (%ln (%) n Cﬂ%) " <|1;i|>

and(u;) =0 atz < zo. Here,U. is the friction velocityx = 0.4 denotes the von Karman constahtis the Obukhov length at

s Cm =5, (39)
z2=Ag/2

the surface

U,
9Qs '

whereQ), is the kinematic potential temperature flux at the surface 9.81 m/s’ is the acceleration of gravity arh = 263.5

L= (40)

K is the reference potential temperature (as it was presgiibpresented simulations and in Beare et al. (2006)).,Xleaéethe
von Karman constant is not included in the definition of thegkl L here and later (this alternative definition of the Obukhov
length is used along with the traditional one, see e.g.i@ié@vich et al. (2013) Eq.(41)). The linear interpolatidrvelocity
was used itz > A,.

5.1.2 Momentum fluxes

The quxes(u;u; = <u§ﬂ;> + Tg}?” (7 # j) were interpolated linearly and additionally smoothedrgwere in the domain.

These fluxes are shown in Fig. 9a.
5.1.3 Variances of velocity components

The variances of velocity component$ = (u/?) were estimated by formula:

* 2 su
0'1'2 = <(u1 /)2>(lj7y7t+ §E bga (41)

where E<%9 is the subgrid energy (Eq. 32) ari¢u;")?) are the variances of recovered velocity components. Thicakr
velocity variance has the greatest impact on the functfgn&igure 9b shows the comparison of evaluated normalized RMS
Gw = 0w /|T|Y/? (solid line) with the SHEBA data (symbols; see descriptior{Grachev et al., 2013, fig. 15b); data kindly
provided by Dr A. Grachev). The data are shown in dependeme®ndimensional stability parametes xz /A, where

Az) = _hpg/% (42)

is the local Obukhov length, determined using values of Btofanomentunir| and temperatur€ at the given height (local
scaling in stable ABL (Nieuwstadt, 1984)). The measuremienggest that the mean value of normalized R#Sx 1.33

if value ¢ is small. Figure 9b shows, that our estimation of RMS is sligless than the measured values in the interval
0.03 < £ < 0.2. Respectively, the final values of vertical velocity vadardesigned for the substitution in stochastic models
were corrected as follows?, = 1.332|7| if £ < 1. At the higher levels the estimation (Eq. 41) was applied.
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The final estimations of the variances of velocity composeme shown in Fig. 9c¢ by the solid lines. Dashed lines are
the filtered resolved velocityi; variances. The estimation of the varianeg using Eq. (41) is shown by the circles. One
can see that significant parts of variances were not repeatlexplicitly in LES and were recovered using above mentone

assumptions.
5.1.4 Turbulent energy dissipation rate

Usual interpolation is not applicable to the calculatiomissipation rate near the surface, where 1/~. Besides, the values

of dissipationea, computed in LES at the levels = (k — 1/2)A, are approximately equal to the averaged values inside the
layers(k —1)A, < z < kA, but not to the physical dissipation at given altitudes. &lrttie assumption thét| is constant
with height and neglecting the stratification inside firstdla one can get the following corrected valueeddt the height
z=N7y/2:

E|Z:Ag/2 =~ 2€A1/ln(Ag/Zo) (43)

Additional analysis showed that, if < 0.25z;, then the local balance of turbulent kinetic energy (TKE)vil satisfied:
e =~ S+ B, whereS andB are shear and buoyancy production. Therefore, the nondiieal dissipation can be approximated

by a formula
- €z z z 1 A z
=T 120 Pm\ % |~ % —— _1_5 44
SrpE=? ()-x=xr@ -3 (44)
where
o{u)| =z 1 AZ
¢ ' 9z | |72 &k * ™A (45)

is the nondimensional velocity gradiedt: = 5, according to the observation data (e.g., Grachev et a324nd LES results
(e.g., Glazunov, 2014). Here, the assumption is used tleashkard (u) /0z and the stress are collinear. Previous LES
studies of stable ABL (e.g., Beare et al., 2006) also giveautully small values of the transport terms in TKE balantiee
experimental confirmation of the validity of Eq. (44) can loeirid in (Grachev et al., 2015), where the dissipation inlstab
ABL was estimated using the spectral analysis of longitaldirlocity in inertial range. In accordance with this paget ¢,,,
that is almost indistinguishable from Eq. (44) within thea@cy of the experimental data and the ambiguity of the okt
dissipation evaluation.

Discrete values of nondimensional dissipation, z;./|7|3/? are shown in Fig. 10a by circles. Dashed straight line is the
universal function (Eq. 44). One can see, that the corne¢tal. 43) makes the dissipation values closer to the fun¢iam.
44). Finally, the profile of dissipatioe.; (=) for LSM was corrected as follows (see Fig. 10b). The disgpatvas set to be
constant below some height, and was replaced by universal functios ¢|7|3/2 /z up to the level withz /A = 1. The height
z. Was chosen in a such way to equalize values of the dissipatieraged in a layeb < z < A, and the dissipationa;.
Figure 10b shows that the corrected dissipatign(solid line) is very close to "discrete” dissipatien;, (circles), except for
the first computational level.
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5.1.5 Diffusion coefficients

Random displacement model (Eq. 15) requires the estimafieddy diffusion coefficienf{,. Note, that due to anisotropy,
one should use tensor diffusivify’’ in a general case. Neglecting this fact, let us assume taatrthcipal axes of the tensor
K are aligned with the coordinate axes. The correspondefftaieats K%, K** and K" (see Fig. 9d) can be calculated

as follows:
9(5)
wa — ! ot 46
we =/ (52, (a6)
4 4
K= Zugee g = Tv e, (47)
O-’UJ Uw

The horizontal eddy diffusivitie&** and K /¥ are estimated taking into account the expression (13).

One can see that the formula (Eq. 13) provides a good appatiimfor the coefficienf’* if one sets the valué€'y = 6.
We note, that the data of LES were substantially correctgetthis estimation. Very fine grid simulations are needaatdy
and justify the given value. There is no guarantee that thisstant is actually universal under different stratifiocatin the
ABL.

5.2 Specification of LSMs and RDMs tested against LES

The following stochastic models were tested using the datpgred as described above.
(1) RDMO is the random displacements model with uncorrelatedpoments. Particle position is computed by the formula
similar to Eq. (15) but with direction-dependent coeffitgefsee, Eqs. (46), (47) and Fig. 9d). The components of this<tan
random noise satisfy the Eq. (10).
(2) RDM1 differs from RDMO by using the noise with inter-compaheorrelations:

(i)

(M t+1)) = —Lopns(t)dt, (48)

003

2

(3) LSMO is the Lagrangian stochastic model without WMC:

1/2
whereo; = <u’2> .

P '} p ;207
du’; :—thjt VCoe€l, T = oo (49)
L 0€¢
(4) LSM1 is based on the one-dimensional well-mixed model:
wP 1902 (wP)? 202
Py W \/ p w_ “Cw
dw ( i + 555 (1 + = dt++/Coets, T} Coc’ (50)

supplemented by uncorrelated horizontal mixing similaEtp (49) with the appropriate variances ando? .
(5) LSMT is three-dimensional Lagrangian stochastic modé&fyatg WMC, which is proposed by Thomson (1987). For the
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incompressible turbulent fluid in a steady state and undecdmdition of zero mean vertical velocity this model (Thoms
1987, formula (32)) reads:
(p)
1 1 p, 107 8<ui > P
CLE) = —551']'006(7' )ik'Uz/k + 5 8xl T{E]U/j +
du'? = aldt ++/Coet?,

wherer—! is the tensor inverse to the stress tensor.

1 1 87’1'1 D P
37 gy, o (51)

The setups of numerical experiments with RDMs and LSMs wlergedto particle advection conditions in LES (absorbtion
at the altitude 100 m, ejection af = 0.1m and reflection at = 0). The particles were generated continuously within tworkou
of modelling. The last hour was used for averaging. The n®d8MO0 and LSM1 use the valug, = 6. Three-dimensional
model LSMT was applied witly = 6 andCy = 8.

5.3 Modelling results

Figure 11 shows crosswind-integrated footprififsand the corresponding cumulative footprifitscomputed by LES (bold
solid lines,A,=2.0 m) and by stochastic models described above. Foat@iatshown for the sensor heighjs = 10, 30 and
60 m.

The models RDMO, RDM1 and LSM1 provide very similar resuftaster mixing is observed in stochastic models below
the altitudez,, = 10 m in comparison to LES. These differences are not cracidlare compensated in a cumulative footprints
at the distances — x5, ~ 1000 m. The differences can be explained either by insufficiebgsd mixing in LES or by inexact
procedure of the data preparation for stochastic modeNfagy weak sensitivity of the models with respect to cortielas of
particle velocity components is observed as well. Thusrékalts close to LES were obtained in stochastic modelsgdtie
"diffusion limit" with the same or close vertical diffusiaroefficient. The significant advantages of LSMs comparedd¥R
were not observed in this particular flow.

The substantial disagreements to LES were obtained ugieg-tfimensional Thomson model (Eqg. 51) with= 6 and the
model LSMO. The last one is designed for the isotropic tiebaé and does not satisfy WMC under the conditions considere
here. This model leads to overestimated mixing, and suchdmas not vanish at large altitudes.

LSMT (Eqg. 51) was proposed in (Thomson, 1987) as one of thsilplesvays to satisfy WMC in three dimensions. In our
simulations the error of LSMT is substantial and grows wéhsor height. This was shown by Sawford and Guest (1988), who
derived the diffusion limit of Thomson’s multidimensiomabdel for Gaussian inhomogeneous turbulence and showeithéha
implied effective eddy diffusivity for vertical dispersias:
2(op, + (w'w')?)

Coe '
Taking into account this expression and Eq. (13) which ighfal the one-dimensional LSM, one can estimate the appatepr
value ofCy for LSMT under the conditions considered hefg:~ 6(1.33* +1)/1.33* ~ 8 (we assume that,, /| (u'w’) |*/? ~
ow/|7|*/? = 1.33). The results of LSMT withC;, = 8 are in a close agreements with the results of other stocirastiels and

with the results of LES (open triangles in Fig. 11a,c,e).
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Turbulent PrandtPr and SchmidtSc numbers computed using Eulerian approach are shown in Eig. These numbers
coincide and are approximately equal to 0.8 up to the akitsidyhtly less then 100 m, where the boundary condition for a
scalar is applied. Schmidt numbe$s were calculated also using the concentrations and the floixeagrangian particles.
The models RDMO and LSM1 provide the valuesSefclose to the results of Eulerian model. Calculations by LM’ = 6)
resultinSc=~ 0.5 — 0.6, that is also the sign of the overestimated vertical mixing.

Two-dimensional footprintgs(x — xar, ¥ — yar, 2 ), cOmputed by the models RDMO, RDM1 and LSM1 (figures are not
shown here) were very close to LES results presented in Fitn @articular, this fact argues that the mechanism of faiona
of the region with negative values ¢f has a simple nature, which can be easily reproduced in theefrark of the diffusion
approximation.

The crosswind mixing can be characterized by RMS of trassleroordinates of the particles depending on the mean
distance from the sourc®?(X?) = ((y? — YP)2>1/2, whereX? = (z7) andY? = (y?) are the mathematical expectations of
the particle position. Functiori$’”?(X?) are shown in Fig. 12b. The models RDMO, RDM1, LSM1 and LSMTigwiy = 6)
result in close horizontal dispersion. All the stochastadels predict slightly less intensive mixing in comparisohES, that
can be a consequence of the inaccurate data preparatiaittaigoas well. If one neglects the anisotropy of eddy diffitg
than this dispersion would be substantially underestichétee short-dashed line in Fig. 12b, computed by RDM with the
coefficientsK** = K¥¥ = K*"). One can see, that the choiCg = 8 in LSMT (open triangles) does not improve its overall
performance because the improved vertical mixing is aceonagl by the reduced dispersion of particles in the horedont
direction.

Wind direction rotation leads to widening of concentraticarce from the point source (see thin dashed line in Fig. 12b,
computed with one-dimensional LSM). At larger distancesrfrthe source in the Ekman layer the crosswind dispersion of
pollution should be defined by the joint effect of the windatoin and vertical mixing, but not by the horizontal turbnle

mixing.

6 Validation of footprint parameterisations based on scalig approach

Footprint parameterisations that are assumed to be valia ooad range of ABL conditions and measurement heights wer
proposed in (Kljun et al., 2004) and recently in (Kljun et 2015). These parameterisations are based on a scalingaapr

The parameters for these parameterisations were evaluaiiegl backward Lagrangian stochastic particle dispensiodel
LPDM-B (Kljun et al., 2002). In turn, LPDM-B is based on thenfi@ard single particle Lagrangian stochastic model (see
(Rotach et al., 1996) and (de Haan and Rotach, 1998)) satistMC. The value of paramet&r, which was selected for
LPDM-B stochastic model was set to 3 (see (Kljun et al., 2pd&)parameterisation of LPDM-B, the turbulent statistirsl

the wind velocity were assumed to be universal and depenldosutrface heat and momentum fluxes, the roughness parameter
and the boundary layer height. The exact formulas for alutiieersal non-dimensional functions under the stabl¢itation

are not presented in (Kljun et al., 2015) and referencegthgherefore direct comparison of the turbulence profilits LES

is not possible. Nevertheless, the final approximationgi(iét al., 2004) and (Kljun et al., 2015) contain the inpugpaeters,
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which can be determined from LES: the boundary layer heigkt 180 m, Obukhov lengthl./x ~ 120 m, friction velocity
U, ~ 0.27 m/s and roughness parametgr= 0.1 m. These values were substituted into parameterisatioins(kt al., 2004)
and (Kljun et al., 2015). Fig. 13 shows the comparison of tresswind-integrated footprint functiorn¥ and cumulative
footprints /', obtained by different models. The Thomson’s model was uwstdC,, = 6,4, and 3 for the comparison.
Parametric models provide results which differ substiiptfeom all the abovementioned approaches. Both of the rsode
(Kljun et al., 2004) and (Kljun et al., 2015) predict fasteixing. One can see, that LSMT, which is itself too dispersive
comparison with 1-D LSMs and RDMs, does not reach the valusdigted by parameterisations from (Kljun et al., 2004) and
(Kljun et al., 2015), even if one chooses the smaller valdgs,olt means, that parameterisations of turbulence profilest mu
have significant impact and are one of the reasons for dewidigtween models from (Kljun et al., 2004) and (Kljun et al.,
2015) and LES. Finally, it can be seen from the Fig. 13, thatdip boundary condition (absorbtion of particles at theliei
100 m) does not affect the footprints obtained in LSMT.

7 Conclusions

Scalar dispersion and flux footprint functions within thatde atmospheric boundary layer were studied by means ofdndS
stochastic particle dispersion modelling.

It follows from LES results that the main impact on the paetidispersion can be attributed to the advection of pagibie
resolved and partially resolved "subfilter-scale" eddiesnsures the possibility to improve the results of paggcdvection
in discrete LES by the use of recovering of small-scale pliytresolved velocity fluctuations. If one uses the LES medth
the explicit filtering, then this recovering is straighti@rd and consists of application of the known inverse filieerator.
Apparently, a similar method can be implemented for othe® vithen the spatial filter is not specified in an explicit form.
This would require, however, the prior analysis of the medelpectra to identify an effective spatial resolution dradactual
shape of the implicit filter. For substantial improvemenpafticle transport statistics, it is enough to use subgagrangian
stochastic model within the first computational layer onligere LES model becomes equivalent to simplified RANS-model

When the particles are advected by a divergence-free embutlocity field, then the variance of the particle concagian
can be accumulated at small spatial scales. In the condidase, it does not affect directly the particle advectiorthzy
large eddies and gives no significant influence on the restiftsotprint calculations. In those cases, when the instagbus
characteristics of the scalar field of particle concerdratire important, the additional correction to particldseities may be
required. It can be done both through the introduction oftséstics, resulting in the diffusion of concentration, émwugh
the "computationally inexpensive" divergent correctidthe Eulerian velocity field.

Under the stable stratification, to calculate the flux fointipit is preferable to use stochastic models, which dbesdhe par-
ticle dispersion close to the process of scalar conceatrdiffusion with the effective coefficiedit ' (z) = — (w's’) /((ds) /dz)
in a vertical direction. RDM and one-dimensional "well-miK LSM tested in this study are the examples of such stoichast
models. The optimal value for the parametgrfor LSMs is found to be close to 6 under the conditions consid&ere. This
value coincides with the estimation of Kolmogorov Lagramgonstant in isotropic homogeneous turbulence. It pesvdidi-
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tional justification for use of LSMs in stable ABL, due extémgitheir of its applicability over a wider range of scalesluding
the inertial subrange. Stochastic models that use smalleesC\ ~ 3 — 4 (this choice is widespread now) may produce extra
mixing and the shorter footprints, respectively. Note thatestimatiorC, = 6 is based on the LES results combined with the
SHEBA data (Grachev et al., 2013), where the nondimensigeréical velocity RMS was evaluated &g, ~ 1.33 (the exact
estimation of this value in LES is restricted by the resolutiequirements). In the cases when LSMs utilize smallaresabf
7. the paramete€, should be reduced accordingly (for examplg,~ 4.7 will be the best suited parameter for LSMs with
the widely used valué,, ~ 1.25 prescribed).

One-dimensional stochastic models can be supplementdakthotizontal particle dispersion in a simple way. Intraghrc
of the correlation between particle displacement comptsnarRDM does not improve or change results substantiathyvH
ever, the coefficients of horizontal diffusid* and K'?¥ for RDMs can be evaluated through the vertical diffusionfiicient
K** multiplied by the square of velocity component variancéi®ra

Model LSM1, constructed as a combination of independerhststic models in each direction (well-mixed in the veltica
direction only) gives reasonable results although thisehddes not satisfy WMC in general. In contrast, the thremedtisional
Thomson model with WMC and, = 6 provides overestimated vertical mixing, which is mani#elsin a too small Schmidt
number values and in reduced lengths of the footprints. Hoesmmodel withCy = 8 produces true mixing in vertical direction,
but underestimates the mixing in crosswind direction.

Accordingly, one can recommend another well-mixed stawhasodel proposed in (Kurbanmuradov and Sabelfeld, 2000).
It was developed under the assumption that the verticalteriin does not depend on the horizontal velocity componants
the vertical component of this model coincides with LSMIioPto use, this model should be modified in an appropriate way
to take into account the variation of momentum fluxes witlghei

According to presented LES, the source area and footpringsable ABL can be substantially more extended than those
predicted by the modern footprint parameterisations anklld.SThe following reasons were identified in this study: 19 to
small values of the parametéy are used; 2) the possible overestimated vertical mixingideal by some stochastic models
based on well-mixed condition; 3) universal functions fmbulent statistics that are likely to cause additionalialéon in the
case of stable turbulent Ekman boundary layer studied here.

8 Code availability/Data availability

The code of LES modelis available by request for the sciemdearches in cooperation with first author (and.glas @ gom).

The data from LES are attached to the supplement. These aataprepared as it was discussed in Sect. 5.1 and can be
used for the stochastic models evaluation. Besides, sogpiecontains the data for crosswind-integrated footprmd two-
dimensional footprints obtained in LES (see Fig.6 and Fig.9
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Appendix A: Assessing the influence of the artificial top boudary condition on the LES results

To confirm the small impact of the top boundary condition oa tbsults presented above, an additional run was performed
(LES with A, = 6.25 m and subgrid LSM, see Sect. 3.2.1(2)). The setup of this nicedexperiment was identical to those
described in Sect. 4.1, but all particles were retained@asie LES model domain after their ejection (reflection dcimawas
prescribed at the top of the domain). The footprint fundigf obtained in this run are shown by blue curves in Fig.Ala,b,c.
The footprints from the particles, which attained the level 100 m at least one time (the particles were marked by the special
identifier in numerical code), were also evaluated (seéyetheed lines in Fig.Ala,b,c). For comparison the footgnwith the
applied absorbtion of the particles at the levet 100 m are shown by the green lines and the crosses in Fig.A1@hgcan
see, that the impact from the particles which were returneah the levels above 100 m is neglectfully small for the senso
heightszy; =10 m andz;; = 30 m. For the levek,; = 60 m, the influence of the artificial boundary condition is vieib
beginning from the distancas,; — x > 6 km.

The functionsf¥(zar — x, zar,t1,t2) are presented in Fig. Ald. Her,,to] is the interval of the time averaging (see,
Sect.2.1), shown in the legend in seconds (higre; is the time starting from the beginning of the particle gtk One can
see, that the footprints are developed sequentially, thieafad the intensive processes form the footprint functieakirst,
and it remains to be unchanged later. Figure Ald is includiétd thve aim to demonstrate, that the shape and the value of the
footprint function within a large enough range of the distsx ), — = can be independent of the total vertical scalar flux value.
The normalized vertical fluxe§s(zar)/Fs(0)), 4, are shown also and they grow approximately twice, depenaintpe
time averaging interval.

Finally, we want to mention that this is very specific, and @ynbe different for different types of ABL. We select the
described setup of the numerical experiment intentiorialiyhe sake of convenience of the comparisons of statistitained
by the Eulerian and the Lagrangian methods. This providdiiadal ability for the testing of Lagrangian particle tisport
routines implemented in the LES model code.
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Figure 1. Schematic representation of footprint evaluation alganit (a) Setup of numerical experiment. (b) Example of twgeti@ries
(red and blue bold curves). Shifted trajectories are shopié dashed lines. Particle brings the impact into the vélies,ys, ) if it
intersects the test aréa, in vicinity of the sensor positiory, and the origin of modified trajectory belongs to the test akea
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Figure 4. Crosswind-integrated scalar flux footprint% in stable ABL, computed by different methods and with difetrgrid steps; (a,c)
sensor height;;=10 m, (b,d)z»,=30 m. Grid steps and methods are indicated in the legengbarticles are transported by a filtered LES
velocityw; u* - particles are transported by recovered veloaity= F~'a; cor div - the additional correction of velocity (Egs. 34, 35)1st

- stochastic subgrid model (Eq. 28) is applied for the plasigvithin the first computational grid layer.
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Figure 9. (a) Total momentum fluxes obtained in LES with=2.0 m. (b) Normalized RMS of vertical velocity, = aw/\T\l/Q depending
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estimation for LSM; bold red lines - vertical component,greurves of medium thickness - crosswind component, biadittes - longi-
tudinal component, circles - evaluationaf, by Eq. (41)). (d) Vertical effective eddy diffusivitit“* (red solid line - coefficient calculated
by the gradient and flux of scalar; dashed line - estimatiaroefficient using Eq. (13) witliy = 6); estimations of diffusion coefficients in
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