
Large-eddy simulation and stochastic modelling of Lagrangian
particles for footprint determination in stable boundary l ayer
Andrey Glazunov1, Üllar Rannik2, Victor Stepanenko3, Vasily Lykosov1,3, Ivan Mammarella2,
Mikko Auvinen2, and Timo Vesala2

1Institute of Numerical Mathematics RAS , GSP-1, 119991, Gubkina str., 8, Moscow, Russia
2Department of Physics, P.O. Box 64, University of Helsinki,00014 Helsinki, Finland
3Moscow State University, Research Computing Center, GSP-1, 119234, Leninskie Gory, 1, bld. 4, Moscow, Russia

Correspondence to: A. Glazunov (and.glas@gmail.com)

Abstract. Large-eddy simulation (LES) and Lagrangian stochastic modelling of passive particle dispersion were applied to

the scalar flux footprint determination in stable atmospheric boundary layer. The sensitivity of the LES results to the spatial

resolution and to the parameterizations of small-scale turbulence was investigated. It was shown that the resolved andpartially

resolved "subfilter-scale" eddies are mainly responsible for particle dispersion in LES, implying that substantial improvement

may be achieved by using recovery of small-scale velocity fluctuations. In LES with the explicit filtering this recovering5

consists of application of the known inverse filter operator. The footprint functions obtained in LES were compared withthe

functions calculated with the use of first-order single particle Lagrangian stochastic models (LSM), zeroth-order Lagrangian

stochastic models - the random displacement models (RDM), and analytical footprint parameterisations. It was observed that

the value of the Kolmogorov constantC0 = 6 provided the best agreement of the one-dimensional LSMs results with LES,

however, also that different LSMs can produce quite different footprint predictions. According to presented LES the source10

area and footprints in stable boundary layer can be substantially more extended than those predicted by the modern analytical

footprint parameterizations and LSMs.

1 Introduction

Micrometeorological measurements of vertical turbulent scalar fluxes in the atmospheric boundary layer (ABL) are usually

carried out at altitudeszM ≥ 1.5 m due to technological limitations of the eddy covariance method. The measurement results15

are often attributed to the exchange of heat, moisture and gases at the surface. This procedure is not justified for inhomogeneous

surfaces because of large area contributing to the flux, and because of variability of the second moments with height. The

relationship between the near-surface fluxFs(x,y,0) and the fluxFs(xM ,yM ,zM ), measured in pointxM = (xM ,yM ,zM ),

can be formalized via the footprint functionfs:

Fs(xM ,yM ,zM ) =

∞∫

−∞

∞∫

−∞

fs(x,y,xM ,yM ,zM )Fs(x,y,0)dxdy. (1)20
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Traditionally, footprint functionsfd
s (x

d,yd,xM ) = fs(x,y,xM ) are expressed in local coordinate system with the origin which

coincides with the sensor position (here,xd = xM − x is the positive upwind distance from the sensor andyd = yM − y is the

cross-wind distance, see Fig. 1a). In horizontally homogenous case these functions do not depend onxM andyM . In ABL the

surface area contributing to the flux is elongated in wind direction, therefore the cross-wind integrated footprint function fy
s

defined as5

fy
s (x

d,zM ) =

∞∫

−∞

fd
s (x

d,yd,zM )dyd, (2)

is one of the most required characteristics for the practical use.

The measurements of the scalar flux footprint functions in natural environment are restricted (e.g., Finn et al., 1996; Leclerc et al.,

1997, 2003; Nicolini et al., 2015) due to the necessity to conduct the emission and detection of artificial tracers. Besides, such

measurements are not available for the stably stratified ABLwhere the area of the surface influencing the point of measurements10

increases.

Stochastic models, used for a footprint calculation, such as single particle first-order Lagrangian stochastic modelsbased on

generalized Langevin equation (LSM) and zeroth-order stochastic models (also known as the random displacement models,

RDM) (see the reviews listed in the papers (Wilson and Sawford, 1996), (Wilson, 2015) and the monograph (Thomson and Wilson,

2013)), as well as analytical models (e.g., Horst and Weil, 1992; Kormann and Meixner, 2001; Kljun et al., 2004, 2015) should15

be calibrated against the data considered to be representative of real processes. Results of these models depend on the choice

of universal functions in the ABL or in the surface layer (non-dimensional velocity and scalar gradients, non-dimensional

dissipation, dispersion of the velocity components etc.).Commonly, the applicability of these models is limited by a "constant

flux layer" simplification, assuming that the measurement height zM is much less than the thickness of the ABLzi. However,

under the strongly stable stratification the thicknesszi may be several meters, therefore, the vertical gradients ofmomentum20

and scalars fluxes near the surface can be large. It can lead toincorrect functioning of the models designer for, and tested on

the data gathered under different conditions.

Large eddy simulation (LES), employing Eulerian approach for the transport of scalars, was first time applied for a footprint

calculation in (Leclerc et al., 1997). Modern computational technologies allow to combine Eulerian and Lagrangian methods

for turbulence simulation and particles transport (e.g., Weil et al., 2004; Steinfeld et al., 2008; Cai et al., 2010; Hellsten et al.,25

2015) and to perform detailed calculations of averaged two-dimensional footprints under different types of stratifications in

ABL and footprintsfs(x,y,xM ) over heterogeneous surfaces (for example, urban surface and surfaces with alternating types

of vegetation). Some examples of such calculations are given in (Steinfeld et al., 2008; Hellsten et al., 2015).

Lagrangian transport in LES is complicated by the problem ofdescription of small-scale (unresolved) fluctuations of the par-

ticle velocity, which is similar to the problem of subgrid modelling of Eulerian dynamics. A common approach for Lagrangian30

subgrid modelling in LES is the application of subgrid LSMs (e.g., Weil et al., 2004; Steinfeld et al., 2008; Cai et al., 2010;

Shotorban and Mashayek, 2006). This approach requires a number of additional calculations for each particle (e.g., interpola-

tions of subfilter stressesτij and subgrid dissipationǫ into the particle positionxp). In addition, it is necessary to generate a

three-component random noise for each particle, that is a time-consuming computational operation. Numerically stable solu-
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tion to the generalized Langevin equation (see Sect. 2.3, Eq. (9)) in LES requires a smaller time steps than the steps to solution

of Eulerian equations, because local Lagrangian decorrelation timeTL(x
p, t) can be very small.

The statistics of simulated turbulence in LES may significantly differ from the statistics of real turbulence. For example,

the use of dissipative numerical schemes or low-order finite-difference schemes usually results in a suppression of fluctuations

over almost the entire resolved spectral ranges of discretemodels (see e.g., Fig. 16 in Piotrowski et al., 2009). Turbulent fluxes5

(in the Eulerian representation) associated with these fluctuations are restored by subgrid closure. However, in termsof the

Lagrangian transport the effects of distortion of small-scale part of the spectrum are most often not considered.

Numerical simulations of Lagrangian transport in LES are also limited by the low scalability of parallel algorithms. This

is due to the impossibility of uniform loading of processorsin a joint solution to the Euler and Lagrangian equations, a large

number of interprocessor exchanges and unstructured distribution of characteristics required for Lagrangian advection in the10

computer RAM memory.

Thus, all methods of numerical and analytical determination of the functionsfs have individual drawbacks. At the same

time, due to the lack of sufficient amount of experimental data and due to their low accuracy there are no clear criteria for

evaluation of different models.

According to the need of computational cost reduction, one of the objectives of this study is to establish the role of stochastic15

subgrid modelling in the correct description of the particles dispersion in LES. Is it possible to simplify the calculation and to

avoid the introduction of stochastic terms without the lossof accuracy in some integral characteristics, such as the footprints

or the concentration of pollutants emitted from the point sources? The role of subgrid fluctuations is reduced with an increase

of spatial LES resolution. Therefore, the independence of results from the mesh size is used as a criterion for checking the

quality of Lagrangian transport procedures in LES. It will be demonstrated that the subgrid stochastic modelling in LEScan be20

omitted in most cases. Instead, we propose "computationally cheap" procedure of inverse filtering supplemented by divergent

correction of Eulerian velocity to replace the subgrid stochastic modelling in LES (see description below).

Subgrid transport is especially significant near the surface and/or under the stable stratification – all are the cases associated

with small eddies size. That is why the stable ABL was selected as the key test scenario in this study. We slightly modified the

setup of the numerical experiment GABLS (Beare et al., 2006)for this purpose.25

LES results are used as the input data for the stochastic models (LSMs and RDMs). These data are pre-adjusted using known

universal dependencies and taking into account an incomplete representation of turbulent energy in LES. The comparison of

results of different stochastic models and the results fromLES allows to specify the parameters for the LSMs and permitsto

identify the differences between LSMs and RDMs under the conditions which have not been tested previously.

The paper is organized as follows. Section 2 contains the description of some common features of approaches: the imple-30

mented numerical algorithm for footprint estimation in LESand LS models (Sect. 2.1); LES governing equations and the

definitions of some terminology used for the small-scale modelling description and for the testing of particles transport (Sect.

2.2); the definitions of stochastic models (LSMs and RDMs) and pointing to some problems connected with uncertainty of

the choice of turbulent statistics for them (Sect. 2.3 and 2.4). Section 3 contains short description of the numerical algorithms

and the turbulent closure for LES model used in this study (Sect. 3.1) and the description of the different approaches forthe35
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Lagrangian particles transport in LES tested here (Sect. 3.2). Sect. 4 is mainly devoted to the testing of ability of LES model

with rough spatial resolution to reproduce particle dispersion correctly. For this sake we implemented special setup of the

numerical experiment (see Sect. 4.1) permitting to compareLagrangian and Eulerian statistics (see Sect. 4.2.2). The focus

was made on the approaches with the limited use of subgrid stochastic modelling (see Sect. 4.2.1 where the sensitivity ofthe

computed footprints to the spatial resolution was investigated). The footprints computed with LES model with simple subgrid5

LSM (traditional approach) are presented in Sect. 4.2.3. Two-dimensional footprints are shown in Sect. 4.3. Due to large sen-

sitivity of LSMs to the turbulent statistics we emphasize data preparation for them using LES results, measurements data and

similarity laws in Sect. 5.1. Section 5 contains the resultsof footprint modelling with the use of the set of different RDMs

and LSMs (specified in Sect. 5.2) in comparison with LES results (see Sect. 5.3). Section 6 is devoted to the comparison of

footprints, computed in LES with the analytical footprint parameterisations based on a scaling approach by Kljun et al.(2004,10

2015). Section 7 summarises the results.

In addition to the basic calculation, we carried out a seriesof tests (see Supplement Sect. S1) under unstable stratification

in ABL with the different grid steps in LES model. This allowsto compare the results presented here with the similar results

obtained in previous studies (e.g., Steinfeld et al., 2008;Weil et al., 2004) and to verify the performance of our LES model

in footprint evaluation. Furthermore, we demonstrate the results of footprint calculations above the inhomogeneous surface15

(Supplement Sect. S2), which imitates the lake of a small size, surrounded by forest. Computational aspects of technology are

discussed as well.

2 Modelling approaches

2.1 Numerical evaluation of footprints

Computational methods for determination of footprints often reduce to the implementation of Lagrangian transport of marked20

particles. Each particle can contain a number of attributes, including its initial coordinatexp
0 and timetp0. Choose two small

horizontal platesδS andδM for averaging in the neighborhood of zero with the areasSS andSM , respectively. Define the time

intervalTp = [t0, t2], during which new particles are ejected near the ground withthe intensityH (hereH is the mathematical

expectation of the new particles number emitted per unit area per unit time) and the intervalTa = [t1, t2] (t1 > t0), when

particles are detected near the point of measurement. Ift1 is sufficiently large for the ensemble averaged flux to attainconstant25

value in time, andTa is quite large for statistically significant averaging, then the footprintfs can be evaluated by the formula

fs(xS ,yS ,xM ,yM ,zM )≈

≈
1

SM

1

Ta

nSM∑

p=1



∫

δS

H(xp
0 + x′,yp0 + y′, tp0)dx

′dy′




−1

wp

|wp|
IpSM ,

(3)

wherenSM is the number of particles, the trajectories of which at least once crossed the planez = zM at horizontal coordinates

x
p
1 : (x

p
1 − xM ,yp1 − yM ) ∈ δM in time intervalTa, IpSM = 1 if the initial coordinatesxp

0 of such particle satisfy the condition

((xp
1 − xp

0)− (xM − xS),(y
p
1 − yp0)− (yM − yS)) ∈ δS and IpSM = 0 otherwise. Here,wp is the vertical component of the30

4



particle velocity at the moment of crossing the planez = zM . Schematic representation of the algorithm for the footprint

function determination in LES is shown in Fig. 1. In accordance with Eq. (3) and the description above, the particle crossing

the test areaδM brings the impact into the valuefs(xS ,yS ,xM ) then the beginning of its modified trajectory shifted in a such

way to superpose the pointxp
1 with sensor positionxM belongs to the test areaδS . For example (see, Fig. 1b), red particle is

counted while evaluation of the footprint value in point(xS ,yS), but blue particle is not counted. Such algorithm of averaging5

was selected because it permits to refine the footprint resolution in the vicinity of sensor independently on the area ofδM using

the assumption of some spatial homogeneity.

In the horizontally homogeneous case one can calculate footprint fd
s (x

d,yd,zM ) performing averaging over statistically

equivalent coordinates of sensor position. For this averaging in LES with periodic domain one can prescribe the coordinates

(xM ,yM ) to the domain center and select the areaδS to be equal to whole domain size. Analogical methods can be applied10

when using LSMs or RDMs, whereas in the case of RDMs particle displacement should be used in the Eq. (3) instead of

velocity.

Nonuniform Cartesian gridxd
ij = (xd

i ,y
d
j ) (where,−20≤ i≤ 160; −120≤ j ≤ 120), stretched with the distance from the

sensor position, was selected for the footprint functions accumulation in the following sections of this paper. Grid was pre-

scribed as:(xd
0,y

d
0) = (0,0); xd

i =∆x0γ
|i|
x i/|i| andydi =∆y0γ

|j|
y j/|j| if i 6= 0 andj 6= 0; ∆x0 =∆y0 = 2 m; γx = γy = 1.05.15

This grid is independent on the LES model resolution and coincides with the footprint grids selected for all runs with LSMs

and RDMs.

2.2 Lagrangian particles embedded into LES

Lagrangian particle velocityup and the particle positionxp can be computed in LES models as follows:

up
i = u

(p)
i + u′′p

i , dxp
i = up

i dt. (4)20

Hereu(p)
i is the interpolation of the resolved Eulerian velocity intothe particle position;u′′p

i are the small-scale unresolved

Lagrangian velocity fluctuations associated with Eulerianvelocity fluctuations belonging to "subgrid" and "subfilter" scales.

Here and later we shall use the designation "subfilter" to denote the fluctuations which belong to the resolved spectral range

of the discrete model, but are not reproduced numerically, and the designation "subgrid" for the fluctuations which can not be

represented on the grid due to smallness of the scales. LES governing equations for filtered velocityu are:25

∂ui

∂t
= −

∂uiuj

∂xj
−

∂τij
∂xj

−
∂p

∂xi
+F e

i ,
∂ui

∂xi
= 0, (5)

whereF e
i comprises Coriolis and buoyancy forces;τij = uiuj − ui uj denotes the modeled "subgrid/subfilter" stress tensor.

System of equations (5) can be supplemented by the Eulerian equations of scalars transport:

∂s

∂t
=−ui

∂s

∂xi
−

∂ϑs
i

∂xi
+Qs, (6)

whereQs denotes sources intensity;ϑs
i = sui−ui s are the parameterized "subgrid/subfilter" fluxes. Usually,the fluctuations30

u
′′p are defined to be dependent on some random functionξ, introduced in order to provide the missing part of mixing.

5



The particular approaches for computing of unresolved partof particle velocity will be discussed and tested in the following

sections.

There is a great practical interest in the calculation of footprints, as well as of spatial and temporal characteristicsof pol-

lution transport from localized sources above heterogeneous surfaces and in the areas with complex geometry (in the urban

environment, over the surfaces with complex terrain or overthe alternating types of vegetation). LES of such flows becomes5

a routine procedure with increasing performance of computers. However, the calculation of statistical characteristics of La-

grangian trajectories is complicated in this case by the need of transport of huge number of tracers (e.g., Hellsten et al., 2015).

For example, it is necessary to calculate the trajectories of about109 particles (see Supplement Sect. S2) to obtain the footprints

above the "lake" (the task similar to that presented in (Glazunov and Stepanenko, 2015)).

On the other hand, a large number of particles (see, e.g., Supplement Fig.S2.1b) allows to estimate the local instantaneous10

spatially filtered concentration of the scalar:

sP (x, t) =
∑

p=1,N

G(x−x
p(t)), (7)

whereG is the function which coincides with the convolution kernelof LES filter operator andN is the total number of

particles in the domain. If the mathematical expectationQp of a number of new particles ejected in a unit volume during unit

time interval is proportional to the Eulerian concentration source strengthQp(x, t) = CQs(x, t), thensP (x, t)≈ Cs(x, t).15

One can perform the same operations with the "Lagrangian" concentrationsP (x, t) as the operations with the Eulerian scalar

s. Below, we will compare the averaged values ofsP ands and their spatial variability. Besides, we will use the estimation of

concentrationsP (x, t) for correcting the particles velocities (see, Sect. 3.2.1,Eqs. (33),(34)), in order to approximate the effect

of subgrid turbulence.

2.3 Single particle first-order Lagrangian stochastic models (LSM)20

Another approach (more widespread due to a lower computational cost) is the replacement of the entire turbulent component

of velocity by a random process (Lagrangian stochastic models (LSM)):

up
i =

〈
u
(p)
i

〉
+ u′p

i , dxp
i = up

i dt. (8)

Here
〈
u
(p)
i

〉
is the ensemble averaged Eulerian velocity at pointx

p. Note, that LSMs are assumed to be also applicable under

the temporal evolution of turbulence statistics. In this paper we shall consider ABL as it approaches a quasi-steady state.25

Therefore, due to assumption of ergodicity, ensemble averaging can be replaced by averaging in time and in the directions of

spatial homogeneity:〈ϕ〉 ≈ 〈ϕ〉x,y,t.

Single particle first-order LSM is formulated as follows. Velocity u′p
i is described by the stochastic differential equation:

du′
i
p
= ai(x

p,up, t)dt+ bij(x
p,up, t)ξpi , (9)

whereξ stays for the delta-correlated (usually Gaussian) random noise with the variancedt30

〈
ξpi (t)ξ

h
j (t+ t′)

〉
= δijδphδ(t

′)dt (10)
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and with the zero average〈ξpi 〉= 0; ai, bij are the functions depending on the Eulerian characteristics of turbulence and on the

Lagrangian velocity of the particle. Typicallybij is calculated by the formula

bij = δij
√
C0ǫ, (11)

where,ǫ denotes the energy dissipation rate, averaged for a fixed coordinate,C0 is the Kolmogorov constant. This kind of

random term (arguments are given in (Thomson, 1987) and (Sawford, 1993)) is defined by Lagrangian velocity structure5

function in the inertial range (see Monin and Yaglom, 1975):

Dij(t
′) = 〈(ui(t+ t′)− ui(t))(uj(t+ t′)− uj(t))〉 = δijC0ǫt

′ (12)

if τη ≪ t′ ≪ TE (τη = (ν/ǫ)1/2 is the Kolmogorov microscale,TE = E2/ǫ is energy containing turbulent time scale,E is the

turbulent kinetic energy).

The functionai (drift term) determines the behavior of particles at large times t∼ TL ∼ TE (hereTL is the Lagrangian10

decorrelation time scale). For spatially inhomogeneous and statistically non-stationary turbulent flows, includingABL, the

choice ofai is usually done according to the well mixed condition (WMC; Thomson, 1987). In general WMC does not lead

to a unique solution forai. Different LSMs are constructed by introducing the additional physical assumptions and can lead to

inequivalent results.

Lagrangian models are very sensitive to the choice of universal functions that define the normalized RMS of the vertical15

velocity σ̃w =
〈
w′2
〉1/2

/U∗ and non-dimensional dissipatioñǫ= ǫz/U3
∗ (hereU∗ is the friction velocity). Besides, the sim-

ulation results are affected by the choice of a "universal constant" C0. It can be shown (e.g., Durbin, 1984; Wilson and Yee,

2007 ) that for one-dimensional LSM, these parameters determine the eddy diffusivityKs for the scalar in the diffusion limit

(whent≫ TL, i.e. at large distances from the source):

Ks =
2σ4

w

C0ǫ
=

2σ̃4
w

C0ǫ̃
U∗z. (13)20

The data of measurements in the ABL demonstrate large variation. For example, the values ofσ̃2
w range from1.0 to 3.1 (see

Table 1 in Banta et al., 2006). According to Eq. (13) it implies the change ofKs by more than nine times.

There is no consensus on the value ofC0. Formally,C0 has the meaning of a universal constant in Eq. (12). The estimation

of this constant for an isotropic turbulence using the data of laboratory measurements and DNS provides an intervalC0 =

6.± 0.5 (see Lien and D’Asaro (2002)). However, the valuesC0 ∼ 3− 4 are often used for LSM of particle transport in ABL.25

For instance, the valueC0 = 3.1 for a one-dimensional LSM corresponds to calibration performed in (Wilson et al., 1981)

according to observation data (Barad, 1958; Haugen, 1959).This calibration (see Wilson, 2015) assumes that the turbulent

Schmidt numberSc=Km/Ks = 0.64 near the surface (hereKm is the eddy viscosity). It is known that determination of the

turbulent Prandtl numberPr =Km/Kh (Kh - heat transfer eddy diffusivity) and Schmidt number based on observation data is

complicated by large statistical errors associated with the problem of self-correlation (Anderson, 2009; Grachev et al., 2007).30

Therefore, the existing estimation ofC0 can not be considered as final and should be confirmed by futurestudies. Below we

show that the value ofC0 significantly affects the results of footprint calculations.
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2.4 Zeroth-order Lagrangian stochastic models or random displacement models (RDM)

A simplest approach for development of the models of particle dispersion entails replacement of Eulerian advection-diffusion

equation

∂ 〈s〉

∂t
+ 〈ui〉

∂ 〈s〉

∂xi
=

∂

∂xi
Ks

∂ 〈s〉

∂xi
+Qs (14)

by the stochastic equation for particle position (random displacement models (RDM)):5

dxp
i = 〈ui〉dt+

∂Ks

∂xi
dt+

√
2Ksξ

p
i . (15)

Probability density of particle positionP is connected with scalar field concentration〈s〉 as follows:

〈s(x, t)〉 =

∫

R3

t∫

−∞

Qs(x0, t0)P (x, t|x0, t0)d
3
x0dt0. (16)

Using the Fokker-Planck equation it can be shown that the Eq.(15) is equivalent to the Eq. (14) from the point of view of

concentration transport when the time stepdt tends to zero (Durbin, 1983; Boughton et al., 1987).10

RDM has some major disadvantages. First, it shares the limitation of Eulerian eddy-diffusion treatment of turbulent disper-

sion, i.e. "K-theory". Correspondingly, it is not able to describe the non-diffusive near field of a source. Also, RDM cannot

be applied for the convective ABL, where the counter-gradient transport is observed. Besides, it requires the exact values of

diffusion coefficientKs, which can not be measured directly.

3 Details of LES model used in this study15

3.1 Numerical algorithms and turbulent closure

System of equations (5 - 6) is discretized using explicit finite-difference scheme with the second-order temporal approximation

(Adams-Bashforth method) and fourth-order (fully-conserved for advective terms) spatial approximation of velocityand scalars

on staggered grid (Morinishi et al., 1998).

Mixed model (Bardina et al., 1980), expressed as the sum of the Smagorinsky and scale-similarity models, is used for20

calculation of turbulent stress tensor:

τmix
ij = τsmag

ij + τssmij =−2(Cs∆)2|S|Sij +(ui uj − ui uj), (17)

whereSij is the filtered strain rate tensor,Cs is the dynamically determined (Germano et al., 1991) dimensionless coefficient

which depends on time and spatial coordinates. The a priori tests using the data of laboratory measurements show that scale-

similarity models with Gaussian or box filters provide correlation typically as high as 80% between real and modeled stresses25

(see, overview in Meneveau and Katz, 2000). The significant part of this correlation can be attributed to non-ideality ofthe

spatial filter and use of common information for computing both the real and modeled stresses (see, Liu et al., 1994). The
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discrete spatial filter used in this study has a smooth transfer function in spectral space, so it can be supposed that the scale-

similarity part of Eq. (17) is mainly responsible for the influence of velocity fluctuations belonging to "subfilter" scales.

The procedure of calculation of the coefficientsX(x, t) = (Cs∆)2 reduces to minimization of the Euclidean norm(εij ,εij)

of the residual of the overdefined system of equations

̂(XM τ
ij

)
−α2X(MT

ij) = Lij −Hij + εij , (18)5

obtained by substitution of mixed model (Eq. 17) into the Germano identity as

Tij − τ̂ij = ûi uj − ûi ûj . (19)

HereTij are subgrid/subfilter stresses for the smoothed velocityû, obtained by successive application of basicF∆ and testF∆̂

spatial filters,α= ∆̂/∆ is the ratio of the filters widths. TensorsMT
ij , M τ

ij , Lij andHij are calculated as follows:

MT
ij = 2

∣∣∣Ŝ
∣∣∣ Ŝij , M τ

ij = 2
∣∣S
∣∣Sij ,

Lij = ûi uj − ûi ûj, Hij =

(
̂
ûi ûj −

̂̂
ui
̂̂
uj

)
−
(
ûi uj − ûi uj

)
.

(20)10

The generalized solution to the discrete analogue of Eq. (18) is searched using the iterative conjugate gradients (CG) method

with diagonal preconditioner. To do this, the problem is reduced to a linear system of equations

A∗
∆A∆X∆ =A∗

∆R∆, (21)

whereX∆ is the the desired solution (a vector of dimensionN =NxNyNz with the values defined in the center of grid cells);

A∆ andR∆ = L∆−H∆ are the discrete analogues of the operator and the right handside of Eq. (18) correspondingly;A∗
∆ is15

the transpose matrix. The diagonal preconditionerP∆ for CG method was selected as follows:

P∆ =
(
α4MT

∆MT
∆

∗
+µ(M τ

∆M
τ
∆
∗ − 2α2MT

∆M τ
∆

∗)
)−1

, (22)

whereµ= const∼ 1 is the empirical coefficient independent on time and spatialposition. The solutionX∆ contains negative

values (unconditional minimization of the functional is used), however, mixed model (Eq. 17) reduces their relative number

compared with the dynamic Smagorinsky model. In the algorithm, negative values are replaced by zeroes. In fact, this dynamic20

procedure is close to approach proposed in (Ghosal et al., 1995), with the difference that the mixed model was applied here

and iterative method was replaced by a faster CG method.

Eddy diffusion models are used for subgrid heat and concentration transfer:

ϑs
i =−Kh

subgr ∂s

∂xi
, (23)

hereKh
subgr = (1/Scsubgr)(Cs∆)2|S| is the eddy diffusivity, which is independent on the type of scalar. Subgrid turbulent25

Schmidt and Prandtl numbers are fixedScsubgr = Prsubgr = 0.8.
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A distinctive feature of this model is that the discrete spatial filter operatorF∆ = FxFyFz is explicitly involved in calculation

of stresses. The following discrete basic filter is selected:

Fx(ϕ)i,j,k = (1/8)ϕi−1,j,k +(3/4)ϕi,j,k +(1/8)ϕi+1,j,k, (24)

herei, j,k denote a grid cell number,ϕ is any variable. Similar filtering is applied along the coordinatesy andz. It is reasonable

to expect that we get the velocityu, smoothed according to specified filtering operator as a solution to Eq. (5) supplemented5

by the mixed closure (Eqs. 17 - 21). Since the discrete filtering operator is invertible, we can find the following velocityat any

point and time:

ui
∗ = F−1

∆
ui, (25)

which better reflects the small-scale spatial variability.Approximate inverse filter is calculated as a series (Van Cittert, 1931):

F−1

∆
≈ F−1

n =

n∑

k=0

(I −F∆)
k, (26)10

whereI is a unity operator; in the calculations presented below we usedn= 5. Spatial spectra of "defiltered" velocityu∗ under

the neutral, unstable and stable stratification were obtained earlier (Glazunov, 2009; Glazunov and Dymnikov, 2013; Glazunov,

2014). It was found in all cases that this procedure improvesthe small-scale parts of the spectra according to dependence

S ∼ k−5/3, leads to better agreement of spectra calculated with the different spatial resolution and improves convergence of

non-dimensional spectra if proper length scales are used for normalization.15

3.2 Methods for Lagrangian particle transport in LES

3.2.1 Subgrid and subfiler modelling

Below, the subgrid and subfilter modelling methods used for the simulations in the current study are listed. These methods will

be used also in combinations as defined in Sect. 4.2.

(1) Improvement of Lagrangian transport using inverse filtering of Eulerian velocity field20

First, we will use the recovery of "subfilter" fluctuations (Eqs. 25, 26) in order to transport Lagrangian particles more precisely:

u
p = u

∗(p) (27)

Note that for the use of such a procedure LES models should exhibit the properties of model with an explicit filtering. Similar

approach was recently applied by Michalek et al. (2013) in LES with approximate deconvolution subgrid model (ADM, see,

Stolz et al., 2001) which can be also considered as the model with explicit filtering. In most cases, the suppression of small-25

scale fluctuations in LES (particularly in those that use a low-order numerical schemes) occurs as a result of combined effect

of approximation errors and the subgrid closure. Therefore, the shapes of effective spatial filters of most models can only be

determined by aposteriori analysis of the calculation results.

10



(2) Lagrangian stochastic subgrid/subfilter model

Second, we will apply the subgrid stochastic model proposedin (Shotorban and Mashayek, 2006):

dup
i =

(
−

∂p

∂xi
−

1

TL
(up

i − u
(p)
i )

)
dt+

√
C0ǫξ

p
i . (28)

When using dynamic mixed model (Eqs. 17 - 21), a value ofǫ is not calculated directly, and then it is assumed that the

dissipation is locally balanced by shear production and buoyancy production or sink. In addition, since this model can produce5

a local generation of kinetic energy, the averaging in a horizontal plane was performed to avoid negative values of dissipation:

ǫ=
〈
−Sijτij

〉
xy

+
g

Θ0

〈
ϑΘ
3

〉
xy

, (29)

whereϑΘ
3 is the vertical subgrid flux of potential temperature andg/Θ0 is the buoyancy parameter. Time scaleTL was evaluated

as:

TL = (Esubgr +Esubf )/

(
1

2
+

3

4
C0

)
ǫ. (30)10

Thus, the total unresolved kinetic energy was calculated asthe sum of "subfilter" energy

Esubf =
1

2

〈
(u∗

i − ui)
2
〉
xy

(31)

and "subgrid" energy:

Esubgr ≈

∞∫

kmin

E(k)dk ≈
3

2
CKǫ2/3

(
π

∆g

)−2/3

. (32)

To evaluate the valueEsubgr it was supposed that "subgrid" fluctuations belong to quite awide inertial range with the spectrum15

E(k) = CKǫ2/3k−5/3, and that the minimal wavenumber for these fluctuationskmin = π/∆g corresponds to a wavelength in

two grid steps.

(3) Divergent correction of the Eulerian velocity field

Third, in order to find out whether the subgrid mixing is one ofthe key processes in the dispersion of Lagrangian tracers, we

introduced an additional correction to the particle velocities:20

u
(p)
cor div = u

(p) +u
(p)
div, (33)

whereudiv is the deterministic divergent additive to the velocity field u:

udiv,i =
ϑsp
i

sP
(34)

with the imposed restrictionudiv,i = 0 if sP = 0. Here, the "subgrid" fluxϑsp
i is calculated using the same closure as the

closure for Eulerian scalarss, with the only difference that the concentrationsP , estimated by the number of particles in a grid25
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cell, is used in Eq. (23).The applicability of this procedure is determined by the large number of particles involved in simulation

(in all the cases described below we have at least several dozens of particles in each grid cell).

Correction given by Eqs. (33), (34) does not provide true small-scale mixing, but only introduces an additional "stretching"

or "compression" of the small volumes filled with particles and provides concentration fluxes across the borders of grid cells

close to "subgrid" fluxes in Eulerian model. Using this correction, we are guaranteed to get a high correlation between the5

"Eulerian" and "Lagrangian" concentrations (in all our preliminary tests
〈
s′s′p

〉
xy

/

√〈
s′

2
〉〈

s′2p
〉
≈ 0.9).

The idea of such a correction was based on the assumption thatdetails of the mechanism of subgrid mixing have a little

influence on the statistics of trajectories at sufficiently large distances from the source and at the big enough timet. It was

assumed that the quick mixing on small spatial scales can be implicitly substituted by the approximation errors arisingin the

procedures of interpolation and by the errors of discrete solution to the advection equation. Correction brings an additional10

systematic effect to reduce incorrect particle transport by the large eddies.

3.2.2 Simplified velocity interpolation

In preliminary tests it became clear, that trilinear interpolation of each velocity component provides no advantages for footprint

calculation in comparison with the following simplified linear interpolation on a staggered grid:

u(p) = ui−1/2,j,k

xi+1/2,j,k − xp

∆x
+ ui+1/2,j,k

xp − xi−1/2,j,k

∆x
,

v(p) = vi,j−1/2,k

yi,j+1/2,k − yp

∆y
+ vi,j+1/2,k

yp− yi,j−1/2,k

∆y
,

w(p) = wi,j,k−1/2

zi,j,k+1/2 − zp

∆z
+wi,j,k+1/2

zp− zi,j,k−1/2

∆z
,

(35)15

where position(i, j,k) is the center of a grid cell containing the particle. Trilinear interpolation and interpolation given by Eq.

(35) provide nearly the same concentration fluxes across theborders of a grid cell, but the latter does not result in additional

substantial smoothing of velocity. An exception was made for the grid layer closest to the surface (zp <∆g) where the mean

velocity components were adjusted according to the Monin-Obukhov similarity theory with the dimensionless functionstaken

from (Businger et al., 1971).20

4 LES of stable ABL and footprint calculations

4.1 The setup of numerical experiment

Stable boundary layer at the latitude 73◦ N in close to the steady state conditions was considered. Thecalculations were carried

out according to the GABLS scenario (Beare et al., 2006), with the difference that the geostrophic windUg has been rotated

35o clockwise such that the wind direction near the surface approximately coincides with the axisx. The duration of runs is 925

hours. The initial wind velocity coincides with geostrophic velocity|Ug| = 8 m/s. The initial potential temperatureΘ is equal

to the surface temperatureΘs|t=0 = 265 K up to the height 100 m and increases linearly with the ratedΘ/dz = 0.05 K/m if

z > 100 m. During the calculations, the surface temperature decreases linearly with time:dΘs/dt=−0.25 K/hour. Dynamical
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and thermal roughness parametersz0 andz0Θ are set to 0.1 m. The calculations were performed at the equidistant grids with

steps∆g = 2.0 m, 3.125 m, 6.25 m and12.5 m. The size of the horizontally periodic computational domain was equal to

400× 400× 400m3. The last hour of numerical experiments was used for averaging of the results and subsequent analysis.

The mean wind velocity and the potential temperature, calculated with different spatial steps∆g, are shown in Fig. 2. The

model slightly overestimates the height of the boundary layer at coarse grids, however, the wind velocity near the surface is5

approximately the same in all runs.

Passive Lagrangian tracers were transported simultaneously with the calculations of dynamics. Each particle, when reaching

a lateral boundary of domain, is returned from the opposite boundary in accordance with periodic conditions. The reflection

condition is used at the ground. The particles are ejected atthe heightz0 = 0.1 m (one particle per each grid cell adjacent to

surface) with regular time intervals∆tej = 1 s. The position of the new particle within a grid cell is set randomly with uniform10

probability. The ejection of particles takes place continuously from the seventh to the ninth hour of the experiment.

To limit the number of the particles involved in the calculation the absorption condition is applied at the height of 100

meters within ABL. It was verified previously that the upper boundary condition does not have a large impact on the resultsof

calculations of footprints for the heightszM up to 60 m. This formulation of numerical experiment allows direct comparison

of the concentration of particlessP , estimated by Eq. (7), and the scalar concentrations, calculated by the Eulerian approach15

(Eq. 6). For this purpose, additional scalars is calculated from 7-th till 9-th hour with a constant surface fluxFs = const= 1,

zero initial condition and the Dirichlet conditions= 0 at the altitude 100 m.

In the last hour of simulation the averaged number of particles in each cell of the grid near the surface was approximately

equal to 700-800, 350-400,180-200 and 110-130 for grids steps∆g=12.5 m, 6.25 m, 3.125 m and 2.0 m, respectively. Having

such number of particles one can estimate the concentrationsp(xi,j,k, tm) at each time step, wherexi,j,k is the center of a grid20

cell. It was assumed, that each particle contributes to the concentratioñsP (xi,j,k) with the weightrpi,j,k = (V p
⋂
Vi,j,k)/Vi,j,k,

whereV p is rectangular neighborhood of its position with the side∆g, (V p
⋂
Vi,j,k) is the volume of intersection with grid

cell, Vi,j,k is the cell volume. This averaging is close to the filtering ofEulerian scalar (Eq. 24). The additional normalization

is performed as follows:sP = s̃P∆tej/∆z. The concentrationsP corresponds to the number of particles in one cubic meter

under the condition that one particle per square meter per second is ejected near the surface. ConcentrationsP is numerically25

equal (excluding errors, determined by different methods of transport) to the concentration of the scalar fields if scalar surface

flux Fs = 1.

Figure 3 shows the resolved and the parameterized components of flux 〈w′s′〉 in runs with different grid steps. It is seen

that the calculation time is not large enough to reach a steady state (the total flux is not constant with the hight, so the average

concentration continues to grow during the last hour). However, it was checked that the flux footprint close to the sensoris not30

affected by nonstationarity. Besides, we can compare the values ofs andsP , because the boundary and initial conditions are

identical for them.

The unresolved fraction of the fluxF sbg
s = 〈ϑs

3〉 is an essential part of the total fluxF tot
s = 〈s w〉+ 〈ϑs

3〉. Accordingly, the

vertical transport of Lagrangian particles by resolved velocity u may be significantly underestimated. Thus, we have "hard"

enough test to verify Lagrangian transport in LES with poorly-resolved velocity field.35
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4.2 Sensitivity of LES results on methods of particle transport and spatial resolution

4.2.1 Footprint calculation with limited application of subgrid stochastic modelling in LES

Figure 4 shows the scalar flux footprints averaged in crosswind directionfy
s (xM −x,zM ) computed by different methods and

with different grid steps. All footprints are normalized sothat
∫

fy
s (x)dx = 1.

In all cases, we have avoided using the subgrid scale stochastic modelling except calculating the velocity of the particles5

located within the first grid layerzp <∆g. For the curves marked "st1l" , the resultant velocity of the particles near the surface

was calculated as follows:

u
p = u

(p) +(1− zp/∆g)u
′′p, (36)

whereu′′p is the random velocity component, calculated using the stochastic subgrid model (Eq. 28). To take into account the

memory effects in Langevin equation, the stochastic model was implemented inside the layerzp < 3∆g, so (because of the10

smallness of scaleTL) this procedure does not lead to significant distortions in the random component of the velocity.

If the particles are advected by the filtered velocityu without any correction then the vertical mixing is too weak and the

maxima of footprintsfy
s are strongly underestimated and shifted at the large distances from the sensor position. Divergent

correction of Eulerian velocity (Eqs. 33, 34) partially improves the results (squares in Fig. 4a,b). For example, maximum of

footprintfy
s for the sensor heightzM=30 m (near the fifth computational level) occurs to be close to the maxima of footprints,15

computed at fine grids, but it is still shifted. Thus, the correction (33, 34) alone is not sufficient. Primarily this is dueto the

weak mixing below the first computational level, where the contribution of the subgrid velocity is crucial.

The inclusion of stochastics within the first layer improvesthe result (dashed curves in Fig. 4a,b). However, it is not enough

to determine footprints at altitudes comparable to the gridspacing.

The advection of particles by the velocityu∗ leads to close matching of functionsfy
s , calculated with different grid steps20

(solid lines of different thickness in Fig. 4c,d). The differences between these footprints are not significant from a practical

point of view, and can be equally explained by means of the incorrect Lagrangian particles transport, as well as by means of

the insufficiently accurate solution to the Eulerian equations on the coarse grid.

4.2.2 Spatial variability of scalar concentration inferred by Eulerian and Lagrangian methods

While the particles were advected by the "defiltered" flow we have also used the correction (Eqs. 33, 34). In this case the25

subgrid diffusion coefficient was reduced twiceK∗subgr
h = cKsubgr

h , c= 0.5 (coefficientc= 0.5 was chosen because about a

half of subgrid flux can be restored using "defiltering" :〈sw∗〉−〈s w〉 ≈ 0.5〈ϑs
3〉). We note that when the particles are advected

by velocityu∗(p) then the presence or absence (crosses in Fig. 4c,d) of correction has no significant effect on the functionfy
s .

Nevertheless, this procedure may be useful for the following reasons.

In the inertial range of three-dimensional turbulence along with the kinetic energy the variance of a passive scalar concen-30

tration is transferred from large scales to small scales with the formation of the spatial spectrumSs =Ksǫsǫ
−1/3k−5/3 (see

(Obukhov, 1949)) (hereǫs is the dissipation rate of the variance of concentration, caused by molecular diffusion). Lagrangian
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transport of particles by a divergence-free velocity fieldu
∗ with the truncated small-scale spectrum is equivalent to Eulerian

advection of concentrations without any dissipation. The absence of subgrid-scale partof the velocity spectrum will lead to

reduction of the forward cascade and to the accumulation of varianceσ2
sp in vicinity of the smallest resolved scales.

Figure 5a shows the variances of "Eulerian" concentrationσ2
s(z) =

〈
s′2
〉
xyt

computed at different grids, and the variances

of "Lagrangian" concentrationσ2
sp(z) =

〈
sP

′2
〉
xyt

. One can see that if particles are advected by the velocityu
∗(p) (crosses),5

varianceσ2
sp is much larger thanσ2

s . If the velocityu∗(p) +u
(p)
div is used (black circles), the values ofσ2

sp andσ2
s become

closer to each other. Besides, the correction (33, 34) increases the correlation corr(s,sP ) = 〈s′s′P 〉xyt /(σspσs) of two fields

calculated by means of "Eulerian" and "Lagrangian" approaches.

One can expect that in more complicated cases (e.g., the turbulent flow around geometric objects and the formation of

quasi-periodic eddies) the accumulation of small-scale noise in the concentration field may lead to the incorrect advection of10

concentration by the resolved eddies. This effect may be also important for inertial particles when the nonphysical variance of

concentration can directly affect dynamics. In the additional tests it was found that correction (Eqs. 33, 34) preventsparticles

stagnation in zones with unresolved turbulence while the modelling of urban-like environment. Thus, this correction is desirable

for a number of reasons as a practical replacement of subgridstochastics which requires large computer resources.

4.2.3 Particle advection and footprint determination in LES with subgrid LSM15

One can obtain footprints close to those presented at Fig. 4 by means of application of the stochastic subgrid model (Eqs.

28-32). The calculations for this model have been carried out at the grids with steps 3.125 m, 6.25 m and 12.5 m (solid linesof

different thickness in Fig. 6a,b). One can note the defect ofthe stochastic subgrid modelling in LES, which can not be detected

by studying of the mean characteristics. In the previous subsection the recovered "subfilter" part of velocityu′′ = u
∗ −u

and so the subfilter Lagrangian velocityu′′(p) were highly correlated with the resolved velocityu in time and space. This is20

due to the specifics of spatial filter (Eq. 24) used for the recovering given by Eqs. (25,26). This filter has a smooth transfer

function in spectral space. The analogous effects of non-ideal filters in LES which lead to the high correlations between

modelled and measured turbulent stresses were obtained anddiscussed earlier in (Liu et al., 1994) and Meneveau and Katz

(2000), where the laboratory data of turbulent flows were studied. On the contrary, additional mixing in the stochastic model

(Eqs. 28-32) is due to random fluctuations which are not related tou strictly. When one uses coarse grids, the energy of these25

Lagrangian fluctuations should be large enough to restore mixing in vertical direction. This is accompanied by an excessive

suppression of the variability of concentrationsP near the surface, where the contribution of subgrid mixing is large (stars

in Fig. 5a). The correlation between "Eulerian" concentration and "Lagrangian" concentarion is reduced simultaneously (see

Fig. 5b). Probably, this defect of employed Lagrangian stochastic model is connected to the horizontal averaging in evaluation

of "subgrid" dissipation and energy. Nevertheless, this result shows that in some cases the stochastic subgrid modelling can30

prevent correct reproduction of the resolved spatial variability of particle concentration in LES along with improvement of the

mean transport.

15



4.3 Two-dimensional footprints

The trajectories of large number of particles (∼ 1.8× 108) were simultaneously computed in LES with grid step 2.0 m. Ac-

cordingly, one can get statistically grounded estimation of two-dimensional footprint functionsfs(x−xM ,y−yM ,zM ). These

functions, computed for the sensor heightszM=10 m andzM=30 m are shown in the Fig. 7a,b. One can see, that the area with

the negative values of footprint exists. The negative values of footprints are typical (e.g., Cai et al., 2010; Steinfeld et al., 2008)5

for the convective boundary layer due to fast upward advection by the narrow thermal plumes and slow downward advection

in the surroundings. Here, the negative values of the functionfs are connected to the Ekman spiral and to the mean transport

of the particles elevated to large altitudes in the direction perpendicular to the near-surface wind. The negative values of scalar

flux footprint show what the vertical turbulent transport ofthe scalar emitted in the relevant area is basically directed from the

upper levels down to the surface. For example the positive surface concentration flux in this area will lead to negative anomaly10

of the turbulent flux measured in the sensor position. This does not contradict the diffusion approximation of the turbulent

mixing, because mean crosswind advection at the upper levels can produce the positive vertical concentration gradientto the

right of near-surface wind. the diffusion approximation ofthe turbulent mixing process, because mean crosswind advection at

the upper levels can produce the positive vertical concentration gradient to the right of near-surface wind.

The contribution of the negative part of the flux to the "measured" flux is significant, as shown in Fig. 7c,d, where cumulative15

footprints, defined as

F (xd,zM ) =

xd∫

−∞

fy
s (x

′,zM )dx′, (37)

are separated into positive and negative partsF (xM − x,zM ) = F+ +F−.

5 Stochastic modelling and the comparison with LES

5.1 Preparation of turbulence data from LES for LSMs and RDMs20

The LES results with grid step∆g=2.0 m were used for data preparation. To apply LSM (Eqs. 8, 9)the following Eulerian

characteristics are required: the mean wind velocity components〈u〉 and〈v〉, the second moments
〈
u′
iu

′
j

〉
and the dissipation

ǫ. Stochastic models are even more sensitive to some of these characteristics than the advection of particles in LES. For

example, the underestimated values of the turbulent kinetic energy in LES are the consequence of the suppression of small

eddies. Nevertheless, these eddies exert relatively smallinfluence on the mixing of scalar, because the effective eddydiffusivity25

associated with themKsmall
h ∼ E

1/2
smalll

small is not large due to small spatial scale. However, the turbulent energy which is

substituted into LSM affects results independently of the scale and has to be evaluated with good accuracy.
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5.1.1 Mean velocity

Mean wind velocity at the heightz0 < z ≤∆g was computed using log-linear law:

〈ui〉= U∗

(
1

κ
ln

(
z

z0

)
+Cm

z

L

)
×

〈ui〉

|u|

∣∣∣∣
z=∆g/2

, Cm = 5, (38)

and〈ui〉= 0 at z < z0. Here,U∗ is the friction velocity,κ= 0.4 denotes the von Karman constant,L is the Obukhov length5

at the surface (note, that the von Karman constant is not included in the definition of the lengthL here and later). The linear

interpolation of velocity was used ifz >∆g.

5.1.2 Momentum fluxes

The fluxes
〈
u′
iu

′
j

〉
=
〈
u′
iu

′
j

〉
+ τmix

ij (i 6= j) were interpolated linearly and additionally smoothed everywhere in the domain.

These fluxes are shown in Fig. 8a.10

5.1.3 Variances of velocity components

The variances of velocity componentsσ2
i =

〈
u′2
i

〉
were estimated by formula:

σ2
i =

〈
(u∗

i
′)2
〉
x,y,t

+
2

3
Esubg , (39)

whereEsubg is the subgrid energy (Eq. 32) and
〈
(u∗

i
′)2
〉

are the variances of recovered velocity components. The vertical

velocity variance has the greatest impact on the functionsfy
s . Figure 8b shows the comparison of evaluated normalized RMS15

σ̃w = σw/|τ |
1/2 (solid line) with the SHEBA data (symbols; see description in (Grachev et al., 2013, fig. 15b); data kindly

provided by Dr A. Grachev). The data are shown in dependence on nondimensional stability parameterξ = κz/Λ, where

Λ(z) =−
|τ |3/2Θ0

gQ
(40)

is the local Obukhov length, determined using values of fluxes of momentum|τ | and temperatureQ at the given heightz (local

scaling in stable ABL (Nieuwstadt, 1984)). The measurements suggest that the mean value of normalized RMSσ̃w ≈ 1.3320

if value ξ is small. Figure 8b shows, that our estimation of RMS is slightly less than the measured values in the interval

0.03< ξ < 0.2. Respectively, the final values of vertical velocity variance designed for the substitution in stochastic models

were corrected as follows:σ2
w = 1.332|τ | if ξ < 1. At the higher levels the estimation (Eq. 39) was applied.

The final estimations of the variances of velocity components are shown in Fig. 8c by the solid lines. Dashed lines are

the filtered resolved velocityui variances. The estimation of the varianceσ2
w using Eq. (39) is shown by the circles. One25

can see that significant parts of variances were not reproduced explicitly in LES and were recovered using abovementioned

assumptions.

5.1.4 Turbulent energy dissipation rate

Usual interpolation is not applicable to the calculation ofdissipation rate near the surface, whereǫ∼ 1/z. Besides, the values

of dissipationǫ∆k computed in LES at the levelszk = (k− 1/2)∆g are approximately equal to the averaged values inside the
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layers(k− 1)∆g < z ≤ k∆g, but not to the physical dissipation at given altitudes. Under the assumption that|τ | is constant

with height and neglecting the stratification inside first layer, one can get the following corrected value ofǫ at the height

z =∆g/2:

ǫ|z=∆g/2 ≈ 2ǫ∆1/ln(∆g/z0) (41)5

Additional analysis showed that ifz < 0.25zi then the local balance of turbulent kinetic energy (TKE) is well satisfied:

ǫ≈ S+B, whereS andB are shear and buoyancy production. Therefore, the nondimensional dissipation can be approximated

by a formula

ǫ̃=
ǫz

|τ |3/2
= φm

( z
Λ

)
−

z

Λ
=

1

κ
+(CΛ

m − 1)
z

Λ
, (42)

where10

φm =

∣∣∣∣
∂ 〈u〉

∂z

∣∣∣∣
z

|τ |1/2
=

1

κ
+CΛ

m

z

Λ
(43)

is the nondimensional velocity gradient;CΛ
m = 5, according to the observation data (e.g., Grachev et al., 2013) and LES results

(e.g., Glazunov, 2014). Here, the assumption is used that the shear∂ 〈u〉/∂z and the stressτ are collinear. Previous LES

studies of stable ABL (e.g., Beare et al., 2006) also give neglectfully small values of the transport terms in TKE balance. The

experimental confirmation of the validity of Eq. (42) can be found in (Grachev et al., 2015), where the dissipation in stable15

ABL was estimated using the spectral analysis of longitudinal velocity in inertial range. In accordance with this paper: ǫ̃≈ φm,

that is almost indistinguishable from Eq. (42) within the accuracy of the experimental data and the ambiguity of the method of

dissipation evaluation.

Discrete values of nondimensional dissipationǫ∆kzk/|τ |
3/2 are shown in Fig. 9a by circles. Dashed straight line is the

universal function (Eq. 42). One can see, that the correction (Eq. 41) makes the dissipation values closer to the function (Eq.20

42). Finally, the profile of dissipationǫcf (z) for LSM was corrected as follows (see Fig. 9b). The dissipation was set to be

constant below some heightze, and was replaced by universal functionǫ= ǫ̃|τ |3/2/z up to the level withz/Λ= 1. The height

ze was chosen in a such way to equalize values of the dissipationaveraged in a layer0≤ z ≤∆g and the dissipationǫ∆1.

Figure 9b shows that the corrected dissipationǫcf (solid line) is very close to "discrete" dissipationǫ∆k (circles), except for

the first computational level.25

5.1.5 Diffusion coefficients

Random displacements model (Eq. 15) requires the estimation of eddy diffusion coefficientKs. Note, that due to anisotropy

one should use tensor diffusivityKij
s in a general case. Neglecting this fact, let us assume that the principal axes of the tensor

Kij
s are aligned with the coordinate axes. The correspondent coefficientsKww

s , Kuu
s andKvv

s (see Fig. 8d) can be calculated

as follows:30

Kww
s =−〈w′s′〉/

(
∂ 〈s〉

∂z

)
, (44)
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Kuu
s =

σ4
u

σ4
w

Kww
s , Kvv

s =
σ4
v

σ4
w

Kww
s . (45)

The horizontal eddy diffusivitiesKuu
s andKvv

s are estimated taking into account the expression (13).

One can see that the formula (13) provides a good approximation for the coefficientKww
s if one sets the valueC0 = 6. We5

note, that the data of LES were substantially corrected to get this estimation. Very fine grids simulations are needed to verify

and to justify the given value. There is no guarantee that this constant is actually universal under different stratification in ABL.

5.2 Specification of LSMs and RDMs tested against LES

The following stochastic models were tested using the data prepared as described above.

(1) RDM0 is the random displacements model with uncorrelated components. Particle position is computed by the formula10

similar to Eq. (15) but with direction-dependent coefficients (see, Eqs. (44), (45) and Fig. 8d). The components of the Gaussian

random noise satisfy the condition (10).

(2) RDM1 differs from RDM0 by using the noise with inter-component correlations:

〈
ξpi (t)ξ

h
j (t+ t′)

〉
=

〈
u′
iu

′
j

〉

σiσj
δphδ(t

′)dt, (46)

whereσi =
〈
u′2

i

〉1/2
.15

(3) LSM0 is the Lagrangian stochastic model without WMC:

du′p
i =−

u′p
i

T i
L

dt+
√
C0ǫξ

p
i , T i

L =
2σ2

i

C0ǫ
. (47)

(4) LSM1 is based on the one-dimensional well-mixed model:

dwp =

(
−
wp

Tw
L

+
1

2

∂σ2
w
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(
1+

(wp)
2

σ2
w

))
dt+

√
C0ǫξ

p
3 , Tw

L =
2σ2

w

C0ǫ
, (48)20

supplemented by uncorrelated horizontal mixing similar toEq. (47) with the appropriate variancesσ2
u andσ2

v .

(5) LSMT is three-dimensional Lagrangian stochastic model satisfying WMC, which is proposed by Thomson (1987). For the

incompressible turbulent fluid in a steady state and under the condition of zero mean vertical velocity this model (Thomson,

1987, formula (32)) reads:

api = −
1

2
δijC0ǫ(τ

−1)iku
′p
k +

1

2

∂τil
∂xl

+
∂
〈
u
(p)
i

〉

∂xj
u′p

j +
1

2
(τ−1)lj

∂τil
∂xk

u′p
ju

′p
k,

du′p
i = api dt+

√
C0ǫξ

p
i ,

(49)25

whereτ−1 is the tensor inverse to the stress tensor.

The setups of numerical experiments with RDMs and LSMs were close to particle advection conditions in LES (absorbtion

at the altitude 100 m, ejection atz0 = 0.1m and reflection atz = 0). The particles were generated continuously within two hours
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of modelling. The last hour was used for averaging. The models LSM0 and LSM1 use the valueC0 = 6. Three-dimensional

model LSMT was applied withC0 = 6 andC0 = 8.

5.3 Modelling results

Figure 10 shows one-dimensional footprintsfy
s and the corresponding cumulative footprintsF , computed by LES (bold solid5

lines,∆g=2.0 m) and by stochastic models described above. Footprints are shown for the sensor heightszM = 10, 30 and 60

m.

The models RDM0, RDM1 and LSM1 provide very similar results.Faster mixing is observed in stochastic models below

the altitudezM = 10 m in comparison to LES. These differences are not crucialand are compensated in a cumulative footprints

at the distancesx−xM ∼ 1000 m. The differences can be explained either by insufficient subgrid mixing in LES or by inexact10

procedure of the data preparation for stochastic modelling. Very weak sensitivity of the models with respect to correlations of

particle velocity components is observed as well. Thus, theresults close to LES were obtained in stochastic models having the

"diffusion limit" with the same or close vertical diffusioncoefficient. The significant advantages of LSMs compared to RDMs

were not observed in this particular flow.

The substantial disagreements to LES were obtained using three-dimensional Thomson model (Eq. 49) withC0 = 6 and the15

model LSM0. The last one is designed for the isotropic turbulence and does not satisfy WMC under the conditions considered

here. This model leads to overestimated mixing, and such bias does not vanish at large altitudes.

LSMT (Eq. 49) was proposed in (Thomson, 1987) as one of the possible ways to satisfy WMC in three dimensions. In our

simulations the error of LSMT is substantial and grows with sensor height. This was shown by Sawford and Guest (1988), who

derived the diffusion limit of Thomson’s multidimensionalmodel for Gaussian inhomogeneous turbulence and showed that the20

implied effective eddy diffusivity for vertical dispersion is:

Ks =
2(σ4

w + 〈u′w′〉
2
)

C0ǫ
. (50)

Taking into account this expression and Eq. (13) which is valid for the one-dimensional LSM, one can estimate the appropriate

value ofC0 for LSMT under the conditions considered here:C0 ≈ 6(1.334+1)/1.334 ≈ 8 (we assume thatσw/| 〈u
′w′〉 |1/2 ≈

σw/|τ |
1/2 ≈ 1.33). The results of LSMT withC0 = 8 are in a close agreements with the results of other stochastic models and25

with the results of LES (open triangles in Fig. 10a,c,e).

Turbulent PrandtlPr and SchmidtSc numbers computed using Eulerian approach are shown in Fig. 11a. These numbers

coincide and are approximately equal to 0.8 up to the altitude slightly less then 100 m, where the boundary condition for a

scalar is applied. Schmidt numbersSc were calculated also using the concentrations and the fluxesof Lagrangian particles.

The models RDM0 and LSM1 provide the values ofSc close to the results of Eulerian model. Calculations by LSMT( C0 = 6)30

result inSc≈ 0.5− 0.6, that is also the sign of the overestimated vertical mixing.

Two-dimensional footprintsfs(x− xM ,y− yM ,zM ), computed by the models RDM0, RDM1 and LSM1 (figures are not

shown here) were very close to LES results presented in Fig. 7. In particular, this fact argues that the mechanism of formation
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of the region with negative values offs has a simple nature, which can be easily reproduced in the framework of the diffusion

approximation.

The cross-wind mixing can be characterized by RMS of transversal coordinates of the particles depending on the mean

distance from the source:Y ′p(Xp) =
〈
(yp − Y p)2

〉1/2
, whereXp = 〈xp〉 andY p = 〈yp〉 are the mathematical expectations of5

the particle position. FunctionsY ′p(Xp) are shown in Fig. 11b. The models RDM0, RDM1, LSM1 and LSMT (withC0 = 6)

result in close horizontal dispersion. All the stochastic models predict slightly less intensive mixing in comparisonto LES, that

can be a consequence of the inaccurate data preparation algorithm, as well. If one neglects the anisotropy of eddy diffusivity

than this dispersion would be substantially underestimated (see short-dashed line in Fig. 11b, computed by RDM with the

coefficientsKuu
s =Kvv

s =Kww
s ). One can see, that the choiceC0 = 8 in LSMT (open triangles) does not improve its overall10

performance because the improved vertical mixing is accompanied by the reduced dispersion of particles in the horizontal

direction.

Wind direction rotation leads to widening of concentrationtrace from the point source (see thin dashed line in Fig. 11b,

computed with one-dimensional LSM). At larger distances from the source in the Ekman layer the crosswind dispersion of

pollution should be defined by the joint effect of the wind rotation and vertical mixing but not by the horizontal turbulent15

mixing.

6 Validation of analytical footprint parameterisations

Footprint parameterisations that are assumed to be valid for a broad range of boundary layer conditions and measurement

heights over the entire planetary boundary layer were proposed in (Kljun et al., 2004) and recently in (Kljun et al., 2015).

These parameterisations are based on a scaling approach. The parameters for these analytical models were evaluated using20

backward Lagrangian stochastic particle dispersion modelLPDM-B (Kljun et al., 2002). In turn, LPDM-B is based on the

forward single particle Lagrangian stochastic model (see (Rotach et al., 1996) and (de Haan and Rotach, 1998)) satisfying

WMC. The value of Kolmogorov constantC0 which was selected for LPDM-B stochastic model was set to 3 (see (Kljun et al.,

2002)). In parameterisation of LPDM-B, the turbulent statistics and the wind velocity were assumed to be universal and depend

on the surface heat and momentum fluxes, the roughness parameter and the boundary layer height. The exact formulas for all25

the universal non-dimensional functions under the stable stratification are not presented in (Kljun et al., 2015) and references

therein, therefore direct comparison of the turbulence profiles with LES is not possible. Nevertheless, the final approximations

(Kljun et al., 2004) and (Kljun et al., 2015) contain the input parameters, which can be determined from LES: the boundary

layer heightzi ≈ 180 m, Obukhov lengthL/κ≈ 120 m, friction velocityU∗ ≈ 0.27 m/s and roughness parameterz0 = 0.1 m.

These values were substituted into parameterisations (Kljun et al., 2004) and (Kljun et al., 2015). Fig. 12 shows the comparison30

of the crosswind averaged footprint functionsfy
s and cumulative footprintsF , obtained by different models. The Thomson’s

model was used withC0 = 6,4, and 3 for the comparison.

Parametric models provide results which differ substantially from all the abovementioned approaches. Both of the models

(Kljun et al., 2004) and (Kljun et al., 2015) predict faster mixing. One can see, that LSMT, which is itself too dispersivein
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comparison with 1-D LSMs and RDMs, does not reach the values predicted by parameterisations from (Kljun et al., 2004) and

(Kljun et al., 2015), even if one chooses the smaller values of C0. It means, that parameterisations of turbulence profiles must

have significant impact and are one of the reasons for deviation between models from (Kljun et al., 2004) and (Kljun et al.,

2015) and LES. Besides, in the Fig. 12 it is seen that the top boundary condition (absorbtion of particles at the height 100m)5

does not affect presented footprints.

7 Conclusions

Scalar dispersion and flux footprint functions within the stable atmospheric boundary layer were studied by means of LESand

stochastic particle dispersion modelling.

It follows from LES results that the main impact on the particle dispersion can be attributed to the advection of particles by10

resolved and partially resolved "subfilter-scale" eddies.It ensures the possibility to improve the results of particles advection

in discrete LES by the use of recovering of small-scale partially resolved velocity fluctuations. If one uses the LES model with

the explicit filtering, then this recovering is straightforward and consists of application of the known inverse filter operator.

Apparently, a similar method can be implemented for other LES when the spatial filter is not specified in an explicit form.

This would require, however, the prior analysis of the modeled spectra to identify an effective spatial resolution and the actual15

shape of the implicit filter. For substantial improvement ofparticle transport statistics, it is enough to use subgrid Lagrangian

stochastic model within the first computational layer only,where LES model becomes equivalent to simplified RANS-model.

When the particles are advected by a divergence-free turbulent velocity field then the variance of the particles concentration

can be accumulated at small spatial scales. In the considered case it does not affect directly the particles advection bythe

large eddies and gives no significant influence on the resultsof footprint calculations. In those cases when the instantaneous20

characteristics of the scalar field of particle concentration are important, the additional correction to particles velocities may be

required. It can be done both through the introduction of stochastics, resulting in the diffusion of concentration, andthrough

the "computationally inexpensive" divergent correction of the Eulerian velocity field.

Under the stable stratification, to calculate the flux footprint, it is preferable to use stochastic models, which describe the par-

ticles dispersion close to the process of scalar concentration diffusion with the effective coefficientKww
s (z) =−〈w′s′〉/(〈ds〉/dz)25

in a vertical direction. RDM and one-dimensional "well-mixed" LSM tested in this study are the examples of such stochastic

models. The optimal value for the "universal constant"C0 is found to be close to 6. This value coincides with the estimation of

the value of Kolmogorov Lagrangian constant in isotropic homogeneous turbulence. Stochastic models that use smaller values

C0 ≈ 4 (this choice is widespread now) may produce extra mixing andthe shorter footprints, correspondingly.

One-dimensional stochastic models can be supplemented by the horizontal particles dispersion in a simple way. Introduction30

of the correlation between particle displacement components in RDM does not improve or change results substantially. How-

ever, the coefficients of horizontal diffusionKuu
s andKvv

s for RDMs can be evaluated through the vertical diffusion coefficient

Kww
s multiplied by the square of velocity components variances ratio.
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Model LSM1, constructed as a combination of independent stochastic models in each direction (well-mixed in the vertical

direction only) gives reasonable results although this model does not satisfy WMC in general. In contrast, the three-dimensional

Thomson model with WMC andC0 = 6 provides overestimated vertical mixing, which is manifested in a too small Schmidt

number values and in a reduced lengths of the footprints. Thomson model withC0 = 8 produces true mixing in vertical5

direction, but underestimates the mixing in crosswind direction.

Accordingly, one can recommend another well-mixed stochastic model proposed in (Kurbanmuradov and Sabelfeld, 2000).

It was developed under the assumption that the vertical drift term does not depend on the horizontal velocity components, and

the vertical component of this model coincides with LSM1. Prior to use, this model should be modified in an appropriate way

to take into account the variation of momentum fluxes with height.10

According to presented LES the source area and footprints instable ABL can be substantially more extended than those

predicted by the modern analytical footprint parameterizations and LSMs. The following reasons were identified in thisstudy:

1) too small values of the Kolmogorov constantC0 are used; 2) the possible overestimated vertical mixing provided by some

stochastic models based on well-mixed condition; 3) universal functions for turbulent statistics that are likely to cause additional

deviation in the case of stable turbulent Ekman boundary layer studied here.15

8 Code availability/Data availability

The code of LES model is available by request for the scientific researches in cooperation with first author (and.glas@gmail.com).

The data from LES are attached to the supplement. These data were prepared as it was discussed in Sect. 5.1 and can be

used for the stochastic models evaluation. Besides, supplement contains the data for cross-wind averaged footprints and two-

dimensional footprints obtained in LES (see, Fig.6 and Fig.9).20
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Figure 1. Schematic representation of footprint evaluation algorithm. (a) Setup of numerical experiment. (b) Example of two trajectories

(red and blue bold curves). Shifted trajectories are shown by the dashed lines. Particle brings the impact into the valuefs(xS,yS,xM ) if it

intersects the test areaδM in vicinity of the sensor positionxM and the origin of modified trajectory belongs to the test areaδS .
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Figure 4. Crosswind averaged scalar flux footprintsfy
s in stable ABL, computed by the different methods and with different grid steps;(a,c)

sensor heightzM=10 m, (b,d)zM=30 m. Grid steps and methods are indicated in the legend:u - particles are transported by a filtered LES

velocityu; u∗ - particles are transported by recovered velocityu
∗ = F−1

u; cor div - the additional correction of velocity (Eqs. 33, 34); st1l

- stochastic subgrid model (Eq. 28) is applied for the particles within the first computational grid layer.
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Figure 5. (a) Varianceσ2
s =

〈

s′2
〉

of concentration of Eulerian scalar (solid lines) and varianceσ2
sp =

〈

sP
′2
〉

of concentrationsP , deter-

mined by Lagrangian particles (symbols); grid steps and themethods of calculations are shown in legend, symbolic notations are the same as

in Fig. 4; stars - stochastic model (28-32) is used throughout domain. (b) Correlation corr(s,sP ) = 〈s′s′P 〉xyt/(σspσs) between "Eulerian"

and "Lagrangian" concentrations. For remaining notationssee the caption of Fig. 3.
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Figure 6. Crosswind averaged scalar flux footprintsfy
s , computed using stochastic subgrid model (Eq. 28-32); (a) sensor heightzM=10 m,

(b) zM=30 m. Grid steps are given in the legend. Crosses denote footprints computed with subgrid LSM applied for the particles within the

first grid layer only.
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Figure 7. Two-dimensional footprintsfs(x− xM ,y− yM , zM ) (×10−6m−2) for sensor heightzM=10 m (a) andzM=30 m (b) and the

corresponding cross-wind integrated cumulative footprintsF (xM −x) (c) and (d); long dashed line -F+ (impact of the area with positive

values offs); short dashed line -F− (impact of area with negative values).
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Figure 8. (a) Total momentum fluxes obtained in LES with∆g=2.0 m. (b) Normalized RMS of vertical velocitỹσw = σw/|τ |
1/2 depend-

ing on a dimensionless parameterz/Λ (solid line - estimation using LES dataσw = (
〈

w∗2
〉

+2/3Esubgr)
1/2; symbols - measurements

(Grachev et al., 2013) at different altitudes). (c) Variances of velocity components (dashed line - resolved fluctuation; solid lines - the final

estimation for LSM; bold lines - vertical component, the curves of medium thickness - cross-wind component, thin lines -longitudinal com-

ponent, circles - evaluation ofσ2
w by Eq. (39)). (d) Vertical effective eddy diffusivityKww

s (solid line - coefficient calculated by the gradient

and flux of scalar; dashed line - estimation of coefficient using Eq. (13) withC0 = 6); estimations of diffusion coefficients in cross-wind

directionKvv
s (dash-dot line) and coefficient in longitudinal directionKuu

s (dash-dot-dot line).
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Figure 9. (a) Discrete (LES) nondimensional dissipationǫ∆kzk/|τ |
3/2 (circles), corrected values (solid line), universal function (Eq. 42)

(dashed straight line). (b) Simulated discrete dissipation ǫ∆k (circles) and corrected dissipationǫcf (z) for LSM (solid line). Dashed horizontal

line denotes the heightze, which was chosen in order to equalize the integral values ofthe corrected dissipation and the discrete dissipation.
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Figure 10. One-dimensional footprintsfy
s (a,c,e) and cumulative footprintsF (b,d,f) for sensor heightzM = 10 m (a,b),zM = 30 m (c,d)

andzM = 60 m (e,f). Solid lines - LES with grid steps∆g=2.0 m. Black triangles - LSMT (Thomson, 1987) withC0 = 6, open triangles -

LSMT with C0 = 8. Short-dashed line - LSM0 (Lagranian stochastic model without well-mixed condition). Black circles - LSM1 (LSM with

WMC for vertical mixing). Open circles - RDM0 (uncorrelatedrandom displacements model). Dash-dot line - RDM1 (random displacements

model with correlation between displacement components).
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Figure 11. (a) Prandtl numberPr (dashed line) and Schmidt numberSc (solid line), computed using Eulerian scalars. Symbols -
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Figure 12. One-dimensional footprintsfy
s (a,c,e) and cumulative footprintsF (b,d,f) for sensor heightzM = 10 m (a,b),zM = 30 m (c,d)

andzM = 60 m (e,f). Solid lines - LES with grid steps∆g=2.0 m. Triangles - LSMT (Thomson (1987) model),C0 = 6, absorbtion at z=100

m. Orange curves LSMT,C0 = 6, absorbtion at z=300 m. Dashed blue lines - LSMT,C0 = 4. Solid blue lines - LSMT,C0 = 3. Red lines -

parameterisation (Kljun et al., 2004). Green lines - parameterisation (Kljun et al., 2015).
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