
We	would	 like	 to	 thank	 the	 reviewer	 for	 their	 recognition	 of	 the	 potential	 of	 the	 approach	
presented	 here.	 In	 the	 following	 we	 respond	 to	 all	 comments,	 including	 detailing	 some	
additional	 work	 that	 has	 been	 carried	 out	 with	 regards	 to	 fingerprint	 analysis.	 	 In	 the	
following	 response	 we	 separate	 and	 number	 all	 distinct	 comments	 in	 order	 of	 their	
appearance	in	the	review,	highlighting	new	text	added	to	the	manuscript	where	appropriate.	
	
1) Is	the	MACCS	fingerprints	most	successful	just	because	of	the	sheer	number	of	keys,	each	of	
which	contribute	 to	predictions,	or	are	 there	particular	 structural	elements	not	present	 in	 the	
others	that	improve	the	predictions?		

	
Response:	Comparing	average	performance	statistics	in	section	3.1	at	first	implies	this	might	
be	 the	 case.	 However	 the	 comparison	 with	 spectra	 from	 the	 Alfarra	 et	 al.	 (2013)	 paper	
illustrates	the	MACCS	keys	perform	poorly.	 	Interrogating	the	performance	from	predictions	
using	the	MACCS	keys	for	specific	compounds	illustrates	a	few	problems	that	might	reflect	a	
lack	of	generality	across	the	MACCS	keys.		For	example,	the	FP4	keys	cycle	through	systematic	
functional	 groupings	 such	 as:	 primary	 carbon,	 secondary	 carbon,	 tertiary	 carbon…primary	
alcohol,	secondary	alcohol,	tertiary	alcohol	etc.	This	would	lead	to	a	maximum	of	320	keys	per	
molecule.	MACCS	keys	on	the	other	hand	are	almost	seemingly	designed	to	capture	a	random,	
although	 extensive,	 set	 of	 features	 leading	 to	 a	 maximum	 of	 162	 features	 for	 any	 given	
molecule.	 As	 we	 note	 in	 the	 manuscript,	 it	 is	 difficult	 to	 find	 the	 provenance	 behind	 the	
MACCS	keys.	However,	we	have	added	the	following	text	in	section	2,	page	5,	to	try	and	clarify	
the	 issue	 [new	 text	 presented	 in	 italics]:	 ‘There	 are	 some	 common	 features	 between	 each	
fingerprint	library,	but	also	a	range	of	differences.	For	example,	all	libraries	identify	the	presence	
of	 the	 CH2	 group,	 but	 then	 differ	 in	 optional	 connecting	 groups.	 The	 FP4	 keys	 cycle	 through	
systematic	 groupings,	 such	 as:	 primary	 carbon,	 secondary	 carbon,	 tertiary	 carbon…primary	
alcohol,	 secondary	 alcohol,	 tertiary	 alcohol	 etc.	 Similar	 groups	 are	 detected	using	 the	 activity	
coefficient	and	vapour	pressure	keys.	 	The	full	collection	of	SMARTS	keys	can	be	found	in	the	
source	code	and	we	discuss	suggestions	for	future	work	on	refining	fingerprints	in	section	4.	
Please	refer	to	section	5	on	code	availability.’	
	
2).	The	generally	poor	performance	of	 SVMs	 for	all	 keys	 is	 surprising,	 is	 it	possibly	due	 to	 the	
high	dimensionality	in	the	underlying	representations	that	is	not	present	in	the	others,	or	is	there	
a	more	obvious	reason	to	the	authors?	
	
Response:	We	agree	 this	 is	 surprising,	 especially	 given	 the	 extent	 of	 applications	 to	which	
SVMs	are	applied.	At	first	we	assumed	this	was	down	to	how	the	data	was	normalized	prior	to	
training.	 	 However,	 using	 a	 maximum/minimum	 scalar	 prior	 to	 training	 did	 not	 improve	
performance.	There	are	differences	according	to	which	kernel	 is	used.	 	 It	might	be	true	that	
dimension	reduction	procedures,	such	as	PCA,	might	improve	performance.	With	this	in	mind,	
we	have	conducted	tests	on	using	PCA	prior	to	training,	using	the	combined	set	of	fingerprints	
as	 requested	 in	 point	 ‘6’	 addressed	 shortly.	 Based	 on	 these	 results	 we	 have	 added	 an	
additional	table	[table	3]	demonstrating	the	effect	of	dimension	reduction	procedures	on	the	
performance	of	all	methods,	using	the	combined	fingerprint	approach:		
	



	
	
Table	 3	 -	Median	 cosine	 angle	 between	measured	 and	 predicted	 spectra,	 applying	 PCA	
analysis	 to	 the	 ‘combined’	 fingerprints,	 as	 a	 function	 of	 the	 number	 of	 principal	
components	 used	 given	 above	 each	 column.	 The	 method	 labels	 are	 as	 follows:	 SMV	
[Support	 vector	 Machine	 with	 3	 kernels	 (RBF,	 Poly[nomial]	 and	 Lin[near])],	 BRR:	
Bayesian	 Ridge,	 OLS:	 Ordinary	 Least	 Squares,	 SGDR:Stochastic	 Gradient	 Descent,	 Tree:	
Decision	Tree	and	Forest:	Random	Forest.		
	
We	have	also	added	the	following	text	to	section	3.2	[new	text	presented	in	italics],	which	is	
renamed	 to:	 3.2	 Training	 to	 a	 subset,	 variable	 selection	 and	 dimension	 reductions.	 ‘in	
practice,	 the	 statistics	 presented	 in	 Table	 1	 should	 not	 be	 considered	 a	 true	 test	 of	 the	
methodology,	but	rather	a	precursor	demonstration	of	the	sensitivity	to	choice	of	fingerprint,	
and	perhaps	any	variability	in	instrument	response	across	the	AMS	library.	On	this,	the	use	of	
the	 ‘combined’	 fingerprint	demonstrates	 the	ability	 to	retain	 information	 from	those	keys	 that	
improve	 overall	 performance.	 Given	 their	 wide	 use	 across	 many	 disciplines,	 it	 is	 difficult	 to	
quantify	 the	 reasons	behind	 the	poor	performance	of	 the	 Support	Vector	Machines	 relative	 to	
other	 methods.	 To	 assess	 whether	 dimension	 reduction	 procedures	 would	 improve	 accuracy,	
table	3	presents	the	median	and	overall	spread	of	cosine	angles	when	using	Principal	Component	
Analysis	(PCA)	on	the	‘combined’	fingerprints.	The	number	of	principal	components	was	varied	
between	 20,	 10,	 8	 and	 4.	 Generally,	 reducing	 the	 number	 of	 keys	 from,	 up	 to,	 278	 to	 20	
components,	 leads	to	an	improvement	of	around	0.01-0.02	in	all	methods	apart	 from	Ordinary	
Least	Squares	and	Support	Vector	Machines	with	both	the	polynomial	and	linear	kernels.	Results	
demonstrate	 clear	 sensitivity	 to	 the	 number	 of	 components	 when	 combined	 with	 the	 RBF	
Support	Vector	Machine	kernel,	performance	varying	from	0.84	to	0.67	on	reducing	the	number	
of	components	from	20	to	4.’	
	
We	 cannot	 say	with	 any	 certainty	what	 the	 true	 cause	of	 variability	within	 each	 regression	
technique	 is.	 Ultimately,	 we	 feel	 this	 proof	 of	 concept	 study	 needs	 building	 on	 with	
appropriate	laboratory	data	before	further	quantification	of	dependencies	would	be	possible.	
Whilst	we	state	the	rationale	in	the	original	manuscript,	we	have	added	the	following	text	in	
section	4	 to	re-iterate	 this:	 ‘On	the	sensitivity	to	choice	of	fingerprint,	our	results	demonstrate	
compound	specific	 trends	that	 lead	to	performance	variability	when	applied	to	a	complex	SOA	
system	that	is	not	apparent	when	analysing	median	cosine	angle	statistics.	Combining	available	
fingerprints	into	one	can	slightly	improve	performance	in	some	cases,	but	as	the	comparison	of	
isolated	MACCS	versus	FP4	performance	 illustrates,	 there	 is	potential	danger	 in	over	 fitting	 to	
distinct	features	in	the	training	set	that	is	not	provided	by	the	box-model	output.		To	re-iterate,	
one	might	expect	a	collection	of	keys	that	relate	to	EI	fragmentation	principles	to	offer	a	more	
robust	 basis	 for	 fitting	 any	 method	 used	 here.	 However,	 that	 requires	 further	 work	 with	
additional	laboratory	data	to	validate	the	efficacy	of	any	new	bespoke	fingerprint.’	
	
3)	 How	 are	 the	 tuning	 parameters	 for	 the	 model	 parameters	 determined?	 For	 instance,	 the	
penalty	factor	for	SVM,	etc.?		

Method 20 10 8 4
SVM	RBF 0.84 0.84 0.85 0.67
SVM	Poly 0.83 0.83 0.81 0.79
SVM	Lin 0.80 0.80 0.80 0.80
BRR 0.93 0.90 0.89 0.87
OLS 0.94 0.89 0.89 0.87
SGDR 0.89 0.89 0.89 0.88
Tree 0.98 0.98 0.98 0.98
Forest 0.99 0.99 0.99 0.99



Response:	Using	the	cosine	angle	between	spectra	as	a	measure	of	good	fit,	parameters	 for	
each	method,	where	 required,	 are	 cycled	 until	 the	most	 effective	 combination	were	 found.	
These	parameter	ranges	are	presented	in	the	code	release	and	are	specific	to	each	algorithm,.	
	
4)	Are	cosine	angles	(uncentered	correlations)	sufficient	to	capture	agreement	that	represents	
more	 than	 the	 range	 (minimum	 and	 maximum)	 relative	 ion	 counts	 for	 each	 spectrum?	 This	
angle	may	not	represent	disagreement	in	relative	ion	counts	that	are	of	intermediate	value	very	
well.	In	that	there	is	precedent	for	cosine	angles	for	mass	spectra	comparison,	it	is	a	safe	metric,	
but	 the	 authors	may	 look	 at	 analyzing	 residuals	 for	 each	mass	 fragment	 to	 understand	what	
their	model	gets	right	and	less	right	(to	generalize	on	illustrations	provided	in	Figures	5	and	6,	
which	are	 incidentally	missing	axes	 labels).	There	 is	 some	mention	about	 f43	being	 somewhat	
reasonable	and	f44	being	under	predicted,	but	this	seems	a	bit	buried	in	the	presentation.	
	
Response:	 There	 are	 indeed	 other	 metrics	 we	 could	 have	 employed	 to	 measure	 distance	
between	mass	 spectra,	 however	 we	 considered	 cosine	 to	 be	 the	most	 appropriate.	 Firstly,	
because	our	aim	is	to	replicate	the	AMS	instrument	response	function,	which	can	be	modelled	
as	a	 linear	addition	of	multiple	component	mass	spectra,	we	reason	 that	 it	would	make	 the	
most	 sense	 to	 use	 a	 metric	 that	 places	 linear	 weight	 on	 the	 peaks’	 relative	 intensities.	
Secondly,	while	a	different	metric	may	place	a	relatively	greater	weight	on	intermediate	peaks	
(thus	ensuring	a	more	general	agreement	over	a	larger	number	of	peaks),	we	would	have	to	
take	care	not	to	also	unduly	weight	the	minor	peaks,	which	can	be	problematic.	As	such,	an	
element	of	subjectivity	would	have	been	introduced	in	the	choice	of	algorithm,	which	in	itself	
would	require	more	testing.	It	is	possible	that	there	is	a	better	closeness	metric	that	could	be	
tested	as	part	of	future	work	and	this	would	be	easily	testable	within	the	STRAPS	framework,	
however	 see	 that	 as	 outside	 the	 scope	 of	 this	 particular	 paper.	 Concerning	 the	 comparison	
between	 f43	 and	 f44,	 this	 refers	 to	 the	 specific	 comparison	 between	 the	GECKO-A	 run	 and	
roughly	comparable	chamber	experiments,	however	we	must	stress	that	this	test	was	only	to	
demonstrate	 proof-of-concept	 and	 not	 perform	 a	 systematic	 comparison	 to	 assess	 the	
performance.	We	merely	show	that	the	values	produced	for	these	two	common	AMS	metrics	
are	plausible	in	magnitude.	For	this	to	be	done	properly,	a	chemical	model	run	matched	to	the	
exact	chamber	system	should	be	performed	with	a	state-of-the-art	model;	this	will	form	part	
of	future	work	and	a	full,	systematic	comparison	of	peak	magnitudes	will	be	performed	there.	
	
5)	 is	it	reasonable	to	try	to	predict	300	m/z’s	in	the	AMS	spectrum	(In	Figures	5-8	only	100	are	
shown,	but	is	the	model	trained	only	to	predict	100	m/z’s)?	Would	not	the	authors	benefit	from	
trying	to	reproduce	a	"reduced"	set	of	spectra	(e.g.,	reconstructed	from	a	truncated	set	of	PCA	or	
PMF	components)?		
	
Response:	 The	 methodology	 presented	 here	 is	 based	 on	 predicting	 a	 response	 for	 each	
channel,	and	then	predicting	the	peak	height	for	each	channel.	Each	m/z	therefore	has	its	own	
model	and	there	is	not	dependency	on	whether	100,	150	or	300	m/z’s	are	chosen.	There	is	no	
penalty	to	predicting	the	high	m/z	peaks,	as	these	generally	represent	a	low	mass	fraction	and	
contribute	 little	 to	 the	 cosine	 of	 the	 comparisons.	 However,	 there	 will	 be	 a	 tangible	
disadvantage	 to	 operating	 on	 a	 reduced	 dataset	 because	 the	 data	 reduction	 in	 itself	 will	
inherently	remove	information	that	is	possibly	of	value	for	training,	so	there	is	a	very	real	risk	
of	an	inferior	training.	
	
6)	Is	there	a	reason	why	all	keys	were	not	combined	into	a	single	fingerprint?	It	would	be	simple	
to	 remove	 redundant	 keys	 simply	 by	 inspection,	 if	 that	 were	 a	 concern.	 Regarding	 the	
comparison	of	f44	and	O:C	(Figure	8),	is	not	the	COO+	associated	with	m/z	44	more	sensitive	to	
dicarboxylic	acids	(Russell	et	al.,	2009)?		



	
Response:	This	is	a	good	point,	and	we	have	conducted	additional	simulations	to	investigate	
this.	 It	 is	 worth	 noting	 the	 initial	 aim	 of	 the	 paper	 was	 to	 illustrate	 the	 use	 of	 ‘standard’	
fingerprint	 libraries,	 as	 they	 exist	 as	 distinct	 developments.	 As	 noted	 in	 the	 manuscript,	
ideally	we	would	like	to	take	this	proof	of	concept	work	forward	by	constructing	a	library	of	
keys	that	better	represents	the	mechanism	of	fragmentation	within	the	AMS.	It	might	be	that	
converting	general	rules	of	EI	fragmentation	would	be	a	useful	starting	point.		Tables	1-2	now	
includes	median	cosine	angles	from	each	regression	technique	when	combining	all	keys	into	
one	fingerprint:	
	

		 	
	
Table1	 -	Median	 cosine	angle	between	measured	and	predicted	 spectra	when	 fitting	 to	
the	 entire	 dataset	 as	 a	 function	 of	 molecular	 fingerprint	 [Given	 above	 each	 column].	
Please	 note,	 the	 term	 ‘Combined’	 refers	 to	 a	 combination	 of	 all	 individual	 fingerprints	
into	one.	The	method	labels	are	as	follows:	SMV	[Support	vector	Machine	with	3	kernels	
(RBF,	 Poly[nomial]	 and	 Lin[near])],	 BRR:	Bayesian	Ridge,	OLS:	Ordinary	 Least	 Squares,	
SGDR:Stochastic	Gradient	Descent,	Tree:	Decision	Tree	and	Forest:	Random	Forest.	
	

		 	
	
Table	2	-	Median	cosine	angle	between	measured	and	predicted	spectra,	using	80%	of	the	
compounds	 in	 the	 training	 process,	 with	 variable	 selection,	 as	 a	 function	 of	molecular	
fingerprint	 [Given	 above	 each	 column].	 Please	 note,	 the	 term	 ‘Combined’	 refers	 to	 a	
combination	of	all	individual	fingerprints	into	one.	The	method	labels	are	as	follows:	SMV	
[Support	 vector	 Machine	 with	 3	 kernels	 (RBF,	 Poly[nomial]	 and	 Lin[near])],	 BRR:	
Bayesian	 Ridge,	 OLS:	 Ordinary	 Least	 Squares,	 SGDR:Stochastic	 Gradient	 Descent,	 Tree:	
Decision	Tree	and	Forest:	Random	Forest.		
	
We	 have	 also	 added	 the	 following	 text	 to	 section	 3.1,	 Page6	 [new	 text	 in	 italic]:	 ‘Table	 1	
presents	the	median	cosine	angle	of	modelled	spectra	fit	to	the	entire	AMS	database	derived	
from	the	different	supervised	methods	and	different	fingerprints,	either	isolated	or	combined	
into	one,	to	2	decimal	places.’	
	

Method MACCS FP4 AIOMFAC Nanoolal Combined
SVM	RBF 0.87 0.85 0.86 0.85 0.85
SVM	Poly 0.84 0.83 0.82 0.81 0.83
SVM	Lin 0.80 0.80 0.79 0.79 0.80
BRR 0.94 0.92 0.90 0.91 0.95
OLS 1.00 0.96 0.94 0.94 0.99
SGDR 0.88 0.82 0.80 0.80 0.89
Tree 1.00 1.00 1.00 1.00 1.00
Forest 1.00 1.00 1.00 1.00 1.00

Method MACCS FP4 AIOMFAC Nanoolal Combined
SVM	RBF 0.85 0.82 0.80 0.81 0.85
SVM	Poly 0.82 0.81 0.81 0.79 0.82
SVM	Lin 0.78 0.79 0.78 0.78 0.80
BRR 0.93 0.91 0.88 0.88 0.94
OLS 0.95 0.93 0.90 0.90 0.98
SGDR 0.87 0.82 0.81 0.80 0.88
Tree 0.97 0.97 0.94 0.96 0.98
Forest 0.97 0.97 0.95 0.96 0.98



Followed	by:	‘A	key	objective	of	this	study,	noted	above,	is	to	demonstrate	the	use	of	pre-defined	
fingerprints	in	constructing	a	predictive	model.	However,	it	is	useful	to	also	demonstrate	the	
efficacy	of	combining	the	information	from	each	fingerprint	into	one,	without	relating	variable	
performance	according	to	physical	processes	taking	place	within	the	instrument.	The	
performance	of	combining	all	fingerprints	into	one,	represented	in	table	1	under	the	column	
heading	‘combined’,	illustrates	a	similar	trend	in	performance	between	methods.’	
	
This	 is	 now	 combined	 with	 the	 request	 presented	 earlier	 to	 assess	 the	 role	 of	 dimension	
reductions,	using	PCA,	leading	to	a	new	table	[3]	and	subsequent	text	presented	in	response	
to	point	2.		We	also	add	the	following	text	to	the	final	paragraph	in	the	abstract	[new	text	in	
italic]:’	the	study	demonstrates	the	use	of	a	methodology	that	would	be	improved	with	more	
training	 data,	 fingerprints	designed	 explicitly	 for	 fragmentation	mechanisms	occurring	within	
the	AMS,	and	data	from	additional	mixed	systems	for	further	validation.’	
	
Whilst	these	new	simulations	add	an	interesting	angle,	we	still	need	more	experimental	data	
to	resolve	any	 issues	with	over	or	under	 fitting	 that	might	occur	using	our	 limited,	and	yet,	
somewhat	disparate	set	of	compounds	 in	 the	present	 training	database.	 	We	 feel	 this	 is	one	
reason	 the	 MACCS	 keys	 perform	 so	 poorly	 when	 methods	 are	 applied	 to	 the	 outputs	 of	
Valorso	 et	 al	 (2011),	 in	 that	 there	 are	 specific	 keys	 that	 are	 leading	 to	 over	 fitting	 to	 the	
training	dataset.	
	
7)	A	minor	point:	The	simulation	(photoxidation)	conditions	of	Valorso	(2011)	can	be	repeated	
in	the	caption	of	Figure	9	so	the	reader	can	immediately	contextualize	the	comparison.	
	
Response:	 This	 has	 now	 been	 added	 to	 the	 figure	 caption.	 Concerning	 the	 comparison	
between	 f43	 and	 f44,	 this	 refers	 to	 the	 specific	 comparison	 between	 the	GECKO-A	 run	 and	
roughly	comparable	chamber	experiments,	however	we	must	stress	that	this	test	was	only	to	
demonstrate	 proof-of-concept	 and	 not	 perform	 a	 systematic	 comparison	 to	 assess	 the	
performance.	We	merely	show	that	the	values	produced	for	these	two	common	AMS	metrics	
are	plausible	in	magnitude.	For	this	to	be	done	properly,	a	chemical	model	run	matched	to	the	
exact	chamber	system	should	be	performed	with	a	state-of-the-art	model;	this	will	form	part	
of	future	work	and	a	full,	systematic	comparison	of	peak	magnitudes	will	be	performed	there.	
	
	


