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Abstract. In this study, a probabilistic model, named as BayGmmKda, is proposed for flood assessment with a study area in10

Central Vietnam. The new model is a Bayesian framework constructed by a combination of Gaussian Mixture Model

(GMM), Radial Basis Function Fisher Discriminant Analysis (RBFDA), and a Geographic Information System database. To

compute the posterior probability of flood, the GMM algorithm is utilized for modeling the data distributionsof flood

conditioning factors. Additionally, the RBFDA method is employed in BayGmmKda to construct a latent variable that

maximizes the data discrimination with respect to the two class labels of ‘flood’ and ‘no-flood’. Experiments used for15

measuring the model performance point out that the proposed hybrid framework is superior to other benchmark models

including the adaptive neuro fuzzy inference system and the support vector machine. To facilitate the model implementation,

a software program of BayGmmKda has been developed in Matlab. The BayGmmKda program can accurately establish a

flood susceptibility map for the study region. Accordingly, local authorities can overlay this susceptibility map onto various

land-use maps for the purpose of land-use planning or management.20
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1 Introduction

Flood stands out as one of the most destructive phenomena featured by its immense scale of damages as well as its large25

spatial extent (Dottori et al., 2016). Catastrophic flood events destroy crops, infrastructures, and cause heavy loss of human

lives. Floods also lead to siltation of the reservoirs and thus limit the capacity of dams designed for flood control (Sanyal and

Lu, 2004). This natural hazard is known to negatively affect 170 million people around the globe annually (Kazakis et al.,

2015;Judi et al., 2011). On average, people in more than 90 countries are victimized by catastrophic flooding (Kazakis et al.,

2015).30

Because of monsoonal rainfalls and cyclonic patterns, regions in Southern Asian are immensely affected by floods (Loo

et al., 2015). Particularly in Vietnam, floods are often triggered by tropical cyclones and the country has undergone

destructive consequences of flooding in many provinces. According to Tien Bui et al. (2016b), more than 70% of the

population and roughly 60% of the area in the country is negatively affected by flood hazards. Based on a report produced by

Kreft et al. (2014), flood accounted for destructions that cost approximately $2.9 billion in the last two decades.35

Additionally, the occurrences of flood in Vietnam are expected to rise rapidly in the near future due to the increases of

poorly planned infrastructure developments and urbanization near watercourses, as well as an increased activity of

deforestation and climate change. Hence, an accurate model of flood forecasting becomes a crucial need for land-use

planning as well as establishment of disaster mitigation strategies. Based on flood prediction models, flood-prone area can be

identified at a region scale (Kia et al., 2012;Tien Bui et al., 2016b).40

Needless to say, the identification of susceptible areas can significantly reduce damages of flood to the national

economy and human lives by avoiding infrastructure developments and densely populated settlements in highly flood

susceptible areas (Zhou et al., 2016). The prediction outcomes also help Government agency to issue appropriate flood

management policies and to focus its limited financial resource to construct large-scale flood defense infrastructure in areas

that feature great economic values but are highly susceptible to flood (Bubeck et al., 2012). Therefore, a tool of flood spatial45

modelling is of great usefulness.

Recently, there is an increasing trend of applying Geographic Information System (GIS) in flood spatial modeling. GIS

technology is a helpful tool to investigate the multi-dimensional events of flooding (Tien Bui et al., 2016a;Shahabi and
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Hashim, 2015;Jia et al., 2016). GIS method is capable of simultaneously analyzing different layers of information (Candy et

al., 2014) including flood inventory map and various flood conditioning factors (e.g. topological and hydrological features).50

The analyses can be used to produce flood susceptibility evaluation results. In addition, flood forecasting systems based on

GIS are indeed suitable for a participatory approach to flood management; the reason is that this technique facilitates the

communication with the public.

To construct flood susceptibility evaluation models, databases of GIS that contains a set of flood influencing factors and

information of past flood events is established at the first step. At the next step, advanced soft computing models can be55

utilized to distinguish the flood vulnerable areas for the entire studied region (Tehrany et al., 2015b). In this way, the flood

prediction problem boils down to a supervised classification task. Nevertheless, most models in the current studies can only

produce qualitative outputs of flood prediction outcome (i.e. flood–no flood) (Tien Bui et al., 2016b;Tehrany et al., 2015b);

probabilistic evaluations have rarely been seen in the literature. Given these motivations, the objective of this study is to

construct a probabilistic model for spatial prediction of flood in Central Vietnam. The newly proposed method aims at60

enhancing the prediction accuracy as well as deriving probabilistic evaluations of flood susceptibility in a regional scale. The

derived flood susceptibility is of great usefulness for local authorities in land-use planning and management. The local

authorities may overlay the flood susceptibility map onto planed land-use maps in different scenarios.

The proposed method relies on the Bayesian framework with the Gaussian mixture model (GMM) and the Radial Basis

Function Fisher Discriminant Analysis (RBFDA). GMM is employed for density approximation to calculate the posterior65

probability of flood within the Bayesian framework. Furthermore, to boost the classification accuracy of the Bayesian model,

RBFDA is employed to construct a latent variable for from the original GIS database; this latent variable aims at maximizing

data discrimination with respect to the two classes of ‘flood’ and ‘no-flood’.

In essence, the proposed integrated framework contains two phases of analysis. RBFDA is first employed for latent

variable construction. The Bayesian approach assisted by GMM is then used to perform probabilistic pattern recognition.70

The first level performs pattern discriminant analysis task and the second level carries out the prediction to derive the model

output of flood evaluation. Based on previous studies which indicate that hierarchical model structures can produce

improving prediction accuracy (Chou and Tsai, 2012;Shahangian and Pourghassem, 2016;Hoang and Tien Bui, 2016), the
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proposed framework can potentially bring about desirable flood assessment results. The subsequent parts of this study are

organized in the following order: Related works on flood prediction are summarized in the second section. The next section75

introduces the research method of the current paper, followed by the fourth part that describes the proposed Bayesian model

for flood susceptibility forecasting. The next part reports the model prediction accuracy and comparison. The last section

discusses some conclusions on this work.

2 A Review of Related Works on Flood Susceptibility Prediction

Because of the criticality of flood prediction, this problem has gained an increasing attention from the academic80

community. Following this trend, various flood analyzing tools have been developed, ranging from relatively simple

methods to more sophisticated methodologies involving hydrological and hydraulic models (Winsemius et al.,

2013;Papaioannou et al., 2015). In general, the goal of constructing hydrological models is to acquire an accurate evaluation

of discharge over the watersheds. Moreover, it is noted that to establish such models, large-scale field works and

deployments of measuring equipments are necessary for collecting data (Fenicia et al., 2008). A review done by Sanyal and85

Lu (2004) pointed out that the density of gauging stations in developing countries is very low and this fact imposes a great

obstacle for establishing accurate hydrological models. In addition, the complex and nonlinear nature of the flood modeling

problem also bring about difficulties for hydrological methods and techniques (Sahoo et al., 2006).

In recent years, remote sensing coupled with the advancement of GIS technology has been increasingly shown to be a

reliable method for producing synoptic coverage over a large area in a cost effective way (Sanyal and Lu, 2004;Tien Bui et90

al., 2016b;Kazakis et al., 2015;Kia et al., 2012). The new approach based on GIS successfully evades the limitations of the

hydrological models and equips decision-makers with a powerful flood analysis tools. GIS databases integrated with data-

driven methods have demonstrated their effectiveness and accuracy in large scaled flood predictions. An fuzzy logic based

algorithm has been used to develop a map of flooded areas from synthetic aperture radar imagery, used for the operational

flood management system in Italia, was established by Pulvirenti et al. (2011). A model based on the frequency ratio95

approach and GIS for spatial prediction of flooded regions was first introduced by Lee et al. (2012); the spatial database

were constructed by field surveys and maps of the topography, geology, land cover, and infrastructure.
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Prediction models with artificial neural network (ANN) have been employed for flood susceptibility evaluation by

various scholars (Kia et al., 2012;Seckin et al., 2013;Rezaeianzadeh et al., 2014;Radmehr and Araghinejad, 2014); previous

works have shown ANN as a capable nonlinear modeling tool. Nevertheless, ANN learning is prone to overfitting and its100

performance has been shown to be inferior to that of support vector machine (Hoang and Pham, 2016).

Kazakis et al. (2015) introduced a multi-criteria index to assess flood hazard areas that relies on GIS and Analytical

Hierarchy Process (AHP); in this methodology, the relative importance of each flood conditioning factors for the occurrence

and severity of flood were determined via AHP. More recently, Support Vector Machine-based flood susceptibility analysis

approaches have been proposed by Tehrany et al. (2015a) and Tehrany et al. (2015b); the research finding is that SVM is105

more accurate than other benchmark models including the decision tree classifier and the conventional frequency ratio

model.

Mukerji et al. (2009) constructed flood forecasting models based on an adaptive neuro-fuzzy interference system

(ANFIS), Genetic Algorithm optimized ANFIS; experiments demonstrated that ANFIS attained the most desirable accuracy.

Recently, a metaheuristic optimized neural fuzzy inference system, named as MONF, has been introduced by Tien Bui et al.110

(2016b); the research finding is that MONF is more capable than decision tree, ANN, SVM, and conventional ANFIS.

As can be seen from the literature review, various data-driven and advanced soft computing approaches have been

proposed to construct different flood forecasting models. In most previous studies, the flood prediction was formulated as a

binary pattern recognition problem in which the model output is either flood or no flood. Probabilistic models have rarely

been examined to cope with the complexity as well as uncertainty of the problem under concern. Therefore, our research115

aims at enriching the body of knowledge by proposing a novel Bayesian probabilistic model to estimate the flood

vulnerability with the use of a GIS database.

3 Research Method

3.1 Flood inventory map and flood conditioning factors of the study area

3.1.1 The study area120

In this research, Tuong Duong district (central Vietnam) is selected as the study area (see Figure 1). This is byfar a

heavily affected flood region in the country (Reynaud and Nguyen, 2016). The area of the district is approximately 2803 km2
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and locates between the longitudes of 18°58'42''N and 19°39'16''N, and between the latitudes of 104°15''58'E and

104°55''57'E. The topographical feature of the Tuong Duong district is inherently complex with mountainous areas,

watersheds, and rivers. Drastic floods often divided the district into several isolated areas which are very difficult to125

approach for rescuing or evacuation purposes.

The district has two separated seasons, namely a cold season (from November to March) and a hot season (from April to

October). The yearly rainfall of the district is within the range of 1679 mm and 3259 mm. The rainfall amount is primarily

intensified during the rainy period which contributes to roughly 90% of the total annual rainfall. Due to the district’s location

as well as its topographic and climatic features, the study area is highly susceptible to flood events with immense infliction130

to human casualty and economic value. An examination carried out by Reynaud and Nguyen (2016) reported that

approximately 40% of families have been damaged by floods and roughly 20% of families must be relocated from the

flooded areas; the average loss of flood goes up to 24% of the family income each year.

Figure 1 Tuong Duong district (Central Vietnam)135
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3.1.2 Flood inventory map

Prediction of flood zones can be based on an assumption that future flood events are governed by the very similar

conditions of flooded zones in the past. Therefore, it is a reasonable strategy to analyze past records of flood occurrences

(Tien Bui et al., 2016b;Tehrany et al., 2015b). The first step of this analysis is to establish a flood inventory map for the140

region under investigation. In this study, the flood inventory map established by Tien Bui et al. (2016b) was used to analyse

the relationships between flood occurrences and influencing factors.

The flood inventory map stores documentations of past flood events (see Figure 1). It is noted that the type of floods in

this study area is flash flood. This is the main flood type in this region due to characteristics of the terrain.The map was

constructed by gathering information of the study area, field works at flood areas, and analyses from results of the Landsat 8145

Operational Land Imagery (from 2010 to 2014) with the resolution of 30m (retrieved from http://earthexplorer.usgs.gov).

Furthermore, the location of flood events was also verified by field works carried out in 2014 with handhold GPS devices. In

summary, the total number of flood locations during the last five years was recorded to be 76. It is noted that flood locations

were determined by overlaying the flood polygons in the inventory map and the Digital Elevation Model (DEM). Moreover,

only pixels in the map that associate with flood points are used to extract the influencing factors used for flood prediction.150

3.1.3 Flood influencing factors

To construct a flood prediction model, besides the flood inventory map, it is crucial to determine the flood influencing

factors (Tehrany et al., 2015a). It is worth to notice that the selection of the flood governing factors varies due to different

characteristics of study areas and the availability of data (Papaioannou et al., 2015). Based on the previous work of Tien Bui

et al. (2016b), the physical relationships between influencing factors and flood processes have been analyzed. Accordingly, a155

total of ten influencing factors were selected in this study; they include slope (IF1), elevation (IF2), curvature (IF3),

topographic wetness index (TWI) (IF4), stream power index (SPI) (IF5), distance to river (IF6), stream density (IF7),

normalized difference vegetation index (NDVI) (IF8), lithology (IF9), and rainfall (IF10). These factors are used to analyze

the  flood vulnerability for the studied area and a GIS database consisting of the flood inventory map and the chosen factors

has been established.The information of ten conditioning factors of flood occurrence employed in this study is summarized160

in Table 1. The distributions of the ten factors within the studied region are illustrated in Figure 2.
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Table 1 Flood influencing variables and their category descriptions

Factors Notation Description of factor categories

Slope (o) IF1
1 (0 to 0.5); 2 (0.5 to 2); 3 (2 to 5); 4 (5to 8); 5 (8 to 13); 6 (13 to 20);
7 (20 to 30); 8 (>30)

Elevation (100m) IF2
1 (<1); 2 (1 to 2); 3 (2 to 3); 4 (3 to 4); 5 (4 to 5); 6 (5 to 6); 7 (6 to 7);
8 (7 to 10); 9 (10 to 13); 10 (>13)

Curvature IF3 1 (<-2); 2 (-2 to -0.05) ; 3 (-0.05 to 0.05); 4 (0.05 to 2); 5 (>2)

Topographic Wetness Index
(TWI) IF4

1 (<6.5); 2 (6.5 to 7.5); 3 (7.5 to 8.5); 4 (8.5 to 9.5); 5 (9.5 to 10.5);
6 (10.5 to 11.5); 7 (11.5 to 12.5); 8 (>12.5)

Stream Power Index (SPI) IF5
1 (<1); 2 (1 to 3); 3 (3 to 5); 4 (5 to 7); 5 (7 to10); 6 (10 to 15);
7 (15 to 20); 8 (20 to 30); 9 (30 to 50); 10 (>50)

Distance to river (m) IF6
1 (<40); 2 (40 to 80); 3 (80 to 120); 4 (120 to 200); 5 (200 to400);
6 (400 to 700); 7 (700 to 1500); 8 (>1500)

Stream density (km/km2) IF7 1 (<1); 2 (1 to 3); 3 (3 to 5); 4 (5 to 7); 5 (7 to9); 6 (>9)

Normalized Difference
Vegetation Index (NDVI) IF8

1 (<0.3); 2 (0.3to 0.35); 3 (0.35 to 0.4); 4 (0.4 to 0.45); 5 (0.45 to0.5);
6 (0.5 to 0.55); 7 (0.55 to 0.6); 8 (>0.6)

Lithology (rock type) IF9
1 (Q); 2 (Nkb); 3 (Jmh); 4 (T3npb); 5 (T2); 6 (C-bslk); 7 (D-ntdl);
8 (S2-D1hn); 9 (O3-S1sc3); 10 (O3-S1sc2); 11 (O3-S1sc1); 12 (PR2bk)

Rainfall (1000mm) IF10
1 (<1.82); 2 (1.82 to 1.92); 3 (1.92 to 2.02); 4 (2.02 to 2.12); 5 (2.12 to 2.22); 6
(2.22 to 2.32); 7 (2.32 to 2.42); 8 (>2.42)

165
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Figure 2 Flood influencing factors: (a) Slope, (b) Elevation, (c) Curvature, (d) Topographic wetness index

170
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Figure 2 (Cont.) Flood influencing factors: (e) Stream power index, (f) Distance to river, (g) Stream density, (h) Normalized

Difference Vegetation Index,175
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Figure 2 (Cont.) (i) Lithology, (j) Rainfall

3.2 Bayesian Framework for Pattern Classification

The flood prediction in this study is considered as a pattern classification problem within which ‘flood’ and ‘non-flood’

are the two class labels of interest. As a result, the probability of pixels belonging to the flood class, which are derived from180

the model, will be used as susceptibility indices. These susceptibility indices of the pixels are then used to generate the flood

susceptibility map. To cope with the complexity as well as the uncertainty of the problem of interest, Bayesian framework is

employed in this study to evaluate the flood susceptibility of each data sample. The Bayesian framework provides a flexible

way for probabilistic modeling. This method features a strong ability for dealing with uncertainty and noisy data

(Theodoridis, 2015;Cheng and Hoang, 2016). Nevertheless, previous studies have rarely examined the capability of this185

approach for inferring flood susceptibility.

Basically, pattern classification aims at assigning a pattern to one of M = 2 distinctive class labels Ck which k is either 1

or 2. C1 = 0 and C2 = 1 denote the labels of flood’ and ‘non-flood’, respectively. To recognize an input pattern based on the

information supplied by its feature vector X, we need to attain the posterior probability P(Ck|X), which indicates the

likelihood that the feature vector X falls into a certain group Ck. Based on such information, the pattern will be categorized to190
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the group with the highest posterior probability. The posterior probability P(Ck|X) is calculated as follows (Webb  and

Copsey, 2011):

)(
)()|()|(

Xp
CPCXpXCP kk

k


 (1)

where )|( XCP k denotes the posterior probability. )|( kCXp represents the likelihood which is also called the class-

conditional probability density function (PDF). )( kCP denotes the prior probability, which implies the probability of the195

class before any feature is measured. The denominator )(Xp is the evidence factor; this quantity is merely a scale factor for

guaranteeing that the posterior probabilities are valid; it can be calculated as follows:





M

k
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Generally, the prior probabilities P(Ck) can be calculated by computing the ratio of training instances in each class.

Thus, the bulk in establishing a Bayesian classification model is to calculate the likelihood p(X|Ck). This likelihood expresses200

the density of input patterns in the learning space within a certain group of data. In most of situations, p(X|Ck) is unknown

and must be estimated from the available data. In this research, the Gaussian mixture model is utilized for computing the

p(X|Ck) quantity.

3.3 Gaussian Mixture Model for Density Estimation

3.3.1 Gaussian Mixture Model (GMM)205

Generally, density estimation can be defined as the problem of approximating a PDF given a finite number of data

instances (Scott, 2015). GMM has been shown to be an effective parametric method for modeling of data distribution

especially in high dimensional space (McLachlan and Peel, 2000;Theodoridis and Koutroumbas, 2009). Previous studies

(Paalanen, 2004;Figueiredo and Jain, 2002;Gómez-Losada et al., 2014;Arellano and Dahyot, 2016) point out that any

continuous distribution can be approximated arbitrarily well by a finite mixture of Gaussian distributions. Due to their210

usefulness as a flexible modeling tool, GMMs have received an increasing attention from the academic community (Zhang et

al., 2016;Khanmohammadi and Chou, 2016;Ju and Liu, 2012).
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In a d-dimensional space the Gaussian PDF is defined mathematically in the following form:
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where  denotes the vector of variable mean and  represents the matrix of covariance; and },{   denotes a set of

distribution parameter.

A GMM is, in essence, an aggregation of several multivariate Normal distributions; hence, its PDF for each data sample

is computed as a weighted summation of Gaussian distributions (see Figure 3):
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Figure 3 Structure of Gaussian Mixture Model (GMM)
225

Accordingly, the PDF for all data samples can be expressed as follows (Ju and Liu, 2012):
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Identifying a GMM’s parameters  can be considered as unsupervised learning task within which a dataset of

independently distributed data points },...,{ 1 NxxX  generated from an integrated distribution dictated via the PDF

)|( Xp . The goal is to find the most appropriate value of , denoted as e , that maximizes the log-likelihood function:230
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Practically, instead of dealing with the log-likelihood function, an equivalent objective function Q is optimized (Ju and

Liu, 2012):
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where itw is a posteriori probability for the ith class, ki ,...,1 and itw satisfies the following conditions:235
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The expectation maximization (EM) algorithm is a standard method to compute e . Besides the EM method, this study

employs an unsupervised learning approach for determining GMMs proposed by Figueiredo and Jain (2002). These two

algorithms are briefly reviewed in the next section of the paper.

3.3.2 Learning of finite Mixture Model with the Expectation Maximization (EM) Algorithm240

The EM method is a statistical approach to fit a GMM based on historical data; this method converges to a maximum

likelihood estimate of model parameters (McLachlan and Krishnan 2008). It can be recapitulated as follows (McLachlan and

Peel, 2000). Commencing from an initial parameter o , an iteration of the EM algorithm consists of the E-step in which the

current conditional probabilities ),|()|( iiiiti xNxp   that xt generated from the ith mixture component are

calculated, and the M-step within which the maximum likelihood estimates of i are updated. The iteration of EM algorithm245

terminates when the change value of the objective function is lower than a threshold value.
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These two steps of the EM procedure are stated as follows:

E-step: estimating the expected classes of all data samples for each class itw based on Eq. (8).

M-step: calculating maximum likelihood given the data’s class membership distribution using the following equations:250
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3.3.3 Unsupervised learning of finite mixture model

The EM algorithm increases the log-likelihood iteratively until convergence is detected; and this approach generally can255

derive a good set of estimated parameters. Nonetheless, EM suffers from low convergence speed in some data sets, high

sensitivity to initialization condition, and sub-optimal estimated solutions (Biernacki et al., 2003). Moreover, additional

efforts are required to determine an appropriate number of Gaussian distributions within the mixture.

As an attempt to alleviate such drawbacks of EM, Figueiredo and Jain (2002) put forward an unsupervised algorithm

for learning a GMM from multivariate data. The algorithm features the capability of identifying a suitable number of260

Gaussian components autonomously; and by experiments, the authors show that the algorithm is not sensitive to

initialization. In other words, this unsupervised approach incorporates the tasks of model estimation and model selection in a

unified algorithm. Generally, this method can initiate with a large number of components. The initial values for component

means can be assigned to all data points in the training set; in an extreme case, it is possible to distribute the component

number equal to the data point number. This algorithm gradually fine-tunes the number of mixture components by casting265

out element of Normal distributions that are irrelevant for the data modeling process (Paalanen, 2004).
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Furthermore, Figueiredo and Jain (2002) employed the Minimum Message Length (MML) criterion (Wallace and

Dowe, 1999) as an index for model selection; the application of this criterion for the case of GMM learning leads to the

following objective function (Figueiredo and Jain, 2002):
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2

)1()
12

ln(
2

)
12

ln(
2

)|(
0:




 


XLNCnCnNX nz

i

nzi

i


(12)270

where n denotes the size of the training set, N represents the number of hyper-parameters needed to construct a Gaussian

distribution, and nzC is the number of Gaussian distribution component featuring nonzero weight ( 0i ). Accordingly,

the EM method is then utilized to minimized Eq. 12 with a fixed number of nzC .

In detail, the EM algorithm is employed to estimate i as follows:
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Accordingly, the parameters new
i and new

i are updated based on Eq. 10 and 11, respectively. The algorithm stops

when the relative decrease in the objective function )|( X becomes smaller than a preset threshold (e.g. 10-5).

3.4 Radial Basis Function Fisher Discriminant Analysis for Latent Variable Generation

In machine learning, discriminant analysis presents a highly useful technique to construct relevant input patterns from

the original data set. This technique aims at unraveling the underlying structure of the data which is helpful for pattern280

recognition. Introduced by Mika et al. (1999), the Radial Basis Function Fisher Discriminant Analysis (RBFDA) is an

extension of the Fisher Discriminant Analysis for dealing with data nonlinearity. RBFDA can be conveniently utilized to

project the feature from the original learning space to a projected space that expresses a high degree of class separability

(Theodoridis and Koutroumbas, 2009). Using this kernel technique, the data from an input space I is first mapped into a high

dimensional feature space F. Hence, discriminant analysis tasks can be performed nonlinearly in I.285
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Herein, (.) is defined as a transformation from an input space I to a high dimensional feature space F, to compute w

(the projecting vector), it is necessary to maximize the Fisher discriminant ratio as follows:
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To obtain w, the kernel trick is applied. Thus, one only needs to establish a formulation of the algorithm which only

requires dot-product )().( yx  of the training data and employ kernel functions which calculate )().( yx  . The widely-

employed Radial Basis Kernel Function (RBKF) is expressed in the following formula (with σ denotes the kernel function

bandwidth):295
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Since a solution of the vector w lies in the span of all data samples in the projected space, the transformation vector w

is shown in the following formula:
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From Eq. (17) and Eq. (19), we have: k
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Taking into account the formulas of )(wJ , 
BS , as well as Eq. (20), we can restate the numerator of Eq. (14) in the

following manner:

 MwSw T
B

T  (21)

where M = (M1-M2)(M1-M2)T305

Similarly, based on the Eq. (17) that defines 
km , the denominator of Eq. (14) can be demonstrated in the following

way:

 NwSw T
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T  (22)

where 



2

1

)1(
k

T
klk KIKN

k
; Kk denotes a N-by-Nk kernel matrix with a typical element is ),( k
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Considering all Eq. (14), Eq. (21), and Eq. (22), the solution of RBFDA can be found by maximizing:
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The optimization problem with the objective function expressed in Eq. (23) is found by identifying the primal

eigenvector of N-1M. Based on the optimization results, an input patter in I is projected on to a line defined by the vector w in

the following manner:315
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4 The proposed Bayesian Framework for Flood Susceptibility Prediction

4.1 The established GIS database

To formulate a flood assessment model, the first stage is to construct a GIS database (see Figure 4) within which

locations of past flood events, maps of topographic feature, Landsat 8 data, maps  of geological feature, and precipitation320

statistical records are acquired and integrated. In this study, the data acquisition, processing, and integration were performed

with ArcGIS (version 10.2) and IDRISI Selva (version 17.01) software packages.
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Furthermore, a C++ application has been developed by the authors to transform the flood susceptibility indices into a

GIS format for ArcGIS implementation. Accordingly, the compiled outcomes are employed to form a database that includes

the aforementioned flood conditioning features with two class outputs: “flood” and “no-flood”. As mentioned earlier, a total325

of 76 flood locations has been recorded. To balance the dataset and reliably construct the flood prediction model, 76

locations of non-flood areas are randomly sampled and included for analysis. Hence, the total database consists of 152 data

samples.
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Figure 4 The established GIS database

4.2 The Proposed Model Structure

The proposed model for flood vulnerability assessment that incorporates RBFDA, the Bayesian classification

framework, and GMM is presented in this section of the study. As stated earlier, the model employs RBFDA as the first level335

of analysis to generate a latent input factor. This RBFDA-based latent factor aims at expressing a data projection that

features the highest data separation. The Bayesian classification framework coupled with GMM is utilized in the next level
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of analysis within which this framework analyzes all relevant conditioning variables and the newly created latent variable to

derive the evaluation result. The overall flowchart of the proposed Bayesian framework based on GMM and RBFDA for

flood susceptibility prediction, named as BayGmmKda, is demonstrated in Figure 5.340
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Figure 5 The proposed BayGmmKda

To construct and evaluate the prediction model, the whole dataset, including 152 data samples, is separated into two345

sets: Training Set (90% or 137 samples) employed for model establishing and Testing Set (10% or 15 samples) used for

model testing. It is noted that the input variables of the dataset have been normalized using the Min-Max normalization; the

purpose of data normalization is to hedge against the situation of unbalanced variable magnitudes.

Furthermore, it is beneficial to equip the model with an initial feature selection procedure in which the relevancies of

flood influencing factors are examined. In this research, the mutual information (Kwak and Choi, 2002;Hoang et al., 2016), a350

widely employed criterion for feature selection in machine learning, is selected to express the pertinence of each influencing

factor to the flood evaluation outcomes (either flood or no-flood). Basically, the mutual information can be defined as a

measure of the mutual dependence between the two random variables; this criterion quantifies the amount of information
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that can be attained about one random variable through the information of another one (Qian and Shu, 2015). It is noticed

that the larger the mutual information, the stronger the relevancy between the flood conditioning factor and the class output.355

In addition, to establish the BayGmmKda model, it is required to provide the hyper-parameters of the quantity of

mixture components (k) used in GMM and the kernel function bandwidth ( ) used in RBFDA. It is worth reminding that to

train GMM for density estimation, the model employs two methods: the EM algorithm and the unsupervised algorithm. In

case of the EM algorithm, this study employs the Akaike information criterion (AIC) (Akaike, 1974) to identify an

appropriate the number of k. The value of k is allowed to vary from 1 to 20; AIC is then used to select a model that exhibits a360

good fit to the data and concurrently requires a few number of mixture components, which indicates less complexity (Olivier

et al., 1999). When the unsupervised GMM learning (Figueiredo and Jain, 2002) is used, the model starts with a maximum

component number of 20, the algorithm autonomously carries out the model selection process by removing irrelevant

mixture components.

On the other hand, a simple grid search procedure is performed to select a suitable value of the kernel function365

bandwidth ( ) used in RBFDA. Within this grid search, the available values of  can be one of the following set:

}100,50,10,5,1,5.0,1.0,05.0,01.0{ ; in addition, the Training set is subdivided into Training Subset 1 (90%)

and Training Subset 2 (10%). Thus, the Training Subset 1 plays the role as a training set for constructing BayGmmKda with

a value of  ; the appropriateness of a hyper-parameter is expressed by the rate of correct classification with the Training

Subset 2. The parameter  corresponding to the highest classification accuracy rate is selected for the prediction phase.370

When a suitable set of tuning parameters, including the number of mixture component k and the kernel function

bandwidth ), are properly specified, the training phases of RBFDA and GMM can be carried out. Based on the whole

Training Set, RBFDA construct a discriminant analysis based latent variable. GMM is trained based on the original input

factors and the RBFDA-based latent factor. Consequently, based on the class conditioning likelihood estimated by GMM,

the Bayesian classification framework is formulated to derive a class output (either flood or no-flood) to a novel input375

pattern.
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4.3 The Developed Matlab Interface of BayGmmKda

It is noted that GMM with the EM training algorithm is implemented with the Matlab statistical toolbox (MathWorks,380

2012a); meanwhile, the BayGmmKda performs the unsupervised algorithm with the program code provided by Figueiredo

(2002). The RBFDA algorithm and the unified BayGmmKda model have been coded in Matlab by the authors. In addition, a

software program with a graphical user interface (GUI) (see Figure 6) for the implementation of theBayGmmKda model has

been coded in Matlab environment by the authors. The GUI development aims at providing a user-friendly system for

performing flood susceptibility predictions.385

Figure 6 Main Menu of BayGmmKda

As shown in Figure 6, the program consists of three modules: Data Process and Visualization, Model Training, and

Model Prediction. The first module provides basic functions for data inspection and visualization including data

normalization, data viewing, and preliminary feature selection with mutual information. In the second module, the users390

simply provide model parameters including the kernel function parameter and the GMM training method. The trained model

is employed to carry out prediction tasks in the third module, within which the model prediction performance is reported.
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5. Experimental Results

5.1 BayGmmKda Implementation395

The outcome of the preliminary examination on the pertinence of flood influencing factors is reported in Figure 7. As

mentioned earlier, the relevancies of influencing factors are exhibited by the mutual information criterion. Based on the

outcome, IF5 (SPI) features the highest mutual dependence, followed by IF7 (stream density) and IF8 (NVDI). Influencing

factors of IF4 (TWI) and IF10 (rainfall) exhibit comparatively low values of mutual information. Because all the mutual

information values are not null, all conditioning factors deem to be relevant and should be retained for the subsequent400

processes of model training and prediction.

Figure 7 Mutual information of flood conditioning factors

It is worth reminding that the BayGmmKda’s training phase is executed in two consecutive steps: RBFDA training and405

GMM training. RBFDA analyzes the data in Training Set to establishes a latent factor which is a one-dimensional

representation of the original input pattern. Figure 8 illustrates a typical latent factor constructed by RBFDA. In the next

step of the training phase, GMM is constructed by the original input patterns with their corresponding labels which consist of

ten input factors and with the RBFDA -based latent feature.
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410
Figure 8 RBFDA-Based Latent Factor Construction

Commonly, the classification accuracy rate, denoted as CAR, is employed to exhibit the rate of correctly classified

instances. In addition, a more detailed analysis on the model capability can be presented by calculating true positive rate

TPR, false positive rate FPR, false negative rate FNR, and true negative rate TNR. These four rates are also commonly

utilized to exhibit the predictive capability of a prediction model (Hoang and Tien-Bui, 2016). The four metrics are415

calculated as follows:

FNTP
TPTPR


 ;
TNFP

FPFPR


 ;
FNTP

FNFNR


 ;
FPTN

TNTNR


 (25)

where TP, TN, FP, and FN represent the values of true positive, true negative, false positive, and false negative, respectively.

Besides, the two indices of TPR and FPR can be graphically summarized by means of Receiver Operating Characteristic

(ROC) curve (van Erkel and Pattynama, 1998). The ROC curve basically demonstrates the trade-off between the two420

aforementioned TPR and FPR when the threshold for accepting the positive class of ‘flood’ varies. In addition, the area

under the curve of ROC, or AUC for short, can be employed to quantify the classification performance; generally, a better

model is characterized by a larger value of AUC.

As aforementioned, the data set is randomly separated into the Training Set and the Testing Set which occupy 90% and

10% of the data samples, respectively. The Training Set is employed to train the mode; meanwhile, the Testing Set is used425
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for validating the model capability after being trained. Since one selection of data for the Training Set and the Testing Set

may not truly demonstrate the model’s predictive capability, this study carries out a repetitive sub-sampling procedure within

which 30 experimental runs is carried out. In each experimental run, 10% of the data set is retrieved in a random manner

from the database to constitute Testing Set; the rest of the database is included in the Training Set.

The testing performance of the proposed Bayesian framework for flood susceptibility is reported in Table 2 and Figure430

9, which provides the average ROC curves of the proposed model framework, obtained from the random subsampling

process, with two methods of GMM training. Herein, the two Bayesian models that employ the EM algorithm and the

unsupervised learning algorithms for training GMM are denoted as BayGmmKda-EM and BayGmmKda-UL, respectively.

As can be seen from this table, BayGmmKda with the unsupervised learning algorithm demonstrates clearly better predictive

performance (CAR = 89.58%, AUC = 0.94, TPR = 0.96, TNR = 0.91) than that of the BayGmmKda with EM algorithm435

(CAR = 86.67%, AUC = 0.93, TPR = 0.95, TNR = 0.85). The performances of BayGmmKda-EM and BayGmmKda-UL are

comparable in true positive rates. However, BayGmmKda-UL deems more accurate than BayGmmKda-EM when the two

models predicts patterns with negative class label (no-flood).

Table 2 Prediction Results of BayGmmKda

Data Set CAR (%) AUC TPR FPR FNR TNR
Average

BayGmmKda-EM 86.67 0.93 0.95 0.12 0.15 0.85
BayGmmKda-UL 89.58 0.94 0.96 0.12 0.09 0.91

Standard deviation
BayGmmKda-EM 6.51 0.07 0.05 0.10 0.12 0.12
BayGmmKda-UL 7.22 0.05 0.04 0.11 0.10 0.10

440
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Figure 9 ROC plots of the proposed BayGmmKda

5.2 Result Comparison

In this experiment of the current research, the result of the BayGmmKda model is benchmarked with those of other445

machine learning models including the support vector machine (SVM), the adaptive neuro fuzzy inference system (ANFIS),

and the GMM-based Bayesian Classifier. The above soft computing models are chosen for result comparison because SVM

and ANFIS have been recently verified to be effective tools for predicting flood vulnerability (Tien Bui et al.,

2016b;Tehrany et al., 2015b). It is noted that the GMM-based Bayesian Classifier, denoted as BayGmm for short, is the

Bayesian framework for classification which employs GMM for density estimation, but is not integrated with the RBFDA450

algorithm.

Furthermore, comparison between BayGmmKda and BayGmm is helpful to confirm the advantage of the newly

constructed BayGmmKda and to verify the usefulness of RBFDA in enhancing the discriminative capability of the hybrid

framework. Furthermore, since the performance of BayGmmKda-UL is better than that obtained from BayGmmKda-EM,

the proposed BayGmmKda as well as the BayGmm trained by the unsupervised approach (Figueiredo and Jain, 2002) for455

GMM learning is selected for accuracy comparison in this section.

To construct the SVM model, the model’s hyperparameters of the regularization constant (C) and the parameter of the

radial basis kernel function ( ) need to be specified. Herein, a grid search process, that is identical to the one used to
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identify the kernel function bandwidth used in RBFDA, is employed to fine-tuned such hyperparameters of the SVM. It is

noted that SVM method is implemented in Matlab package (MathWorks, 2012b). Meanwhile, the ANFIS model used in this460

section is trained with the metaheuristic approach described in the previous work of Tien Bui et al. (2016b).

Table 3 Prediction Result Comparison

Models CAR (%) AUC TPR FPR FNR TNR
Average

BayGmmKda 89.58 0.94 0.96 0.12 0.09 0.91
ANFIS 85.63 0.83 0.84 0.13 0.16 0.87

BayGmm 85.02 0.92 0.82 0.13 0.17 0.88
SVM 83.75 0.82 0.78 0.10 0.22 0.90

Standard deviation
BayGmmKda 7.22 0.05 0.04 0.11 0.10 0.10

ANFIS 6.17 0.05 0.14 0.10 0.14 0.10
BayGmm 7.24 0.08 0.11 0.10 0.11 0.10

SVM 10.33 0.06 0.16 0.11 0.16 0.11

It is noted that a random subsampling with 30 runs is employed for all models in this experiment. The result comparison

between the proposed BayGmmKda and other benchmark methods is reported in Table 3. The experimental outcome shows465

that out that the proposed BayGmmKda, which is a hybridization of GMM, RBFDA and Bayesian framework, yields the

best values of CAR = 89.58% and AUC = 0.94. ANFIS (CAR = 85.63%, AUC = 0.83) is the second best model, followed by

BayGmm (85.02%, AUC = 0.92) and SVM (83.75%, AUC = 0.82).

Furthermore, to better confirm the superiority of the proposed method, the Wilcoxon signed-rank test, a non-parametric

test, is employed to analyze the model prediction outcomes. This approach is commonly employed to evaluate whether470

classification outcomes of prediction models are significantly dissimilar. It is noted that the assumption of normality in the

data is not required for the implementation of the Wilcoxon signed-rank test. It is noted that the significance level of the

statistical test is usually set to be 0.05.

Using this test, the p-values that obtained from experimental results of the four models can be computed; based on the

threshold value of 0.05, if the p-value falls below the threshold, we can reject the null hypothese the prediction outcomes475

attained from the two models are statistically similar. Outcomes of the Wilcoxon signed-rank test is reported in Table 4. It is
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noted that the signs “++”, “+”, “--”, and “-” represent a significant win, a win, a significant loss, and a loss, respectively.

Thus, the test reliably confirms that proposed BayGmmKda achieves significant wins over all other models (ANFIS,

BayGmm, and SVM).

Table 4 Model Comparison Based on the Wilcoxon signed-rank test480

BayGmmKda ANFIS BayGmm SVM

BayGmmKda ++ ++ ++
ANFIS -- + +
BayGmm -- - +
SVM -- - -

5.3 Construction of Flood Susceptibility Map with the Proposed BayGmmKda Model

Experimental outcomes have indicated that BayGmmKda can deliver the best flood susceptibility prediction for the

district of Tuong Duong (in Central Vietnam). Accordingly, in this section, the proposed model is utilized to compute the

flood vulnerability index for all pixels within this studied district. The computed outcomes have been converted to GIS485

format and used to construct a flood susceptibility map by means of the ArcGIS 10.2 software package.

The flood susceptibility map (see Figure 10) has been combined with the map of flood inventory to compute the

percentage of the flood locations and the percentage of the susceptibility map; accordingly, we can obtain a graphic curve

which visualizes five flood hazard levels: very high (10%), high (10%), moderate (10%), low (20%), and very low (50%). A

further examination on the constructed flood vulnerability map reveals that that 10% of the Tuong Duong district was490

categorized as ‘very high’ and this category covers 73.68% of the total number of flood locations. Meanwhile, the levels of

‘high’ and ‘moderate’ both cover 10% of the region and account for 15.79% and 7.9% of the flooded locations, respectively.

The levels of ‘low’ and ‘very low’ aggregately cover 70% of the map but they only contain 2.63% of the total number of

flood locations. Particularly, 50% of the district, which is categorized to the hazard level of ‘very low’, contains no flood

location.  Furthermore, it can be seen that approximately 89% of the recorded floods occurred in the areas of ‘very high’ and495

‘high’ levels of flood hazard as indicated by BayGmmKda. This fact strongly verifies the reliability of the proposed

Bayesian framework.
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Figure 10 The constructed flood susceptibility map for the study area

500
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6. Conclusion

This research has developed a new tool, named as BayGmmKda, for flood susceptibility evaluation with the data505

collected in the Tuong Duong district (in Central Vietnam). The newly constructed model is a Bayesian framework for

classification with the utilizations of GMM for density approximation and RBFDA for discriminant analysis. A GIS database

has been established to train and test the BayGmmKda method. The training phase of BayGmmKda can be divided into two

steps: discriminant analysis with RBFDA in which a latent factor is generated and density estimation using GMM. After the

training phase, the Bayesian framework is employed to compute the posterior probability of the two class labels (flood and510

no-flood). Furthermore, a Matlab program with GUI has been developed to ease the implementation of the BayGmmKda

model in flood vulnerability assessment.

It is noted that in this study, the GMM training is performed with two methods: the EM algorithm and the unsupervised

learning approach. Furthermore, a repeated subsampling process with 30 experimental runs is carried to evaluate the model

prediction outcome. The subsampling process verified by statistical test confirms that the GMM method trained by the515

unsupervised learning approach has attained a better prediction accuracy compared with the EM algorithm. Therefore, this

method of GMM learning is strongly recommended for other studies in the same field.

Furthermore, the experiments demonstrate that the latent factor created by RBFDA is really helpful in boosting the

classification accuracy of the BayGmmKda model. This melioration in accuracy of the BayGmmKda stems from its

integrated learning structure. As described earlier, the classification task is performed by a hybridization of discrimination520

analysis and Bayesian framework. The Bayesian model carried out the classification task by consideration the patterns in the

original dataset and an additional factor produced from the discrimination analysis.

Result comparison pointed out that the BayGmmKda is superior to other benchmark approaches including ANFIS and

SVM. Therefore, the proposed model, featured by its high predictive accuracy and the capability of delivering probabilistic

outputs, is a promising alternative for flood susceptibility prediction. Neverthless, the proposed method also suffers from525

seraval drawbacks. BayGmmKda is a data-driven tool; thus, field works at the studied area and data analyses from remote

sensing are necessary for the model construction phase. These data collecting and analyzing can be time-consuming.

Furthermore, a grid search procedure is used for hyper-parameter setting and this process also requires a high computational
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cost especially for large-scale data sets. In addition, the outcome of this grid search procedure may not be optimal; more

advanced mode selection approaches (e.g. metaheuristics) can be utilized to further improve the model accuracy. Future530

extensions of this research may include the model application in flood prediction for other study areas, investigations of

other flood conditioning factors (e.g. streamflow and antecedent soil moisture) which may be relevant for flood analysis, and

improving the current model with other novel soft computing methods (e.g. feature selection, pattern classification,

dimension reduction, metaheuristic optimization, etc.). to alleviate the aforementioned drawbacks as well as to enhance the

model performance.535

7. Code availability

The Matlab code of the BayGmmKda model is given in the Supplement.

8. Data availability

The dataset used in this research is given in the Supplement.

Acknowledgements540

Data for this research are from the Project No. B2014-02-21 and were provided by Dr. Quoc-Phi Nguyen (Hanoi University

of Mining and Geology, Vietnam)

References

Akaike, H.: A new look at the statistical identification model, IEEE Trans. Automat. Control., 19, 716–723,
10.1109/TAC.1974.1100705, 1974.545
Arellano, C., and Dahyot, R.: Robust ellipse detection with Gaussian mixture models, Pattern Recognit., 58, 12-
26, http://dx.doi.org/10.1016/j.patcog.2016.01.017, 2016.
Biernacki, C., Celeux, G., and Govaert, G.: Choosing starting values for the EM algorithm for getting the highest
likelihood in multivariate Gaussian mixture models, Comput. Stat. Data. Anal., 41, 561-575,
http://dx.doi.org/10.1016/S0167-9473(02)00163-9, 2003.550
Bubeck, P., Botzen, W., and Aerts, J.: A review of risk perceptions and other factors that influence flood
mitigation behavior, Risk. Anal. , 32, 1481–1495, 10.1111/j.1539-6924.2011.01783.x, 2012.
Candy, A. S., Avdis, A., Hill, J., Gorman, G. J., and Piggott, M. D.: Integration of Geographic Information System
frameworks into domain discretisation and meshing processes for geophysical models, Geosci. Model Dev.
Discuss., 2014, 5993-6060, 10.5194/gmdd-7-5993-2014, 2014.555
Cheng, M.-Y., and Hoang, N.-D.: Slope Collapse Prediction Using Bayesian Framework with K-Nearest Neighbor
Density Estimation: Case Study in Taiwan, J. Comput. Civ. Eng., 30, 04014116, doi:10.1061/(ASCE)CP.1943-
5487.0000456, 2016.
Chou, J.-S., and Tsai, C.-F.: Concrete compressive strength analysis using a combined classification and
regression technique, Autom. Constr., 24, 52-60, http://dx.doi.org/10.1016/j.autcon.2012.02.001, 2012.560



32

Dottori, F., Salamon, P., Bianchi, A., Alfieri, L., Hirpa, F. A., and Feyen, L.: Development and evaluation of a
framework for global flood hazard mapping, Adv. Water Resour., 94, 87-102,
http://dx.doi.org/10.1016/j.advwatres.2016.05.002, 2016.
Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: Understanding catchment behavior through stepwise
model concept improvement, Water Resour. Res., 44, n/a-n/a, 10.1029/2006WR005563, 2008.565
Figueiredo, M. A. T.: http://www.lx.it.pt/~mtf/, Access Date: 01/04/2016, 2002.
Figueiredo, M. A. T., and Jain, A. K.: Unsupervised learning of finite mixture models, IEEE Trans. Pattern Anal.
Mach. Intell., 24, 381-396, 10.1109/34.990138, 2002.
Gómez-Losada, Á., Lozano-García, A., Pino-Mejías, R., and Contreras-González, J.: Finite mixture models to
characterize and refine air quality monitoring networks, Sci. Total Environ., 485–486, 292-299,570
http://dx.doi.org/10.1016/j.scitotenv.2014.03.091, 2014.
Hoang, N.-D., and Pham, A.-D.: Hybrid artificial intelligence approach based on metaheuristic and machine
learning for slope stability assessment: A multinational data analysis, Expert. Syst. Appl., 46, 60–68,
http://dx.doi.org/10.1016/j.eswa.2015.10.020, 2016.
Hoang, N.-D., and Tien-Bui, D.: A Novel Relevance Vector Machine Classifier with Cuckoo Search Optimization575
for Spatial Prediction of Landslides, J. Comput. Civ. Eng., 30, 04016001, 10.1061/(ASCE)CP.1943-5487.0000557,
2016.
Hoang, N.-D., and Tien Bui, D.: Predicting earthquake-induced soil liquefaction based on a hybridization of
kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study, B. Eng.
Geol. Environ., 1-14, 10.1007/s10064-016-0924-0, 2016.580
Hoang, N.-D., Tien Bui, D., and Liao, K.-W.: Groutability estimation of grouting processes with cement grouts
using Differential Flower Pollination Optimized Support Vector Machine, Appl. Soft Comput., 45, 173-186,
http://dx.doi.org/10.1016/j.asoc.2016.04.031, 2016.
Jia, X., Morel, G., Martell-Flore, H., Hissel, F., and Batoz, J.-L.: Fuzzy logic based decision support for mass
evacuations of cities prone to coastal or river floods, Environ. Modell. Softw., 85, 1-10,585
http://dx.doi.org/10.1016/j.envsoft.2016.07.018, 2016.
Ju, Z., and Liu, H.: Fuzzy Gaussian Mixture Models, Pattern Recognit., 45, 1146-1158,
http://dx.doi.org/10.1016/j.patcog.2011.08.028, 2012.
Judi, D. R., Burian, S. J., and McPherson, T. N.: Two-Dimensional Fast-Response Flood Modeling: Desktop Parallel
Computing and Domain Tracking, J. Comput. Civ. Eng., 25, 184-191, doi:10.1061/(ASCE)CP.1943-5487.0000064,590
2011.
Kazakis, N., Kougias, I., and Patsialis, T.: Assessment of flood hazard areas at a regional scale using an index-
based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece, Sci Total
Environ., 538, 555-563, http://dx.doi.org/10.1016/j.scitotenv.2015.08.055, 2015.
Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., and Moradi, A.: An artificial neural595
network model for flood simulation using GIS: Johor River Basin, Malaysia, Environ. Earth Sci., 67, 251-264,
10.1007/s12665-011-1504-z, 2012.
Kreft, S., Eckstein, D., Junghans, L., Kerestan, C., and Hagen, U.: Global climate risk index 2015: Who suffers
most from extreme weather events, Report from Germanwatch, 1-31, 2014.
Kwak, N., and Choi, C.-H.: Input feature selection by mutual information based on Parzen window, IEEE Trans.600
Pattern Anal. Mach. Intell., 24, 1667-1671, 10.1109/TPAMI.2002.1114861, 2002.



33

Khanmohammadi, S., and Chou, C.-A.: A Gaussian mixture model based discretization algorithm for associative
classification of medical data, Expert. Syst. Appl., 58, 119-129, http://dx.doi.org/10.1016/j.eswa.2016.03.046,
2016.
Lee, M. J., Kang, J. e., and Jeon, S.: Application of frequency ratio model and validation for predictive flooded605
area susceptibility mapping using GIS, In Proc. of the 2012 IEEE International Geoscience and Remote Sensing
Symposium, 2012, 895-898,
Loo, Y. Y., Billa, L., and Singh, A.: Effect of climate change on seasonal monsoon in Asia and its impact on the
variability of monsoon rainfall in Southeast Asia, Geosci. Front., 6, 817-823,
http://dx.doi.org/10.1016/j.gsf.2014.02.009, 2015.610
MathWorks: Statistics Toolbox, The MathWorks, Inc., 2012a.
MathWorks: Bioinformatics Toolbox, The MathWorks, Inc., 2012b.
McLachlan, G., and Peel, D.: Finite Mixture Models, Wiley-Interscience; 1 edition, Printed United States 2000.
McLachlan, G., and Krishnan , T.: The EM Algorithm and Extensions, 2nd Edition, Wiley Series in Probability and
Statistics, John Wiley & Sons, Hoboken, New Jersey, USA, 2008.615
Mika, S., Rätsch, G., Weston, J., Schölkopf, B., and Müller, K.: Fisher discriminant analysis with kernels, In Proc.
of the 1999 IEEE Neural Networks for Signal Processing, Madison, WI , 23 Aug 1999-25 Aug 1999, 41–48,
10.1109/NNSP.1999.788121, 1999.
Mukerji, A., Chatterjee, C., and Raghuwanshi, N. S.: Flood Forecasting Using ANN, Neuro-Fuzzy, and Neuro-GA
Models, J. Hydrol. Eng., 14, 647-652, doi:10.1061/(ASCE)HE.1943-5584.0000040, 2009.620
Olivier, C., Jouzel, F., and Matouat, A. E.: Choice of the Number of Component Clusters in Mixture Models by
Information Criteria, In Proc. of the Vision Interface ’99, May 18-21 1999, Trois-Rivieres, Quebec, Canada, 74 –
81, 1999.
Paalanen, P.: Bayesian classification using Gaussian mixture model and EM estimation: implementations and
comparisons, Technical Report, Department of Information Technology, Lappeenranta University of Technology,625
2004.
Papaioannou, G., Vasiliades, L., and Loukas, A.: Multi-criteria analysis framework for potential flood prone areas
mapping, Water. Resour. Manage., 29, 399–418., 2015.
Pulvirenti, L., Pierdicca, N., Chini, M., and Guerriero, L.: An algorithm for operational flood mapping from
Synthetic Aperture Radar (SAR) data using fuzzy logic, Nat. Hazards Earth Syst. Sci., 11, 529-540, 10.5194/nhess-630
11-529-2011, 2011.
Qian, W., and Shu, W.: Mutual information criterion for feature selection from incomplete data,
Neurocomputing, 168, 210-220, http://dx.doi.org/10.1016/j.neucom.2015.05.105, 2015.
Radmehr, A., and Araghinejad, S.: Developing Strategies for Urban Flood Management of Tehran City Using
SMCDM and ANN, J. Comput. Civ. Eng., 28, 05014006, doi:10.1061/(ASCE)CP.1943-5487.0000360, 2014.635
Reynaud, A., and Nguyen, M.-H.: Valuing Flood Risk Reductions, Environ. Model. Assess., 21, 603-617,
10.1007/s10666-016-9500-z, 2016.
Rezaeianzadeh, M., Tabari, H., Arabi Yazdi, A., Isik, S., and Kalin, L.: Flood flow forecasting using ANN, ANFIS and
regression models, Neural. Comput. & Applic., 25, 25-37, 10.1007/s00521-013-1443-6, 2014.
Sahoo, B., Chatterjee, C., Raghuwanshi, N. S., Singh, R., and Kumar, R.: Flood Estimation by GIUH-Based Clark640
and Nash Models, J. Hydrol. Eng., 11, 515-525, doi:10.1061/(ASCE)1084-0699(2006)11:6(515), 2006.
Sanyal, J., and Lu, X.: Application of remote sensing in flood management with special reference to monsoon
Asia: a review, Nat. Hazards, 33, 283–301, 2004.



34

Scott, D. W.: Multivariate Density Estimation Theory, Practice, and Visualization, 2nd Edition, John Wiley & Sons,
Hoboken, New Jersey, United States, 2015.645
Seckin, N., Cobaner, M., Yurtal, R., and Haktanir, T.: Comparison of Artificial Neural Network Methods with L-
moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey,
Water. Resour. Manage., 27, 2103-2124, 10.1007/s11269-013-0278-3, 2013.
Shahabi, H., and Hashim, M.: Landslide susceptibility mapping using GIS-based statistical models and Remote
sensing data in tropical environment, Scientific Reports, 5, 9899, 10.1038/srep09899, 2015.650
Shahangian, B., and Pourghassem, H.: Automatic brain hemorrhage segmentation and classification algorithm
based on weighted grayscale histogram feature in a hierarchical classification structure, Biocybern. Biomed.
Eng., 36, 217-232, http://dx.doi.org/10.1016/j.bbe.2015.12.001, 2016.
Tehrany, M. S., Pradhan, B., and Jebur, M. N.: Flood susceptibility analysis and its verification using a novel
ensemble support vector machine and frequency ratio method, Stoch. Environ. Res. Risk. Assess., 29, 1149-655
1165, 10.1007/s00477-015-1021-9, 2015a.
Tehrany, M. S., Pradhan, B., Mansor, S., and Ahmad, N.: Flood susceptibility assessment using GIS-based support
vector machine model with different kernel types, CATENA, 125, 91-101,
http://dx.doi.org/10.1016/j.catena.2014.10.017, 2015b.
Tien Bui, D., Nguyen, Q. P., Hoang, N.-D., and Klempe, H.: A novel fuzzy K-nearest neighbor inference model660
with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area
using GIS, Landslides, 1-17, 10.1007/s10346-016-0708-4, 2016a.
Tien Bui, D., Pradhan, B., Nampak, H., Bui, Q.-T., Tran, Q.-A., and Nguyen, Q.-P.: Hybrid artificial intelligence
approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy
modeling in a high-frequency tropical cyclone area using GIS, J. Hydrol., 540, 317-330,665
http://dx.doi.org/10.1016/j.jhydrol.2016.06.027, 2016b.
Theodoridis, S., and Koutroumbas, K.: Pattern Recognition, Academic Press, Elsevier Inc., Printed in the United
States of America, 2009.
Theodoridis, S.: Machine Learning: A Bayesian and Optimization Perspective, Academic Press, Elsevier, Printed
in The United States, 2015.670
van Erkel, A. R., and Pattynama, P. M. T.: Receiver operating characteristic (ROC) analysis: Basic principles and
applications in radiology, Eur. J. Radiol., 27, 88-94, http://dx.doi.org/10.1016/S0720-048X(97)00157-5, 1998.
Wallace, C. S., and Dowe, D. L.: Minimum Message Length and Kolmogorov Complexity, Comput. J., 42, 270-283,
10.1093/comjnl/42.4.270, 1999.
Webb , A. R., and Copsey, K. D.: Statistical Pattern Recognition, John Wiley & Sons, United Kingdom, 2011.675
Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.: A framework for global river
flood risk assessment, Hydrol. Earth. .System. Sci, 17, 1871–1892, 10.5194/hess-17-1871-2013, 2013.
Zhang, G., Mahfouf, M., Abdulkareem, M., Gaffour, S.-A., Yang, Y.-Y., Obajemu, O., Yates, J., Soberanis, S. A., and
Pinna, C.: Hybrid-modelling of compact tension energy in high strength pipeline steel using a Gaussian Mixture
Model based error compensation, Appl. Soft Comput., 48, 1-12, http://dx.doi.org/10.1016/j.asoc.2016.06.007,680
2016.
Zhou, Z., Liu, S., Zhong, G., and Cai, Y.: Flood Disaster and Flood Control Measurements in Shanghai, Nat.
Hazards Rev., Just Released, 10.1061/(ASCE)NH.1527-6996.0000213, 2016.


