
We thank the reviewers for constructive comments and suggestions. We have revised the manuscript

accordingly. The tile of our manuscript has been updated with model version as “GNAQPMS v1.1:

Accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) on

Intel Xeon Phi Processors”

In the following, we provide a detailed point-by-point response and specify all changes in the revised

manuscripts

Response to Referee #1:

Response to the General Comments of Referee #1:

1) “The paper describes the work done by the authors on optimizing the GNAQPMS model

for Intel Knights Landing. The paper is well organized. I agree with the authors that there

are still options to further optimize the code but the work performed so far is a good first

step and worth publishing. There are a few changes that need to be addressed. Also the

language could use some general improvement. I will first give some specific comments

that I believe need to be addressed before publication. After that I list a few (optional)

suggestions for future optimizations.”

Reply: We really appreciate for your praise. We believe this work could be a good example for

other model developers who want to transplant their models to KNL platform. Thanks for your

comments. As for the language and grammatical issues, we have invited the language service

company Elsevier to do the copy editing for English. The certificate is presented as the following:

Response to the Specific Comments of Referee #1:

2) section 1, page 3: according to the introduction Section 3.1 is supposed to discuss where

the bottlenecks of the code are. I assume that this refers to the runtime measurements

shown in Figure 2? Under the term "bottleneck" I would have expected a discussion

whether the code is bound by memory bandwidth by showing measurements of memory

bandwidth and flops/s and comparing them with the peak performance obtained for the

STREAM and LINPACK benchmarks. I understand that hardware counters are not very

accurate on Intel architectures but you could still count them with an emulator or by hand.

The paper does not show in its current state what the bottlenecks of the different parts of

the code are.

Reply: Thanks for your kind comments. We agreed with the reviewer. We have tried to measure

the memory bandwidth and flops/s of the Base-V GANQPMS by the Vtune tools.

Figure R1. The HPC-performance report of the Base-V GNAQPMS

The FLOP/S of the Base-V GNAQPMS detected by Vtune showed in Figure R1 is about 93.741

GFLOPS, and that of the Opt-V GNAQPMS is reaching 279.479 GFLOPS showed in Figure R2.

The Vtune Memory Bound measures the fraction of slots where pipeline could be stalled due to

demand load or store instructions. Both two reports indicate that memory bound is not the dominant

limitation of model performance.

Figure R2. The HPC-performance report of the Opt-V GNAQPMS

However, because of bad modularity of GNAQPMS, we couldn’t get the testing data of GFLOPS

and bandwidth of every section of the model code. Obtaining the performance of each section may

lead to a large amount of work to pack the code, which could not be done immediately. According

to the current testing results, we still can draw a preliminary conclusion that the insufficient use of

vectorisation is a main bottleneck of our model but not the bandwidth.

According to the comments, a new table, Table 1, with the HPC reports from Vtune was added to

the revised manuscript, and the following description was also added in Sec. 3.1 Paragraph 1:

“By using the VTune HPC performance detection tool, we could report the general

performance, e.g. GFLOPS, bandwidth, CPU and FPU utilisation, through a simple report.

Table 1 presents the general indicators detected by the VTune HPC performance detection

tool for the two models. Moreover, an obvious increase in GFLOPS was detected from 93.741

to 279.479. The Memory Bound in Table 1 indicates the fraction of slots where a pipeline could

be stalled owing to the demand load or store instruction, and the values of 9.2% of Base-V and

12.7% of Opt-V indicate that the bandwidth is not the limitation of our model. The FPU

utilisation was also improved from 2.9% to 9.6%, although there is still room for improvement.

Further analysis of the hotspots and bandwidth could be detected by Hotspot and Memory-

Access in VTune, respectively.”

3) Section 4.2, page 9: comparing the patterns and values without giving any specific relative

difference between base and optimized version of the code is not enough to claim that the

results are identical. The authors need to show some precise numbers like the total mass

of the air and the different chemical species in both versions and the difference between

optimized and base version.

Reply: Thanks for your precious comments. Actually, we designed two mechanisms to verify our

results from the two model versions (Opt-V, Base-V). At first, we added an extra module into

GNAQPMS to test our results. The function of this module is to output the concentration of specific

chemical species after each chemical and physical processes. The MPI processes write their own

data into their own files respectively at the same time, and each chemical and physical modules

would only run one time to insulate the effect of other modules. Then, an additional program reads

the files from the two version of GNAQPMS and calculates the relative and absolute errors. This

method is similar with sampling the results during the running period. By this way, we can find the

major errors due to every sections. On the other hand, we plotted the spatial distribution of modeling

results from the two models after a long time integration, as we did in the manuscript. Actually, we

have calculated the difference of the two plots in Figure 5 (in the manuscript). But considering the

beauty, the spatial distribution of the difference between the two modeling results were not provided.

According to the first step, after a series of test and debugging, we found that the compile flag, such

as -xCore-AVX2 and –xMIC-AVX512, would affect the results because of the sensitiveness of

calculation accuracy. The –fp-model flag could reduce the error raised by advection, but the error

could not be completely diminished because of numerical sensitivity.

Generally, there is no obvious difference between the spatial distribution by calculating the Relative

Errors in Figure R3 and Relative Mean Square Errors in Figure R4. The REs of almost all grids are

lower than 1%, and we think this is acceptable.

In the revised manuscript, we have replaced Figure 5 with Figure R3 in this document to show the

differences between the two modeling results, and the following Paragraph has also been added in

Sec. 4.2:

“By comparing the model output results and plotting the spatial distribution images with the

relative error (RE) shown in Figure 5, we can see, in the third column, that the RE was small

(<1%) enough. The optimisation does not introduce an “erroneous” concentration for any

atmospheric specie, and, therefore, it is reliable. However, the error could not be completely

diminished because of the numerical sensitivity of the advection algorithm.”

Figure R3. The Relative Errors between the results of the Base-V and Opt-V GNAQPMS.

Figure R4. The Relative Mean Square Differences between the results of the Base-V and

Opt-V GNAQPMS.

4) Section 4.3, page 9: how did you measure the power consumption? Do you trust VTune to

give you these measurements or did you measure the power consumption yourself?

Reply: Thanks for your precious comments. Both Xeon and Xeon Phi platforms have the same

built-in power and thermal sensors. We measured the power consumption with an Intelligent

Platform Management Interface (IPMI)-based script tool to query these sensors from a remote server

at a constant interval, such as 0.02 seconds. IPMI is a low-level interface specification that allows

remote management at the hardware level without dependencies on the operating system. IPMI

communicates with the server baseboard management controller (BMC), which is a reliable agent

in the system for management and gathering system health, including power consumption data.

In the revised manuscript, the description of how to measure the power consumption is added in

Sec.4.3 as follows:

“The power consumption was measured with a script tool based on the Intelligent Platform

Management Interface (IPMI). IPMI is a low-level interface specification that allows remote

management at the hardware level without dependencies on the operating system. IPMI

communicates with the server’s baseboard management controller (BMC), which is a reliable

agent in the system for managing and gathering system health, including power consumption

data.”

5) How many OpenMP threads were used per MPI process? Did you try different

configurations (like 2, 4, 8, 16, 32, 64 threads per MPI process)?

Reply: Thanks for your kind comments. At first, we unfortunately found that single node test

environment (Cthor Lab.) had some adjustment of the machines, which lead to the difference of

the test results. To save time, our previous tests about the combination of OpenMP threads and MPI

processes were implemented by using the 1h-running test, and we chose the best combination to do

the 48h-running test. Therefore, we retested all the results using the 48h workload and updated the

data in the revised manuscript (Table 2 in the revised manuscript). We tested the combination of

different OpenMP threads and MPI processes as suggested by the reviewer (as shown in Table R1).

All the tests are fully using the hardware threads. The results indicates that the best combination on

CPU platform is 6 OpenMP with 12 MPI processes. For KNL, we used the command line “–env

I_PIN_MPI_DOMAIN=N” to pin the OpenMP threads to the MPI processes. And the combination

of 4 OpenMP and 34 MPI processes could get the optimal speedup (3.51, which is 3.34 in the

original manuscript).

In the revised manuscript, we added Table R1 as Table 4, and removed the previous Figure 6. The

corresponding description was also added in Sec. 4.3 as follows:

“Different combinations of OpenMP and MPI processes were tested on a single node, and the

results are shown in Table 4. The speedup of the best combination for Opt-V GNAQPMS

reached 3.51× on KNL and 2.77× on the CPU, compared to that of Base-V GNAQPMS, and

the KNL platform had an advantageous speedup of 1.26× over the CPU platform.”

Table R1. The speedup and walltime of different combination of OpenMP threads and MPI

processes.

CPU（E5-2697 V4 with 36 physical cores and 2 hyperthreads）

OMP MPI WALLTIM

E

SPEEDUP

Baseline (No HyperThread) 0 36 4381.2 1

Opt-V 1 72 1769 2.477

2 36 1625.72 2.695

4 18 1614.9 2.713

6 12 1580.1 2.773

12 6 1612.3 2.717

18 4 1790.2 2.447

36 2 2243.4 1.952

Opt-V(No global communication) 6 12 1623.6 2.698

KNL(KNL 7250 with 68 physical cores and 4 threads)

Opt-V 2 136 1499.2 2.922

4 68 1402.9 3.12

2 68 1512.8 2.896

4 34 1248.3 3.509

8 34 1373.6 3.189

16 17 1473.2 2.974

Opt-V(No global communication) 4 34 1444.6 3.032

6) The term "manual vectorisation" is used many times throughout the paper. This is very

misleading. Manual vectorisation would be in my opinion if the code was rewritten with

avx512 vector intrinsics in C! The vectorisation used in this paper still relies on the

compiler.

Reply: Thanks for the comment. We agreed with the reviewer. To avoid misleading the readers, we

consider that “vectorisation with compiler’s directives” may be a more accurate expression. We

have updated this expression throughout the revised manuscript as follows:

In Sec. 3.2, Paragraph 1, Line 2:

“…manual strengthening of the vectorisation with the help of compiler directives…”

In Sec.3.2, Paragraph 3, Line 1:

“Manual strengthening of the vectorisation with compiler directives…”

In Sec.3.2, Paragraph 3, Line 7:

“…manually adding vectorisation directives and reconstructing the loops are needed with the

help of the Intel Advisor tool mentioned above…”

In Sec.3.2.2, Paragraph 2, Line 1:

“In our study, strengthening of the vectorisation by adding directives and constructing loops

and multithreading were done in the emission section.”

In Sec.3.2.3, Paragraph 3, Line 4:

“…strengthening of the vectorisation was conducted…”

In Sec.3.2.3, Paragraph 4, Line 4:

“The strengthening of the vectorisation in the IntegrateChemistry subroutine was realised

through three aspects: 1) giving the directives for the loops to instruct the compiler to vectorise

the codes, including declaring no dependencies and aligning the data for efficient data accesses;

2) converting the scalar structure into vectorisation structure codes, as shown in step 3 in

Figure 3, but using more complex parameter arrays to build the loop structure…”

In Sec.3.2.4, Paragraph 1, Line 1:

“Strengthening of the vectorisation and updating of the global communication were used in

the optimisation of the diffusion module.”

In Sec.5. Paragraph 1, Line 3:

“Strengthening the vectorisation by constructing loops and using compiler directives in

GNAQPMS to make full use of the 512-bit-wide VPU on the KNL platform…”

Response to the Suggestions of Referee #1:

7) As mentioned before the paper does not investigate what the real bottleneck of the code is

and how far the code is from optimal performance. I highly recommend to create a

theoretical and measured roofline model. This would allow to answer how much potential

for further optimization should still be possible.

Reply: Thanks for the precious comments. As we discussed in the Question 2 above, it is not easy

to investigate the roofline of every section in the model. We have provided the HPC-performance

reports of the Base-V and Opt-V models in Figure R1 and R2. According to the testing results, we

consider that the model still has large potential for optimization. And our goal is that the model can

get the speed of 5-10 model-year/day with global 0.25°x0.25°horizontal resolution which is suitable

for high resolution long-term climate change simulation.

8) I would love to know how many of all floating point operations are vectorized. I

understand that counting floating point operations on Intel architectures through

hardware counters is not very accurate. Maybe you could give some estimates from what

the vectorisation report shows you?

Reply: Thanks for your kind suggestion. The measuring of float point could be done by Vtune, and

as the reviewer mentioned, it remains the errors of GFLOPS. However, from Figure R1 and Figure

R2, we could find that the GFPLOPS increases from 93.74 to 279.479, the FPU utilization increases

from 2.9% to 9.6% after optimization, and the vector capacity usage is increasing from 24% to 65%,

which illustrate the improvement of code efficiency.

Response to Referee #2:

Response to the General Comments of Referee #2:

1) “The manuscript presents results of efforts to improve the performance and scalability of

a global atmospheric chemistry model, the QNAQPMS, using the Knights Landing

version of the Intel Xeon Phi. Gains are relative to the original unoptimized code on both

KNL and on Broadwell, Intel’s latest-generation multi-core Xeon processor. The subject

of the work, increasing simulation capability of QNAQPMS using next generation

processors to improve computational performance and scaling, represents a noteworthy

contribution to modeling science within the scope of Geoscientific Model Development.

The contribution comes in the form of new concepts (next generation processors) and

methods (measuring performance, identification of bottlenecks, and optimization through

restructuring of application code). The approach and methods appear to be valid and

reasonable, and the references to related work are appropriate and sufficient."

Reply: Thanks for the praise of the reviewer. We believe this work could be a good example for

other model developers who want to transplant their models to KNL platform.

2) “This reviewer did not evaluate the manuscript with respect to scientific reproducibility.

However, the verification of model output from the optimized version appears to be based

on merely eyeball comparisons of color contour plots. The lack of a suitable objective

verification technique would make it impossible to be sure the results were reproduced.”

Reply: Thanks for your precious comments. Actually, we designed two mechanisms to verify our

results from the two model versions (Opt-V, Base-V). At first, we added an extra module into

GNAQPMS to test our results. The function of this module is to output the concentration of specific

chemical species after each chemical and physical processes. The MPI processes write their own

data into their own files respectively at the same time, and each chemical and physical modules

would only run one time to insulate the effect of other modules. Then, an additional program reads

the files from the two version of GNAQPMS and calculates the relative and absolute errors. This

method is similar with sampling the results during the running period. By this way, we can find the

major errors due to every sections. On the other hand, we plotted the spatial distribution of modeling

results from the two models after a long time integration, as we did in the manuscript. Actually, we

have calculated the difference of the two plots in Figure 5 (in the manuscript). But considering the

beauty, the spatial distribution of the difference between the two modeling results were not provided.

According to the first step, after a series of test and debugging, we found that the compile flag, such

as -xCore-AVX2 and –xMIC-AVX512, would affect the results because of the sensitiveness of

calculation accuracy. The –fp-model flag could reduce the error raised by advection, but the error

could not be completely diminished because of numerical sensitivity.

Generally, there is no obvious difference between the spatial distribution by calculating the Relative

Errors in Figure R3 and Relative Mean Square Errors in Figure R4. The REs of almost all grids are

lower than 1%, and we think this is acceptable.

In the revised manuscript, we have replaced Figure 5 with Figure R3 in this document to show the

differences between the two modeling results, and the following Paragraph has also been added in

Sec. 4.2:

“By comparing the model output results and plotting the spatial distribution images with the

relative error (RE) shown in Figure 5, we can see, in the third column, that the RE was small

(<1%) enough. The optimisation does not introduce an “erroneous” concentration for any

atmospheric specie, and, therefore, it is reliable. However, the error could not be completely

diminished because of the numerical sensitivity of the advection algorithm.”

3) “Regarding the presentation of the results, the clarity and the level of detail are very poor.

There are significant gaps in the explanation of, for example, the analysis of hotspots and

bottlenecks in the code, and their relative impacts on performance. The use of VTune is

mentioned, but how do the authors determine whether a particular hotspot is performing

inadequately, and if so, what is the specific bottleneck? Insufficient use of vectors?

Hardware threads? Memory bandwidth or latency? Load imbalance?”

Reply: Thanks for the comments. The reviewer required to present more details about the processes

of identifying the bottlenecks and optimization methods. We agreed with the reviewer and we have

done the relevant modification in the revised manuscript.

Overall, three steps were used to complete the modernization of model codes: 1) Performance

profiling; 2) Single node optimization; 3) Multi nodes optimization.

The bottleneck identification in this study is based on several common ways such as the Vtune tools,

the application behavior analysis and characteristic extraction. The Intel Vtune Amplifier

(https://software.intel.com/en-us/intel-vtune-amplifier-xe/), Intel Advisor (https://soft-

ware.intel.com/en-us/intel-advisor-xe) and Intel Trace Analyzer and Collector (ITAC,

https://software.intel.com/en-us/intel-trace-analyzer) can identify most of the bottlenecks of the

model codes. The ITAC is mainly used to analyze the MPI performance and communication

problems, including the time consuming of MPI functions and OMP threads. Figure R5 shows the

graphic report of the load balance situation of GNAQPMS (using 72 MPI processes), which comes

from the ITAC. The load balance situation of each MPI process is displayed by pie figure, and it

illustrates that load balance is not the main problem of GNAQPMS.

Figure R5. Load balance situation of GANQPMS on single CPU node detected by ITAC.

Vtune tools currently could only be used on single node. However, it contains more functions to

help us to identify the bottlenecks. The reviewer mentioned the bandwidth problem, and Vtune

could collect the relevant information as well as finish the visualization as showed in Figure R6.

https://software.intel.com/en-us/intel-trace-analyzer

Figure R6. The bandwidth situation during the model running detected by Vtune.

Vtune can detect the hotspot functions of the model codes. Figure R7 presents the hotspots in the

Base-V GNAQPMS detected by Vtune. The red bar indicates low CPU usage efficiency. The list of

hotspots would clarify the priority of optimization work. Moreover, Figure R8 shows the hotspots

in the Opt-V GNAQPMS with better CPU usage efficiency. Optimization of model codes depends

on the analysis of hotspots. The Intel Advisor could help to do the vectorisation and multi-threads

work. And the bandwidth issues could be detected by Vtune through analyzing the memory-access.

Figure R7. Hotspot functions detected by Vtune in the Base-V GNAQPMS.

Figure R8. Hotspot functions detected by Vtune in the Opt-V GNAQPMS

In the revised manuscript, we added a general description of how to detect the bottlenecks of the

model codes in Sec. 3.1 as follows:

“To analyse the insight performance bottleneck of GNAQPMS, we used the Intel VTune

Amplifier (https://software.intel.com/en-us/intel-vtune-amplifier-xe/), Intel Advisor

(https://software.intel.com/en-us/intel-advisor-xe) and Intel Trace Analyzer and Collector

(ITAC; https://software.intel.com/en-us/intel-trace-analyzer). The VTune tools can do the

analysis of the performance in high-performance computing (HPC), memory access, thread

profiling with locks and waits analysis, floating-point operations per second (FLOPS) and

floating point unit (FPU) utilisation analysis and detection of hotspot functions. By using the

VTune HPC performance detection tool, we could report the general performance, e.g.

GFLOPS, bandwidth, CPU and FPU utilisation, through a simple report. Table 1 presents the

general indicators detected by the VTune HPC performance detection tool for the two models.

Moreover, an obvious increase in GFLOPS was detected from 93.741 to 279.479. The Memory

Bound in Table 1 indicates the fraction of slots where a pipeline could be stalled owing to the

demand load or store instruction, and the values of 9.2% of Base-V and 12.7% of Opt-V

indicate that the bandwidth is not the limitation of our model. The FPU utilisation was also

improved from 2.9% to 9.6%, although there is still room for improvement. Further analysis

of the hotspots and bandwidth could be detected by Hotspot and Memory-Access in VTune,

respectively. Hotspots are the segment codes that consume most of the time during the running

of the model. Therefore, optimising these hotspot parts will be more helpful to improve the

https://software.intel.com/en-us/intel-trace-analyzer

speed and efficiency of the model codes, and Figure S1 in the supplement shows the hotspots

in Base-V GNAQPMS with low CPU utilisation. Moreover, using the Intel Advisor tool could

help to learn about the vectorisation and bandwidth situation of the hotspot functions and

modules. The Intel Advisor tool could also provide some information about the limitation of

vectorisation or the reasons why vectorisation cannot be realised, as well as the primary

solutions to the users to do the full vectorisation work. Furthermore, the realisation of multi-

threads could be done with the help of the Intel Advisor tool. As for the MPI performance,

ITAC could provide the parallel MPI balance information and communication profiling,

which is auto-visualised by ITAC to analyse the MPI performance, as shown in Figure S2.

However, the more significant step is designing the corresponding solutions for the hotspots

or bottlenecks with the help of the tools mentioned above. Moreover, timely test and validation

should be done after the optimisation. This whole process, as mentioned in Sec. 1, could be

repeated many times to try different alternatives and gain a satisfactory performance.”

At the same time, the Figure R5, R7 and R8 in this response were added to the supplementary

material as Figure S2, S1 and S3.

4) “The use of OpenMP threading is also insufficiently motivated or explained.”

Reply: Thanks for the comments. As to OpenMP, our concerns are mainly about the following two

aspects. On the one hand, our goal is to accelerate the model and improve the scalability, and our

primary desire is to replace the MPI processes by the relative cheap OpenMP threads as many as

possible on each calculation node, which is adopted in other large-scale models, such as CESM. On

the other hand, considering the features of multi-core and low frequency of KNL, large number of

pure MPI processes would lead to expensive communication cost for KNL and it is inevitable to do

the hybrid optimization.

In the revised manuscript, the following description is added to Sec. 3.2, Paragraph 1, Line 6:

“KNL contains many low-frequency cores, and each core contains four hyper-threads.

Considering the relatively expensive overhead of communication in MPI for many cores of

KNL, we adopted the hybrid parallel mode by using OpenMP and MPI. Furthermore, the

OpenMP threads could fully use the hyper-threads in KNL, and the cheap communication

cost of OpenMP could help to improve the scalability.”

5) “This reviewer also takes issue with including “changing global communication from

interface-files writing/reading to MPI functions” among the list of five optimizations

discussed, since this change appears to address a fundamental deficiency in the parallel

design of the original application, not one specific to optimizing for the Intel Xeon Phi

processor. This reviewer suggests removing discussion of this optimization from the paper

and using the space to more fully explain the other four optimizations. If, however, the

authors wish to include discussion and results of the global communication optimization

in this paper, its effect on performance and scaling should be clearly separated from the

other optimization results. As currently presented, the reader cannot determine what

effect this has relative to the effects of the KNL-specific optimizations.”

Reply: Thanks for the comments. We should declare that none of the optimizations adopted in this

paper is specific for the KNL platform. Moreover, performance portability is one of the advantages

of KNL. Once the code modernization work is done for KNL, the performance can be easily ported

to new generation Intel CPU (e.g. Broadwell, Skylake) sharing hardware features with the same

code. As mentioned by the reviewer, the interface-files could be a problem for any parallel

architecture, but this problem is part of our work to deal with. Moreover, this paper describe the

common optimization measures as well as the special optimization measures for our model. We

have separated the effect of global communication optimization on model performance. Since the

overhead of file I/O increases much faster than that of collective MPI functions as the number of

nodes increases, this optimization could be important to the model scalability. However, the

Endeavor cluster has updated its nodes configuration, and the benchmark CPU (E-5 2697 V4) nodes

have been replaced. Therefore, we could not provide the scalability effects based on the previous

testing results. We retested the single node results and showed in Table R1, including the results

without the global communication. The results show that the optimal speedup on CPU and KNL are

2.77 and 3.50, respectively. Without the global communication optimization, the speedups drop to

2.69 (CPU) and 3.03 (KNL), respectively (Table R1). Generally, global communication

optimization could improve the salability and the performance especially those of KNL.

In the revised manuscript, we added Table R1 in this document as Table 4, and removed the

previous Figure 6. The corresponding description was also added in Sec. 4.3 as follows:

 “Different combinations of OpenMP and MPI processes were tested on a single node, and

the results are shown in Table 4. The speedup of the best combination for Opt-V GNAQPMS

reached 3.51× on KNL and 2.77× on the CPU, compared to that of Base-V GNAQPMS, and

the KNL platform had an advantageous speedup of 1.26× over the CPU platform. At the same

time, without the global communication optimisation, the speedup of these combinations was

3.03× on KNL and 2.70× on the CPU. In addition, these results indicated that KNL was

affected more than the CPU since the KNL cores have a lower frequency for the I/O.”

6) “Because of these problems, which go beyond language and grammatical issues, this

reviewer recommends the paper be rejected and reconsidered only after significant

revision.”

Reply: Thanks for your comments. We believe this work could be a good example for other model

developers who want to transplant their models to KNL platform. And we have done additional

testing and analysis and revised the manuscript according to the reviewer’s comments and

suggestions. As for the language and grammatical issues, we have invited the English language

service company Elsevier to do the copy editing for English. The certificate is presented in the

response to the general comments of referee #1.

Response to the Specific Comments of Referee #2:

7) Pages 1 and 2, Introduction. Discussion of impacts is incomplete. What levels of

performance does QNAQPMS currently provide for simulation science using the model?

What scientific problems are currently possible? What scientific problems are beyond

reach with current QNAQPMS performance and scaling. How much more performance.

Be specific.

Reply: Thanks for the comments. GNAQPMS is designed for global atmospheric aerosol and

chemistry simulation. Its applications include temporal and spatial evolution of atmospheric

composition (ozone, black carbon, sulphate, nitrate, dust, seasalt et al.), providing boundary

conditions for regional models, intercontinental long-range transport, long-term climate change

(aerosol-cloud-radiation interaction), and it also acts as a key component of the Earth System Model

of Chinese Academy of Sciences (CAS-ESM). Currently, GNAQPMS can only run on CPU

platform, and its parallel scalability and computation speed are about 8 CPU nodes and 46 hours per

model year at 1°x1° resolution (excluding model I/O). This model performance is suitable for short-

term or medium-term (5 years or less) simulation but not suitable for long-term simulation (30 years

or more, needs more than 2 months of computation time). Besides, the model computation time will

further increase when model I/O is included or higher model resolution (e.g. 0.25°x0.25°) is used.

Therefore, it cannot be directly coupled into earth system model and used for long-term climate

change simulation. By optimization of model codes and usage of new hardware, we aim to greatly

improve the model parallel scalability and computation speed. The target computation speed in the

future is about 5-10 model years per day (including model I/O) at 0.25°x0.25° resolution. This is an

ambitious goal and needs a lot of hard work. We plan to improve the parallel computation speed of

GNAQPMS in the first step, and improve the model I/O efficiency in the next step.

In the revised manuscript, the above description about the current model level and the model

optimization goal was added to Sec. 1 Paragraph 4 to make the impact and purpose of this

study more specific.

8) Page 3, Section 2.1, Model Description of GNAQPMS. (Suggestion) What is the difference

between GNAQPMS and NAQMPS? Basing the description of GNAQPMS on the

NAQPMS presupposes knowledge about the NAQPMS. There is already a reference to

NAQPMS but also add a few sentences of background on the NAQPMS. Explain why the

authors focus GNAQPMS and not at the NAQPMS.

Reply: Thanks for the suggestions. The GNAQPMS model is a global multi-scale chemical

transport model based on the Nested Air Quality Prediction Modeling System (NAQPMS) (Wang

et al., 2006), developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences.

NAQPMS is a 3-D regional Eulerian model which has been rigorously evaluated and widely applied

to simulate the chemical evolution and transport of ozone (Li et al., 2007; Tang et al., 2010), the

distribution and evolution of aerosol and acid rain over East Asia (Wang et al., 2002; Li et al., 2011;

Li et al., 2012) and to provide operational air quality forecasts in mega cities such as Beijing,

Shanghai and Guangzhou (Wang et al., 2010; Wu et al., 2012; Wang et al., 2009). GNAQPMS and

NAQPMS use the similar model framework, physical and chemical parameterization schemes and

parallel computation techniques. The optimization achievements in this study could be largely

shared between these two models. NAQPMS is mainly used for regional high resolution air

pollution simulation and routine air quality prediction. The typical time scale of these applications

is several days or months. And the current computation performance of NAQPMS can generally

meet the demand of these applications. GNAQPMS is designed for global-scale, long-term

atmospheric aerosol and chemistry simulation, and it is also online coupled to the Earth System

Model of Chinese Academy of Sciences (CAS-ESM) for study of climate change. These

applications have typical time scale of more than 10 years, and raise very high requirements for

model computation speed (e.g. 5-10 model years per day). Obviously, there is a large gap between

the current computation performance of GNAQPMS and the actual need. Therefore, we choose

GNAQPMS to start the code optimization.

In the revised manuscript, a brief description of NAQPMS as shown above was added to

Section 2.1 Paragraph 1, and the reason why we focus on GNAQPMS is also given.

9) Page 4, line 3: “Since the memory processor is not dominant”. Unclear, explain further:

what do the authors mean specifically by “memory pressure”. Memory working set size?

Memory bandwidth requirement of this application. How have they determined it is not

dominant?

Reply: Thanks for the comments. The memory bandwidth profiling given by VTune shows that the

memory bandwidth requirement of the model is far below the peak capability of both CPU and KNL

platforms, as shown in Figure R6. In addition, the memory footprint of this workload is about 3G,

which can be fully accommodated by the 16GB MCDRAM on KNL.

In order to explain clearly, this sentence has been modified in Sec. 2.2, Paragraph 1, Line 8:

“Since GNAQPMS is not limited by the memory working set size detected by the VTune

Memory-Access tool, the cache mode was chosen in our experiment.”

10) Page 4, line 9: Spell out first use of TLS to represent thread local storage. It is spelled out

in the abstract, but needs to be spelled out again in main body of paper.

Reply: Thanks for the suggestion. TLS has been spelled out in the revised manuscript as following

in Sec. 3, Paragraph 1, Line 2:

“…reducing unnecessary memory access, reducing the thread local storage (TLS) and

changing the way the global communication works in GNAQPMS.”

11) Page 5, Paragraph beginning line 6 and all of Section 3.2.1. As noted in the general

comments above, the use of files for global communication instead of MPI reductions and

gathers is problematic for any modern parallel architecture, not just the KNL. Strongly

recommend removing discussion of this optimization, including the entire Section 3.2.1,

from the paper. It is relevant to optimizing for KNL.

Reply: Thanks for the precious suggestion. This paper describe the common optimization measures

as well as the special optimization measures for our model, and low frequency cores on KNL could

lead to a fact that I/O could have more effect on KNL compared with that on CPU (Table R1) To

keep the integrity of our work, we kept the discussion in Sec. 3.2.1 and separated the contribution

of global communication optimization.

Because of the adjustment of the platform for single node testing, we retested the single node results

and showed in Table R1, including the results without the global communication. The results show

that the optimal speedup on CPU and KNL are 2.77 and 3.50, respectively. Without the global

communication optimization, the speedups drop to 2.69 (CPU) and 3.03 (KNL), respectively (Table

R1). Generally, global communication optimization could improve the salability and the

performance especially those of KNL.

In the revised manuscript, we added Table R1 in this document as Table 4, and removed the

previous Figure 6. The corresponding description was also added in Sec. 4.3 as follows:

 “Different combinations of OpenMP and MPI processes were tested on a single node, and

the results are shown in Table 4. The speedup of the best combination for Opt-V GNAQPMS

reached 3.51× on KNL and 2.77× on the CPU, compared to that of Base-V GNAQPMS, and

the KNL platform had an advantageous speedup of 1.26× over the CPU platform. At the same

time, without the global communication optimisation, the speedup of these combinations was

3.03× on KNL and 2.70× on the CPU. In addition, these results indicated that KNL was

affected more than the CPU since the KNL cores have a lower frequency for the I/O.”

12) Page 6, line 11. “Cyclic order”? Do the authors mean loop nesting order?

Reply: Thanks for the comments. Yes, it means the loop nesting order. The sentence was revised in

Sec. 3.2.2, Paragraph 2, Line 2 as follows:

“we changed the nesting order of loops from j, i, igas to igas, j, i,…”

13) Page 6, line 12. “We cancelled the calling of the subroutine ... and made it an internal

function in main program.” This technique is referred to as inlining. Did the authors look

at inlining reports from the Intel compiler to see if this could have been accomplished

automatically or with the help of directives and compiler options, without manually

restructuring the code? Also, the authors mean to say the "calling subroutine", not the

"main program".

Reply: Thanks for the comments. Yes, we’ve tried the “-ipo” option for automatic inlining and

checked the compiler report. The report on this subroutine said “Inlining would exceed -inline-max-

size value”, which means inlining could not be done by the compiler due to unsatisfied heuristic.

Therefore, we have to manually restructure the code at this step, and the calling site happens to be

in the main program. According to the reviewer’s comments, we modified the sentence in Sec. 3.2.2,

Paragraph 2, Line 4 as follows:

“Second, since the subroutine get_ratio_emit() is too big to be inlined automatically by the

Intel compiler, we manually inlined it in the calling site of the main program to improve the

calling efficiency and facilitate the vectorisation.”

14) Page 6, line 14. “... using parameters to convert scalar structure to vector structure.”

Unclear what "coverting scalar to vector" means, nor does it appear from step 3 Figure 3

that this is what is going on.

Reply: Thanks for the comments. As the reviewer mentioned, this part means the step 3 in Figure

3 in the manuscript. In this part, we used the parameter arrays to construct the loop to do

vectorisation calculation. Therefore, we modified this sentence in Sec. 3.2.2, Paragraph 2, Line 6 to

explain it more clearly:

“Third, vectorisation was involved in the emission section in the model by using the

parameters to convert a scalar structure of assignment value to variables to a vector structure,

which is shown in step 3 in Figure 3.”

15) Page 6, line 15. “... we added the directives, clauses, declarations and syntax comment of

OpenMP outside the outermost loop as shown in box 4.” This sentence appears to be the

only discussion in the paper of how and why OpenMP threading was added to the code.

Given that this is one of the five optimizations being presented, this is insufficient. It’s not

clear why the authors felt it was important to add OpenMP threading nor whether, from

the results, it provided a benefit.

Reply: Thanks for the comments. As described in the response to the general comments at the

beginning (Question 4), our concerns are mainly about two aspects. On the one hand, our goal is to

accelerate the model and improve the scalability, and our primary desire is to replace the MPI

processes by the relatively cheap OpenMP threads as many as possible on each calculation node,

which is also adopted by other large-scale models, such as CESM. On the other hand, considering

the features of multi-core and low core frequency of KNL, large number of pure MPI processes

would lead to expensive communication cost on KNL and it is inevitable to do the hybrid

optimization. Currently, our OpenMP optimization did not achieve the primary goals, and the

optimal number of threads on KNL and CPU are 4 and 6 (Table R1), respectively. As mentioned in

the manuscript, the results we described are our first move and the OpenMP optimization is

relatively simple. In the future, we will do more investigation into this part and rebuild the OpenMP

code structure.

In the revised manuscript, the following description about OpenMP is added to Sec. 3.2, Paragraph

1, Line 6:

“KNL contains many low-frequency cores, and each core contains four hyper-threads.

Considering the relatively expensive overhead of communication in MPI for many cores of

KNL, we adopted the hybrid parallel mode by using OpenMP and MPI. Furthermore, the

OpenMP threads could fully use the hyper-threads in KNL, and the cheap communication

cost of OpenMP could help to improve the scalability.”

16) Page 7, line 15. “2) updating some code segments to the the serial codes to construct

vectorisation.” What does this mean?

Reply: Thanks for the comments. It refers to construct loop to do the vectorisation calculation,

which is similar with the step 3 in Figure 3 in the manuscript. In order to avoid the confusion of this

sentence, the original sentence in Sec. 3.2.3, Paragraph 4, Line 6 is modified as follows:

“…converting the scalar structure into vectorisation structure codes, as shown in step 3 in

Figure 3, but using more complex parameter arrays to build the loop structure…”

17) Page 7, lines 17-25. A reader might make a number of educated guesses about what the

authors are saying was the bottleneck and how it was fixed, but it is not clear at all from

the text. What codes were "added by the compiler?" Was the issue a copyin/copy-out

problem for thread-local variables that were listed as private/firstprivate in the OpenMP

directives? If so, how did adding the CBMZOBJ argument fix this? By passing-by-

reference? If so, how were data races avoided? Were they avoided because the CBMZOBJ

objects themselves were THREADPRIVATE? There’s a lot of important detail missing

from this discussion.

Reply: Thanks for the precious comments. Firstly, please allow us to clarify the performance issue

with common variables in OpenMP TLS. The TLS is introduced for variables in named common

blocks when using thread private OpenMP directive, and allocated for each thread on thread creation.

These variables are private to each thread and global within the thread. When a thread references a

common variable in its TLS, the memory address of TLS is first located by calling an OpenMP

library function with the thread ID, then the common variable is addressed within the TLS space.

Even for the references to common variables within the same named common block in the same

subroutine, the above process is repeated for every variable, rather than addressing the TLS and

common block only once. Since calling the OpenMP library function for TLS addressing is

expensive, and there are many references to these common variables in the user subroutines, the

total overhead of using common variables in TLS is extremely high. Linking against static OpenMP

library can alleviate the calling cost partially but the cost is still unbearable.

Basically, our solution in this study is to construct a derived type (CBMZTYPE) object to eliminate

the expensive OpenMP function calling. In the optimized code, the common variables are removed

from named common blocks and added to the CBMZTYPE as its members. Using PIRVATE list

in the OpenMP directive, each thread owns a private copy of object instance of CBMZTYPE, i.e.

the cbmzobj variable. Since the cbmzobj is located on thread local stack, the references to its

member variables require only simple relative addressing on stack, with simple yet efficient

instructions. Meanwhile, since the common variables in the original code are no longer global and

visible within the user subroutines, a formal parameter (argument) of cbmzobj is added to the

subroutines using the variables. The additional overhead of passing the address of cbmzobj to the

subroutine is quite small. Therefore, the cost of referencing common variables in TLS is greatly

reduced with the derived type object. The codes were “added by the compiler” means the codes of

referencing the common variable in TLS, including the calling to OpenMP library function for TLS

address, and then accessing the common variable within the TLS space. And it is a reference cost

issue, for variables in named common blocks that are listed in the THREADPRIVATE directive.

And this issue is not fixed by adding the CBMZOBJ argument, but by constructing the CBMZOBJ

object to store the variables in the original common blocks. Since the CBMZOBJ object is thread

private and is on the thread local stack, the references to its members are quite cost efficient.

In the revised manuscript, the description of TLS optimization was added in Sec. 3.2.3, Paragraph

4, Line 14 as follows:

“Using a PRIVATE list in the OpenMP directive allows each thread to own a private copy of

the object instance of cbmztype, i.e. the cbmzobj variable. Since cbmzobj is located on a thread

local stack, the references to its member variables require only simple relative addressing on

the stack, with simple yet efficient instructions. Meanwhile, since the common variables in the

original code were no longer global and are now visible within the user subroutines, a formal

parameter (argument) of cbmzobj was added to the subroutines using the variables. The

additional overhead of passing the address of cbmzobj to the subroutine is quite small.

Therefore, the cost of referencing common variables in the TLS is greatly reduced with the

derived type object.”

18) Page 7, line 32. “...which spent 10 percentages and 8 percentages.” One would prefer to

see actual timings instead of percentage of runtime in discussion of performance

improvement.

Reply: Thanks for the comments. Firstly, we updated the data in Fig. 2 because the previous results

came from an old testing. And the description of Fig.2 in the manuscript was revised accordingly.

The aim of this part is to emphasize the role of different sections of the time consumption. The

impact of the optimization on these sections is showed in Sec. 3.2.4, Paragraph 1, Line 1, with the

speedup. According to the comments of the reviewer, we removed the old Paragraph 1 in Sec. 3.2.4

and added the walltime as well as the speedup to illustrate the improvement:

“According to the performance on the single node, the diffusion module could get a 1.99×

speedup (from 241.97 s to 121.19 s) on the CPU platform and a 3.31× speedup (from 241.97 s

to 73.05 s) on the KNL platform.”

“Finally, the optimised wet deposition module got a 5.92× speedup (from 498.01 s to 84.13 s)

on the KNL platform, which was much higher than the 3.19× speedup (from 498.01 s to 156.13

s) on the CPU platform.”

19) Page 7, line 36. “1.78 speedup on the CPU platform and 2.39 speedup on the KNL.” How

much of these speedups were from the manual vectorisation and how much from the

optimization of global communication? (Again, this reviewer suggests not considering

global communication optimization at all, but if it is discussed, show effects separately

from other optimizations).

Reply: Thanks for the comments. As mentioned in the response for Question 5 and 11 above, we

tend to discuss the optimization of global communication as part of our work, and we have separated

the contribution of this part from the total speedup as required by the reviewer.

Because of the adjustment of the platform for single node testing, we retested the single node results

and showed them in Table R1, including the results without the global communication optimization.

The results show that the optimal speedup on CPU and KNL are 2.77 and 3.50, respectively. Without

the global communication optimization, the speedups drop to 2.69 (CPU) and 3.03 (KNL),

respectively (Table R1).

In the revised manuscript, we added Table R1 as Table 4, and removed the previous Figure 6. The

corresponding description was also added in Sec. 4.3 as follows:

 “Different combinations of OpenMP and MPI processes were tested on a single node, and

the results are shown in Table 4. The speedup of the best combination for Opt-V GNAQPMS

reached 3.51× on KNL and 2.77× on the CPU, compared to that of Base-V GNAQPMS, and

the KNL platform had an advantageous speedup of 1.26× over the CPU platform. At the same

time, without the global communication optimisation, the speedup of these combinations was

3.03× on KNL and 2.70× on the CPU. In addition, these results indicated that KNL was

affected more than the CPU since the KNL cores have a lower frequency for the I/O”

20) Page 8, lines 7-10. “The horizontal resolution of the model is 1°×1°, which indicates that

the modelling domain contains 360×180 grids. And the number of vertical layers is 20,

while the time step for integration is 600 seconds in the test case. The test case was designed

to test the performance of GNAQPMS on single node of CPU and KNL platform, and

multi-nodes on different platform clusters.” This workload is very small and probably not

suitable for KNL clusters, which require a high degree of parallelism to be efficient. (The

authors make note of this on page 9, lines 32-33). The paper describe a representative

workload for scientific simulations using the GNAQPMS and provide some discussion of

how the performance results presented are relevant to an actual scientific workload.

Reply: Thanks for the comments. We generally agree with the reviewer. Currently, due to limited

HPC resources and poor model computation performance, the typical resolution for global aerosol

and chemistry simulation in scientific research is about 2°x2°. It makes sure that a several year’s

model simulation can be accomplished in a month. The test case in this study was chosen based on

the following reasons: 1) The configuration with 1°x1° horizontal resolution and 600 s integration

time step is common in scientific applications. This model configuration has also been used in

several previous studies (Chen et al., 2015). By using this configuration, the achievements of this

study can be directly applied to actual scientific applications. 2) The test case is a medium-scale

workload for global chemistry simulation, which allows us to carry out a lot of debugging and

testing. 3) This is the first time to port and optimize GNAQPMS on the KNL platform. A lot of

fundamental work is needed to optimize the code and solve potential bugs. Therefore, choosing a

medium-scale test case would be a good start.

We agree that a large workload with high model resolution is probably more suitable for KNL

clusters, and it might get better parallel scalability. In addition, based on our tests, the bottleneck of

MPI global communication and fragmental OpenMP parallel regions are also main reasons for the

poor parallel scalability of GNAQPMS on KNL clusters. Global high resolution simulation is a clear

trend for the development of chemical transport models. Testing and optimizing GNAQPMS with

a super large workload (e.g. 0.25°x0.25° or 0.1°x0.1°) will be the next emphasis in the near future.

In the revised manuscript, further description of the test case is added to Sec. 4, Paragraph1, Line 6

as follows:

“This test case was an actual scientific workload and had a medium scale of calculation

amount; therefore, it allowed us to carry out much debugging and testing within a short time.”

21) Page 8, line 15. “The Intel Corporation provides the High Performance Computing

environment for the test.” Was this Intel’s Endeavor cluster? Perhaps mention this as well.

Reply: Thanks for the comments. There are two sets of platforms used in this study. The single

node tests were conducted on Cthor Lab. of Intel Corporation and the cluster tests were done on

Intel Endeavor cluster. Considering the stability of the test environment, we adopted the machines

in Cthor Lab. for the single-node test. According to the suggestion, we have mentioned the names

of the test environment in the revised manuscript in Sec. 4.1, Paragraph 1, Line 1:

“The Cthor Lab. of Intel Corporation was adopted for the single-node tests owing to its

relatively steady environment, and Intel’s Endeavor cluster was used for the cluster tests.”

22) Page 8, line 20. Opt-V GNAQPMS has been compiled on CPU and KNL platform,

respectively.” Not sure what this means. Are the authors actually compiling the codes on

the respective platforms? If so, why? Is there some difference expected between a native-

compiled and a cross-compiled executable?

Reply: Thanks for the comments. Both native and cross compiling work, and there are no

differences between them. Actually, we compiled the same codes with different compiler flags as

showed in Table 2 on the same CPU platform. In order to avoid such confusion, we modified this

sentence as follows in Sec. 4.1, Paragraph 1, Line 8:

“…and Opt-V GNAQPMS was compiled for the CPU and KNL platforms with its own

compile flags, shown in Table 3.”

23) Page 8, line 21. “... the -xCore-AVX2 and –xMIC-AVX512 compile flags were not used for

the advection module...” This is troubling and bears further discussion. What did the

authors see that caused them to avoid these compiler flags for the advection module? Why

is advection susceptible to differences but not other parts of the code such as the ODE

solver?

Reply: According to this comment, the answers are similar with the response to Question 3 of the

referee #1. Actually, we designed two mechanisms to verify our results from the two model versions

(Opt-V, Base-V). At first, we added an extra module into GNAQPMS to test our results. The

function of this module is to output the concentration of specific chemical species after each

chemical or physical processes. The MPI processes write their own data into their own files

respectively at the same time, and each chemical and physical modules would only run one time to

insulate the effect of other modules. Then, an additional program reads the files from the two

versions of GNAQPMS and calculates the relative errors and absolute errors. This method is similar

with sampling the results during the running period. By this way, we can find the major errors due

to every sections. On the other hand, we plotted the spatial distribution of modeling results from the

two models after a long time integration, as we did in the manuscript. Actually, we have calculated

the difference of the two plots in Figure 5 (in the manuscript). But considering the beauty, the spatial

distribution of the difference between the two modeling results were not provided. According to the

first step, after a series of test and debugging, we found that the compile flag, such as -xCore-AVX2

and –xMIC-AVX512, would affect the results because of the sensitiveness of calculation accuracy.

The –fp-model flag could reduce the error raised by advection, but the error could not be completely

diminished because of numerical sensitivity.

Generally, there is no obvious difference between the spatial distribution by calculating the Relative

Errors in Figure R3 and Relative Mean Square Errors in Figure R4. The REs of almost all grids are

lower than 1%, and we think this is acceptable.

In the revised manuscript, we have replaced Figure 5 with Figure R3 in this document to show the

differences between the two modeling results, and the following Paragraph has also been added in

Sec. 4.2:

“By comparing the model output results and plotting the spatial distribution images with the

relative error (RE) shown in Figure 5, we can see, in the third column, that the RE was small

(<1%) enough. The optimisation does not introduce an “erroneous” concentration for any

atmospheric specie, and, therefore, it is reliable. However, the error could not be completely

diminished because of the numerical sensitivity of the advection algorithm.”

24) Page 9, line 2. “...were confirmed to be identical.” This is not a persuasive verification

method. An eyeball comparison of plots would not be considered sufficient to confirm that

results are identical. Provide difference plots and RMS difference statistics. Page 9, line

20. “...when the computing scale is fixed.” Right word? Instead maybe workload? problem

size?

Reply: Thanks for your kind comments. The answer for the validation of model results has been

given in the response to Question 23 above.

According to the suggestion, the sentence in Sec. 4.4, Paragraph 1, Line 2 is modified to explain

more suitable:

“...when the workload is fixed”.

25) Page 9, line 24. “After optimization, the parallel scalability of GNAQPMS is greatly

improved...” This seems counterintuitive, since vectorisation and other node-performance

optimizations that improve performance on each node from should make the code less

well, assuming that interprocessor communication overheads are the same. It’s important

to distinguish here (1) what parts of the code are being timed for the scaling measurements.

(2) Which optimizations are contributing to the improved scalability and which may be

improving performance but working against strong scaling.

Reply: Thanks for the comments. As mentioned in Section 3.2, the optimizations include the global

communication optimization that replaces interface-files writing/reading with collective MPI

functions. This optimization reduces the communication overhead greatly, since the overhead of file

I/O increases much faster than that of collective MPI functions as the number of nodes increases.

For the optimized code, since the communication improvement is much more than that of the

computation part, we observe a great improvement in the parallel scalability.

To (1) question, we evaluate the run time for “the core calculation portion of the model”, as

mentioned in Page 9, Line 23.

To (2) question, we would declare that the global communication optimization mainly contributes

to the scalability improvement, and other optimizations mainly contribute to the computation

improvement. But we would like to further point out that single-node optimization does not

necessarily work against strong scaling. There are at least two exceptions. One is the OpenMP

parallelization that could hide the latency of MPI point-to-point communication partially or fully.

In some cases, it can help improve the single-node performance as well as the cluster scalability.

Another is the CA-KSMs (Communication-Avoiding Krylov Subspace Methods) developed by

Professor Demmel at Berkeley, at algorithmic level, which optimize the global communication and

expose the opportunity for local computation optimization at the same time.

26) Page 9, line 33. “... OpenMP code segments on KNL...” What is the effect of varying the

number of OpenMP threads with respect to MPI tasks? That is, using the same overall

number of hardware threads across the job? What is the effect of running pure MPI?

Pure OpenMP?

Reply: Thanks for your kind comments. Firstly, we unfortunately found that the single node test

environment (Cthor Lab.) had some adjustment of the machines, which lead to the difference of the

testing results. Therefore, we retested all the results and updated the data in the revised manuscript.

As suggested by the reviewer, we tested the combination of different OpenMP threads and MPI

processes (Table R1). All the tests are fully using the hardware threads. The results indicate that the

best combination on CPU platform is 6 OpenMP with 12 MPI processors. For KNL, we used the

command line “–env I_PIN_MPI_DOMAIN=N” to pin the MPI processes to specific cores. And

the combination of 4 OpenMP and 34 MPI processes could get the optimal speedup (3.509, which

is 3.34 in the original manuscript).

In the revised manuscript, we added Table R1 as Table 4, and removed the previous Figure 6. The

corresponding description was also added in Sec. 4.3 as follows:

“Different combinations of OpenMP and MPI processes were tested on a single node, and the

results are shown in Table 4. The speedup of the best combination for Opt-V GNAQPMS

reached 3.51× on KNL and 2.77× on the CPU, compared to that of Base-V GNAQPMS, and

the KNL platform had an advantageous speedup of 1.26× over the CPU platform. At the same

time, without the global communication optimisation, the speedup of these combinations was

3.03× on KNL and 2.70× on the CPU. In addition, these results indicated that KNL was

affected more than the CPU since the KNL cores have a lower frequency for the I/O”

27) Page 10, Conclusion section. Future work and areas for improvement are discussed.

However the conclusion should also include discussion of what levels of performance and

scaling are needed for simulation science using GNAQPMS. The conclusion should assess

whether and how well the presented work helps the GNAQPMS users achieve these goals.

Reply: Thanks for the comments. We agree with the reviewer. The levels of performance and

scaling needed for simulation science using GNAQPMS has been discussed in the response of

Question One. For short-term or medium-term simulations (5 years or less), the model computation

speed needed is about 1 model year per day (including model I/O), while it should be increased to

about 5 model years per day for long-term (30 years or more) high resolution simulations (e.g.

0.25°x0.25°). Improve single node computation speed and parallel scalability is the way to achieve

the above goals. As shown in the conclusion, the single node computation speed and parallel

scalability of GNAQPMS were significantly improved after code optimization. The computation

speed (excluding model I/O) has been improved from about 0.5 model year per day using 8 CPU

nodes to about 3.7 model year per day using 30 KNL nodes and about 8 model year per day using

40 CPU nodes, respectively. Therefore, without regard to the model I/O, the optimization work in

this study has made the computation performance of GNAQPMS very close to our anticipated goal.

In the next step, further work will be focused on solving problems concerning OpenMP parallel

regions and global communication on KNL platform and conducting analysis and optimization of

model I/O.

In the revised manuscript, further discussion of the model computation performance needed now

and in the future is added to Section 5, Paragraph 2, Line 9 as follows:

“In summary, the computation speed (excluding the model I/O) was improved from about 0.5

model years per day using 8 CPU nodes to about 3.7 model years per day using 30 KNL nodes

and about 8 model years per day using 40 CPU nodes, respectively. Therefore, without regard

to the model I/O, the optimisation work in this study resulted in the computation performance

of the GNAQPMS being very close to our anticipated goal. In the next step, further work will

be focused on merging the OpenMP parallel regions.

28) Figure 7. Shows speedup but not performance. Suggest adding a figure that shows

performance as a function of the number of nodes. Plot as simulation seconds per second

of wall clock time.

Reply: Thanks for your kind comments. We added the following figure that shows the performance

as a function of the number of nodes, and this figure has been added into the revised manuscript as

Figure 7:

Figure R9. The model performance with increasing number of nodes.

In the revised manuscript, the description of this figure was also added to Sec. 4.4, Paragraph 2,

Line 11 as follows:

“In addition, Figure 7 shows that the simulation speed, or model second per real second,

improved with increasing number of nodes. When reaching 40 CPU nodes, the CPU cluster

could do the simulation of 8 model years per day, and with 30 KNL nodes, it could do the

simulation of 3.7 model years per day excluding the I/O part. The optimisation work in this

study has made the computation performance of GNAQPMS very close to our anticipated

goal of 5-10 model years under the coarse spatial resolution.”

References:

Chen, H. S., Wang, Z. F., Li, J., Tang, X., Ge, B. Z., Wu, X. L., Wild, O., and Carmichael, G. R.:

GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description,

evaluation and application to trans-boundary transport of Chinese anthropogenic emissions,

Geosci. Model. Dev., 8, 2857-2876, doi:10.5194/gmd-8-2857-2015, 2015.

Li, J., Wang, Z., Akimoto, H., Gao, C., Pochanart, P., and Wang, X.: Modeling study of ozone

seasonal cycle in lower troposphere over east Asia, J. Geophys. Res.-Atmos., 112, D22s25,

doi:10.1029/2006jd008209, 2007.

Li, J., Wang, Z., Wang, X., Yamaji, K., Takigawa, M., Kanaya, Y., Pochanart, P., Liu, Y., Irie, H.,

Hu, B., Tanimoto, H., and Akimoto, H.: Impacts of aerosols on summertime tropospheric

photolysis frequencies and photochemistry over Central Eastern China, Atmos. Environ., 45,

1817-1829, doi:10.1016/j.atmosenv.2011.01.016, 2011.

Li, J., Wang, Z., Zhuang, G., Luo, G., Sun, Y., and Wang, Q.: Mixing of Asian mineral dust with

anthropogenic pollutants over East Asia: a model case study of a super-duststorm in March 2010,

Atmos. Chem. Phys., 12, 7591-7607, doi:10.5194/acp-12-7591-2012, 2012.

Tang, X., Wang, Z., Zhu, J., Gbaguidi, A. E., Wu, Q., Li, J., and Zhu, T.: Sensitivity of ozone to

precursor emissions in urban Beijing with a Monte Carlo scheme, Atmos. Environ., 44, 3833-

3842, doi:http://dx.doi.org/10.1016/j.atmosenv.2010.06.026, 2010.

Wang, Q., Fu, Q., Wang, Z., Wang, T., Liu, P., Lu, T., Duan, Y., and Huang, Y.: Application of

ensemble numerical model system on the air quality forecast in Shanghai (in Chinese),

Environmental Monitoring and Forewarning, 2(4), 1-6+11, 2010.

Wang, Z., Akimoto, H., and Uno, I.: Neutralization of soil aerosol and its impact on the distribution

of acid rain over east Asia: Observations and model results, J. Geophys. Res.-Atmos., 107, 4389,

doi:10.1029/2001jd001040, 2002.

Wang, Z., Xie, F., Wang, X., An, J., and Zhu, J.: Development and application of Nested Air Quality

Prediction Modeling System (in Chinese), Chinese Journal of Atmospheric Sciences, 30(5), 778-

790, 2006.

Wang, Z., Wu, Q., Gbaguidi, A., Yan, P., Zhang, W., Wang, W., and Tang, X.: Ensemble air quality

multi-model forecast system for Beijing (EMS-Beijing): Model description and preliminary

application (in Chinese), Journal of Nanjing University of Information Science & Technology

(Natural Science Edition), 1(1), 19-26, 2009.

Wu, Q., Wang, Z., Chen, H., Zhou, W., and Wenig, M.: An evaluation of air quality modeling over

the Pearl River Delta during November 2006, Meteorol. Atmos. Phys., 116, 113-132,

doi:10.1007/s00703-011-0179-z, 2012.

