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Abstract. Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) 

formation is thought to be hampered by the complexity of the system. While there are fundamental models now available 

that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly 10 

challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of 

quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods 

such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate 

individual molecules, comparisons have been limited to simple data products such as total organic mass and O:C ratio. More 

detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion 15 

of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. 

 

In this proof of concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra 

for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS), is not built 

from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m/z) channels are 20 

fit as a function of molecular structure before the relative peak height for each channel is similarly fit using a range of 

regression methods.  The widely-used AMS mass spectral database is used as a basis for this, using unit mass resolution 

spectra of laboratory standards. 

 

Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using 25 

supervised methods to automatically optimise the relationship between spectral characteristics and these molecular 

fingerprints. Therefore, any internal mechanisms or instrument features impacting on fragmentation are implicitly accounted 

for in the fitted model.  Whilst one might expect a collection of keys specifically designed according to EI fragmentation 

principles to offer a robust basis, the suitability of a range of commonly available fingerprints is evaluated.  

 30 
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Using available fingerprints in isolation, initial results suggest the generic public ‘MACCS’ fingerprints provide the most 

accurate trained model when combined with both decision trees and random forests with median cosine angles of 0.94-.0.97 

between modelled and measured spectra.  There is some sensitivity to choice of fingerprint, but most sensitivity is in choice 

of regression technique. Support Vector Machines perform the worst, with median values of 0.78-0.85 and lower ranges 

approaching 0.4 depending on the fingerprint used. More detailed analysis of modelled versus mass spectra demonstrates 5 

important composition dependent sensitivities on a compound-by-compound basis. This is further demonstrated when we 

apply the trained methods to a model α-pinene SOA system, using output from the GECKO-A model. This shows that use of 

a generic fingerprint referred to as ‘FP4’ and one designed for vapour pressure predictions (‘Nanoolal’) give plausible mass 

spectra, whilst the use of the MACCS keys in isolation perform poorly in this application, demonstrating the need for 

evaluating model performance against other SOA systems rather than existing laboratory databases on single compounds.  10 

 

Given the limited number of compounds used within the AMS training dataset, it is difficult to prescribe which combination 

of approach would lead to a robust generic model across all expected compositions. Nonetheless, the study demonstrates the 

use of a methodology that would be improved with more training data, fingerprints designed explicitly for fragmentation 

mechanisms occurring within the AMS, and data from additional mixed systems for further validation. To facilitate further 15 

development of the method, including application to other instruments, the model code for re-training is provided via a 

public Github and Zenodo software repository. 

1 Introduction  

Volatile organic compounds (VOCs), emitted from both natural and anthropogenic sources, are oxidised in the atmosphere to 

form lower-volatility species that condense onto aerosol particles or contribute to new particle formation (Laaksonen et al., 20 

2008;Sipila et al., 2016;Ehn et al., 2014). With an enormous number of species that are present, this diversity in chemistry is 

reflected in the extensive range of species and chemical signatures identified in ambient studies (Hamilton et al., 2013). 

Within atmospheric science, it is desirable to develop models for secondary organic aerosol (SOA) formation based on a 

given set of precursors and photochemical processing. Within most global and regional models, often-used techniques 

include modelling representative photochemical yields from specific precursors and tuning accordingly (Spracklen et al., 25 

2011) or employing a parametric model such as the volatility basis set (Robinson et al., 2007). While both of these 

approaches can deliver realistic absolute concentrations, because they are not based on explicit physical processes, their 

predictive skill is always subject to question (Hallquist et al., 2009;Bergstrom et al., 2012). It is therefore desirable to 

develop SOA models based around actual molecular processes and kinetics constrained through laboratory experiments 

(where available), such that this skill can be evaluated.  Such models rely on explicit chemical mechanisms such as the 30 

Master Chemical Mechanism (MCM) (Saunders et al., 1997) or the GECKO model (Aumont et al., 2005). While this 

mechanistic approach has resulted in poor performance in terms of absolute mass concentrations in the past (Volkamer et al., 

David Topping� 5/4/2017 13:23
Deleted: I

David Topping� 6/4/2017 15:15
Deleted:  

David Topping� 5/4/2017 17:27
Deleted: simple 35 

David Topping� 6/4/2017 14:38
Deleted: (Saunders et al., 1997) 



3 
 

2006), much of this shortfall can be accounted for by not considering all precursors (in particular the semi-volatile and 

intermediate-volatility organic matter), unexpected processes likely to produce lower-volatility products (e.g. 

oligomerisation and autoxidation (Ehn et al., 2014) and inadequacies associated with phase partioning models (Barley and 

McFiggans, 2010;Valorso et al., 2011;McVay et al., 2016). As the availability of data regarding these has improved and thus 

our understanding of these processes matured, the performance of the models has become more realistic (McVay et al., 5 

2016). The development of more applicable explicit models has been facilitated by the ability to automatically predict 

processes rather than prescribe them (Aumont et al., 2012;Aumont et al., 2005) as has been implemented in the Generator of 

Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) and the forthcoming version 4 of the MCM 

(http://gotw.nerc.ac.uk/list_full.asp?pcode=NE%2FM013448%2F1). This can be supplemented by the automated prediction 

of properties important for partitioning, using generalised informatics tools such as UManSysProp (Topping et al., 2016). 10 

While it is unlikely that such complex models would be used directly for large-scale Eularian chemical transport and climate 

models, and uncertainties with regards to fundamental properties remain (Bilde et al., 2015), they are still highly useful for 

benchmarking and providing the parameters for simpler models. 

 

Comparison of model output with measurements in the ambient air and in the laboratory is required to test model accuracy. 15 

With current analytical methods, it is impossible to detect and quantify every compound in the particle even if we can predict 

compound-by-compound speciation.  While there are techniques capable of resolving a large number of molecules such as 

electrospray ionisation and two-dimensional gas chromatography (Noziere et al., 2015), comprehensively calibrating for and 

thus providing quantitative data on the abundances of the molecules is difficult. The AMS, which is often used in chamber 

and flow tube experiments, is capable of delivering data on the total mass concentration of organic matter and some other 20 

simple top-down metrics such as the O:C ratio (Aiken et al., 2007). However this does not provide the ideal constraint of 

such models. 

 

While the mass spectral data can be further investigated through inspection of markers at specific m/z channels (such as 43 

and 44) (Ng et al., 2011), such data tends to be qualitative and result in speculative conclusions (Morgan et al., 2010). In 25 

theory, the data across the mass spectrum could be more systematically compared with the modelled data if knowledge of the 

instrument response to molecular features could be invoked in a general fashion (Ehn et al., 2014). 

 

In this proof of concept study we evaluate a methodology to bridge existing model measurement comparison.  A database of 

the AMS mass spectral responses to various molecules has been built up over the years and this has been used to characterise 30 

the response of certain key peaks to certain functional groups (Ulbrich et al., 2009;Ehn et al., 2014).  In this study we use 

that information to develop and evaluate regression software that predicts an AMS spectrum based on the predicted aerosol 

composition (figure 1) 
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This is not the first study on predicting EI mass spectra based on molecular composition, or to demonstrate the potential for 

predicting instrument response functions(Camredon et al., 2007). Bauer and Grimmer (2016) recently reviewed the current 

performance of quantum chemistry methodologies in predicting EI mass spectrometry for small to medium sized molecules 

from first principles. Whilst that study documents improving general applicability, they are not immediately suitable for 

predicting AMS mass spectra because the thermal desorption promotes further fragmentation and, in some cases, 5 

pyrolysis(Canagaratna et al., 2015). While the standard AMS analysis takes these processes into account through empirical 

calibrations, the exact physical processes taking place within the vaporiser system are still the subject of considerable debate 

(Murphy, 2016;Drewnick et al., 2015;Robinson et al., 2016), so the bottom-up modelling of this is not possible with the 

current state of knowledge. 

 10 

Distinct from all previous approaches, the approach presented here relies on supervised learning methods to automatically 

optimise the relationship between spectral characteristics and molecular features from the instrument in question. Therefore, 

any internal mechanisms or instrument features impacting on fragmentation are implicitly accounted for in the fitted model.   

 

In section 2 the methodology behind constructing a predictive model is presented, whereas section 3 focuses on results 15 

regarding the accuracy of a model with respect to comparisons with spectra for individual components.  In addition we 

present results from simulating the mass spectra of α-pinene aerosol using the GECKO-A model before we discuss future 

data requirements in section 4. 

2 Methodology  

Figure 1 displays the workflow used in building the predictive model.  First, a model is trained to predict the occurrence of 20 

specific m/z channels as a function of molecular composition before a model for each m/z channel is trained to predict peak 

height within that channel.  It is worthwhile detailing the molecular information used to train each model.  Each molecule 

has varying levels of structural features, which can be written in terms of a ‘fingerprint’. This fingerprint is a numerical 

identification of a given structure that can equally be thought of as stoichiometric information for distinct features.  For 

example, for a collection of 10 compounds we would construct a matrix of stoichiometric information where each row 25 

represents a specific molecule and each column the stoichiometry of a given feature. We now refer to each column as a 

‘key’, which might be a specific functional group or feature associated with that molecule. We retain the use of the word 

‘key’ since it can provide more generic information than a functional group. To re-iterate, the entire row we refer to as the 

molecular fingerprint.  For example, identifying the occurrence of carboxylic acid groups is a key within the AIOMFAC 

fingerprint (Zuend et al., 2011). We then take this information and use it to train a model to predict both the occurrence of a 30 

specific m/z channel and then peak heights.  
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To re-iterate, in constructing a model that can predict AMS mass spectra, a library of compounds with measured spectra are 

used to train a series of regression techniques.  This collection of molecules, represented as SMILES strings, is parsed to 

produce a matrix where each column represents the stoichiometry of a particular key, or feature. This entire matrix is used to 

fit a predict model for each m/z channel. 

 5 

The underlying physical principles of EI (F. W. McLafferty, 1994) adjusted to the AMS (Gasteiger et al., 1992), do not exist 

in algorithmic form, so there is currently no a priori basis for choosing the most appropriate fingerprint for this work. 

Therefore a collection of common fingerprints, and their combination, is tested in this study and their performance critically 

evaluated.  This is an important sensitivity since one might expect a collection of keys that relate to EI fragmentation 

principles to offer a more robust basis for fitting any method used here. We discuss this further in section 4. 10 

 

Fingerprints used in this study include those employed in activity coefficient and vapour pressure predictive techniques 

provided by the UManSysProp package (Topping et al., 2016;Zuend et al., 2011;Nannoolal et al., 2008), alongside more 

general fingerprints including the MACCS keys and FP4 keys (Putta et al., 2003). It is difficult to find information on 

provenance behind these latter generic fingerprints (Putta et al., 2003), other that they are designed to cover a set of 15 

molecular features that would be used across a broad range of applications. The MACCS fingerprint provides up-to 162 

unique keys of any given molecule, the FP4 fingerprint featuring up to 320. The current implementation of the MACCS keys 

from the Pybel package (O'Boyle et al., 2011) is used whereas the FP4 keys are extracted from the RDKit open source 

informatics package (http://www.rdkit.org/docs/index.html). Each key is represented in the UManSysProp package (Topping 

et al., 2016) using SMARTS notation, and each molecule using the SMILES format. The matrix of keys used to fit each 20 

method is constructed by systematically parsing each molecule. Figure 2 demonstrates the use of the MACCS SMARTS to 

populate a matrix of keys.  There are some common features between each fingerprint library, but also a range of 

differences. For example, all libraries identify the presence of the CH2 group, but then differ in the optional connecting 

groups. The FP4 keys cycle through systematic groupings, such as: primary carbon, secondary carbon, tertiary 

carbon…primary alcohol, secondary alcohol, tertiary alcohol etc. Similar groups are detected using the activity coefficient 25 

and vapour pressure keys.  The full collection of SMARTS keys can be found in the source code and we discuss suggestions 

for future work on refining fingerprints in section 4. Please refer to section 5 on code availability.  

 

With regards to the supervised methods used, an ensemble tree is trained to predict the occurrence of specific m/z channels 

as a function of any given fingerprint. To predict peak height per m/z channel, we evaluate a number of supervised methods 30 

available in the SciKit-learn package: Generalised Linear methods, Support Vector Machines [with 3 separate kernels], 

Stochastic Gradient Descent, Bayesian Ridge, Ordinary Least Squares, Decision Trees and Ensemble methods (Pedregosa et 

al., 2011). There are a number of other methods available yet, as we will discuss in section 4, the results from this study 

demonstrate a potential whilst further data is needed to confirm general applicability, including the use of other methods. For 
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a brief overview of each method, we refer the reader to Ruske (2016) and references therein. Before training each method, 

the matrix of identified keys were standardized between zero and one using the MinMaxScaler pre-processing feature within 

the Scikit learn package.  In addition, the use of variable selection is designed to use only those features deemed important to 

construct fingerprint-peak height relationships to try and mitigate any under or over fitting.  The sensitivity to these 

procedures are discussed in section 3.2. To compare modelled and measured mass spectra, the cosine angle from a dot 5 

product of the two are used, focusing on specific m/z channels that are typically found as features within atmospheric and 

smog chamber mass spectra (Ulbrich et al., 2009): 15,18,28,29,39,41,43,44,50,51,53,55,57,60,73,77,91. 

 

The ability of each method to replicate the entire database is first evaluated.  Whilst training on a subset and comparing with 

the entire database will test wider applicability, this initial comparison quantifies the appropriateness of the different 10 

fingerprints in building an accurate model.  

3. Results  

3.1 Sensitivity to choice of molecular fingerprint 

Figure 3 visually compares the number of keys extracted from the 100 compounds in the AMS library according to choice of 

fingerprint. Data is presented according to the use of AIOMFAC [bottom left], MACCS [top left], Nanoolal [bottom right] 15 

and FP4 [top right] keys. Using the AIOMFAC fingerprint leads to, at most, 17 keys identified from the AMS library.  The 

Nanoolal fingerprint leads to a larger set of keys (19), with the MACCS fingerprint providing the most (74) and the FP4 keys 

the second highest (30).  The use of more or less information in the fitting procedure should not be assumed to automatically 

lead to a more accurate predictive model. Ideally there should be a balance between the number of features identified and 

how those features relate to the mechanisms of fragmentation on the molecule within the instrument in question. As we have 20 

already noted, comparing the information provided by each fingerprint with a working knowledge of the mechanics of EI 

fragmentation might help understand why a given fingerprint is more suitable. However we first and foremost wish to 

demonstrate the efficacy of using pre-defined fingerprints as they are available in the literature or within existing open-

source software packages. The exact physical processes taking place within instrument are still the subject of considerable 

debate.    25 

 

Table 1 presents the median cosine angle of modelled spectra fit to the entire AMS database derived from the different 

supervised methods and different fingerprints, either isolated or combined into one, to 2 decimal places. The left hand sided 

box-plots in figure 4a-d display the entire cosine angle spread for each method for the isolated MACCS (4a), FP4 (4b), 

AIOMFAC (4c) and Nanoolal fingerprints (4d). When fitting to the entire library of AMS spectra, initial results suggest that 30 

the tree-based methods [‘Tree’,’Forest’] perform better than others, with the MACCS keys leading to improved model 

performance over other fingerprints.  However, the difference between using either the MACCS or Nanoolal keys, for 
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example, is not significant for any given supervised method as noted in Table 1.  Rather than demonstrating 100% accuracy, 

the values of 1.00 must be taken with caution as we demonstrate in proceeding analyses. Whichever fingerprint is used, the 

ranking of performance between supervised methods remains similar, with the tree-based methods, Ordinary Least Squares 

and Bayesian Ridge outperforming Stochastic Gradient Descent and all Support Vector Machine kernels. Along with higher 

median values, the spread of cosine angles from the tree based methods and Ordinary Least Squares is much lower than all 5 

other methods. Whilst the use of MACCS and FP4 provide, in theory, more information, there is some similarity in structural 

information provided in all keys, as already discussed. For example, each fingerprint identifies key functional groups such as 

alkanes, alcohol, ketones etc, whilst the FP4 and MACCS keys in particular include more positional detail including relative 

positions of groups. At least for the 100 compounds in the AMS library, that additional information leads to a slight increase 

in cosine angle agreement of around 0.02 between methods, if we use only results from table 1 and figure 4. A key objective 10 

of this study, noted above, is to demonstrate the use of pre-defined fingerprints in constructing a predictive model. However, 

it is useful to also demonstrate the efficacy of combining the information from each fingerprint into one, without relating 

variable performance according to physical processes taking place within the instrument. The performance of combining all 

fingerprints into one, represented in table 1 under the column heading ‘combined’, illustrates a similar trend in performance 

between methods. 15 

 

We discuss the significance of values displayed in table 1 after performance is re-evaluated following a more general 

approach of training to a subset of compounds, and the use of variable selection, in the next section. 

 

3.2 Training to a subset, variable selection and dimensionality reduction 20 

Table 2 presents the median cosine angle between modelled and predicted mass spectra, as a function of fingerprint, either 

isolated or combined into one, and regression technique, when training to a subset of the entire database and use of variable 

selection. To minimise over fitting any model to specific features, the process of variable selection allows us to refit the 

model to those keys deemed most important. The combination of both strategies might be considered the most suitable test 

of the methodology presented, with the full spread of statistics presented in the right hand column of figures 4a-d. It should 25 

be noted that randomly selecting the subset used for training leads to a significant decrease in model performance. This is 

due to missing keys within the training subset that are deemed important in predicting spectra for those compounds outside 

of the subset. A different approach is to select the subset according to maximising the number of keys across each molecule 

in the training subset, and is used in our proceeding analysis. 

 30 

In some cases, such as with the Ordinary Least Squares and Forest methods, the data provided in Table 2 suggests that using 

both strategies leads to a lower median cosine angle, thus slightly reduced model performance when using isolated 

fingerprints. However, in practice, the statistics presented in Table 1 should not be considered a true test of the methodology, 
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but rather a precursor demonstration of the sensitivity to choice of fingerprint, and perhaps any variability in instrument 

response across the AMS library. On this, the use of the ‘combined’ fingerprint demonstrates the ability to retain information 

from those keys that improve overall performance. 

 

Given their wide use across many disciplines, it is difficult to quantify the reasons behind the poor performance of the 5 

Support Vector Machines relative to other methods. To assess whether dimensional reduction procedures would improve 

accuracy, table 3 presents the median and overall spread of cosine angles when using Principal Component Analysis (PCA) 

on the ‘combined’ fingerprints. The number of principal components between 20, 10, 8 and 4. Generally, reducing the 

number of keys from up to 278 to 20 components, leads to an improvement of around 0.01-0.02 in all methods apart from 

Ordinary Least Squares and Support Vector Machines with both the polynomial and linear kernels. Results demonstrate clear 10 

sensitivity to the number of components when combined with the RBF Support Vector Machine kernel, performance varying 

from 0.84 to 0.67 on reducing the number of components from 20 to 4. 

 

On the significance of the value of cosine angle, Figures 5 and 6 display predicted spectra for compounds not included in a 

training set, along with the cosine angle between modelled and measured spectra. From this point on we use isolated 15 

fingerprints to demonstrate the efficacy of our approach. For Oxalic acid, in Figure 5, the difference in performance between 

the FP4 and MACCS fingerprint [cosine of 0.83 and 0.77] is apparent through certain features, including the relative 

proportion of peak heights for the 3 dominate channels, and the ratio of f44 to f43. In Figure 6, a similar pattern is found for 

Leucine, including a marked difference in whether the model predicted non-zero entries across f41 – f44. Whilst a small 

subset, these results suggest use of the cosine angle alone is not sufficient to validate model performance, which is confirmed 20 

in section 3.3 when applied to the α-pinene system. Based on these comparisons, a tentative suggestion of using a cosine 

angle of 0.8 might go some way to clarifying the performance statistics provided in Tables 1 and 2 and Figure 4.  Indeed, 

results demonstrate that, whilst statistics in Table 2 and Figure 4 suggest similar performance for both MACCS and FP4 

keys, this performance is composition dependent. This reflects sensitivity to information used in the training process and 

how similarity between performances should be taken with caution in prescribing which method to take forward. This is 25 

better highlighted in the proceeding section with regards to a model SOA system.  

 

Results at least suggest the tree based methods are at least the most stable given the higher range of cosine angles presented 

in Figures 4a-d and the decision tree method will be used in all proceeding analysis.  

3.3 Example application to a model aerosol system. 30 

In this section we apply the trained methods to a model SOA system, using output from the GECKO-A model used by 

(Valorso et al., 2011) to study SOA formation from α-pinene in a simulated chamber experiment.  The purpose of this 

exercise is to explore sensitivity of predicted mass spectra to combined speciated output from a fixed model configuration 
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through varying fingerprints to support the comparisons made in the previous section. It is not designed as a thorough 

quantitative analysis of spectra comparisons, but rather to demonstrate the ability to extract specific features and highlight 

sensitivities to choice of model configuration. A recent study of McVay et al. (2016) presented results demonstrating 

sensitivity of aerosol mass and composition to processes included in a box-model model, including the addition of 

autoxidation mechanisms. They proposed that autoxidation might resolve some or all of measurement–model discrepancy 5 

from chamber simulations, but that this hypothesis could not be confirmed until more explicit mechanisms are established 

for α-pinene autoxidation(McVay et al., 2016).  One might imagine an ideal sensitivity study would be to use speciated 

output from these updated models and add additional constraint to prescribing model performance through a comparison 

between measured and predicted mass spectra. Indeed, that is a rationale behind the study presented here. However, as 

proceeding results will demonstrate, with the existing training data and lack of validation on simple mixtures, there is 10 

potential for false positives in the predicted spectra to confuse a diagnosis of accurate model configurations. Specifically, the 

composition space derived from a series of box-model configurations would need to be mapped onto the existing space 

covered by the AMS spectral library. Combined with additional measurements of mixed systems of known composition, we 

could then prescribe a more robust set of regression model configurations through which a more detailed sensitivity study 

could take place. 15 

 

Nonetheless, to illustrate sensitivity to choice of fingerprints in a complex system, Figure 7 displays the predicted mass 

spectra for the GECKO-A model results of Valorso et al. (2011) combined with the experimental data taken from a chamber-

based α-pinene SOA formation experiment reported by Alfarra et al. (2013). This spectra represents “aged” aerosol, after 4 

hours of experiment, during which the VOC/NOx ratio was ~2. Without further refinement of model and measurement 20 

conditions, these results exhibit large errors in the predicted mass spectra when using MACCS keys, despite the brief 

analysis presented in section 3.2. This demonstrates that over fitting to distinct features in the training set and difference 

between this composition space and that provided by the box-model output are leading to features that are missed in the final 

spectra.  This is further supported by the abundance of features extracted from the training set displayed in figure 3. 

 25 

To expand on this performance, Figure 8 displays the predicted mass spectra f44 peak height versus O:C ratio from the 

GECKO-A model results of Valorso et al (2011) in a manner similar to Aiken et al. (2008). There are 9 points on each curve, 

representing points in time during the GECKO-A simulation, with the model predicting a monotonic increase in O:C over 

time. It is worth noting the values are low compared to typical atmospheric LV-OOA (Aiken et al., 2008;Kroll et al., 2011). 

Overall, use of the FP4 and Nanoolal keys give absolute f44s that compare well with published calibrations relative to O:C, 30 

specifically Aiken et al. (2008) and the updated calibration presented by Canagaratna et al. (2015). The direction of the trend 

in f44 versus O:C is reversed when using the Nanoolal keys, with f44 decreasing with O:C, which runs contrary to 

expectations. However, it should be noted that the values are within the spread of values used to generate the Aiken et al. 
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(2008) and Canagaratna et al. (2015) calibrations, as these performed regressions over much bigger ranges of O:C than 

obtained in this simulation, so the prediction based on Nanoolal keys could still be plausible.  

 

Figure 9 displays the predicted f44 to f43 peak heights from the model system using the commonly used ‘triangle plot’ 

(Morgan et al., 2010;Ng et al., 2011), compared with the experimental data taken from the chamber experiments of Alfarra et 5 

al. (2013) and also Chhabra et al. (2011), who studied the formation of α-pinene oxidation in response to different oxidants. 

Note the trajectories in this space are not monotonic for either the experimental or simulated data, which indicate the 

complexities in interpreting spectra based on these metrics. Results suggest that f43 values when using the FP4 and Nanoolal 

keys are plausible when compared to published studies. The f44 peak height is systematically low for all fingerprints, as also 

shown in figure 5-7. However, rather than a deficiency in the mass spectral prediction methods, this is likely due to a 10 

deficiency in the Valorso et al. (2011) model treatment. It has recently been shown how important mechanisms such as 

autooxidation are to the α-pinene SOA system (Ehn et al., 2014), which are capable of rapidly adding oxygenated functional 

groups to the molecules that are responsible for both the suppression of vapour pressures necessary for SOA formation and 

also the increase in the f44 metric (Canagaratna et al., 2015). More recent versions of GECKO-A have included such 

mechanisms (McVay et al., 2016), however a systematic comparison of the predicted spectra based on these inclusions is 15 

beyond the scope of this proof-of-concept paper and will be presented in a future publication.  

 

4. Discussion and future work 

The preceding analysis demonstrates the potential for the methodology presented to lead to interesting investigations on 

model versus measured mass spectra. However, there are a number of remaining improvements that need to be made. It is 20 

inevitable that not all of the chemical species predicted by the models will be covered by previous laboratory work. If a class 

of species predicted by any chemical mechanism is identified as not covered by existing SMARTS-based fragmentation 

rules, it could be characterised in the laboratory using the same facilities and methodologies employed for previous 

characterisation work (Canagaratna et al., (2015) and references therein).  

 25 

On the sensitivity to choice of fingerprint, our results demonstrate compound specific trends that lead to performance 

variability when applied to a complex SOA system that is not apparent when analysing median cosine angle statistics. 

Combining available fingerprints into one can slightly improve performance in some cases, but as the comparison of isolated 

MACCS versus FP4 performance illustrates, there is potential danger in over fitting to distinct features in the training set that 

is not provided by the box-model output.  To re-iterate, one might expect a collection of keys that relate to EI fragmentation 30 

principles to offer a more robust basis for fitting any method used here. However, that requires further work with additional 

laboratory data to validate the efficacy of any new bespoke fingerprint.  
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The methods here have a number of uses, although it must be re-iterated that the predicted mass spectra are not definitive. 

The performance of this method will be improved by the addition of further training data. Following the development of 

group contribution methods, this could include studies on compounds within a specific series and mixtures of those 

compounds. As outlined in the introduction, the ability of this model to predict AMS spectra will be useful in the 

development and validation of explicit SOA mechanisms in the laboratory, meaning that the models can be challenged by 5 

the entire mass spectrum and not just the mass and O:C ratio. This method can also be used at the experiment design stage, 

allowing predictions of whether an AMS will be able to discern expected changes in composition associated with a process 

and thus whether it will be useful to test particular hypotheses. 

 

The method could also be used to simulate atmospheric aerosol, probably if the chemical model is used in a Lagrangian 10 

configuration. In addition to the insights gained in atmospheric processes, this could be used to critically test the data model 

used in positive matrix factorisation (PMF) (Ulbrich et al., 2009). Because of the condition that PMF factors have fixed 

profiles, the reduction of the complexity associated with atmospheric SOA to (typically) two factors results in an increase in 

‘rotational ambiguity’ associated with the factorisation. A two-component factorisation of SOA is often interpreted as 

representing the ‘low volatility’ and ‘semivolalite’ components of the SOA (Jimenez et al., 2009), although this has shown 15 

not to be applicable to all environments, where other sources of variability contribute to the split in the factors (Young et al., 

2015). If the mass spectral response to atmospheric SOA could be more explicitly simulated using this technique, a synthetic 

AMS dataset could be used as the subject of PMF analysis in a manner similar to Ulbrich et al. (2009). This in turn could be 

used to investigate the contributions of the factorisation on a more explicit level and investigate the effects this has on 

rotational ambiguity and the validity of solutions. 20 

 

5. Code availability 

A publicly available copy of the code used to derive performance statistics of the chosen regression methods can be found at  

: https://github.com/loftytopping/STRAPS covered by a GPL v3.0 license. This includes a copy of the AMS spectral files 

that now also include appropriate SMILEs strings. The code separates the four fingerprint libraries used in this study. We 25 

also provide an associated DOI for the exact model version given in this paper as provided by the Zenodo service: 

https://zenodo.org/record/213068#.WFlryyiPD3s 

Please note that an extension to the SMARTS libraries included in UmanSysProp was carried out in this project. To review 

the features extracted for each fingerprint, please refer to the files ‘FP4.smarts’, ‘MACCS.smarts’, 

‘nannoolal_primary.smarts’ and ‘aiomfac_unifac.smarts’ included in the directory 30 

UManSysProp_public/umansysprop/data/. 
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Table1 - Median cosine angle between measured and predicted spectra when fitting to the entire dataset as a function 15 

of molecular fingerprint [Given above each column]. Please note, the term ‘Combined’ refers to a combination of all 

individual fingerprints into one. The method labels are as follows: SMV [Support vector Machine with 3 kernels 

(RBF, Poly[nomial] and Lin[near])], BRR: Bayesian Ridge, OLS: Ordinary Least Squares, SGDR:Stochastic 

Gradient Descent, Tree: Decision Tree and Forest: Random Forest. 

 20 

   

 

Method MACCS FP4 AIOMFAC Nanoolal Combined
SVM	RBF 0.87 0.85 0.86 0.85 0.85
SVM	Poly 0.84 0.83 0.82 0.81 0.83
SVM	Lin 0.80 0.80 0.79 0.79 0.80
BRR 0.94 0.92 0.90 0.91 0.95
OLS 1.00 0.96 0.94 0.94 0.99
SGDR 0.88 0.82 0.80 0.80 0.89
Tree 1.00 1.00 1.00 1.00 1.00
Forest 1.00 1.00 1.00 1.00 1.00

Method MACCS FP4 AIOMFAC Nanoolal Combined
SVM	RBF 0.85 0.82 0.80 0.81 0.85
SVM	Poly 0.82 0.81 0.81 0.79 0.82
SVM	Lin 0.78 0.79 0.78 0.78 0.80
BRR 0.93 0.91 0.88 0.88 0.94
OLS 0.95 0.93 0.90 0.90 0.98
SGDR 0.87 0.82 0.81 0.80 0.88
Tree 0.97 0.97 0.94 0.96 0.98
Forest 0.97 0.97 0.95 0.96 0.98
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Table 2 - Median cosine angle between measured and predicted spectra, using 80% of the compounds in the training 

process, with variable selection, as a function of molecular fingerprint [Given above each column]. Please note, the 

term ‘Combined’ refers to a combination of all individual fingerprints into one. The method labels are as follows: 

SMV [Support vector Machine with 3 kernels (RBF, Poly[nomial] and Lin[near])], BRR: Bayesian Ridge, OLS: 

Ordinary Least Squares, SGDR:Stochastic Gradient Descent, Tree: Decision Tree and Forest: Random Forest.  5 

 

 

 

Table 3 - Median cosine angle between measured and predicted spectra, applying PCA analysis to the ‘combined’ 

fingerprints, as a function of the number of principal components used given above each column. The method labels 10 

are as follows: SMV [Support vector Machine with 3 kernels (RBF, Poly[nomial] and Lin[near])], BRR: Bayesian 

Ridge, OLS: Ordinary Least Squares, SGDR:Stochastic Gradient Descent, Tree: Decision Tree and Forest: Random 

Forest.  

 

 15 

 

Method 20 10 8 4
SVM	RBF 0.84 0.84 0.85 0.67
SVM	Poly 0.83 0.83 0.81 0.79
SVM	Lin 0.80 0.80 0.80 0.80
BRR 0.93 0.90 0.89 0.87
OLS 0.94 0.89 0.89 0.87
SGDR 0.89 0.89 0.89 0.88
Tree 0.98 0.98 0.98 0.98
Forest 0.99 0.99 0.99 0.99
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Figure 1 – Schematic of workflow used in the training process. For a normalised mass spectrum, the SMILEs string 
associated with each compound is combined with a given molecular fingerprint to train methods to predict the 
occurrence of a given m/z channel and then a peak height. 

 
Figure 2. Basic schematic of interrogating a SMILES string with a SMARTS library to construct a molecular 5 

fingerprint. 
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Figure 3 – Sparsity of keys extracted (x axes) from each compound (y axes) as a function of molecular fingerprint 

used (Top left: MACCS, Top right: FP4, Bottom left: AIOMFAC, Bottom right: Nanoolal). Keys are coloured 

according to normalised stoichiometry across all compounds. 

 5 
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Figure 4a – Spread of cosine angle between experimental and predicted mass spectra [y axes] for all 100 compounds 

in the AMS library as a function of supervised method [x axes] using the MACCS fingerprint. left: using all 

compounds in the training process. right: using 80% of the compounds in the training process with variable selection. 5 

The method labels are as follows: SMV [Support vector Machine with 3 kernels (RBF, Poly[nomial] and Lin[near])], 

BRR: Bayesian Ridge, OLS: Ordinary Least Squares, SGDR:Stochastic Gradient Descent, Tree: Decision Tree and 

Forest: Random Forest. 

 

 10 
Figure 4b – Spread of cosine angle between experimental and predicted mass spectra [y axes] for all 100 compounds 

in the AMS library as a function of supervised method [x axes] using the FP4 fingerprint. left: using all compounds in 

the training process. right: using 80% of the compounds in the training process with variable selection. The method 

labels are as follows: SMV [Support vector Machine with 3 kernels (RBF, Poly[nomial] and Lin[near])], BRR: 

Bayesian Ridge, OLS: Ordinary Least Squares, SGDR:Stochastic Gradient Descent, Tree: Decision Tree and Forest: 15 

Random Forest. 
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Figure 4c – Spread of cosine angle between experimental and predicted mass spectra [y axes] for all 100 compounds 

in the AMS library as a function of supervised method [x axes] using the AIOMFAC fingerprint. left: using all 

compounds in the training process. right: using 80% of the compounds in the training process with variable selection. 

The method labels are as follows: SMV [Support vector Machine with 3 kernels (RBF, Poly[nomial] and Lin[near])], 5 

BRR: Bayesian Ridge, OLS: Ordinary Least Squares, SGDR:Stochastic Gradient Descent, Tree: Decision Tree and 

Forest: Random Forest. 

 
Figure 4d – Spread of cosine angle between experimental and predicted mass spectra [y axes] for all 100 compounds 

in the AMS library as a function of supervised method [x axes] using the Nanoolal fingerprint. left: using all 10 

compounds in the training process. right: using 80% of the compounds in the training process with variable selection. 

The method labels are as follows: SMV [Support vector Machine with 3 kernels (RBF, Poly[nomial] and Lin[near]), 

BRR: Bayesian Ridge, OLS: Ordinary Least Squares, SGDR:Stochastic Gradient Descent, Tree: Decision Tree and 

Forest: Random Forest. 

 15 
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Figure 5 – Measured mass spectra for Oxalic acid [top] versus predicted mass spectra from an ensemble tree using 

the FP4 fingerprint [middle, cosine of 0.83] and the MACCS fingerprint [bottom, cosine of 0.77]. 
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Figure 6 – Measured mass spectra for Leucine [top] versus predicted mass spectra from an ensemble tree using the 

FP4 fingerprint [middle, cosine of 0.70] and the MACCS fingerprint [bottom, cosine of 0.94]. 
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Figure 7 – Comparison of the predicted mass spectra of α-pinene SOA based on the GECKO-A simulation presented 

by Valorso et al. (2011) using various fingerprinting techniques. These are compared with an actual α-pinene SOA 

mass spectrum obtained by Alfarra et al. (2013) during a chamber experiment in which the VOC/NOX ratio was ~2 

and the spectra here taken after 4 hours. 5 
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Figure 8 Comparison of O:C ratios and predicted fractional contribution to the AMS m/z 44 channel (f44) for the 

Valorso et al. (2011) GECKO-A simulation, compared against the regressions performed by Aiken et al. (2008) and 

Canagaratna et al. (2015). The highlighted points indicate the final points in the simulation. 
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Figure 9 – ‘Triangle plot’ comparing predicted f44 and f43 values for the Valorso et al. (2011) GECKO-A α-pinene 

SOA simulation with chamber experiments. The Chhabra et al. (2011) data compares different oxidant systems and is 

taken from figure 2A of that paper. The chronological final points in each dataset are highlighted. 
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Dear	Alex	
	
Please	 find	 attached	 our	 responses	 to	 each	 reviewer	 and	 changes	 in	 the	 manuscript,	 as	
highlighted	in	the	track	changes	version	uploaded.	Key	changes	are	 in	response	to	reviewer	
#1	 in	 which	 I	 had	 to	 re-run	 some	 simulations	 with	 a	 ‘combined’	 fingerprint.	 These	 new	
simulations	 again	 illustrate	 the	 potential	 of	 the	 methodology,	 but	 also	 leave	 the	 proof	 of	
concept	study	open	for	the	required	future	work	to	take	this	forward.	
	
Thanks	
Dave	
	
	
Reviewer	#1	
	
We	would	 like	 to	 thank	 the	 reviewer	 for	 their	 recognition	 of	 the	 potential	 of	 the	 approach	
presented	 here.	 In	 the	 following	 we	 respond	 to	 all	 comments,	 including	 detailing	 some	
additional	 work	 that	 has	 been	 carried	 out	 with	 regards	 to	 fingerprint	 analysis.	 	 In	 the	
following	 response	 we	 separate	 and	 number	 all	 distinct	 comments	 in	 order	 of	 their	
appearance	in	the	review,	highlighting	new	text	added	to	the	manuscript	where	appropriate.	
	
1) Is	the	MACCS	fingerprints	most	successful	just	because	of	the	sheer	number	of	keys,	each	of	
which	contribute	 to	predictions,	or	are	 there	particular	 structural	elements	not	present	 in	 the	
others	that	improve	the	predictions?		

	
Response:	Comparing	average	performance	statistics	in	section	3.1	at	first	implies	this	might	
be	 the	 case.	 However	 the	 comparison	 with	 spectra	 from	 the	 Alfarra	 et	 al.	 (2013)	 paper	
illustrates	the	MACCS	keys	perform	poorly.	 	Interrogating	the	performance	from	predictions	
using	the	MACCS	keys	for	specific	compounds	illustrates	a	few	problems	that	might	reflect	a	
lack	of	generality	across	the	MACCS	keys.		For	example,	the	FP4	keys	cycle	through	systematic	
functional	 groupings	 such	 as:	 primary	 carbon,	 secondary	 carbon,	 tertiary	 carbon…primary	
alcohol,	secondary	alcohol,	tertiary	alcohol	etc.	This	would	lead	to	a	maximum	of	320	keys	per	
molecule.	MACCS	keys	on	the	other	hand	are	almost	seemingly	designed	to	capture	a	random,	
although	 extensive,	 set	 of	 features	 leading	 to	 a	 maximum	 of	 162	 features	 for	 any	 given	
molecule.	 As	 we	 note	 in	 the	 manuscript,	 it	 is	 difficult	 to	 find	 the	 provenance	 behind	 the	
MACCS	keys.	However,	we	have	added	the	following	text	in	section	2,	page	5,	to	try	and	clarify	
the	 issue	 [new	 text	 presented	 in	 italics]:	 ‘There	 are	 some	 common	 features	 between	 each	
fingerprint	library,	but	also	a	range	of	differences.	For	example,	all	libraries	identify	the	presence	
of	 the	 CH2	 group,	 but	 then	 differ	 in	 optional	 connecting	 groups.	 The	 FP4	 keys	 cycle	 through	
systematic	 groupings,	 such	 as:	 primary	 carbon,	 secondary	 carbon,	 tertiary	 carbon…primary	
alcohol,	 secondary	 alcohol,	 tertiary	 alcohol	 etc.	 Similar	 groups	 are	 detected	using	 the	 activity	
coefficient	and	vapour	pressure	keys.	 	The	full	collection	of	SMARTS	keys	can	be	found	in	the	
source	code	and	we	discuss	suggestions	for	future	work	on	refining	fingerprints	in	section	4.	
Please	refer	to	section	5	on	code	availability.’	
	
2).	The	generally	poor	performance	of	 SVMs	 for	all	 keys	 is	 surprising,	 is	 it	possibly	due	 to	 the	
high	dimensionality	in	the	underlying	representations	that	is	not	present	in	the	others,	or	is	there	
a	more	obvious	reason	to	the	authors?	
	
Response:	We	agree	 this	 is	 surprising,	 especially	 given	 the	 extent	 of	 applications	 to	which	
SVMs	are	applied.	At	first	we	assumed	this	was	down	to	how	the	data	was	normalized	prior	to	
training.	 	 However,	 using	 a	 maximum/minimum	 scalar	 prior	 to	 training	 did	 not	 improve	



performance.	There	are	differences	according	to	which	kernel	 is	used.	 	 It	might	be	true	that	
dimension	reduction	procedures,	such	as	PCA,	might	improve	performance.	With	this	in	mind,	
we	have	conducted	tests	on	using	PCA	prior	to	training,	using	the	combined	set	of	fingerprints	
as	 requested	 in	 point	 ‘6’	 addressed	 shortly.	 Based	 on	 these	 results	 we	 have	 added	 an	
additional	table	[table	3]	demonstrating	the	effect	of	dimension	reduction	procedures	on	the	
performance	of	all	methods,	using	the	combined	fingerprint	approach:		
	

	
	
Table	 3	 -	Median	 cosine	 angle	 between	measured	 and	 predicted	 spectra,	 applying	 PCA	
analysis	 to	 the	 ‘combined’	 fingerprints,	 as	 a	 function	 of	 the	 number	 of	 principal	
components	 used	 given	 above	 each	 column.	 The	 method	 labels	 are	 as	 follows:	 SMV	
[Support	 vector	 Machine	 with	 3	 kernels	 (RBF,	 Poly[nomial]	 and	 Lin[near])],	 BRR:	
Bayesian	 Ridge,	 OLS:	 Ordinary	 Least	 Squares,	 SGDR:Stochastic	 Gradient	 Descent,	 Tree:	
Decision	Tree	and	Forest:	Random	Forest.		
	
We	have	also	added	the	following	text	to	section	3.2	[new	text	presented	in	italics],	which	is	
renamed	 to:	 3.2	 Training	 to	 a	 subset,	 variable	 selection	 and	 dimension	 reductions.	 ‘in	
practice,	 the	 statistics	 presented	 in	 Table	 1	 should	 not	 be	 considered	 a	 true	 test	 of	 the	
methodology,	but	rather	a	precursor	demonstration	of	the	sensitivity	to	choice	of	fingerprint,	
and	perhaps	any	variability	in	instrument	response	across	the	AMS	library.	On	this,	the	use	of	
the	 ‘combined’	 fingerprint	demonstrates	 the	ability	 to	retain	 information	 from	those	keys	 that	
improve	 overall	 performance.	 Given	 their	 wide	 use	 across	 many	 disciplines,	 it	 is	 difficult	 to	
quantify	 the	 reasons	behind	 the	poor	performance	of	 the	 Support	Vector	Machines	 relative	 to	
other	 methods.	 To	 assess	 whether	 dimension	 reduction	 procedures	 would	 improve	 accuracy,	
table	3	presents	the	median	and	overall	spread	of	cosine	angles	when	using	Principal	Component	
Analysis	(PCA)	on	the	‘combined’	fingerprints.	The	number	of	principal	components	was	varied	
between	 20,	 10,	 8	 and	 4.	 Generally,	 reducing	 the	 number	 of	 keys	 from,	 up	 to,	 278	 to	 20	
components,	 leads	to	an	improvement	of	around	0.01-0.02	in	all	methods	apart	 from	Ordinary	
Least	Squares	and	Support	Vector	Machines	with	both	the	polynomial	and	linear	kernels.	Results	
demonstrate	 clear	 sensitivity	 to	 the	 number	 of	 components	 when	 combined	 with	 the	 RBF	
Support	Vector	Machine	kernel,	performance	varying	from	0.84	to	0.67	on	reducing	the	number	
of	components	from	20	to	4.’	
	
We	 cannot	 say	with	 any	 certainty	what	 the	 true	 cause	of	 variability	within	 each	 regression	
technique	 is.	 Ultimately,	 we	 feel	 this	 proof	 of	 concept	 study	 needs	 building	 on	 with	
appropriate	laboratory	data	before	further	quantification	of	dependencies	would	be	possible.	
Whilst	we	state	the	rationale	in	the	original	manuscript,	we	have	added	the	following	text	in	
section	4	 to	re-iterate	 this:	 ‘On	the	sensitivity	to	choice	of	fingerprint,	our	results	demonstrate	
compound	specific	 trends	that	 lead	to	performance	variability	when	applied	to	a	complex	SOA	
system	that	is	not	apparent	when	analysing	median	cosine	angle	statistics.	Combining	available	
fingerprints	into	one	can	slightly	improve	performance	in	some	cases,	but	as	the	comparison	of	
isolated	MACCS	versus	FP4	performance	 illustrates,	 there	 is	potential	danger	 in	over	 fitting	 to	

Method 20 10 8 4
SVM	RBF 0.84 0.84 0.85 0.67
SVM	Poly 0.83 0.83 0.81 0.79
SVM	Lin 0.80 0.80 0.80 0.80
BRR 0.93 0.90 0.89 0.87
OLS 0.94 0.89 0.89 0.87
SGDR 0.89 0.89 0.89 0.88
Tree 0.98 0.98 0.98 0.98
Forest 0.99 0.99 0.99 0.99



distinct	features	in	the	training	set	that	is	not	provided	by	the	box-model	output.		To	re-iterate,	
one	might	expect	a	collection	of	keys	that	relate	to	EI	fragmentation	principles	to	offer	a	more	
robust	 basis	 for	 fitting	 any	 method	 used	 here.	 However,	 that	 requires	 further	 work	 with	
additional	laboratory	data	to	validate	the	efficacy	of	any	new	bespoke	fingerprint.’	
	
3)	 How	 are	 the	 tuning	 parameters	 for	 the	 model	 parameters	 determined?	 For	 instance,	 the	
penalty	factor	for	SVM,	etc.?		
Response:	Using	the	cosine	angle	between	spectra	as	a	measure	of	good	fit,	parameters	 for	
each	method,	where	 required,	 are	 cycled	 until	 the	most	 effective	 combination	were	 found.	
These	parameter	ranges	are	presented	in	the	code	release	and	are	specific	to	each	algorithm,.	
	
4)	Are	cosine	angles	(uncentered	correlations)	sufficient	to	capture	agreement	that	represents	
more	 than	 the	 range	 (minimum	 and	 maximum)	 relative	 ion	 counts	 for	 each	 spectrum?	 This	
angle	may	not	represent	disagreement	in	relative	ion	counts	that	are	of	intermediate	value	very	
well.	In	that	there	is	precedent	for	cosine	angles	for	mass	spectra	comparison,	it	is	a	safe	metric,	
but	 the	 authors	may	 look	 at	 analyzing	 residuals	 for	 each	mass	 fragment	 to	 understand	what	
their	model	gets	right	and	less	right	(to	generalize	on	illustrations	provided	in	Figures	5	and	6,	
which	are	 incidentally	missing	axes	 labels).	There	 is	 some	mention	about	 f43	being	 somewhat	
reasonable	and	f44	being	under	predicted,	but	this	seems	a	bit	buried	in	the	presentation.	
	
Response:	 There	 are	 indeed	 other	 metrics	 we	 could	 have	 employed	 to	 measure	 distance	
between	mass	 spectra,	 however	 we	 considered	 cosine	 to	 be	 the	most	 appropriate.	 Firstly,	
because	our	aim	is	to	replicate	the	AMS	instrument	response	function,	which	can	be	modelled	
as	a	 linear	addition	of	multiple	component	mass	spectra,	we	reason	 that	 it	would	make	 the	
most	 sense	 to	 use	 a	 metric	 that	 places	 linear	 weight	 on	 the	 peaks’	 relative	 intensities.	
Secondly,	while	a	different	metric	may	place	a	relatively	greater	weight	on	intermediate	peaks	
(thus	ensuring	a	more	general	agreement	over	a	larger	number	of	peaks),	we	would	have	to	
take	care	not	to	also	unduly	weight	the	minor	peaks,	which	can	be	problematic.	As	such,	an	
element	of	subjectivity	would	have	been	introduced	in	the	choice	of	algorithm,	which	in	itself	
would	require	more	testing.	It	is	possible	that	there	is	a	better	closeness	metric	that	could	be	
tested	as	part	of	future	work	and	this	would	be	easily	testable	within	the	STRAPS	framework,	
however	 see	 that	 as	 outside	 the	 scope	 of	 this	 particular	 paper.	 Concerning	 the	 comparison	
between	 f43	 and	 f44,	 this	 refers	 to	 the	 specific	 comparison	 between	 the	GECKO-A	 run	 and	
roughly	comparable	chamber	experiments,	however	we	must	stress	that	this	test	was	only	to	
demonstrate	 proof-of-concept	 and	 not	 perform	 a	 systematic	 comparison	 to	 assess	 the	
performance.	We	merely	show	that	the	values	produced	for	these	two	common	AMS	metrics	
are	plausible	in	magnitude.	For	this	to	be	done	properly,	a	chemical	model	run	matched	to	the	
exact	chamber	system	should	be	performed	with	a	state-of-the-art	model;	this	will	form	part	
of	future	work	and	a	full,	systematic	comparison	of	peak	magnitudes	will	be	performed	there.	
	
5)	 is	it	reasonable	to	try	to	predict	300	m/z’s	in	the	AMS	spectrum	(In	Figures	5-8	only	100	are	
shown,	but	is	the	model	trained	only	to	predict	100	m/z’s)?	Would	not	the	authors	benefit	from	
trying	to	reproduce	a	"reduced"	set	of	spectra	(e.g.,	reconstructed	from	a	truncated	set	of	PCA	or	
PMF	components)?		
	
Response:	 The	 methodology	 presented	 here	 is	 based	 on	 predicting	 a	 response	 for	 each	
channel,	and	then	predicting	the	peak	height	for	each	channel.	Each	m/z	therefore	has	its	own	
model	and	there	is	not	dependency	on	whether	100,	150	or	300	m/z’s	are	chosen.	There	is	no	
penalty	to	predicting	the	high	m/z	peaks,	as	these	generally	represent	a	low	mass	fraction	and	
contribute	 little	 to	 the	 cosine	 of	 the	 comparisons.	 However,	 there	 will	 be	 a	 tangible	
disadvantage	 to	 operating	 on	 a	 reduced	 dataset	 because	 the	 data	 reduction	 in	 itself	 will	



inherently	remove	information	that	is	possibly	of	value	for	training,	so	there	is	a	very	real	risk	
of	an	inferior	training.	
	
6)	Is	there	a	reason	why	all	keys	were	not	combined	into	a	single	fingerprint?	It	would	be	simple	
to	 remove	 redundant	 keys	 simply	 by	 inspection,	 if	 that	 were	 a	 concern.	 Regarding	 the	
comparison	of	f44	and	O:C	(Figure	8),	is	not	the	COO+	associated	with	m/z	44	more	sensitive	to	
dicarboxylic	acids	(Russell	et	al.,	2009)?		
	
Response:	This	is	a	good	point,	and	we	have	conducted	additional	simulations	to	investigate	
this.	 It	 is	 worth	 noting	 the	 initial	 aim	 of	 the	 paper	 was	 to	 illustrate	 the	 use	 of	 ‘standard’	
fingerprint	 libraries,	 as	 they	 exist	 as	 distinct	 developments.	 As	 noted	 in	 the	 manuscript,	
ideally	we	would	like	to	take	this	proof	of	concept	work	forward	by	constructing	a	library	of	
keys	that	better	represents	the	mechanism	of	fragmentation	within	the	AMS.	It	might	be	that	
converting	general	rules	of	EI	fragmentation	would	be	a	useful	starting	point.		Tables	1-2	now	
includes	median	cosine	angles	from	each	regression	technique	when	combining	all	keys	into	
one	fingerprint:	
	

		 	
	
Table1	 -	Median	 cosine	angle	between	measured	and	predicted	 spectra	when	 fitting	 to	
the	 entire	 dataset	 as	 a	 function	 of	 molecular	 fingerprint	 [Given	 above	 each	 column].	
Please	 note,	 the	 term	 ‘Combined’	 refers	 to	 a	 combination	 of	 all	 individual	 fingerprints	
into	one.	The	method	labels	are	as	follows:	SMV	[Support	vector	Machine	with	3	kernels	
(RBF,	 Poly[nomial]	 and	 Lin[near])],	 BRR:	Bayesian	Ridge,	OLS:	Ordinary	 Least	 Squares,	
SGDR:Stochastic	Gradient	Descent,	Tree:	Decision	Tree	and	Forest:	Random	Forest.	
	

		 	
	
Table	2	-	Median	cosine	angle	between	measured	and	predicted	spectra,	using	80%	of	the	
compounds	 in	 the	 training	 process,	 with	 variable	 selection,	 as	 a	 function	 of	molecular	
fingerprint	 [Given	 above	 each	 column].	 Please	 note,	 the	 term	 ‘Combined’	 refers	 to	 a	
combination	of	all	individual	fingerprints	into	one.	The	method	labels	are	as	follows:	SMV	
[Support	 vector	 Machine	 with	 3	 kernels	 (RBF,	 Poly[nomial]	 and	 Lin[near])],	 BRR:	

Method MACCS FP4 AIOMFAC Nanoolal Combined
SVM	RBF 0.87 0.85 0.86 0.85 0.85
SVM	Poly 0.84 0.83 0.82 0.81 0.83
SVM	Lin 0.80 0.80 0.79 0.79 0.80
BRR 0.94 0.92 0.90 0.91 0.95
OLS 1.00 0.96 0.94 0.94 0.99
SGDR 0.88 0.82 0.80 0.80 0.89
Tree 1.00 1.00 1.00 1.00 1.00
Forest 1.00 1.00 1.00 1.00 1.00

Method MACCS FP4 AIOMFAC Nanoolal Combined
SVM	RBF 0.85 0.82 0.80 0.81 0.85
SVM	Poly 0.82 0.81 0.81 0.79 0.82
SVM	Lin 0.78 0.79 0.78 0.78 0.80
BRR 0.93 0.91 0.88 0.88 0.94
OLS 0.95 0.93 0.90 0.90 0.98
SGDR 0.87 0.82 0.81 0.80 0.88
Tree 0.97 0.97 0.94 0.96 0.98
Forest 0.97 0.97 0.95 0.96 0.98



Bayesian	 Ridge,	 OLS:	 Ordinary	 Least	 Squares,	 SGDR:Stochastic	 Gradient	 Descent,	 Tree:	
Decision	Tree	and	Forest:	Random	Forest.		
	
We	 have	 also	 added	 the	 following	 text	 to	 section	 3.1,	 Page6	 [new	 text	 in	 italic]:	 ‘Table	 1	
presents	the	median	cosine	angle	of	modelled	spectra	fit	to	the	entire	AMS	database	derived	
from	the	different	supervised	methods	and	different	fingerprints,	either	isolated	or	combined	
into	one,	to	2	decimal	places.’	
	
Followed	by:	‘A	key	objective	of	this	study,	noted	above,	is	to	demonstrate	the	use	of	pre-defined	
fingerprints	in	constructing	a	predictive	model.	However,	it	is	useful	to	also	demonstrate	the	
efficacy	of	combining	the	information	from	each	fingerprint	into	one,	without	relating	variable	
performance	according	to	physical	processes	taking	place	within	the	instrument.	The	
performance	of	combining	all	fingerprints	into	one,	represented	in	table	1	under	the	column	
heading	‘combined’,	illustrates	a	similar	trend	in	performance	between	methods.’	
	
This	 is	 now	 combined	 with	 the	 request	 presented	 earlier	 to	 assess	 the	 role	 of	 dimension	
reductions,	using	PCA,	leading	to	a	new	table	[3]	and	subsequent	text	presented	in	response	
to	point	2.		We	also	add	the	following	text	to	the	final	paragraph	in	the	abstract	[new	text	in	
italic]:’	the	study	demonstrates	the	use	of	a	methodology	that	would	be	improved	with	more	
training	 data,	 fingerprints	designed	 explicitly	 for	 fragmentation	mechanisms	occurring	within	
the	AMS,	and	data	from	additional	mixed	systems	for	further	validation.’	
	
Whilst	these	new	simulations	add	an	interesting	angle,	we	still	need	more	experimental	data	
to	resolve	any	 issues	with	over	or	under	 fitting	 that	might	occur	using	our	 limited,	and	yet,	
somewhat	disparate	set	of	compounds	 in	 the	present	 training	database.	 	We	 feel	 this	 is	one	
reason	 the	 MACCS	 keys	 perform	 so	 poorly	 when	 methods	 are	 applied	 to	 the	 outputs	 of	
Valorso	 et	 al	 (2011),	 in	 that	 there	 are	 specific	 keys	 that	 are	 leading	 to	 over	 fitting	 to	 the	
training	dataset.	
	
7)	A	minor	point:	The	simulation	(photoxidation)	conditions	of	Valorso	(2011)	can	be	repeated	
in	the	caption	of	Figure	9	so	the	reader	can	immediately	contextualize	the	comparison.	
	
Response:	 This	 has	 now	 been	 added	 to	 the	 figure	 caption.	 Concerning	 the	 comparison	
between	 f43	 and	 f44,	 this	 refers	 to	 the	 specific	 comparison	 between	 the	GECKO-A	 run	 and	
roughly	comparable	chamber	experiments,	however	we	must	stress	that	this	test	was	only	to	
demonstrate	 proof-of-concept	 and	 not	 perform	 a	 systematic	 comparison	 to	 assess	 the	
performance.	We	merely	show	that	the	values	produced	for	these	two	common	AMS	metrics	
are	plausible	in	magnitude.	For	this	to	be	done	properly,	a	chemical	model	run	matched	to	the	
exact	chamber	system	should	be	performed	with	a	state-of-the-art	model;	this	will	form	part	
of	future	work	and	a	full,	systematic	comparison	of	peak	magnitudes	will	be	performed	there.	
	
	
Reviewer	#2	
	
We	would	 like	 to	 thank	 the	 reviewer	 for	 their	 recognition	 of	 the	 novelty	 of	 the	 approach	
presented	here.	 In	 the	 following	we	separate	and	number	all	distinct	 comments	 in	order	of	
their	 appearance	 in	 the	 review,	 highlighting	 new	 text	 added	 to	 the	 manuscript	 where	
appropriate.	
	
Specific	Comments	
1)	P2,	Line	2:	Could	the	authors	state	the	rationale	for	choosing	to	assess	performance	



simply	with	cosine	angles?	
	
Response:	We	are	happy	to	clarify	this,	as	in	response	to	the	other	referee.	There	are	indeed	
other	metrics	we	could	have	employed	to	measure	distance	between	mass	spectra,	however	
we	considered	cosine	to	be	the	most	appropriate.	Firstly,	because	our	aim	is	to	replicate	the	
AMS	 instrument	 response	 function,	which	 can	 be	modelled	 as	 a	 linear	 addition	 of	multiple	
component	mass	spectra,	we	reason	that	 it	would	make	the	most	sense	to	use	a	metric	that	
places	linear	weight	on	the	peaks’	relative	intensities.	Secondly,	while	a	different	metric	may	
place	 a	 relatively	 greater	 weight	 on	 intermediate	 peaks	 (thus	 ensuring	 a	 more	 general	
agreement	 over	 a	 larger	 number	 of	 peaks),	we	would	 have	 to	 take	 care	 not	 to	 also	 unduly	
weight	the	minor	peaks,	which	can	be	problematic.	As	such,	an	element	of	subjectivity	would	
have	been	introduced	in	the	choice	of	algorithm,	which	in	itself	would	require	more	testing.	It	
is	possible	that	there	is	a	better	closeness	metric	that	could	be	tested	as	part	of	future	work	
and	this	would	be	easily	testable	within	the	STRAPS	framework,	however	see	that	as	outside	
the	scope	of	this	particular	paper.	
	
2)	P2,	Line	15:	could	the	authors	suggest	which	other	analytical	techniques	could	potentially	
benefit	from	the	method	and	include	appropriate	references?	
	
Response:	 It	 is	possible	 that	other	 techniques	may	benefit	 from	this,	but	 this	 is	specifically	
tested	 around	 an	 instrument	 that	 gives	 ensemble	 data	 in	 response	 to	 a	 liner	 addition	 of	
signatures.	 Other	 forms	 of	 mass	 spectrometry,	 such	 laser	 desorption	 and	 ionisation	 and	
electrospray	 ionisation,	 suffer	 from	 matrix	 effects,	 so	 the	 model	 will	 need	 further	
development	for	this.	It	will	also	be	of	limited	use	for	‘soft’	ionisation	techniques	where	there	
is	 little	 molecular	 fragmentation	 (such	 as	 chemical	 ionisation	 mass	 spectrometry),	 as	 the	
components	will	mainly	be	 intact	molecular	 ions	 (or	 adducts)	 that	will	 require	no	 training.	
However,	it	could	be	useful	in	interrogating	poorly-resolved	mixtures	in	gas	chromatography	
mass	spectrometry.	It	may	be	very	powerful	when	applied	to	spectroscopic	techniques	such	
and	nuclear	magnetic	resonance	spectroscopy	or	Fourier	transform	infrared	spectroscopy.	
	
3)	 P4,	 Section	 2:	 It	 is	 unclear	 from	 this	 text	 whether	 the	 fingerprint	 is	 in	 fact	 a	 single	 mass	
spectrum	of	m/z	 vs	 abundance.	 Can	 this	 be	 section	be	 rephrased	 slightly	with	a	more	 explicit	
statement,	please?		
	
Response:	 Apologies.	We	 have	 replaced	 the	 sentence	 ‘Each	molecule	 has	 varying	 levels	 of	
structural	features,	the	combination	of	which	provides	each	molecule	with	a	‘fingerprint’’	with	
‘Each	 molecule	 has	 varying	 levels	 of	 structural	 features,	 which	 can	 be	 written	 in	 terms	 of	 a	
‘fingerprint’.	This	fingerprint	is	a	numerical	identification	of	a	given	structure	that	can	equally	
be	thought	of	as	stoichiometric	information…’	
	
4)	Further	to	this,	should	each	column	refer	to	a	given	m/z,	 is	 this	enough	information,	or	are	
other	 concomitant	 spectral	 features	 required	 to	 validate	 the	 presence	 of	 a	 certain	 functional	
group?	 If	 each	 single	 column	 “key”	 is	 able	 to	 contain	 sufficient	 information,	 can	 the	 authors	
clarify	and	appropriately	state	this	in	the	text	(further	to	references	e.g.	Ulbrich	et	al.)?	
Response:	We	apologize	for	any	lack	of	clarity	here.		The	collection	of	molecules,	represented	
as	 SMILES	 strings,	 is	 parsed	 to	 produce	 a	 matrix	 where	 each	 column	 represents	 the	
stoichiometry	of	a	particular	key,	or	feature.	This	entire	matrix	is	used	to	fit	a	predict	model	
for	each	m/z	channel.		
	
We	have	added	the	following,	similar,	text	to	the	end	of	page	4	to	attempt	clarification	of	this	
procedure:	 ’To	re-iterate,	in	constructing	a	model	that	can	predict	AMS	mass	spectra,	a	library	



of	compounds	with	measured	spectra	are	used	 to	 train	a	series	of	 regression	 techniques.	 	This	
collection	of	molecules,	represented	as	SMILES	strings,	is	parsed	to	produce	a	matrix	where	each	
column	represents	the	stoichiometry	of	a	particular	key,	or	feature.	This	entire	matrix	is	used	to	
fit	a	predict	model	for	each	m/z	channel.	‘	
	
5)	P6,	Section	3.1:	Can	 the	authors	 comment	on	 the	 sensitivity	of	 the	 technique	 to	 the	various	
functional	groups	listed	on	line	30,	for	example?	Are	there	any	inherent	instrumental	sensitivity	
issues	with	certain	functional	groups	that	might	limit	the	effectiveness	of	the	technique	at	a	top	
level?	
	
Response:	The	fact	that	AMS	and	even	EI	in	general	has	issues	with	certain	functional	groups	
(see	 cited	 literature,	 in	 particular	 Canagaratna	 et	 al.,	 2015)	 is	 well	 documented.	 Examples	
include	 the	 overlap	 of	 multiple	 functional	 groups	 at	 m/z=43	 and	 the	 tendency	 for	
multifunctional	 molecules	 to	 generate	 a	 large	 signal	 at	 m/z=44.	 However,	 providing	 ‘top-
down’	rules	for	this	would	be	inherently	difficult	and	it	is	for	this	exact	reason	that	we	chose	
to	 test	 the	 technique	using	pre-existing	 fingerprinting	 techniques	and	objectively	determine	
their	 comparative	 performance.	With	 further	work,	 it	may	 be	 possible	 to	 develop	 an	 AMS-
specific	 fingerprinting	 technique	 based	 on	 instrument	 knowledge	 and	 compare	 this	 against	
the	 conventional	 fingerprinting	 techniques,	 however	 one	 must	 take	 care	 not	 to	 base	 the	
fingerprinting	technique	too	closely	on	the	laboratory	data	that	will	subsequently	be	used	for	
training,	 as	 this	 will	 introduce	 an	 element	 of	 confirmation	 bias	 and	 thus	 may	 give	 false	
confidence	in	the	fitting	and	subsequent	extrapolations.	
	
6)	 Owing	 to	 composition	 dependence	 acknowledged	 by	 the	 authors,	 it	 would	 be	 nice	 to	 see	
additional	data	c.f.	Figures	5	and	6,	for	other	single	precursors.	Are	these	data	available?	
	
Response:	We	 agree	 this	 would	 be	 very	 useful.	 Firstly,	 we	 feel	 that	 recommendations	 for	
additional	 data	 described	 in	 section	 4	 should	 be	 pursued	 before	 a	 detailed	 analysis	 of	
additional	 precursors	 systems.	 Secondly,	 the	 state	 of	 box-models	 used	 to	 study	 multiple	
precursors	 is	 highly	 variable	 and	 not	 particularly	 well	 documented	 or	 with	 a	 common	
data/software	repository.	The	recent	study	of	McVay	et	al	(2015)	might	improve	predictions	
presented	 in	 figure	 7-9	 due	 to	 additional	 mechanisms	 such	 as	 the	 formation	 of	 HOMs.	
However,	 the	 presentation	 of	 other	 box-model	 suggests	 the	 requirement	 for	 tracking	 each	
compound	 in	 the	 condensed	 phase,	 to	 be	 used	 as	 input	 into	 STRAPS,	 is	 not	 necessarily	
followed.	 Given	 the	 two	 commonly	 used	 chemical	 mechanisms,	 the	 Master	 Chemical	
Mechanism	(MCM)	and	GECKO,	carry	individual	molecular	representations	as	SMILES	strings,	
this	would	not	take	much	work	to	improve.	It	would	be	a	very	useful	development	to	have	a	
central	repository	of	box-model	output	that	is	visible	and	easy	to	access.		
	
7)	P7,	Lines	30	–	33:	Regarding	the	statement	–	“This	reflects	sensitivity	to	information	used	in	
the	training	process	and	how	similarity	between	performances	should	be	taken	with	caution	in	
prescribing	which	method	 to	 take	 forward”,	 as	 this	 represents	 a	 limitation,	 could	 the	 authors	
expand	 their	 discussion	 slightly,	 i.e.	 potential	 magnitude	 of	 uncertainty	 associated	 with	
inaccurate	 method	 prescription?	 Further,	 could	 the	 authors	 clarify	 the	 sensitivity	 of	 the	
technique	to	user	required	experience	and	expertise?	
	
Response:	 Regarding	 the	 first	 point,	 we	 cannot	 at	 this	 stage	 prescribe	 a	 magnitude	 of	
uncertainty	 for	 any	 given	 method	 without	 further	 testing.	 To	 re-iterate	 the	 recommended	
data	 requirements	presented	and	extended	 in	 section	4,	 it	would	be	highly	useful	 to	obtain	
additional	 laboratory	 data	 on	 systems	 from	 a	 specific	 series	 of	 compounds	 to	 enable	 this	
quantification.	Regarding	 the	 second	point,	we	would	hope	 that	 the	use	of	 openly	 available	



libraries	in	the	Scikit	learn	package,	and	fully	documented	software	repositories,	will	enable	
anyone	to	replicate	or	extend	the	work	presented	here.	
	
8)	P8,	Lines	18	–	20:	When	the	authors	refer	 to	addition	of	data	 from	mixed	systems,	are	they	
referring	to	an	ensemble	photo-oxidation	study,	or	simply	an	inert	multicomponent	mixture?	Did	
the	authors	consider	a	test	intermediate	in	complexity,	e.g.	the	obvious	intermediate	between	a	
single	 compound	 mass	 spectrum	 and	 a	 chamber	 photo-oxidation	 experiment	 would	 be	 an	
analysis	 of	 a	 mixture	 of	 2-3	 compounds,	 without	 the	 complex	 oxidative	 chemistry.	 Was	 this	
considered?	
	
Response:	 This	 is	 a	 very	 good	 point	 and,	 yes,	 we	 did	 consider	 this.	 We	 are	 specifically	
referring	 to	 a	 range	 of	 mixed	 systems	 from	 inert	 multicomponent	 systems	 to	 those	 from	
additional	 chamber	 studies.	 The	 inert,	 or	 even	 reactive,	 multicomponent	 mixtures	 would	
enable	 us	 to	 better	 validate,	 and	 provide	 more	 training,	 to	 the	 tools	 presented	 here.	 This	
would	give	us	 increased,	or	decreased,	confidence	 in	 the	application	 to	chamber	systems.	 It	
would	also	enable	us	to	perhaps	construct	a	more	generally	applicable	set	of	fingerprints	to	
use	in	the	training	process.		
	
9)	Regarding	the	AMS	data	employed	(e.g.	Figure	7):	How	were	these	data	treated?	Were	they	
experiment	averaged,	summed,	normalised?	Despite	the	reference	to	Alfarra	et	al.,	2013,	it	may	
be	 useful	 to	 briefly	 state	 this	 on	 introduction	 of	 the	 experimental	 data	 in	 order	 to	 provide	
context.	
	
Response:	The	data	were	normalised,	as	it	was	the	relative	peak	contributions	that	were	of	
interest;	quantitative	agreement	on	mass	concentrations	is	a	separate	area	of	enquiry	outside	
the	scope	of	this	work.	We	have	also	added	a	brief	reference	to	the	conditions	mentioned	in	
the	Alfarra	et	al.,	2013	study	in	section	3.3,	page	9:	Figure	7	displays	the	predicted	mass	spectra	
for	 the	 GECKO-A	model	 results	 of	 Valorso	 et	 al.	 (2011)	 combined	with	 the	 experimental	 data	
taken	 from	 a	 chamber-based	 α-pinene	 SOA	 formation	 experiment	 reported	 by	 Alfarra	 et	 al.	
(2013).	 This	 spectra	 represents	 “aged”	 aerosol,	 after	 4	 hours	 of	 experiment,	 during	which	 the	
VOC/NOx	ratio	was	~2.	The	same	information	has	been	added	to	the	caption	of	Figure	7.	
	
10)	Please	check	reference	formatting	throughout,	e.g.	spaces	between	text	and	parentheses	and	
improper	use	of	chronological	ordering	of	multiple	citations.	
	
Response:	Apologies,	these	formatting	issues	have	been	corrected.	
	
11)	P2,	Line	21:	Please	add	more	indicative	primary	source	references;	this	paper	is	rather	
Specific	
	
Response:	 Apologies,	we	have	now	 replaced	 this	 reference	with	 the	 overarching	 review	of	
Halquist	et	al.	(2009).	
	
12)	P2,	Line	30:	Reference	repeated	
	
Response:	Apologies,	this	has	been	corrected.	
	
13)	P3,	Line	14:	“:	:	:air	and	in	THE	laboratory:	:	:”	
	
Response:	Apologies,	this	has	been	corrected.	
	



14)	P4,	Line	26:	“now”	rather	than	“new”	
	
Response:	Apologies,	this	has	been	corrected.	
	
15)	P4,	Line	28:	“than”	rather	than	‘that”?	
	
Response:	Apologies,	this	has	been	corrected.	
	
16)	P5,	Line	10:	“than”	rather	than	“that”	
	
Response:	Apologies,	this	has	been	corrected.	
	
17)	P5,	Line	30:	Full-stop	missing	after	“3.2”	
	
Response:	Apologies,	this	has	been	corrected.	
	
18)	P6,	Lines	14	–	16:	Rewrite	to	facilitate	ease	of	reading	
	
Response:	We	have	 replaced	 those	 lines	with	 the	 following:’	However	we	first	and	foremost	
wish	 to	demonstrate	 the	 efficacy	of	using	pre-defined	 fingerprints	as	 they	are	available	 in	 the	
literature,	 or,	 within	 existing	 open-source	 software	 packages.	 The	 exact	 physical	 processes	
taking	place	within	instrument	are	still	the	subject	of	considerable	debate.	‘			
	
19)	P8,	Lines	9	–	11:	Sentence	is	awkward,	I	suggest	it	is	rewritten	for	clarity	
	
Response:	We	have	 replaced	 those	 lines	with	 the	 following:’	A	recent	 study	of	McVay	et	al.	
(2016)	presented	results	demonstrating	sensitivity	of	aerosol	mass	and	composition	to	processes	
included	 in	 a	 box-model	 model,	 including	 the	 addition	 of	 autoxidation	 mechanisms.	 They	
proposed	that	autoxidation	might	resolve	some	or	all	of	measurement–model	discrepancy	from	
chamber	 simulations,	 but	 that	 this	 hypothesis	 could	 not	 be	 confirmed	 until	 more	 explicit	
mechanisms	are	established	for	α-pinene	autoxidation(McVay	et	al.,	2016).’	
	
20)	P8,	Line	21:	“Fingerprints”	
	
Response:	Apologies,	this	has	been	corrected.	
	
21)	P9,	Line	1:	Repeated	word	-	“value	values”	
	
Response:	Apologies,	this	has	been	corrected.	
	
22)	P14,	Tables	1	and	2	legends:	Right	[	parenthesis	missing	
	
Response:	Apologies,	this	has	been	corrected.	
	
23)	P17,	Figures	4:	axis	labels	are	too	small	and	potentially	unreadable	in	final	print,	please	
increase	the	text	size	
	
Response:	Apologies,	this	has	been	corrected.	
	
24)	P17,	Figures	4	legends:	Right	[	parenthesis	missing	
	



Response:	Apologies,	this	has	been	corrected.	
	
25)	P19,	Figure	5:	Axis	labels	missing	
	
Response:	Apologies,	this	has	been	corrected.	
	
26)	P20,	Figure	6:	Axis	labels	missing	
	
Response:	Apologies,	this	has	been	corrected.	
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