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Abstract. Large-eddy simulation (LES) and Lagrangian stochastic eliimg) of passive particle dispersion were applied to
the scalar flux footprint determination in stable atmosfhleoundary layer. The sensitivity of the LES results to thatgl
resolution and to the parameterizations of small-scalmitance was investigated. It was shown that the resolvegarizlly
resolved "subfilter-scale" eddies are mainly responsilig@éarticle dispersion in LES, implying that substantiapimovement
may be achieved by using recovery of small-scale velocitgtdlations. In LES with the explicit filtering this recovegin
consists of application of the known inverse filter operaitre footprint functions obtained in LES were compared \lith
functions calculated with the use of first-order single iglrtLagrangian stochastic models (LSM), zeroth-orderrbagian
stochastic models - the random displacement models (RDiM) aaalytical footprint parameterisations. It was obseat
the value of the Kolmogorov consta@t) = 6 provided the best agreement of the one-dimensional L&Mslts with LES,
however, also that different LSMs can produce quite difiefeotprint predictions. According to presented LES tharse
area and footprints in stable boundary layer can be suligmore extended than those predicted by the modern toally

footprint parameterizations and LSMs.

1 Introduction

Micrometeorological measurements of vertical turbuleratiar fluxes in the atmospheric boundary layer (ABL) are lgua
carried out at altitudes;; > 1.5 m due to technological limitations of the eddy covaraneethod. The measurement results
are often attributed to the exchange of heat, moisture asebgt the surface. This procedure is not justified for intgemeous
surfaces because of large area contributing to the flux, acduse of variability of the second moments with height. The
relationship between the surface flix(z,y,0) and the fluxFs(xar, yar, 20 ), measured in point s = (zas,yar, 2ar), €AN

be formalized via the footprint functiofy:
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Traditionally, footprint functiong'd (24, y¢, @) = f.(x,y, ) are expressed in local coordinate system with the origicivhi
coincides with the sensor position (heté,= z,, — « is the positive upwind distance from the sensor ahe: i, — y is the
cross-wind distance, see Fig. 1a). In horizontally homogsrtase these functions do not depend gnandy,,. In ABL the
surface area contributing to the flux is elongated in winedtion, therefore the cross-wind integrated footprintction f¢
defined as

FY(at zar) = / a2y, @)

is one of the most required characteristics for the praatisa.

The measurements of the scalar flux footprint functions tanadenvironmentare restricted (e.g., Finn et al., 19@%&lérc et al.,
1997, 2003; Nicolini et al., 2015) due to the necessity todemn the emission and detection of artificial tracers. Besiduch
measurements are not available for the stably stratified wBére the area of the surface influencing the point of measemés
increases.

Stochastic models, used for a footprint calculation, sucéirzgle particle first-order Lagrangian stochastic modatsed on
generalized Langevin equation (LSM) and zeroth-orderhgistic models (also known as the random displacement models
RDM) (see the reviews listed in the papers (Wilson and Salyfd96), (Wilson, 2015) and the monograph (Thomson anddwijls
2013)), as well as analytical models (e.g., Horst and WeB2t Kormann and Meixner, 2001; Kljun et al., 2004, 2015)sto
be calibrated against the data considered to be repreiserdéteal processes. Results of these models depend ohdingec
of universal functions in the ABL or in the surface layer (rdimensional velocity and scalar gradients, non-dimeradio
dissipation, dispersion of the velocity components e@ommonly, the applicability of these models is limited bycafistant
flux layer" simplification, assuming that the measuremeighte ,,; is much less than the thickness of the ABL However,
under the strongly stable stratification the thickngssiay be several meters, therefore, the vertical gradientsomhentum
and scalars fluxes near the surface can be large. It can léadotwect functioning of the models designer for, and & ste
the data gathered under different conditions.

Large eddy simulation (LES), employing Eulerian approaxtilie transport of scalars, was first time applied for a footp
calculation in (Leclerc et al., 1997). Modern computatideahnologies allow to combine Eulerian and Lagrangianhoes
for turbulence simulation and particles transport (e.ceil\@t al., 2004; Steinfeld et al., 2008; Cai et al., 2010;Isteh et al.,
2015) and to perform detailed calculations of averageddimzensional footprints under different types of stratificas in
ABL and footprintsf,(x,y,x ) over heterogeneous surfaces (for example, urban surfacseuafaces with alternating types
of vegetation). Some examples of such calculations arengivéSteinfeld et al., 2008; Hellsten et al., 2015).

Lagrangian transportin LES is complicated by the probleatestcription of small-scale (unresolved) fluctuations efghr-
ticle velocity, which is similar to the problem of subgrid dwlling of Eulerian dynamics. A common approach for Lagfang
subgrid modelling in LES is the application of subgrid LSMsg(, Weil et al., 2004; Steinfeld et al., 2008; Cai et al1@0
Shotorban and Mashayek, 2006). This approach requires heruhadditional calculations for each particle (e.g.gipbla-
tions of subfilter stresses; and subgrid dissipatioainto the particle positior?). In addition, it is necessary to generate a
three-component random noise for each particle, that ime-tionsuming computational operation. Numerically staiolu-
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tion to the generalized Langevin equation (see Sect. 2.390n LES requires a smaller time steps than the stepsttico
of Eulerian equations, because local Lagrangian decdioelame T, (P, t) can be very small.

The statistics of simulated turbulence in LES may signifisadiffer from the statistics of real turbulence. For exdeip
the use of dissipative numerical schemes or low-order fittifference schemes usually results in a suppression dfifitions
over almost the entire resolved spectral ranges of disaretiels (see e.g., Fig. 16 in Piotrowski et al., 2009). Twebtiluxes
(in the Eulerian representation) associated with thesé¢utitions are restored by subgrid closure. However, in terhike
Lagrangian transport the effects of distortion of sma#llsgart of the spectrum are most often not considered.

Numerical simulations of Lagrangian transport in LES asmdimited by the low scalability of parallel algorithms. i$h
is due to the impossibility of uniform loading of processora joint solution to the Euler and Lagrangian equationsyrgd
number of interprocessor exchanges and unstructuredbdistn of characteristics required for Lagrangian adiegcin the
computer RAM memory.

Thus, all methods of numerical and analytical determimatibthe functionsf, have individual drawbacks. At the same
time, due to the lack of sufficient amount of experimentabdatd due to their low accuracy there are no clear criteria for
evaluation of different models.

According to the need of computational cost reduction, dribeobjectives of this study is to establish the role of ktstic
subgrid modelling in the correct description of the paetsctliispersion in LES. Is it possible to simplify the calcialatand to
avoid the introduction of stochastic terms without the lobaccuracy in some integral characteristics, such as thipifimts
or the concentration of pollutants emitted from the pointrses? The role of subgrid fluctuations is reduced with arease
of spatial LES resolution. Therefore, the independencesiilts from the mesh size is used as a criterion for checkiag t
quality of Lagrangian transport procedures in LES. It wédldemonstrated that the subgrid stochastic modelling ind¢dthe
omitted in most cases. Instead, we propose "computatiocladlap” procedure of inverse filtering supplemented byrdimet
correction of Eulerian velocity to replace the subgrid kestic modelling in LES (see description below).

Subgrid transport is especially significant near the seratd/or under the stable stratification — all are the cases@ted
with small eddies size. That is why the stable ABL was setkatethe key test scenario in this study. We slightly modified t
setup of the numerical experiment GABLS (Beare et al., 28@6this purpose.

LES results are used as the input data for the stochasticlm@diMs and RDMs). These data are pre-adjusted using known
universal dependencies and taking into account an incaemm@resentation of turbulent energy in LES. The comparigo
results of different stochastic models and the results ft&8 allows to specify the parameters for the LSMs and penits
identify the differences between LSMs and RDMs under thalitmms which have not been tested previously.

The paper is organized as follows. Section 2 contains theriggion of some common features of approaches: the imple-
mented numerical algorithm for footprint estimation in LEB8d LS models (Sect. 2.1); LES governing equations and the
definitions of some terminology used for the small-scale eflot) description and for the testing of particles trarsgSect.
2.2); the definitions of stochastic models (LSMs and RDMsJ painting to some problems connected with uncertainty of
the choice of turbulent statistics for them (Sect. 2.3 adl. Bection 3 contains short description of the numerigd@thms
and the turbulent closure for LES model used in this studgt(S1) and the description of the different approachestfer
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Lagrangian particles transport in LES tested here (Se2). Sect. 4 is mainly devoted to the testing of ability of LESdal
with rough spatial resolution to reproduce particle disper correctly. For this sake we implemented special sefupe
numerical experiment (see Sect. 4.1) permitting to compagrangian and Eulerian statistics (see Sect. 4.2.2). dbesf
was made on the approaches with the limited use of subgrithastic modelling (see Sect. 4.2.1 where the sensitivithef
computed footprints to the spatial resolution was investd). The footprints computed with LES model with simplbgnid
LSM (traditional approach) are presented in Sect. 4.2.3-@isnensional footprints are shown in Sect. 4.3. Due todaen-
sitivity of LSMSs to the turbulent statistics we emphasizéadareparation for them using LES results, measuremerdsaghat
similarity laws in Sect. 5.1. Section 5 contains the resoftfootprint modelling with the use of the set of different RI®
and LSMs (specified in Sect. 5.2) in comparison with LES itss{gee Sect. 5.3). Section 6 is devoted to the comparison of
footprints, computed in LES with the analytical footpririrameterisations based on a scaling approach by Kljun &G04,
2015). Section 7 summarises the results.

In addition to the basic calculation, we carried out a sevfeests (see Supplement Sect. S1) under unstable stritifica
in ABL with the different grid steps in LES model. This allowscompare the results presented here with the similarteesul
obtained in previous studies (e.g., Steinfeld et al., 200&il et al., 2004) and to verify the performance of our LES elod
in footprint evaluation. Furthermore, we demonstrate #siits of footprint calculations above the inhomogeneoufase
(Supplement Sect. S2), which imitates the lake of a smadl, siarrounded by forest. Computational aspects of techyace

discussed as well.

2 Modelling approaches
2.1 Numerical evaluation of footprints

Computational methods for determination of footprintgofteduce to the implementation of Lagrangian transportarked
particles. Each particle can contain a number of attriutetuding its initial coordinatec}, and timet,. Choose two small
horizontal plate$s andd,, for averaging in the neighborhood of zero with the ar€asndSy,, respectively. Define the time
interval T, = [to,t2], during which new particles are ejected near the groundthéhntensityH (hereH is the mathematical
expectation of the new particles number emitted per uni @er unit time) and the intervdl, = [t1,t2] (t1 > to), when
particles are detected near the point of measurementidfsufficiently large for the ensemble averaged flux to attaimstant
value in time, and’, is quite large for statistically significant averaging,ritike footprintf, can be evaluated by the formula

fs(Ts,ys T ynr, 20r) =
—1

1 1 nsm " v A ' d /d , wP Ip (3)
S el E 9 7t Tl /B
Sm Ta = 5/ SR AR jwp| "M
S

wheren gy, is the number of particles, the trajectories of which attlease crossed the plane= z,, at horizontal coordinates
x (2} —xar,y) —ym) € 0p intime intervally,, 17, = 1 if the initial coordinatesc() of such particle satisfy the condition
(2} —2f) — (xm —23), (W — b)) — (ym —ys)) € 6s and IE,, =0 otherwise. Herew? is the vertical component of the
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particle velocity at the moment of crossing the plane z;;. Schematic representation of the algorithm for the footpri
function determination in LES is shown in Fig. 1. In accorcawith Eq. (3) and the description above, the particle éngss
the test ared,, brings the impact into the valug (zs,ys, ) then the beginning of its modified trajectory shifted in atsuc
way to superpose the poiet with sensor positiom:;, belongs to the test arég. For example (see, Fig. 1b), red particle is
counted while evaluation of the footprint value in pofat, ys), but blue particle is not counted. Such algorithm of averggi
was selected because it permits to refine the footprintuésalin the vicinity of sensor independently on the areéyefusing
the assumption of some spatial homogeneity.

In the horizontally homogeneous case one can calculateriootf?(z¢,y?, z,,) performing averaging over statistically
equivalent coordinates of sensor position. For this avegaig LES with periodic domain one can prescribe the coatdia
(xar,yar) to the domain center and select the afedo be equal to whole domain size. Analogical methods can péeab
when using LSMs or RDMs, whereas in the case of RDMs partidplacement should be used in the Eq. (3) instead of
velocity.

Nonuniform Cartesian grid:f; = (f,y%) (where,—20 <i < 160; —120 < j < 120), stretched with the distance from the
sensor position, was selected for the footprint functicsuenulation in the following sections of this paper. Gridswae-
scribed as(zd, yd) = (0,0); 22 = A,oyli/|i] andyd = Aoy /15| i i £ 0 andj # 0; Ay = Ay =2 mM; 4, = 7, = 1.05.
This grid is independent on the LES model resolution andad@s with the footprint grids selected for all runs with LSM
and RDMs.

2.2 Lagrangian particles embedded into LES

Lagrangian particle velocity? and the particle positiom? can be computed in LES models as follows:

uf = ﬂl(-p) + 'Uz//fv dxf = ufdt. “

Hereuf.p) is the interpolation of the resolved Eulerian velocity itie particle positiony””? are the small-scale unresolved
Lagrangian velocity fluctuations associated with Eulesiatocity fluctuations belonging to "subgrid" and "subfittecales.
Here and later we shall use the designation "subfilter" tamtkethe fluctuations which belong to the resolved spectrajea
of the discrete model, but are not reproduced numerically,the designation "subgrid” for the fluctuations which cahbe
represented on the grid due to smallness of the scales. L&Srgng equations for filtered velocity are:

_ o
o~ ow, om, 0w 1T am " ®)

8@ o 8ﬂiﬂj 87‘1‘]' 8}_?

whereF;? comprises Coriolis and buoyancy forces; = w;u; — u; w; denotes the modeled "subgrid/subfilter" stress tensor.
System of equations (5) can be supplemented by the Eulagizatiens of scalars transport:

05 _ 505 oW
ot~ "9z o

+ Qs, (6)

whereQ; denotes sources intensity; = su; — u; 5 are the parameterized "subgrid/subfilter” fluxes. Usutily fluctuations
u’? are defined to be dependent on some random funétiontroduced in order to provide the missing part of mixing.
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The particular approaches for computing of unresolved @igparticle velocity will be discussed and tested in thedaing
sections.

There is a great practical interest in the calculation otgdats, as well as of spatial and temporal characteristigsol-
lution transport from localized sources above heterogessarfaces and in the areas with complex geometry (in thenurb
environment, over the surfaces with complex terrain or ¢eralternating types of vegetation). LES of such flows bexom
a routine procedure with increasing performance of computéowever, the calculation of statistical charactersstf La-
grangian trajectories is complicated in this case by thel mé&ansport of huge number of tracers (e.g., Hellsten.e@ll5).
For example, it is necessary to calculate the trajectofiabaut10° particles (see Supplement Sect. S2) to obtain the foogprint
above the "lake" (the task similar to that presented in (@t@x and Stepanenko, 2015)).

On the other hand, a large number of particles (see, e.gpl&upnt Fig.S2.1b) allows to estimate the local instardase
spatially filtered concentration of the scalar:

sp(z,t)= ) Glz—2(t)), ©)

p=1,N

whereG is the function which coincides with the convolution ker¢ILES filter operator andV is the total number of
particles in the domain. If the mathematical expecta@igrof a number of new particles ejected in a unit volume durinig un
time interval is proportional to the Eulerian concentrat&murce strengtiy),(z,t) = CQ,(x,t), thensp(z,t) ~ C3(x,t).
One can perform the same operations with the "Lagrangiamtexrations p (x,t) as the operations with the Eulerian scalar
5. Below, we will compare the averaged valuesgfands and their spatial variability. Besides, we will use the mstiion of
concentration p(x,t) for correcting the particles velocities (see, Sect. 3Rds. (33),(34)), in order to approximate the effect
of subgrid turbulence.

2.3 Single particle first-order Lagrangian stochastic modis (LSM)
Another approach (more widespread due to a lower compugdtamst) is the replacement of the entire turbulent compbne
of velocity by a random process (Lagrangian stochastic isqd&M)):

ub = <u§p)> +ul, dz? = uldt. (8)
Here<u§p)> is the ensemble averaged Eulerian velocity at psihtNote, that LSMs are assumed to be also applicable under
the temporal evolution of turbulence statistics. In thipgrawe shall consider ABL as it approaches a quasi-steady. sta

Therefore, due to assumption of ergodicity, ensemble gisgacan be replaced by averaging in time and in the direstadn

spatial homogeneityip) ~ (¢),, , ;-

Single particle first-order LSM is formulated as followslagity «'? is described by the stochastic differential equation:
du/ip - ai(xpaupvt)dt+bij (mpa’u’p)t)gfv (9)
where¢ stays for the delta-correlated (usually Gaussian) randaiserwith the varianceét

(EP(E)EN(t+1)) = 85 6pnd(t)dt (10)
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and with the zero averadé¢?) = 0; a;, b;; are the functions depending on the Eulerian charactesisfiturbulence and on the
Lagrangian velocity of the particle. Typically; is calculated by the formula

bij = 51']' V 006, (11)

where,e denotes the energy dissipation rate, averaged for a fixedlic@ade,Cy is the Kolmogorov constant. This kind of
random term (arguments are given in (Thomson, 1987) andf®awl993)) is defined by Lagrangian velocity structure
function in the inertial range (see Monin and Yaglom, 1975):

Dij(#') = ((ui(t ') = ua(t)) (u; (t + 1) —u;(£))) = 655 Coet! (12)

if , <t/ <Tg (1= (v/€)'/? is the Kolmogorov microscald,; = E2 /e is energy containing turbulent time scalejs the
turbulent kinetic energy).

The functiong; (drift term) determines the behavior of particles at larigeest ~ Ty, ~ T (hereTy, is the Lagrangian
decorrelation time scale). For spatially inhomogeneouk statistically non-stationary turbulent flows, includiAg@L, the
choice ofa; is usually done according to the well mixed condition (WMQiomson, 1987). In general WMC does not lead
to a unique solution fo#;. Different LSMs are constructed by introducing the addi@ibphysical assumptions and can lead to
inequivalent results.

Lagrangian models are very sensitive to the choice of usaldunctions that define the normalized RMS of the vertical
velocity G, = <w’2>1/2/U* and non-dimensional dissipatién= ¢z /U2 (hereU., is the friction velocity). Besides, the sim-
ulation results are affected by the choice of a "universaktant" Cy. It can be shown (e.g., Durbin, 1984; Wilson and Yee,
2007 ) that for one-dimensional LSM, these parameters mhiterthe eddy diffusivityK', for the scalar in the diffusion limit
(whent > T7, i.e. at large distances from the source):

208 2524
Ky=—""=—2U,z. 13
006 OoEU i ( )

The data of measurements in the ABL demonstrate large iaridor example, the values 6f, range from1.0 to 3.1 (see
Table 1 in Banta et al., 2006). According to Eg. (13) it impliee change oK by more than nine times.

There is no consensus on the valuegf Formally,C, has the meaning of a universal constant in Eq. (12). The agtm
of this constant for an isotropic turbulence using the datilmoratory measurements and DNS provides an intefyak
6.+ 0.5 (see Lien and D’Asaro (2002)). However, the valtgs~ 3 — 4 are often used for LSM of particle transport in ABL.
For instance, the valu€, = 3.1 for a one-dimensional LSM corresponds to calibration penfed in (Wilson et al., 1981)
according to observation data (Barad, 1958; Haugen, 19%83. calibration (see Wilson, 2015) assumes that the tartiul
Schmidt numbebc = K,/ K, = 0.64 near the surface (hef€,, is the eddy viscosity). It is known that determination of the
turbulent Prandtl numbé?r = K,,,/ K}, (K}, - heat transfer eddy diffusivity) and Schmidt number basedlzservation data is
complicated by large statistical errors associated wighpitoblem of self-correlation (Anderson, 2009; Gracheu.e2807).
Therefore, the existing estimation 6f, can not be considered as final and should be confirmed by fstudées. Below we
show that the value afy significantly affects the results of footprint calculation
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2.4 Zeroth-order Lagrangian stochastic models or random diplacement models (RDM)

A simplest approach for development of the models of particpersion entails replacement of Eulerian advectiffigion

equation
a(s) L O(s) 0 K 0(s)

ot ) e T o e

+ Qs (14)
by the stochastic equation for particle position (randospldicement models (RDM)):

0K
da? = (u;) dt + %dm— V2K &L (15)

Probability density of particle positioR is connected with scalar field concentratigi as follows:

t
(s(x,t)) :/ / Qs(x0,t0) P, t|T0, to)d>xodty. (16)
R3 —c0
Using the Fokker-Planck equation it can be shown that the(Egs).is equivalent to the Eq. (14) from the point of view of
concentration transport when the time stipends to zero (Durbin, 1983; Boughton et al., 1987).

RDM has some major disadvantages. First, it shares thealiimit of Eulerian eddy-diffusion treatment of turbulergpir-
sion, i.e. "K-theory". Correspondingly, it is not able tosdebe the non-diffusive near field of a source. Also, RDM pah
be applied for the convective ABL, where the counter-gnatieansport is observed. Besides, it requires the exaoegabf
diffusion coefficient’,, which can not be measured directly.

3 Details of LES model used in this study
3.1 Numerical algorithms and turbulent closure

System of equations (5 - 6) is discretized using explicitéitifference scheme with the second-order temporal appadion
(Adams-Bashforth method) and fourth-order (fully-conserfor advective terms) spatial approximation of veloaityl scalars
on staggered grid (Morinishi et al., 1998).

Mixed model (Bardina et al., 1980), expressed as the sumefSinagorinsky and scale-similarity models, is used for
calculation of turbulent stress tensor:

TN = 9 rssm = _9(CyA)?[S[Sy + (T u; — s 1), (17)

whereS;; is the filtered strain rate tensar, is the dynamically determined (Germano et al., 1991) diroeress coefficient
which depends on time and spatial coordinates. The a pésts$ ising the data of laboratory measurements show tHat sca
similarity models with Gaussian or box filters provide cdation typically as high as 80% between real and modeledstie

(see, overview in Meneveau and Katz, 2000). The significant @f this correlation can be attributed to non-idealitytfod
spatial filter and use of common information for computinghbtihe real and modeled stresses (see, Liu et al., 1994). The



10

15

20

25

discrete spatial filter used in this study has a smooth tearishction in spectral space, so it can be supposed thattie-s
similarity part of Eq. (17) is mainly responsible for the irdhce of velocity fluctuations belonging to "subfilter" esal

The procedure of calculation of the coefficieitéx, t) = (CsA)? reduces to minimization of the Euclidean nofey;, <;;)
of the residual of the overdefined system of equations

—

(XMZZ) —OéQX(MT) ZLij—Hij—Fé‘ij, (18)

v]

obtained by substitution of mixed model (Eq. 17) into ther@ano identity as

—

Tij — Tij = Ui Uj — ; Uy. (19)

HereT;; are subgrid/subfilter stresses for the smoothed veltﬁ;iqbtained by successive application of baSjeand testr’x

spatial filterso = ﬁ/Z is the ratio of the filters widths. TensoM[j?, M7,

L;; andH;; are calculated as follows:
ME =2|5|5y, M5 =2[5]3,

—

(20)

gPp
Epp

Ly =TT - Hy= (G600 ) - (Th-w ).
The generalized solution to the discrete analogue of Eq.i¢k®arched using the iterative conjugate gradients (C&hoal
with diagonal preconditioner. To do this, the problem isueetl to a linear system of equations

ANAAXA = AARA, (21)

whereX 4 is the the desired solution (a vector of dimensiér= N, N, N, with the values defined in the center of grid cells);
Aa andRa = La — Ha are the discrete analogues of the operator and the rightdideaf Eq. (18) correspondinglyt’; is
the transpose matrix. The diagonal preconditiafgrfor CG method was selected as follows:

Pa = (a‘*MgMg* + u(MEIME" — 2a2M§Mg*))_ , (22)
wherepu = const ~ 1 is the empirical coefficient independent on time and spptialtion. The solutiodX A contains negative
values (unconditional minimization of the functional issd¥, however, mixed model (Eq. 17) reduces their relativaler
compared with the dynamic Smagorinsky model. In the alforjihegative values are replaced by zeroes. In fact, thigrdim
procedure is close to approach proposed in (Ghosal et &5)1@%ith the difference that the mixed model was applie&her
and iterative method was replaced by a faster CG method.

Eddy diffusion models are used for subgrid heat and conagoitrtransfer:

79: _ _KhSUbgT%7 (23)

hereK;,*"*9" = (1/Sc*ub97)(C,A)?|S| is the eddy diffusivity, which is independent on the type @dlar. Subgrid turbulent
Schmidt and Prandtl numbers are fixgd“?9" = Prsubsr = 8.
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A distinctive feature of this model is that the discrete Epditter operatotF’x = F, F, F is explicitly involved in calculation
of stresses. The following discrete basic filter is selected

Fio(0)ige = (1/8)pi—1,jk + (3/4)pi sk + (1/8)pit1,5,k5 (24)

herei, j, k denote a grid cell numbeg,is any variable. Similar filtering is applied along the caoedesy andz. It is reasonable
to expect that we get the velocity, smoothed according to specified filtering operator as aisaolto Eq. (5) supplemented
by the mixed closure (Egs. 17 - 21). Since the discrete filtpoiperator is invertible, we can find the following velocityany
point and time:

which better reflects the small-scale spatial variabilyproximate inverse filter is calculated as a series (Vate@jt1931):

P mFt =Y (I-Fy), (26)
k=0

where/ is a unity operator; in the calculations presented below sedu = 5. Spatial spectra of "defiltered" velocity*
under the neutral, unstable and stable stratification wbtaired earlier (Glazunov, 2009; Glazunov and Dymnikou.20
Glazunov, 2014). It was found in all cases that this procedonproves the small-scale parts of the spectra according to
dependence ~ k—5/3, provides better agreement of spectra calculated with iffiereht spatial resolution and improves
convergence of non-dimensional spectra if proper lengafesare used for normalization.

3.2 Methods for Lagrangian particle transport in LES
3.2.1 Subgrid and subfiler modelling

Below, the subgrid and subfilter modelling methods usedfeisimulations in the current study are listed. These meathaltl
be used also in combinations as defined in Sect. 4.2.

(1) Improvement of Lagrangian transport using inverse filtering of Eulerian velocity field

First, we will use the recovery of "subfilter" fluctuationsgéz 25, 26) in order to transport Lagrangian particles mogeipely:
uP =u*P) (27)

Note that for the use of such a procedure LES models shouiBiete properties of model with an explicit filtering. Silaui
approach was recently applied by Michalek et al. (2013) il vith approximate deconvolution subgrid model (ADM, see,
Stolz et al., 2001) which can be also considered as the mdtlekwplicit filtering. In most cases, the suppression of kma
scale fluctuations in LES (particularly in those that usevadwder numerical schemes) occurs as a result of combiriect ef
of approximation errors and the subgrid closure. Theretie shapes of effective spatial filters of most models cdy lo@
determined by aposteriori analysis of the calculationltssu
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(2) Lagrangian stochastic subgrid/subfilter model

Second, we will apply the subgrid stochastic model propasé8hotorban and Mashayek, 2006):

duP = (— 885 - Ti(uf _a§p>>> dt + /Coee? . (28)
7 L

When using dynamic mixed model (Egs. 17 - 21), a value ©f not calculated directly, and then it is assumed that the
dissipation is locally balanced by shear production and/aooy production or sink. In addition, since this model ceadpice
a local generation of kinetic energy, the averaging in azuorial plane was performed to avoid negative values offhsisin:

e=(=SijTij),, + @io (95) 4y (29)
wherey$ is the vertical subgrid flux of potential temperature grié, is the buoyancy parameter. Time scalewas evaluated
as:

Ty, = (ESb9" 4 E*ubly/ (% + %Co) €. (30)

Thus, the total unresolved kinetic energy was calculatadeasum of "subfilter" energy

Bl =~ ((uf —m)2>ry (31)

|~

and "subgrid" energy:

o 3 o\ 23
Esubr / E(k)dk ~ Cxe®? [ — : (32)
2 A,

kmin
To evaluate the valug*“*9" it was supposed that "subgrid" fluctuations belong to quitéde inertial range with the spectrum
E(k) = Cke*/3k~5/3, and that the minimal wavenumber for these fluctuations, = /A, corresponds to a wavelength in

two grid steps.
(3) Divergent correction of the Eulerian velocity field

Third, in order to find out whether the subgrid mixing is ondlaf key processes in the dispersion of Lagrangian tracers, w
introduced an additional correction to the particle veiesi

cor_div div?’

wherewy;, is the deterministic divergent additive to the velocitydial:

‘.Sp
Udiv,i = — (34)
Sp

with the imposed restriction,;, ; = 0 if sp = 0. Here, the "subgrid" flux};” is calculated using the same closure as the
closure for Eulerian scalags with the only difference that the concentration, estimated by the number of particles in a grid
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cell, is used in Eq. (23).The applicability of this proceelisdetermined by the large number of particles involvedhnation
(in all the cases described below we have at least severahdaf particles in each grid cell).

Correction given by Egs. (33), (34) does not provide truelsatale mixing, but only introduces an additional "stretg"
or "compression" of the small volumes filled with particleglarovides concentration fluxes across the borders of giigl ¢
close to "subgrid" fluxes in Eulerian model. Using this coti@n, we are guaranteed to get a high correlation between th
"Eulerian” and "Lagrangian” concentrations (in all ourlpnénary tests(g’sg,}wy/, / <§’2> (s2)~0.9).

The idea of such a correction was based on the assumptioddteils of the mechanism of subgrid mixing have a little
influence on the statistics of trajectories at sufficiendlsge distances from the source and at the big enoughttimevas
assumed that the quick mixing on small spatial scales campkcitly substituted by the approximation errors arisinghe
procedures of interpolation and by the errors of discrebetiem to the advection equation. Correction brings an ikl
systematic effect to reduce incorrect particle transppthke large eddies.

3.2.2 Simplified velocity interpolation

In preliminary tests it became clear, that trilinear intdgpion of each velocity component provides no advantagef®btprint
calculation in comparison with the following simplified &ar interpolation on a staggered grid:

s R TP — .
(p) _ = i+1/2,5,k _ i—1/2,5,k
WY = kA T U125 kA
) Az I Ax
®) _ Yig+1/2k — Y | YP —Yij-1/2,k 35
U =ik T A + Vig /2 =N (35)
_ 2,4 k+1/2 — 2F 2P — 2,5, k—1/2
w?) = Wijh=1/27" A + Wi jk+1/2 A,

where position(i, j, k) is the center of a grid cell containing the particle. Trilménterpolation and interpolation given by Eq.
(35) provide nearly the same concentration fluxes acroskdhaers of a grid cell, but the latter does not result in adalél
substantial smoothing of velocity. An exception was madetfe grid layer closest to the surfac€ (< A,) where the mean
velocity components were adjusted according to the Mortbov similarity theory with the dimensionless functidaken
from (Businger et al., 1971).

4 LES of stable ABL and footprint calculations
4.1 The setup of numerical experiment

Stable boundary layer at the latitude°?8 in close to the steady state conditions was consideredcdloalations were carried
out according to the GABLS scenario (Beare et al., 2006); wie difference that the geostrophic wibh, has been rotated
35° clockwise such that the wind direction near the surface@pprately coincides with the axis. The duration of runsis 9
hours. The initial wind velocity coincides with geostrophielocity |U ,| = 8 m/s. The initial potential temperatu@eis equal
to the surface temperatuég; |;—o = 265 K up to the height 100 m and increases linearly with the d@&¢dz = 0.05 K/m if

z > 100 m. During the calculations, the surface temperature deesdnearly with timed®, /dt = —0.25 K/hour. Dynamical
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35

and thermal roughness parameteysandzpg are set to 0.1 m. The calculations were performed at the et grids with
stepsA, =2.0 m, 3.125 m, 6.25 m and12.5 m. The size of the horizontally periodic computational domaas equal to
400 x 400 x 400 m?. The last hour of numerical experiments was used for avegagfithe results and subsequent analysis.

The mean wind velocity and the potential temperature, ¢aled with different spatial steps,, are shown in Fig. 2. The
model slightly overestimates the height of the boundargiat coarse grids, however, the wind velocity near the saria
approximately the same in all runs.

Passive Lagrangian tracers were transported simultalyawitls the calculations of dynamics. Each particle, wheactdng
a lateral boundary of domain, is returned from the oppositendary in accordance with periodic conditions. The refbect
condition is used at the ground. The particles are ejectéukbateightzo = 0.1 m (one particle per each grid cell adjacent to
surface) with regular time intervalst.; = 1 s. The position of the new particle within a grid cell is setdamly with uniform
probability. The ejection of particles takes place corimsly from the seventh to the ninth hour of the experiment.

To limit the number of the particles involved in the calcidatthe absorption condition is applied at the height of 100
meters within ABL. It was verified previously that the uppeuindary condition does not have a large impact on the results
calculations of footprints for the heights, up to 60 m. This formulation of numerical experiment alloviiedt comparison
of the concentration of particles, estimated by Eq. (7), and the scalar concentrajaralculated by the Eulerian approach
(Eq. 6). For this purpose, additional scaas calculated from 7-th till 9-th hour with a constant suddlux F, = const =1,
zero initial condition and the Dirichlet condition= 0 at the altitude 100 m.

In the last hour of simulation the averaged number of pasiah each cell of the grid near the surface was approximately
equal to 700-800, 350-400,180-200 and 110-130 for grigsssig=12.5m, 6.25 m, 3.125 m and 2.0 m, respectively. Having
such number of particles one can estimate the concentrdtian ; », t,,) at each time step, wheug ; . is the center of a grid
cell. It was assumed, that each particle contributes todheentratiors p(z;,; ) with the weight} ; , = (VP (\Vi;.1)/ Vi j k.
whereV? is rectangular neighborhood of its position with the silg (V?(V; ;1) is the volume of intersection with grid
cell, V; ; 1 is the cell volume. This averaging is close to the filterindgzaferian scalar (Eq. 24). The additional normalization
is performed as followssp = 5pAt.;/A.. The concentrationp corresponds to the number of particles in one cubic meter
under the condition that one particle per square meter pemnskis ejected near the surface. Concentratiois numerically
equal (excluding errors, determined by different methddsamsport) to the concentration of the scalar figlfilscalar surface
flux Fy = 1.

Figure 3 shows the resolved and the parameterized commooEfitix (w’s’) in runs with different grid steps. It is seen
that the calculation time is not large enough to reach a gtetade (the total flux is not constant with the hight, so therage
concentration continues to grow during the last hour). Hexdt was checked that the flux footprint close to the seisoot
affected by nonstationarity. Besides, we can compare theesafs andsp, because the boundary and initial conditions are
identical for them.

The unresolved fraction of the fluks9 = (995) is an essential part of the total flux°* = (3 w) + (J5). Accordingly, the
vertical transport of Lagrangian particles by resolvedve#y w may be significantly underestimated. Thus, we have "hard"
enough test to verify Lagrangian transport in LES with pgadsolved velocity field.
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4.2 Sensitivity of LES results on methods of particle transprt and spatial resolution
4.2.1 Footprint calculation with limited application of subgrid stochastic modelling in LES

Figure 4 shows the scalar flux footprints averaged in crasdwirectionf? (zys — x, zps) computed by different methods and
with different grid steps. All footprints are normalizedtbat [ fY(x)dx = 1.

In all cases, we have avoided using the subgrid scale sticimagdelling except calculating the velocity of the padi
located within the first grid layet” < A,. For the curves marked "§t", the resultant velocity of the particles near the sugfac
was calculated as follows:

u? =u® 4 (1 - 2P /A )u'", (36)

whereu/? is the random velocity component, calculated using thehststic subgrid model (Eg. 28). To take into account the
memory effects in Langevin equation, the stochastic modes implemented inside the layet < 3A,, so (because of the
smallness of scal&}) this procedure does not lead to significant distortiond@random component of the velocity.

If the particles are advected by the filtered veloaityvithout any correction then the vertical mixing is too wealdadhe
maxima of footprintsf? are strongly underestimated and shifted at the large aistafrom the sensor position. Divergent
correction of Eulerian velocity (Egs. 33, 34) partially inopes the results (squares in Fig. 4a,b). For example, manxiwf
footprint f¥ for the sensor height,;=30 m (near the fifth computational level) occurs to be closié maxima of footprints,
computed at fine grids, but it is still shifted. Thus, the eation (Eq. 33, 34) alone is not sufficient. Primarily thislise to the
weak mixing below the first computational level, where thatdbution of the subgrid velocity is crucial.

The inclusion of stochastics within the first layer improttes result (dashed curves in Fig. 4a,b). However, it is notigh
to determine footprints at altitudes comparable to the gjiacing.

The advection of particles by the velocity' leads to close matching of functiorf§, calculated with different grid steps
(solid lines of different thickness in Fig. 4c,d). The diffaces between these footprints are not significant fronaetipal
point of view, and can be equally explained by means of theriect Lagrangian particles transport, as well as by meéns o
the insufficiently accurate solution to the Eulerian equadion the coarse grid.

4.2.2 Spatial variability of scalar concentration inferred by Eulerian and Lagrangian methods

While the particles were advected by the "defiltered" flow vagehalso used the correction (Egs. 33, 34). In this case the
subgrid diffusion coefficient was reduced twi&***?" = cK """, ¢ = 0.5 (coefficientc = 0.5 was chosen because about a
half of subgrid flux can be restored using "defilteringsw*) — (s w) ~ 0.5 (¥3)). We note that when the particles are advected
by velocityu*() then the presence or absence (crosses in Fig. 4c,d) of torréas no significant effect on the functig.
Nevertheless, this procedure may be useful for the follgweasons.

In the inertial range of three-dimensional turbulence glafith the kinetic energy the variance of a passive scalaceon
tration is transferred from large scales to small scaleb ¢ formation of the spatial spectrusiy = K e.e~1/3k%/3 (see

(Obukhov, 1949)) (here, is the dissipation rate of the variance of concentrationsed by molecular diffusion). Lagrangian
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transport of particles by a divergence-free velocity fieldwith the truncated small-scale spectrum is equivalent tiertan
advection of concentrationwithout any dissipation. The absence of subgrid-scalegdfatte velocity spectrum will lead to
reduction of the forward cascade and to the accumulatioaérces?, in vicinity of the smallest resolved scales.

Figure 5a shows the variances of "Eulerian” concentratiin) = <§’2>Iyt computed at different grids, and the variances
of "Lagrangian” concentratioanﬁp(z) = <s p’2>ry .- One can see that if particles are advected by the velacity) (crosses),
variancer?, is much larger than?. If the velocityw*(®) +u'P) is used (black circles), the valuesaf, ando? become closer
to each other. Besides, the correction (Egs. 33, 34) ineseti® correlation cof,sp) = <§’s},>wyt/(aspas) of two fields
calculated by means of "Eulerian" and "Lagrangian” appneac

One can expect that in more complicated cases (e.g., thelémtbflow around geometric objects and the formation of
quasi-periodic eddies) the accumulation of small-scalsenim the concentration field may lead to the incorrect ative©f
concentration by the resolved eddies. This effect may keialportant for inertial particles when the nonphysicalaace of
concentration can directly affect dynamics. In the addaidests it was found that correction (Egs. 33, 34) prevpattcles
stagnation in zones with unresolved turbulence while thdetimg of urban-like environment. Thus, this correctisiesirable
for a number of reasons as a practical replacement of subigrithastics which requires large computer resources.

4.2.3 Particle advection and footprint determination in LES with subgrid LSM

One can obtain footprints close to those presented at Figy mdans of application of the stochastic subgrid model (Egs.
28-32). The calculations for this model have been carrig@btine grids with steps 3.125m, 6.25 m and 12.5 m (solid lofes
different thickness in Fig. 6a,b). One can note the defettt@tochastic subgrid modelling in LES, which can not bected

by studying of the mean characteristics. In the previousection the recovered "subfilter" part of velocityf = u* —u

and so the subfilter Lagrangian velocitf/(?) were highly correlated with the resolved velociyin time and space. This is
due to the specifics of spatial filter (Eq. 24) used for the vedag given by Egs. (25,26). This filter has a smooth transfe
function in spectral space. The analogous effects of neatifliters in LES which lead to the high correlations between
modelled and measured turbulent stresses were obtainedisoussed earlier in (Liu et al., 1994) and Meneveau and Katz
(2000), where the laboratory data of turbulent flows werdistlt On the contrary, additional mixing in the stochastudel
(Egs. 28-32) is due to random fluctuations which are notedladw strictly. When one uses coarse grids, the energy of these
Lagrangian fluctuations should be large enough to restoxegin vertical direction. This is accompanied by an exiess
suppression of the variability of concentratiop near the surface, where the contribution of subgrid mixmtarge (stars

in Fig. 5a). The correlation between "Eulerian” concemraand "Lagrangian” concentarion is reduced simultanigqsse

Fig. 5b). Probably, this defect of employed Lagrangiantsistic model is connected to the horizontal averaging ifuatian

of "subgrid" dissipation and energy. Nevertheless, thssiiteshows that in some cases the stochastic subgrid noglebin
prevent correct reproduction of the resolved spatial Wéitg of particle concentration in LES along with improvemt of the
mean transport.
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4.3 Two-dimensional footprints

The trajectories of large number of particles {.8 x 10%) were simultaneously computed in LES with grid step 2.0 m- Ac
cordingly, one can get statistically grounded estimatiftvo-dimensional footprint functiong, (z — xar, y — yar, 2ar). These
functions, computed for the sensor heights=10 m andz,,=30 m are shown in the Fig. 7a,b. One can see, that the area with
the negative values of footprint exists. The negative \@bfdootprints are typical (e.g., Cai et al., 2010; Steidfef al., 2008)
for the convective boundary layer due to fast upward adeadiy the narrow thermal plumes and slow downward advection
in the surroundings. Here, the negative values of the fangti are connected to the Ekman spiral and to the mean transport
of the particles elevated to large altitudes in the directierpendicular to the near-surface wind. The negativeegadfi scalar
flux footprint show what the vertical turbulent transportloé scalar emitted in the relevant area is basically diceictem the
upper levels down to the surface. For example the positikfasei concentration flux in this area will lead to negativeraaly
of the turbulent flux measured in the sensor position. Thissdwot contradict the diffusion approximation of the tudmil
mixing, because mean crosswind advection at the uppesleaal produce the positive vertical concentration gradeettie
right of near-surface wind.

The contribution of the negative part of the flux to the "meadu flux is significant, as shown in Fig. 7c¢,d, where cumuati
footprints, defined as

rd
F(a?,zn) = / [’ 2nr)da’, (37)
are separated into positive and negative pBtsy; — x,zp) = FT + F ™.

5 Stochastic modelling and the comparison with LES
5.1 Preparation of turbulence data from LES for LSMs and RDMs

The LES results with grid step,=2.0 m were used for data preparation. To apply LSM (Egs. 8h@Yollowing Eulerian
characteristics are required: the mean wind velocity camepts(u) and(v), the second momen(méuQ) and the dissipation

e. Stochastic models are even more sensitive to some of thegaateristics than the advection of particles in LES. For
example, the underestimated values of the turbulent kiregtergy in LES are the consequence of the suppression off smal
eddies. Nevertheless, these eddies exert relatively émflaktnce on the mixing of scalar, because the effective elftlysivity
associated with theri;ma! ~ E!/2 jsmall js not large due to small spatial scale. However, the turtiideergy which is
substituted into LSM affects results independently of #eesand has to be evaluated with good accuracy.
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5.1.1 Mean velocity

Mean wind velocity at the height < z < A, was computed using log-linear law:

(u;) = U, (%Zn (Z—ZO> T Qﬂ%) % <|1Z'|>

and(u;) =0 atz < 2. Here,U. is the friction velocity,x = 0.4 denotes the von Karman constahtis the Obukhov length

I Om = 57 (38)
z=0Ag/2

at the surface (note, that the von Karman constant is natdiec in the definition of the length here and later). The linear
interpolation of velocity was used if > A,.

5.1.2 Momentum fluxes

The quxes(uQu}) = (uﬁ;) + Tg}“'w (1 # j) were interpolated linearly and additionally smoothedrgwere in the domain.
These fluxes are shown in Fig. 8a.

5.1.3 Variances of velocity components

The variances of velocity components = (u/?) were estimated by formula:

2
o2 = (), + B, (39)

where E5“9 s the subgrid energy (Eq. 32) adduj’ﬁ) are the variances of recovered velocity components. Thicaker

velocity variance has the greatest impact on the functjngigure 8b shows the comparison of evaluated normalized RMS

Gw = 0w/|T|Y/? (solid line) with the SHEBA data (symbols; see descriptior{Grachev et al., 2013, fig. 15b); data kindly

provided by Dr A. Grachev). The data are shown in dependeme®ndimensional stability parametes xz /A, where
|T|3/2@0

9Q

is the local Obukhov length, determined using values of Bofenomentuntr| and temperatur€ at the given height (local

A(z) = (40)

scaling in stable ABL (Nieuwstadt, 1984)). The measuremienggest that the mean value of normalized R#Sx 1.33

if value ¢ is small. Figure 8b shows, that our estimation of RMS is sligless than the measured values in the interval
0.03 < £ < 0.2. Respectively, the final values of vertical velocity vadardesigned for the substitution in stochastic models
were corrected as follows?, = 1.332|7| if £ < 1. At the higher levels the estimation (Eq. 39) was applied.

The final estimations of the variances of velocity composeme shown in Fig. 8c by the solid lines. Dashed lines are
the filtered resolved velocityi; variances. The estimation of the varianeg using Eq. (39) is shown by the circles. One
can see that significant parts of variances were not repeatlexplicitly in LES and were recovered using abovementione
assumptions.

5.1.4 Turbulent energy dissipation rate

Usual interpolation is not applicable to the calculatiomisSipation rate near the surface, where 1/z. Besides, the values
of dissipationea;, computed in LES at the levelg = (k — 1/2)A, are approximately equal to the averaged values inside the
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layers(k —1)A, < z < kA, but not to the physical dissipation at given altitudes. &lritie assumption thét| is constant
with height and neglecting the stratification inside firstdla one can get the following corrected valueeddt the height
z=0N7y/2:

E|Z:Ag/2 =~ 2€A1/ln(Ag/Zo) (41)

Additional analysis showed that if < 0.25z; then the local balance of turbulent kinetic energy (TKE) isllvgatisfied:
e =~ S+ B, whereS andB are shear and buoyancy production. Therefore, the nondiieal dissipation can be approximated

by a formula
e g (E\_EZ_1 a2
€= |7-|3/2 = dm (A) A H+(Cm 1)A7 (42)
where
o) =z 1 AZ
¢m_‘ 0z |T|1/2_/£+C7"A (43)

is the nondimensional velocity gradiedt;: = 5, according to the observation data (e.g., Grachev et @324nd LES results
(e.g., Glazunov, 2014). Here, the assumption is used tleashkard (u) /0z and the stress are collinear. Previous LES
studies of stable ABL (e.g., Beare et al., 2006) also givdautiylly small values of the transport terms in TKE balantiee
experimental confirmation of the validity of Eq. (42) can loeirid in (Grachev et al., 2015), where the dissipation inlstab
ABL was estimated using the spectral analysis of longitadielocity in inertial range. In accordance with this paget ¢,),,
that is almost indistinguishable from Eq. (42) within thea@cy of the experimental data and the ambiguity of the otktt
dissipation evaluation.

Discrete values of nondimensional dissipatioq, z;. /|7|>/2 are shown in Fig. 9a by circles. Dashed straight line is the
universal function (Eq. 42). One can see, that the corne¢tal. 41) makes the dissipation values closer to the fun¢im.
42). Finally, the profile of dissipatioa.;(z) for LSM was corrected as follows (see Fig. 9b). The dissipativas set to be
constant below some height, and was replaced by universal functios ¢|7|3/2/ up to the level withz /A = 1. The height
z. Was chosen in a such way to equalize values of the dissipatieraged in a layeb < z < A, and the dissipationa;.
Figure 9b shows that the corrected dissipatign(solid line) is very close to "discrete” dissipatier,, (circles), except for
the first computational level.

5.1.5 Diffusion coefficients

Random displacements model (Eq. 15) requires the estimatieddy diffusion coefficienk’,. Note, that due to anisotropy
one should use tensor diffusivify’/ in a general case. Neglecting this fact, let us assume tagtrthcipal axes of the tensor
K are aligned with the coordinate axes. The correspondefftaients K%, K“* and K" (see Fig. 8d) can be calculated

as follows:

ryv =)/ (52, (44)
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4 4
K= ZLRP™, KDV = 20K (45)

w w

The horizontal eddy diffusivitie&** and K7 are estimated taking into account the expression (13).

One can see that the formula (Eq. 13) provides a good appatiximfor the coefficien** if one sets the valu€, = 6.
We note, that the data of LES were substantially correctegktahis estimation. Very fine grids simulations are needed t
verify and to justify the given value. There is no guarantes this constant is actually universal under differerdtgfication
in ABL.

5.2 Specification of LSMs and RDMs tested against LES

The following stochastic models were tested using the datpgred as described above.
(1) RDMO is the random displacements model with uncorrelatedpoments. Particle position is computed by the formula
similar to Eq. (15) but with direction-dependent coeffitgefsee, Eqs. (44), (45) and Fig. 8d). The components of this<tan
random noise satisfy the condition (10).
(2) RDM1 differs from RDMO by using the noise with inter-compaoheorrelations:

(i)

(P t+1)) = —LLopns(t))dt, (46)

00

3

(3) LSMO is the Lagrangian stochastic model without WMC:

1/2
whereo; = <u’2> .

p u/f / p i 2‘71'2
L 0€

(4) LSM1 is based on the one-dimensional well-mixed model:

P 1002 p)? 952
dw? = (—%+5% <1+(IZ2) ))dt+\/Oge£§, T = 2w (48)

)
w CQE

supplemented by uncorrelated horizontal mixing similaEtp (47) with the appropriate variances ando? .

(5) LSMT is three-dimensional Lagrangian stochastic modésfyang WMC, which is proposed by Thomson (1987). For the
incompressible turbulent fluid in a steady state and undectmdition of zero mean vertical velocity this model (Thoms
1987, formula (32)) reads:

(p)
1%+Mu”_’+l(7—l)l. uw'Pu
2 0x; oz J 2 Tox, IR (49)

1
af = —55”006(’7'71)%1/2 +
du't = aldt +/Coee?,

wherer ! is the tensor inverse to the stress tensor.
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The setups of numerical experiments with RDMs and LSMs wiergedto particle advection conditions in LES (absorbtion
at the altitude 100 m, ejection af = 0.1m and reflection at = 0). The particles were generated continuously within tworBou
of modelling. The last hour was used for averaging. The n®d8MO0 and LSM1 use the valug, = 6. Three-dimensional
model LSMT was applied witly = 6 andCy = 8.

5.3 Modelling results

Figure 10 shows one-dimensional footpriitsand the corresponding cumulative footpriitscomputed by LES (bold solid
lines, A,=2.0 m) and by stochastic models described above. Fodmietshown for the sensor heighig = 10, 30 and 60
m.

The models RDMO, RDM1 and LSM1 provide very similar resuftaster mixing is observed in stochastic models below
the altitudez,, = 10 m in comparison to LES. These differences are not cracidlare compensated in a cumulative footprints
at the distances — x; ~ 1000 m. The differences can be explained either by insufficiebgsd mixing in LES or by inexact
procedure of the data preparation for stochastic modeNfagy weak sensitivity of the models with respect to cortielas of
particle velocity components is observed as well. Thusrédkalts close to LES were obtained in stochastic modelsgatie
"diffusion limit" with the same or close vertical diffusiaroefficient. The significant advantages of LSMs comparedd¥R
were not observed in this particular flow.

The substantial disagreements to LES were obtained ugieg-tfimensional Thomson model (Eqg. 49) with= 6 and the
model LSMO. The last one is designed for the isotropic tiebaé and does not satisfy WMC under the conditions considere
here. This model leads to overestimated mixing, and suchdmas not vanish at large altitudes.

LSMT (Eq. 49) was proposed in (Thomson, 1987) as one of thsilplesvays to satisfy WMC in three dimensions. In our
simulations the error of LSMT is substantial and grows wéhsor height. This was shown by Sawford and Guest (1988), who
derived the diffusion limit of Thomson’s multidimensiomabdel for Gaussian inhomogeneous turbulence and showeithéha
implied effective eddy diffusivity for vertical dispersias:
2(o + (u'w')?)

K, =
C()E

(50)

Taking into account this expression and Eq. (13) which iglvfal the one-dimensional LSM, one can estimate the appatspr
value ofC,, for LSMT under the conditions considered hefg:~ 6(1.33* +1)/1.33* ~ 8 (we assume that,, /| (v'w') |*/? ~
ow/|T|*? 2 1.33). The results of LSMT withC, = 8 are in a close agreements with the results of other stochastilels and
with the results of LES (open triangles in Fig. 10a,c,e).

Turbulent PrandtPr and SchmidtSc numbers computed using Eulerian approach are shown in Hig. These numbers
coincide and are approximately equal to 0.8 up to the akitsidyhtly less then 100 m, where the boundary condition for a
scalar is applied. Schmidt numbe$s were calculated also using the concentrations and the floixkeagrangian particles.
The models RDMO and LSM1 provide the valuesSefclose to the results of Eulerian model. Calculations by LSM', = 6)
resultinSc~ 0.5 — 0.6, that is also the sign of the overestimated vertical mixing.
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Two-dimensional footprintgs(z — xa,y — yar, 20 ), cOmputed by the models RDMO, RDM1 and LSM1 (figures are not
shown here) were very close to LES results presented in Fitn particular, this fact argues that the mechanism of faiona
of the region with negative values ¢f has a simple nature, which can be easily reproduced in theefrark of the diffusion
approximation.

The cross-wind mixing can be characterized by RMS of trarsslecoordinates of the particles depending on the mean
distance from the sourc®?(X?) = ((y? — YP)2>1/2, whereX? = (z7) andY? = (y?) are the mathematical expectations of
the particle position. Functiori§’?(X?) are shown in Fig. 11b. The models RDM0O, RDM1, LSM1 and LSMTtfwiy = 6)
result in close horizontal dispersion. All the stochastadels predict slightly less intensive mixing in comparisohES, that
can be a consequence of the inaccurate data preparatiatttaigaas well. If one neglects the anisotropy of eddy diffiig
than this dispersion would be substantially underestichétee short-dashed line in Fig. 11b, computed by RDM with the
coefficientsK " = K?¥ = K™). One can see, that the choiCg = 8 in LSMT (open triangles) does not improve its overall
performance because the improved vertical mixing is aceonagl by the reduced dispersion of particles in the horedont
direction.

Wind direction rotation leads to widening of concentraticarce from the point source (see thin dashed line in Fig. 11b,
computed with one-dimensional LSM). At larger distancesrfrthe source in the Ekman layer the crosswind dispersion of
pollution should be defined by the joint effect of the windatadn and vertical mixing but not by the horizontal turbulen

mixing.

6 Validation of analytical footprint parameterisations

Footprint parameterisations that are assumed to be valid firoad range of boundary layer conditions and measurement
heights over the entire planetary boundary layer were megan (Kljun etal., 2004) and recently in (Kljun et al., 29015
These parameterisations are based on a scaling approaeipaféimeters for these analytical models were evaluated usi
backward Lagrangian stochastic particle dispersion mbB&M-B (Kljun et al., 2002). In turn, LPDM-B is based on the
forward single particle Lagrangian stochastic model ($Retdch et al., 1996) and (de Haan and Rotach, 1998)) saiisfyi
WMC. The value of Kolmogorov constat, which was selected for LPDM-B stochastic model was set t@8 (Kljun et al.,
2002)). In parameterisation of LPDM-B, the turbulent stiitis and the wind velocity were assumed to be universal apdred

on the surface heat and momentum fluxes, the roughness pgarand the boundary layer height. The exact formulas for all
the universal non-dimensional functions under the statibddification are not presented in (Kljun et al., 2015) arfeénences
therein, therefore direct comparison of the turbulencéilesowith LES is not possible. Nevertheless, the final apjpnations
(Kljun et al., 2004) and (Kljun et al., 2015) contain the ihparameters, which can be determined from LES: the boundary
layer heightz; ~ 180 m, Obukhov lengtiL /x ~ 120 m, friction velocityU. ~ 0.27 m/s and roughness parametgr= 0.1 m.
These values were substituted into parameterisationgr{i€l al., 2004) and (Kljun et al., 2015). Fig. 12 shows thegarison

of the crosswind averaged footprint functiof$ and cumulative footprint$’, obtained by different models. The Thomson'’s
model was used with'y = 6,4, and 3 for the comparison.
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Parametric models provide results which differ substdiptfeom all the abovementioned approaches. Both of the rsode
(Kljun et al., 2004) and (Kljun et al., 2015) predict fasteixing. One can see, that LSMT, which is itself too dispersive
comparison with 1-D LSMs and RDMs, does not reach the valusdigted by parameterisations from (Kljun et al., 2004) and
(Kljun et al., 2015), even if one chooses the smaller vali&s)o It means, that parameterisations of turbulence profilest mu
have significant impact and are one of the reasons for dewidgtween models from (Kljun et al., 2004) and (Kljun et al.,
2015) and LES. Besides, in the Fig. 12 it is seen that the topd@ry condition (absorbtion of particles at the height &0
does not affect presented footprints.

7 Conclusions

Scalar dispersion and flux footprint functions within thalde atmospheric boundary layer were studied by means ofdndS
stochastic particle dispersion modelling.

It follows from LES results that the main impact on the pagtidispersion can be attributed to the advection of pagibie
resolved and partially resolved "subfilter-scale" eddiesnsures the possibility to improve the results of paggcdvection
in discrete LES by the use of recovering of small-scale pliytresolved velocity fluctuations. If one uses the LES medth
the explicit filtering, then this recovering is straighti@rd and consists of application of the known inverse filieerator.
Apparently, a similar method can be implemented for othe® vithen the spatial filter is not specified in an explicit form.
This would require, however, the prior analysis of the medealpectra to identify an effective spatial resolution dradactual
shape of the implicit filter. For substantial improvemenpafticle transport statistics, it is enough to use subgagdrangian
stochastic model within the first computational layer onligere LES model becomes equivalent to simplified RANS-model

When the particles are advected by a divergence-free embuélocity field then the variance of the particles coneitn
can be accumulated at small spatial scales. In the condidase it does not affect directly the particles advectiorthiay
large eddies and gives no significant influence on the restiftsotprint calculations. In those cases when the insteedas
characteristics of the scalar field of particle concerdratire important, the additional correction to particldseities may be
required. It can be done both through the introduction oftststics, resulting in the diffusion of concentration, émwugh
the "computationally inexpensive" divergent correctiémh@ Eulerian velocity field.

Under the stable stratification, to calculate the flux fointipit is preferable to use stochastic models, which dbesdhe par-
ticles dispersion close to the process of scalar concamiraiffusion with the effective coefficiedit" (z) = — (w's’) /({ds) /dz)
in a vertical direction. RDM and one-dimensional "well-mik LSM tested in this study are the examples of such stoichast
models. The optimal value for the "universal constafit'is found to be close to 6. This value coincides with the egiionaf
the value of Kolmogorov Lagrangian constant in isotropimlegeneous turbulence. Stochastic models that use smalliessy
Cy = 4 (this choice is widespread now) may produce extra mixingtheahorter footprints, correspondingly.

One-dimensional stochastic models can be supplementéeiotizontal particles dispersion in a simple way. Inticighn
of the correlation between particle displacement comptziarRDM does not improve or change results substantiatyvH

22



10

15

20

25

ever, the coefficients of horizontal diffusidti* and K'?¥ for RDMs can be evaluated through the vertical diffusiorfiicent
K™ multiplied by the square of velocity components varianegi®r

Model LSM1, constructed as a combination of independehststic models in each direction (well-mixed in the veitica
direction only) gives reasonable results although thisehddes not satisfy WMC in general. In contrast, the threretisional
Thomson model with WMC and’, = 6 provides overestimated vertical mixing, which is manigekin a too small Schmidt
number values and in a reduced lengths of the footprintsmBom model withCy = 8 produces true mixing in vertical
direction, but underestimates the mixing in crosswindaios.

Accordingly, one can recommend another well-mixed stawhasodel proposed in (Kurbanmuradov and Sabelfeld, 2000).
It was developed under the assumption that the verticalteriih does not depend on the horizontal velocity componants
the vertical component of this model coincides with LSMIioPto use, this model should be modified in an appropriate way
to take into account the variation of momentum fluxes wittghei

According to presented LES the source area and footprirgainle ABL can be substantially more extended than those
predicted by the modern analytical footprint parametéiors and LSMs. The following reasons were identified in #tigly:
1) too small values of the Kolmogorov constdrif are used; 2) the possible overestimated vertical mixingigeal by some
stochastic models based on well-mixed condition; 3) usi&idunctions for turbulent statistics that are likely toisa additional
deviation in the case of stable turbulent Ekman boundamrlstudied here.

8 Code availability/Data availability

The code of LES modelis available by request for the sciemdearches in cooperation with first author (and.glas @ gom).

The data from LES are attached to the supplement. These aataprepared as it was discussed in Sect. 5.1 and can be
used for the stochastic models evaluation. Besides, sugplecontains the data for cross-wind averaged footprimdstao-
dimensional footprints obtained in LES (see, Fig.6 and%jig.
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Figure 4.Crosswind averaged scalar flux footprirfsin stable ABL, computed by the different methods and witffedént grid steps; (a,c)
sensor height,=10 m, (b,d)z2,=30 m. Grid steps and methods are indicated in the legeRngarticles are transported by a filtered LES
velocityw; u* - particles are transported by recovered veloaity= F ~'@; cor div - the additional correction of velocity (Egs. 33, 34)16t

- stochastic subgrid model (Eq. 28) is applied for the plasigvithin the first computational grid layer.
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Figure 8. (a) Total momentum fluxes obtained in LES with=2.0 m. (b) Normalized RMS of vertical velocity, = aw/\T\l/Q depending

on a dimensionless parametefA (solid red line - estimation using LES data, = ((w*2> +2/3E5ubg,,)1/2; symbols - measurements

(Grachev et al., 2013) at different altitudes). (c) Variesof velocity components (dashed line - resolved fluctnasgolid lines - the final

estimation for LSM; bold red lines - vertical component, egrecurves of medium thickness - cross-wind component, Wiirelines -

longitudinal component, circles - evaluation @f, by Eq. (39)). (d) Vertical effective eddy diffusivitfk** (red solid line - coefficient

calculated by the gradient and flux of scalar; dashed lingimasion of coefficient using Eq. (13) with'y = 6); estimations of diffusion

coefficients in cross-wind directioR’ ;" (blue dash-dot line) and coefficient in longitudinal difentK' ¢ (green dash-dot-dot line).
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Figure 9. (a) Discrete (LES) nondimensional dissipatiow, z /|7]>/? (circles), corrected values (solid line), universal fumet(Eq. 42)
(dashed straight line). (b) Simulated discrete dissipatio. (circles) and corrected dissipatiesy (z) for LSM (solid line). Dashed horizontal

line denotes the height, which was chosen in order to equalize the integral valugseotorrected dissipation and the discrete dissipation.
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Figure 10.One-dimensional footprintg? (a,c,e) and cumulative footprinfs (b,d,f) for sensor heighta; = 10 m (a,b),zas = 30 m (c,d)
andzys = 60 m (e,f). Solid lines - LES with grid steps,=2.0 m. Blue triangles - LSMT (Thomson, 1987) with = 6, open triangles -
LSMT with Cy = 8. Short-dashed line - LSMO (Lagranian stochastic modelauithvell-mixed condition). Red circles - LSM1 (LSM with
WMC for vertical mixing). Open green circles - RDMO (uncdated random displacements model). Dash-dot green lineMRPandom

displacements model with correlation between displacéw@mnponents).
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Figure 11. (a) Prandtl numberPr (dashed line) and Schmidt numb&k (solid line), computed using Eulerian scalars. Symbols -
Schmidt numbersSe, computed using the Lagrangian particles in LES, LSMs andRDOb) RMS of the crosswind position of parti-
cleY” = ((y* — Yp)z>1/2 depending on the mean longitudinal positi&® = (x?). Dashed lines - RDM with* = K¥¥ = K" and

one-dimensional RDM( ;" = KJ* = 0.
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Figure 12.0One-dimensional footprintg? (a,c,e) and cumulative footprinfs (b,d,f) for sensor heighta; = 10 m (a,b),zas = 30 m (c,d)
andzys = 60 m (e,f). Solid lines - LES with grid stes,=2.0 m. Triangles - LSMT (Thomson (1987) modeT), = 6, absorbtion at z=100
m. Orange curves LSMT,, = 6, absorbtion at z=300 m. Dashed blue lines - LSMIF,= 4. Solid blue lines - LSMT(, = 3. Red lines -

parameterisation (Kljun et al., 2004). Green lines - pataneation (Kljun et al., 2015).
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