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Abstract 15 

Simple models can play pivotal roles in the quantification and framing of uncertainties surrounding climate change 

and sea-level rise. They are computationally efficient, transparent, and easy to reproduce. These qualities also make 

simple models useful for the characterization of risk. Simple model codes are increasingly distributed as open 

source, as well as actively shared and guided. Alas, computer codes used in the geosciences can often be hard to 

access, run, modify (e.g., with regards to assumptions and model components), and review. Here, we describe the 20 

simple model framework BRICK (Building blocks for Relevant Ice and Climate Knowledge) v0.2 and its 

underlying design principles. The manuscript adds detail to an earlier published model setup and discusses the 

inclusion of a land water storage component. The framework largely builds on existing models and allows for 

projections of global mean temperature as well as regional sea levels and coastal flood risk. BRICK is written in R 

and Fortran. BRICK gives special attention to the model values of transparency, accessibility, and flexibility in 25 

order to mitigate the above-mentioned issues, while maintaining a high degree of computational efficiency. We 

demonstrate the flexibility of this framework through simple model intercomparison experiments. Furthermore, we 

demonstrate that BRICK is suitable for risk assessment applications by using a didactic example in local flood risk 

management. 

  30 
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1 Introduction 

Simple, mechanistically-motivated Earth system models often play a pivotal role in climate and flood risk 

management (Hartin et al., 2015). For example, they are used for uncertainty quantification (Bakker et al., 2017; 

Grinsted et al., 2010; Urban et al., 2014; Urban and Keller, 2010), complex model emulation (Applegate et al., 

2012; Bakker et al., 2016; Hartin et al., 2015; Meinshausen et al., 2011a), and incorporated in integrated assessment 5 

models (Hartin et al., 2015; Meinshausen et al., 2011a). 

 

Computational constraints often impose hard trade-offs between physical model complexity and statistical model 

complexity. For example, a sizable allocation of computational time could be spent running a small number of 

simulations using a high-complexity physical model. Highly detailed simulations are useful to better understand the 10 

complex system, but with just a small number of simulations, only weak ensemble statistics can be drawn. In 

contrast, numerous realizations of a less detailed physical model could be run. This would provide the opportunity 

for more advanced ensemble statistical techniques including the characterization and quantification of uncertainties. 

It is important in climate-related applications such as mitigation of greenhouse gas emissions or adaptation to sea-

level rise that the relevant uncertainties are explored and communicated clearly to policy-makers (e.g., Garner et al., 15 

2016; Gauderis et al., 2013; Goes et al., 2011; Hall et al., 2012; Lempert et al., 2004). 

 

Several studies have broken important new ground in tackling these challenges.  For example, Nauels et al. (2016) 

present a platform of sea-level emulators (i.e. simple models of complex models) that efficiently produces future 

projections and characterizes key model structural uncertainties using statistical calibration methods. Semi-20 

empirical modeling (SEM) approaches trade detailed physics for a model that can efficiently project sea level using 

statistical, but mechanistically motivated, relationships between sea-level changes and climate conditions such as 

temperature and radiative forcing (Grinsted et al., 2010; Jevrejeva et al., 2010; Kopp et al., 2016; Rahmstorf, 2007). 

Recent work has expanded upon the SEM approach to use simple models to resolve individual contributions to 

global sea level (Bakker et al., 2017; Mengel et al., 2016; Nauels et al., 2016).  25 

 

Studies based on simple, mechanistically-motivated models have the potential to be transparent and reproducible 

when presented in open platforms and when the underlying data are readily available. Yet, although there is an 

increasing tendency to share scientific code, it can be (perhaps surprisingly) hard to get the models running and to 

reproduce the results. A likely cause for this is that not enough attention is given to the scientific coding itself. 30 

Careful coding, documentation, and review require a dedicated commitment of time, but scientific incentives to do 

so can be weak.  
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Here we describe in detail BRICK (“Building blocks for Relevant Ice and Climate Knowledge” (Bakker et al., 

2017)) v0.2, a model framework that focuses on accessibility, transparency, and flexibility while maintaining, as 

much as possible, the computational efficiency that make simple models so appealing. As compared to Bakker et al. 

(2017), BRICK v0.2 accounts for land water storage with the other components kept unchanged. There is a wide 5 

range of potential applications for such a model. A simple framework enables uncertainty quantification via 

statistical calibration approaches (Higdon et al., 2004; Kennedy and O’Hagan, 2001), which would be infeasible 

with more computationally expensive models. A transparent modeling framework enables communication between 

scientists as well as communication with stakeholders. This leads to potential application of the model framework in 

decision support and education (Fischbach et al., 2012; Johnson et al., 2013; Weaver et al., 2013). The present work 10 

expands on previous studies by (i) providing a platform of simple, but mechanistically-motivated sea-level process 

models that resolve more processes, (ii) providing a model framework that can facilitate model comparisons (for 

example, between our models and those of Nauels et al. (2016)), (iii) exploring combined effects of key structural 

and parametric uncertainties, (iv) explicitly demonstrating the flexibility of our framework for interchanging model 

components, and (v) explicitly demonstrating the utility of our model framework for informing decision analyses. 15 

 

In this model framework, we present a set of existing, well-tested, and easy-to-couple simple models for climate 

and flood risk management. They simulate global mean surface temperature and contributions to global mean sea-

level rise. BRICK also includes a regional sea-level rise module, which translates the global mean sea level 

contributions to regional sea level at a user-defined location. We use these regional sea level projections to 20 

demonstrate how the physical model may be linked to decision-making and impacts. We implement a Bayesian 

calibration approach with an aim to adequately resolve the tails of the distribution of future sea level because these 

low-probability areas represent high-risk events. In robust decision-making approaches, it can be favorable to be 

underconfident as opposed to overconfident, e.g. by applying conservative estimates in the sense of being risk-

averse (Herman et al., 2015).  We hence include in our Bayesian approach wide, mechanistically-motivated prior 25 

parameter probability distributions (Bakker et al., 2017). Yet, the flexibility of the BRICK model framework also 

enables the implementation of other calibration schemes. This paper is intended to showcase a useful model 

framework that is attractive for a sustainable approach to model development, for example by inspiring fellow 

researchers to contribute to the framework, to rethink their coding practice, and maybe even to adopt some of the 

demonstrated design objectives in their future research proposals. 30 

 

The hindcast skill of the BRICK model has been previously demonstrated (Bakker et al., 2017). Thus, the present 

work focuses on outlining a set of epistemic modeling values that we believe facilitates advances in the modeling 
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community. The remainder of this work is organized as follows. In Sect. 2, we describe these values and the ways 

in which the BRICK model implementation strives to attain them. Section 3 contains an overview of the BRICK 

model components for climate and the contributions to sea-level rise. Section 4 describes and presents the results of 

a set of model experiments conducted to demonstrate how BRICK lives up to our epistemic modeling values. 

Section 5 summarizes the findings of this work and provides conclusions and guidance for future work. 5 

2 Framework design 

2.1 Model design 

The essence of the BRICK physical model is to simulate changes in global mean surface temperature and sea level, 

in response to perturbations in radiative forcing. The socioeconomic impacts of the simulated temperature and sea-

level changes may then be assessed. This is depicted in Fig. 1. The climate component, each individual contribution 10 

to global sea-level rise, and an impacts module are sub-models of BRICK, or “BRICKs.” We defer details of the 

specific sub-models to Sect. 3. The physical model (climate and sea-level rise) components of BRICK are 

intentionally simple. This choice is guided by the epistemic modeling values outlined below.  

2.2 Epistemic modeling values 

2.2.1 Accessibility 15 

We selected R (R Core Team, 2016) as the base language for BRICK because it is (i) stable, (ii) freely available and 

open source, (iii) relatively easy to use, and (iv) easy to call subroutines written in faster languages. In the BRICK 

source code accompanying this study, the physical sub-models within the climate and sea-level rise modules are all 

provided as both R and Fortran 90 routines. It is our aim that the full physical-statistical model of BRICK is 

accessible using a modern laptop. This means that sizable Monte Carlo simulations (on the order of a million 20 

samples) must be possible on a time scale of hours. This is made possible by calling Fortran 90 sub-models from 

the base code in R.  

 

In addition to conceptual accessibility, it is our view that useful model codes are physically accessible too. 

Openness with scientific codes is likely to lead to higher quality codes (Easterbrook, 2014). In an effort to be truly 25 

open source and freely available, all codes – including the physical model, statistical model, and processing and 

plotting scripts used for the results shown here – are available through a download server as well as the Github 

repository provided in the Code Availability section of this article. Providing all code and data necessary to recreate 
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this study is a critical component of reproducible research (Murray-Rust and Murray-Rust, 2014) and can help to 

build trust between the general public and scientific community (Easterbrook, 2014; Grubb and Easterbrook, 2011). 

2.2.2 Transparency 

We aim to achieve transparency in two areas: the physical modeling, including the related model code, and the 

communication of scientific findings. 5 

 

In regards to transparent physical modeling, we use simple numerical integration schemes whenever possible. We 

use as few global variables as possible, in order to “write programs for people, not computers” (Wilson et al., 2014). 

The essence of these authors’ advice is that users should not be expected to remember more than a few pieces of 

information as they read and develop code. To this end, in BRICK we aim to give appropriately suggestive names 10 

to our variables within the code, such that a human intuitively understands what the quantity at hand represents. For 

example, when naming a logical or Boolean variable, we prefer for its name to read as a question that the variable 

itself answers, and begin the variable name with the letter “l” to imply it is a “logical” variable. One example of this 

in the BRICK source code is the variable “l.project”, which is true when the model is configured to make 

projections of future sea-level rise and climate, and false when the model is set up for hindcast simulations. While it 15 

may seem fussy to review these points, practices such as this will facilitate the sharing of scientific codes and 

enable the community to build stronger and more efficient collaborations. 

 

Transparency also serves to link the findings of a physical model to decision-making and policy impacts. BRICK 

can be a useful tool to link climate changes (global temperature and sea-level rise) to decision-making frameworks 20 

through a clear outlet for coupling to socioeconomic models. Perhaps most importantly, the coupled physical-

statistical framework in BRICK incorporates many sources of uncertainty into the physical findings on which the 

decisions will be based. It is important that these uncertainties in climate projections are represented in the decision-

making framework (Lempert et al., 2004). 

2.2.3 Flexibility 25 

A modular programming approach is taken with BRICK, which allows each component sub-model to be exchanged 

for alternative models. In this way, as the scientific forefront progresses, the BRICK sub-models may advance as 

well. The flexible BRICK framework also permits a quantitative evaluation of model structural differences, which 

is valuable in the event that it is unclear which of two candidate models should be chosen. In these cases, the 

BRICK framework is valuable for model comparison and quantification of structural uncertainty. As new data sets 30 
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for the calibration of the sub-models become available, these can also be incorporated instead of or in addition to 

the current data sets. We demonstrate the flexibility of the BRICK framework through a series of modeling 

experiments (Sect. 4). 

2.2.4 Efficiency 

Code efficiency is enabled primarily through (i) the use of simple models and (ii) using model versions written in R 5 

for easy preliminary experimentation, and Fortran 90 versions for production simulations. This practice also follows 

the advice of Wilson et al. (2014) for code developers to “write code in the highest-level language possible, and 

shift to lower-level languages like C and Fortran only when they are sure the performance boost is needed.” This 

boost indeed enables the generation of production simulations on most modern laptops. The simulation of one 

million model iterations spanning from 1850 to present, performed on each of four CPUs (two cores and two 10 

threads per core) yields an ensemble of four million model realizations. This procedure requires less than an hour on 

a model year 2012 laptop with a 2.9 GHz dual-core processor with 16 GB of RAM. Paleoclimatic simulations 

require longer wall clock times, but can still be completed in less than a day. All simulations for this study were 

completed on this machine. 

 15 

Providing computationally efficient code simplifies its use. For example, there may be limitations on the computing 

resources allocated for a particular project, or an instructor might be interested in enhancing coursework by 

incorporating computer modeling exercises. In these cases, transparency is critical (as mentioned above), but also 

the model must be sufficiently efficient that it neither (i) expires the computational allotment for the experiment, 

nor (ii) takes too long to be of any educational use. Our epistemic modeling values of accessibility, transparency, 20 

flexibility, and efficiency motivate the choice of a relatively simple physical modeling framework. Accordingly, a 

detailed statistical calibration framework is implemented. Within this framework, physical model and statistical 

model parameters are calibrated using observational data sets and mechanistically-motivated prior ranges. The 

statistical model is reviewed at greater length by Bakker et al. (2017), so we provide only an overview in Sect. 4.1.  

2.3 Code review and sharing 25 

We invite the readers to download and test our code, as well as provide feedback on how best to further develop 

BRICK to fulfill the four epistemic values outlined above. Frequent and thorough code review by other team 

members as well as outside agents is another critical step towards good scientific coding practices (Wilson et al., 

2014), and “peer review needs to be supplemented with a number of other mechanisms that help to establish the 

correctness and credibility of scientific research” (Grubb and Easterbrook, 2011). Wilson et al. (2014) also note that 30 
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a number of high profile research articles have been retracted or revised because of errors in the code. The 

likelihood of these errors may be greatly reduced by thoroughly testing other group members’ codes. In our own 

experience conducting the experiments described in this study, we have anecdotal evidence for the value of testing 

one another’s code. Some errors were corrected through this process, and many more pieces of code were modified 

for clarity. We continue to invite all comments and suggestions for improvements and modifications (to the 5 

corresponding author). 

 

The use of a version control system greatly expands the accessibility of a code base, and also facilitates continuous 

improvement of the modelling framework itself. This is true and useful before, during, and after the peer-review 

process. Mistakes are inevitable and we assume that BRICK still contains some minor errors, ambiguities, and 10 

pieces of code that do not fully comply to our own standards. Openly sharing the code and documentation will help 

to address these issues. It is our hope that BRICK may be further developed as a community modeling tool, and that 

other users may contribute to the framework through added or revised models and data, or improved functionality. 

The use of a version control system facilitates this type of community effort (Wilson et al., 2014). 

3 Model components 15 

3.1 Global mean climate 

We adopt DOECLIM (Diffusion Ocean Energy balance CLIMate model, (Kriegler, 2005)) as a starting point for a 

simple climate model (Fig. 1). DOECLIM is a zero-dimensional energy balance model coupled to a three-layer, 

one-dimensional diffusive ocean model. The DOECLIM physical model outputs are global mean surface 

temperature anomaly (°C) and ocean heat uptake (1022 J). Calibration data for DOECLIM include both global 20 

surface temperature (Morice et al., 2012) and ocean heat uptake (Gouretski and Koltermann, 2007). We use a one-

year time step for the DOECLIM model, and the required input to drive the model is the radiative forcing time 

series (W m-2). This forcing is partitioned into aerosol and non-aerosol components, to enable a representation of 

the uncertainty associated with these forcings. The BRICK model considers this as an uncertain model parameter 

denoted as the aerosol forcing scaling factor (aDOECLIM). This aerosol scaling factor has been used elsewhere in the 25 

literature (Urban et al., 2014; Urban and Keller, 2010) and accounts for some uncertainty in the radiative forcing of 

aerosols (Meinshausen et al., 2011b). The interested reader is directed to Kriegler (2005) and Tanaka and Kriegler 

(2007) for more information about the DOECLIM model.  
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We fit a first-order autoregressive (AR1) error model to the model-data discrepancy between temperature and ocean 

heat uptake model output and calibration data. We estimate the first-order lag autocorrelation parameters (rT and 

rH) and homoscedastic component of the AR1 innovation variance (sT and sH) within the calibration framework as 

statistical model parameters. We add the heteroscedastic observational error estimates for global mean surface 

temperature from Morice et al. (2012) and for ocean heat uptake from Gouretski and Koltermann (2007) in 5 

quadrature to sT and sH (respectively) for the complete heteroscedastic temperature and ocean heat uptake error 

estimates. The model calibration approach implemented here assumes normally-distributed model-data residuals 

with mean zero (Higdon et al., 2004). The AR1 error model has the effect of “whitening” the residuals to satisfy this 

assumption. This type of calibration approach for DOECLIM has been implemented previously in the literature 

(Urban et al., 2014; Urban and Keller, 2010), and we direct the interested reader to these studies for further details. 10 

3.2 Sea level components 

The BRICK global mean sea level module calculates global sea level change as the sum of four individual 

components: glaciers and ice caps (GIC), Greenland ice sheet (GIS), Antarctic ice sheet (AIS), and thermal 

expansion (TE). These component sub-models are described in the following sections. BRICK accounts for land 

water storage contributions to global mean sea level using mass balance trends from the International Panel on 15 

Climate Change (IPCC) Fifth Assessment Report (AR5, Church et al., 2013) and from the work of Dieng et al. 

(2015). The differential equations for the GIC, GIS, AIS, and TE contributions to global mean sea level are 

integrated in BRICK using first-order numerical integration schemes with a one-year time step. Initial conditions 

are specified at a year dictated by the sub-model’s assumed reference point. This differs, in general, among the sub-

models and some model parameters depend on preserving this reference year. Starting from this initial condition, a 20 

first-order explicit numerical integration method integrates forward in time to the end of the simulation and a first-

order implicit (backward differentiation) method integrates backward in time to the earliest year of the simulation. 

Preliminary experiments (not shown) demonstrated that the one-year time step is sufficiently short to maintain 

numerical stability. The total global mean sea-level rise from the coupled BRICK model is 
!"
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𝑡 ,     (1) 25 

where S(t) is the global mean sea level (m) in year t, SGIC is the sea level contribution from GIC (m), SGIS is the sea 

level contribution from the GIS (m), SAIS is the sea level contribution from the AIS (m), STE is the sea level 

contribution from thermal expansion (m), and SLWS is the sea level contribution from changes in land water storage. 

We report projections of future sea level relative to the 1986-2005 mean.  
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3.2.1 Glaciers and ice caps 

We adopt a simple zero-dimensional sub-model for the contribution to global sea-level rise from Glaciers and Ice 

Caps (GIC) from Wigley and Raper (2005). This same formulation is used in the MAGICC climate model 

(Meinshausen et al., 2011a). The parameterization for the GIC contribution to global sea-level rise is: 

!"')*
!#

(𝑡) = 𝛽5 𝑇7(𝑡) − 𝑇9:,;<= 1 − "')*(#)
?@,')*

A
.       (2) 5 

In Eq. (2), SGIC is the cumulative sea level contribution from GIC (m), b0 is the initial mass balance sensitivity to 

global temperatures (m °C-1 y-1), Teq,GIC is the theoretical equilibrium temperature at which the GIC mass balance is 

at steady state (°C), V0,GIC is the initial total volume of GIC available in 1990 (m sea level equivalent (SLE)), and n 

is an exponent parameter for area-to-volume scaling. An initial condition, S0,GIC, is provided as an uncertain model 

parameter. Teq,GIC is taken equal to -0.15°C (Wigley and Raper, 2005). Note that in this formulation for GIC 10 

contribution to sea-level rise, whether the GIC mass is increasing or decreasing depends only on Tg(t) relative to 

Teq,GIC; it is independent of the current state SGIC(t). Within this model for the GIC sea-level contribution, Tg is 

relative to the 1850-1870 mean global surface temperature (Wigley and Raper, 2005). 

 

The uncertain physical model parameters for GIC-MAGICC (which will be tested in Sect. 4.2) are b0, V0,GIC, S0,GIC, 15 

and n. We fit an AR1 model to the model-data discrepancy between GIC model output and calibration data 

(Dyurgerov and Meier, 2005) in the same manner as the temperature and ocean heat uptake calibration (Sect. 3.1). 

Uniform prior distributions are used for the GIC-MAGICC physical and statistical model parameters. These prior 

distributions, as well as calibrated posterior medians, 5, and 95% quantiles, are given in Appendix A. 

3.2.2 Greenland ice sheet 20 

BRICK uses the mechanistically-motivated, zero-dimensional SIMPLE (Simple Ice-sheet Model for Projecting 

Large Ensembles) model as the parameterization for the Greenland ice sheet (GIS) contribution to global mean sea 

level change (Bakker et al., 2016). SIMPLE estimates the GIS response to changes in global mean surface 

temperature by first estimating an equilibrium ice sheet volume (Veq,GIS, m SLE) at which the sea level contribution 

from the GIS is zero, and estimating the e-folding time-scale of GIS volume changes due to changes in global 25 

temperature (tGIS, y-1). 

𝑉9:,;<"(𝑡) = 	 𝑐;<"	𝑇7(𝑡) + 	𝑏;<"         (3) 
 

E
F')((#)

= 	𝛼;<"	𝑇7(𝑡) + 	𝛽;<"         (4) 
 30 
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In Eqs. (3) and (4), cGIS, bGIS, aGIS, and bGIS are uncertain physical model parameters. cGIS is the sensitivity of the 

equilibrium volume to changes in temperature (m SLE °C-1); bGIS is the equilibrium volume Veq,GIS for zero 

temperature anomaly (m SLE); aGIS is the sensitivity to temperature of the time-scale of GIS volume response to 

changes in temperature (°C-1 y-1); and bGIS is the equilibrium (Tg=0°C) time-scale of GIS volume response to 

changes in temperature (y-1). Global mean surface temperature, Tg, is taken relative to 1961 to 1990 mean. The GIS 5 

volume changes can then be written as 
!?')(
!#

(𝑡) = E
F')((#)

𝑉9:,;<"(𝑡) − 𝑉;<"(𝑡) .        (5) 

The initial condition V0,GIS is provided as an uncertain model parameter (m SLE). Using this initial condition, 

designated in the year 1961, the sea-level rise due to the GIS is calculated as the change from V0,GIS to the current 

GIS volume, VGIS(t). This formulation, of course, assumes that all GIS volume lost makes its way into the oceans. 10 

An AR1 model is fitted to the GIS model-data residuals. Due to poor convergence, the first-order lag 

autocorrelation parameter (rGIS) is held constant at a value determined by a preliminary model simulation that is 

optimized using a differential evolution optimization algorithm (Storn and Price, 1997). The GIS training data set 

does not provide heteroscedastic error estimates, so the AR1 innovation variance is taken to be the estimated 

statistical parameter sGIS added in quadrature to the provided error estimate (Sasgen et al., 2012). All GIS physical 15 

and statistical model parameters are assigned uniform prior distributions. The ranges for these priors and posterior 

distribution medians, 5, and 95% quantiles are given in Appendix A. Further details regarding SIMPLE are 

provided in Bakker et al. (2016). 

3.2.3 Antarctic ice sheet 

We employ the Danish Center for Earth System Science Antarctic Ice Sheet (DAIS) model to simulate the Antarctic 20 

ice sheet contribution to global sea level (Shaffer, 2014). This is a two-dimensional model for the Antarctic ice 

sheet that assumes an axisymmetric geometry, shown graphically in Shaffer (2014), his Fig. 2. The DAIS model 

tracks changes in Antarctic ice sheet volume, considering contributions from (i) incident precipitation, (ii) runoff of 

ice melt, (iii) ice flow, and (iv) ice sheet disintegration from rising and warming sea levels. Input forcings for the 

DAIS model include Antarctic surface temperature reduced to sea level (TA, °C), high latitude ocean subsurface 25 

temperature (TANTO, °C), global mean sea level (m), and the time rate of change of global mean sea level (m y-1). 

 

When calibrated as a stand-alone model, the DAIS forcings are provided based on temperature reconstructions (see 

Shaffer (2014)). When the DAIS model is run as a component in the coupled BRICK model, a separate sub-model 

is needed to convert the global mean surface temperature from the climate model (DOECLIM) to the Antarctic 30 

surface and ocean subsurface temperatures required by the DAIS model. The Antarctic surface temperature is 
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estimated from a linear regression with global mean surface temperature (Morice et al., 2012; Shaffer, 2014). The 

Antarctic ocean temperatures (TANTO) are modeled through a simple relation with the global mean surface 

temperature, Tg (relative to 1850-1870 mean). TANTO is bounded below at the freezing point of salt water (Tf = -

1.4°C): 

𝑇HIJK(𝑡) = 𝑇L +
M,N-O∗JQ(#)RS,N-OTJU

ERVWX (M,N-O∗JQ(#)RS,N-OTJU /M,N-O]
 .      (6) 5 

Equation (6) is a modified linear regression between the global mean surface temperature Tg and the Antarctic 

ocean temperature TANTO, such that the Antarctic ocean temperature is bounded below by the freezing temperature 

of sea water, Tf. In Eq. (6), aANTO is the sensitivity of the Antarctic ocean temperature to global mean surface 

temperature (unitless), and bANTO (°C) is the approximate Antarctic ocean temperature for Tg=0°C. banto is the 

approximate ocean temperature because the relationship in Eq. (6) is not a simple linear regression. aANTO and bANTO 10 

are both estimated as uncertain model parameters. The DAIS model contains 11 physical and one statistical 

parameter, for a total of 14 Antarctic ice sheet parameters to be estimated. The heavily parameterized Antarctic ice 

sheet module reflects our focus on including a broad range of model and observational uncertainties, and 

consideration of the critical role of the Antarctic ice sheet in driving substantial uncertainty in future sea levels 

(Church et al., 2013). 15 

 

Here, we use an updated and corrected version of the DAIS model (Ruckert et al., 2017; Shaffer, 2014). In the 

original formulation of the DAIS model, the input forcing from year t is used to determine the AIS contribution to 

sea-level rise in year t. This implicit numerical scheme assumes sea level and temperatures for the current year are 

known during that model iteration. For this study, in which temperatures and sea level originate in other BRICK 20 

model components, the DAIS model is re-cast using an explicit numerical scheme. The sea level and temperatures 

from the year t-1 are used to calculate the AIS contribution in year t. Antarctic shore-average local mean sea level 

functions as the input to DAIS when run as a sub-model of the coupled BRICK model. This is estimated as 

described in Sect. 3.3.  

 25 

The dynamical core of the DAIS model is more detailed than the GIC, GIS, and TE emulators given above. For this 

reason, we do not undertake a full review of the model equations here. The interested reader is directed to Shaffer 

(2014) and Ruckert et al. (2017) for further details regarding the DAIS model and its hindcast forcings. Equation (3) 

of Shaffer (2014) is the main equation of state for the Antarctic ice sheet volume (VAIS, m3): 
!?,)(
!#

𝑡 = 𝐵#\# 𝑇H, 𝑅 + 𝐹 𝑆, 𝑅 .         (7) 30 

In Eq. (7), Btot is the total rate of accumulation of mass on the Antarctic ice sheet (m3 y-1), TA is the Antarctic surface 

temperature reduced to sea level (°C), S is the sea level (m), R is the Antarctic ice sheet radius (m), and F is the ice 



12 
 

flux at grounding line (m3 y-1). Following Shaffer (2014), we take the present sea level equivalent Antarctic ice 

sheet volume to be 57 m SLE, and the initial ice sheet volume (V0,AIS, m3) to be consistent with an initial ice sheet 

radius of 1.86x106 m. Thus, the Antarctic ice sheet contribution to global sea level may be calculated as 

!",)(
!#

𝑡 = −57	𝑚 ∗
de,)(
df (#)

?@,,)(
.         (8) 

3.2.4 Thermal expansion 5 

BRICK uses a simple parameterization for the contribution of thermal expansion (TE) of the Earth’s oceans to sea-

level rise. We make the simplifying assumption that thermal expansion of the oceans occurs uniformly around the 

globe. While this is, of course, not strictly true, the next obvious step forward in model complexity would be to use 

a vertically- and latitudinally-resolved model for thermal expansion, incorporating the DOECLIM model output for 

ocean heat uptake. This two-dimensional ocean model is beyond the scope of the simple model framework 10 

described presently, but an excellent subject for future work. Here, we employ a simple zero-dimensional thermal 

expansion emulator based on the parameterizations of the sea-level rise sub-models of Mengel et al. (2016) and was 

originally used by Grinsted et al. (2010) to model the total global mean sea level changes. First, an equilibrium sea-

level rise from thermal expansion, due to changing global surface temperature (Seq,TE, m) is calculated as 

𝑆9:,Jg(𝑡) = 	 𝑎Jg	𝑇7(𝑡) + 	𝑏Jg.         (9) 15 

In Eq. (9), aTE is the sensitivity of the equilibrium sea-level rise from thermal expansion, due to changing global 

surface temperatures (m °C-1), and bTE is the equilibrium sea-level rise from thermal expansion with no temperature 

anomaly (m). The sea-level rise due to thermal expansion evolves with time as 
!"-.
!#

(𝑡) = E
F-.

𝑆9:,Jg(𝑡) − 𝑆Jg(𝑡)  ,        (10) 

where the quantity tTE is the e-folding time-scale with which current sea-level adjusts to the equilibrium state, and 20 

1/tTE is taken as an uncertain model parameter. This parameter is assigned a gamma prior distribution with shape 

1.81 and scale 0.00275, which places the 5th and 95th quantiles for tTE at 82 and 1,290 years (Mengel et al., 2016). 

This choice of prior distribution is motivated by the fact that tTE functions similarly to the uncertain time-scale 

associated with an exponentially-distributed random variable. A gamma distribution is the conjugate prior for such 

a random variable. The initial condition S0,TE is provided as an uncertain model parameter (m), designated in year 25 

1850. To match this accounting for sea-level rise relative to pre-industrial, forcing temperature is taken relative to 

its 1850-1870 mean. We calibrate the thermal expansion component of sea-level rise using trends reported by the 

IPCC (Church et al., 2013). 
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3.3 Regional sea-level patterns 

In order to link the projections of global mean sea-level change from BRICK to a local coastal adaptation, 

information on regional sea level change is needed. Thus, the global mean sea level from BRICK is downscaled to 

regional sea level using previously published maps of scaling factors for the glacier and ice sheet components of 

sea-level change (Slangen et al., 2014). Any redistributions of mass between the cryosphere and the ocean (e.g. ice 5 

melt) leads not only to a change in the total mass of the ocean, but also to changes in regional sea level as a result of 

variations in the gravitational field of the Earth, which in turn affects the solid Earth and the rotation of the Earth 

(e.g., Mitrovica et al., 2001). This typically (and counterintuitively) leads to a sea-level fall close to the source of 

mass loss and larger-than-average sea-level rise at larger distances (> 6700 km) from the source. These so-called 

regional sea-level “fingerprints” are constant for the time scales used in this study, as long as the location of the ice 10 

mass change remains the same. The fingerprints can therefore be used to relate global glacier and ice sheet 

contributions to sea level (Sect. 3.2.1–3.2.3) to their regional sea level contribution. We couple changes in global 

sea level to the Antarctic ice sheet model using an Antarctic shore-average fingerprint ratio of -1.0 for the AIS 

contribution to global sea level, and Antarctic shore-average fingerprint factors of 1.0 for the other contributions to 

sea-level rise from all BRICK sub-models (Slangen et al., 2014). Preliminary experiments indicated that our results 15 

are not sensitive to the precise choices of these fingerprints. 

 

The glacier fingerprint is based on projected changes in glacier mass in 2100 using a glacier model driven by 

temperature and precipitation information from the Fifth Climate Model Intercomparison Project database (Taylor 

et al., 2012) under the Representative Concentration Pathway 8.5 climate change scenario (RCP8.5, Moss et al., 20 

2010), as presented in Slangen et al. (2014). It is assumed that the mass change ratios between the different glacier 

regions on Earth remain the same throughout the 20th and 21st century, which is a valid assumption as long as none 

of the glacier regions “finish” (which is not expected to happen in the next century). For the Greenland and 

Antarctic ice sheets, it is assumed that ice melt takes place uniformly over the ice sheet surface. Within the BRICK 

model structure, users may define a latitude and longitude to obtain regional sea level change. 25 

4 Model experiments 

4.1 Model calibration 

We calibrate the model through a coupled physical-statistical calibration framework. The relatively simple physical 

modeling framework of BRICK is motivated by our epistemic modeling values (Sect. 2.1). This efficient model 

permits the use of a sophisticated model calibration technique. The calibration uses a robust adaptive Markov chain 30 
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Monte Carlo (MCMC) approach (Vihola, 2012). The specifics of how it is applied to the BRICK model as well as a 

demonstration of calibrated BRICK model hindcast skill are documented in Bakker et al. (2017). 

 

The vastly different time scales and characterizations of uncertainty in the Antarctic paleoclimatic calibration period 

and the modern period (1850 to present) lead to two separate sets of calibration parameters: (i) DAIS parameters, 5 

calibrated using paleoclimatic data, and (ii) DOECLIM, GIC, GIS, and TE parameters, jointly calibrated using 

modern data. The paleoclimatic calibration is done using four parallel MCMC chains of 500,000 iterations each. 

The first 120,000 iterations of each chain are removed for burn-in. The paleoclimatic calibration requires about 10 

hours on a laptop with a 2.9 GHz dual-core processor with 16 GB of RAM. The modern calibration is done using 

four parallel MCMC chains of 1x106 iterations each. The first 500,000 iterations of each chain are removed for 10 

burn-in. This requires less than one hour on the same machine as the paleoclimatic calibration. Convergence and 

burn-in lengths are assessed using Gelman and Rubin diagnostics (Gelman and Rubin, 1992). 

 

We combine these two disjoint sets of parameters to form concomitant full BRICK model parameters sets, and 

calibrate these to global mean sea level data (Church and White, 2011) using rejection sampling (Votaw Jr. and 15 

Rafferty, 1951). Prior to rejection sampling, contributions from land water storage are estimated using trends from 

the IPCC (Church et al., 2013) and subtracted from global mean sea level. When projecting global mean sea-level 

rise, we estimate land water storage contributions by extrapolating using the 2003-2013 trend of 0.30 ± 0.18 mm y-1 

found by Dieng et al. (2015). This approximation may not hold in reality (Wada et al., 2012), but serves as a 

starting point for future model developments. The use of rejection sampling and the estimation of land water storage 20 

contributions to sea level are the two aspects in which our calibration approach differs from that of Bakker et al. 

(2017). In this rejection sampling step, each full BRICK parameter set is constructed by parsing a random draw 

from the calibrated DAIS parameter sets with a random draw from the DOECLIM-GIC-GIS-TE calibrated 

parameter sets. This full BRICK model has the major components of global mean sea-level rise represented, so only 

at this stage is calibration using global mean sea level data possible. The calibration to global sea level data initially 25 

proposes 135,000 full BRICK model parameter sets. We use a joint Gaussian normal likelihood function centered at 

the time series of the global mean sea level data, with standard deviation given by the observational uncertainty of 

the sea level data (corrected to account for land water storage). For rejection sampling, the enveloping distribution 

is this likelihood function evaluated at the observed sea level time series itself. Thus, no model simulation can yield 

a realization of the likelihood function that exceeds this value. Rejection sampling accepts each model simulation 30 

with probability equal to the ratio of the likelihood function evaluated at the selected model simulation to the 

maximal value of the likelihood function. 10,589 ensemble members remain after the calibration to global mean sea 

level data. These model realizations serve as the control ensemble for analysis. The entire analysis for the control 
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model, including paleoclimatic simulations and the risk assessment presented in Sect. 4.4, requires about 4 hours on 

a modern laptop, but constructing smaller ensembles is much faster (an ensemble of about 600 members requires 

less than 10 minutes). 

 

In the spirit of our epistemic values, calibration routines are provided with the available BRICK source code. These 5 

routines use modern methods readily available in R. It is our aim that the interested user can easily substitute their 

own likelihood function (as physical scientific knowledge progresses), a new calibration method (as the statistical 

state-of-the-art progresses), or both. To this end, we provide a sub-routinized likelihood function, called from an R-

packaged calibration method (Vihola, 2012). We also provide individual likelihood functions and calibration scripts 

for each sub-model of BRICK individually, to enable interested users to perform experiments using stand-alone 10 

sub-models or pre-calibration (Edwards et al., 2011). 

 

In the interest of accessibility and transparency, with the available BRICK source code we also provide the sets of 

calibrated model parameters for all experiments presented here. The purpose of this is twofold. First, it greatly 

enhances the reproducibility of these results. Second, these data sets enable users who would like to run their own 15 

ensembles and make projections of local sea levels to do so. This supports our goal of accessibility. The calibrated 

parameter sets are provided in netCDF format, with ensemble member as the “unlimited” dimension. This permits 

concatenating multiple data sets by using netCDF operators (NCO) such “ncrcat” (Zender, 2008). These are freely 

available tools for manipulating data stored in netCDF format. 

4.2 Testing alternative model components: a sea-level rise module intercomparison 20 

4.2.1 Experimental description 

We achieve the accessibility, transparency, and computational efficiency of the BRICK modeling framework 

through use of simple models written in a simple programming environment (R, R Core Team, 2016). It remains to 

be demonstrated that this framework is flexible and efficient in post-processing.  

 25 

We demonstrate BRICK’s flexibility and efficiency by implementing and switching in an alternative formulation 

for the global mean sea level, S(t). We exchange the more detailed model configuration for global mean sea level 

(the BRICK control, see Fig. 1) for the simple emulator described by Rahmstorf (2007). This is 

!"
!#
(𝑡) = 𝑎;i"j(𝑇7(𝑡) − 𝑇9:,;i"j) ,         (11) 
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where t is time (years), S is the global mean sea level (m), aGMSL is a sensitivity constant (m °C-1 y-1), Tg is the global 

mean surface temperature anomaly (°C), and Teq,GMSL is the theoretical temperature at which the global sea level is 

steady (°C). The parameters aGMSL and Teq,GMSL, as well as the statistical parameters rGMSL (the first-order lag) and 

sGMSL (the homoscedastic component of the innovation variance), are calibrated using the same global mean sea 

level data set as the full BRICK sea-level rise module (Church and White, 2011). The “BRICK-GMSL” model 5 

performance using Eq. (11) for the sea-level rise module (while still coupled to DOECLIM as the climate module) 

is compared against the full BRICK model configuration. This BRICK-GMSL model configuration is calibrated 

using four parallel MCMC chains of 100,000 iterations each. The first 50,000 iterations are removed for burn-in, as 

determined using Gelman and Rubin diagnostics (Gelman and Rubin, 1992). We randomly sample from the 

resulting posterior distribution to form an ensemble for analysis of 10,671 model realizations. This ensemble size is 10 

chosen to be consistent with the BRICK control model ensemble size. The prior ranges and posterior medians, 5, 

and 95% quantiles for the BRICK-GMSL parameters are provided in Appendix A. 

 

Note that the Rahmstorf (2007) emulator is arguably not the state-of-the-art anymore (Grinsted et al., 2010; Kopp et 

al., 2016). However, it serves here the purpose of demonstrating the ease with which alternative model formulations 15 

can be tested. This greatly simplifies, for example, model intercomparisons and improvements. Some advantages of 

a simple emulator such as this include fewer parameters to estimate and a transparent analysis. Disadvantages of 

such a model include the inability to resolve individual contributions to global mean sea level. This disables the use 

of sea level fingerprinting to obtain regional sea-level patterns. Thus, the choice of model should not only be 

motivated by goodness-of-fit metrics, but also by applications. 20 

4.2.2 Metrics for model-data comparison 

Many goodness-of-fit metrics are available for the comparison of models and data. We focus on three metrics that 

are motivated by the heavily-parameterized full BRICK model framework. There are 39 free parameters in the 

coupled climate/sea-level rise model. By contrast, BRICK-GMSL has 13 free parameters. We use the global mean 

sea level time series of Church and White (2011) for the model-data comparisons in skill hindcasting global mean 25 

sea level. 

Root-mean-squared-error (RMSE) is a commonly-used error metric, so we employ it here. For consistency with 

other error criteria defined below, we define the RMSE for a model as the RMSE of the model ensemble member 

that maximizes the likelihood function. 

Akaike Information Criterion (AIC) is a measure of the relative goodness-of-fit between two potential models for 30 

the same data (Akaike, 1974). 
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𝐴𝐼𝐶 = −2 ln 𝐿rMs + 2	𝑁         (12) 

In Eq. (12), Lmax is the maximum value of the likelihood function and N is the number of model parameters. Lower 

values of AIC provide a better match between model output and data, and consider a penalty for over-

parameterizing a model. 

Bayesian Information Criterion (BIC) is formulated similarly to AIC, but enacts a different penalty for over-5 

parameterization (Schwarz, 1978). 

𝐵𝐼𝐶 = −2 ln 𝐿rMs + 𝑁	ln	(𝑁\Su)	         (13) 

In Eq. (13), Nobs is the number of observational data points used in the model-data comparison. Thus, for Nobs>e2, 

the BIC metric penalizes over-parameterization more harshly than does AIC. 

4.2.3 Experimental results: sea-level rise module intercomparison 10 

The full BRICK sea-level rise module (Fig. 1) performs better than the GMSL emulator (Eq. 11) according to 

RMSE; the full sea-level rise module has RMSE of 0.0057 m, which is about half the GMSL emulator RMSE of 

0.015 m (Fig. 2). These hindcasts are presented as sea level relative to 1961-1990 global mean sea level. This is of 

course expected, because the number of free model parameters in the full BRICK model is 39, while the GMSL 

emulator contains only 13 free parameters. The BIC metric gives the expected result for this disparity in model 15 

complexity. The BIC for the full BRICK model with respect to the sea level data is 60.4 higher than the BIC for the 

GMSL emulator. The AIC is actually lower (by 14.2) for the full BRICK model than for the BRICK-GMSL 

emulator. These mixed results for the model comparison metrics indicate that the full BRICK sea-level rise module 

is not unreasonably over-parameterized; if the full BRICK model were obviously over-parameterized, we would 

expect the AIC for the GMSL emulator experiment to be lower than for the full BRICK model.  20 

 

These results also show that the sea level hindcast in the full BRICK model smooths much of the year-to-year 

variability in sea-level rise. This can be seen by contrasting the full BRICK maximum likelihood ensemble member 

(solid blue line) in Fig. 2a with the BRICK-GMSL emulator maximum likelihood ensemble member in Fig. 2b. The 

full BRICK simulation does not capture the annual variation in global mean sea level that the BRICK-GMSL 25 

simulation successfully captures. This is attributed to the smoothing effect of averaging over the model ensemble 

the four major contributions to global mean sea level, as opposed to calibrating the BRICK-GMSL simulations 

directly to global mean sea level data. This does not affect ensemble statistics, however, which can be seen from the 

shaded envelopes around the model simulations in Fig. 2. The BRICK model has been developed with efficiency 

and large ensemble simulations in mind, so missing annual variability is of little concern. 30 
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This demonstrates the ease with which model intercomparisons may be undertaken using BRICK. Deactivating the 

glaciers and ice caps, thermal expansion, and Greenland and Antarctic ice sheet components and integrating the 

GMSL emulator into BRICK involves low overhead in computer code. GMSL is the main output of the BRICK 

physical model. As such, it is our aim to provide a framework in which users can easily integrate new processes and 

models into the climate and sea-level rise modules as the scientific forefront progresses. 5 

4.3 Interchanging BRICKs and sub-model intercomparisons 

4.3.1 Experimental description 

We conduct an experiment to demonstrate the flexibility of BRICK to permit easy exchanging of a single sub-

model for one component of global sea-level rise. In the control BRICK model set-up, SIMPLE is used to emulate 

the sea-level rise contributions from the Greenland ice sheet (GIS) and GIC-MAGICC is used to emulate the 10 

contributions from glaciers and ice caps (GIC). In this model intercomparison experiment, a second version of 

SIMPLE is calibrated to represent the GIC component of sea-level rise. This experiment is motivated by potential 

structural shortcomings of the GIC-MAGICC model. In Eq. (2), the implied GIC volume equilibrium depends only 

on the current surface temperature relative to the fixed parameter Teq,GIC. If the GIC volume is quite low (almost 

entirely melted), this structure potentially enables unphysically fast growth of GIC volume. The SIMPLE model 15 

(Eqs. 3–5) contains an arguably more realistic representation of the relaxation of ice sheet volume towards an 

equilibrium. In this formulation, the time-scale of the relaxation and the equilibrium itself both depend on the 

surface temperature state. This type of potential disagreement within the scientific community regarding model 

structure is precisely where the BRICK model framework can be useful. The flexibility of BRICK enables easy 

exchange of one component sub-model (GIC-MAGICC) for another (GIC-SIMPLE). This enables experiments 20 

examining the impacts of model structural choices. 

 

This GIC-SIMPLE model configuration calibrates GIC-SIMPLE using the same observational data as the control 

GIC-MAGICC set-up. One key difference is that the prior distributions of the model parameters for GIC-SIMPLE 

were modified to be specific to the GIC conditions instead of the GIS. These prior distributions are given in 25 

Appendix A. The same calibration method and likelihood functions are used for the GIC-SIMPLE experiment as in 

the GIC-MAGICC control model. We use the same calibration approach as in the control ensemble, which yields an 

ensemble of 10,483 model realizations for analysis in the GIC-SIMPLE experiment. As in Sect. 4.2, we focus on 

RMSE, AIC, and BIC as model goodness-of-fit metrics. The GIC-MAGICC model has six model parameters (four 

physical model, two statistical) and the GIC-SIMPLE model has seven parameters (five physical model, two 30 

statistical). 
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4.3.2 Experimental results: glaciers and ice caps sub-model intercomparison 

When the GIC-MAGICC model is used, RMSE, AIC, and BIC are all lower than when the GIC-SIMPLE model is 

used (Fig. 3). But the AIC and BIC are not drastically lower for GIC-MAGICC than for GIC-SIMPLE.  This 

indicates that the addition of a model parameter (GIC-SIMPLE) may not be justified (Kass and Raftery, 1995). The 

GIC contribution to global sea level in Fig. 3 is presented relative to 1960 GIC sea-level rise. The median, 5, and 5 

95% quantiles of the calibrated GIC-SIMPLE parameters are given in Appendix A. 

 

The two models display similar levels of under-confidence, illustrated by the wide model ensemble envelope 

around the narrower range of observational data (Fig. 3) (Dyurgerov and Meier, 2005). That both models show 

under-confidence is often judged to be preferable to over-confidence, especially when physical models are linked of 10 

applications-oriented decision-making frameworks (Herman et al., 2015). This experiment demonstrates BRICK's 

flexibility, and ability to allow the user to isolate and examine any source of uncertainty or dissatisfaction in the 

modeling framework. These results also provide guidance for the use of the BRICK model framework for model 

intercomparison and selection experiments. At present we do not make any recommendations regarding which GIC 

sub-model to use. The GIC-MAGICC component has both strengths (e.g., fewer parameters and appropriate in 15 

melting regimes) and weaknesses (unphysical GIC growth, does not encourage growth beyond V0,GIC, state-

independent equilibrium). 

4.4 Linking an impacts and decision-analysis module to BRICK 

4.4.1 Experimental description 

We demonstrate the ability of the BRICK framework to incorporate additional structure to link the physical model 20 

for surface temperature and sea-level rise (climate and sea level modules, Fig. 1) to socioeconomic implications 

(impacts module, Fig. 1). In this example application, we use the calibrated ensemble in the BRICK control 

configuration to obtain local sea level projections for New Orleans, Louisiana (29° 57’ N, 90° 4’ W). We use a 

common didactic model for coastal flood protection (Van Dantzig, 1956; Jonkman et al., 2009). In this flood risk 

model, the policy lever available to decision-makers is the amount by which to heighten the dikes protecting the 25 

coastal community. We consider a previously published simple analysis that focuses on the northern dike ring in 

central New Orleans (Jonkman et al., 2009). We use this illustrative cost-benefit approach to calculate an 

economically-efficient dike-heightening by weighing the decrease in probable losses due to flooding achieved by 

building taller dikes against the increase in costs due to investments in construction. 

 30 
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The flood risk model implemented here follows a commonly used simple approach (Van Dantzig, 1956). The 

present implementation considers the current year as 2015 and a time horizon of 85 years (to 2100). We consider 

discrete dike heightenings in increments of 5 centimeters, between 0 and 10 meters. The average annual flood 

probability is calculated from the simulated local sea-level rise, the land subsidence rate (Dixon et al., 2006), and 

flood frequency parameters (Jonkman et al., 2009). We calculate the expected losses (US dollars) for each proposed 5 

dike heightening from the flood probabilities for each heightening, the value of goods protected by the dike ring, 

and the net discount rate (Jonkman et al., 2009). The total expected costs are the sum of the expected losses and the 

expected investments. In this simplified model, the investment costs only depend on dike heightening and are 

approximated by linear interpolation between data points provided by Jonkman et al. (2009) (and linear 

extrapolation for dike heightenings outside this range), and the expected losses are an exponentially decreasing 10 

function of dike height above mean sea level. The minimum total expected cost then is the economically-efficient 

dike heightening strategy in the framework of this simple illustrative model (Eq. 14 of Van Dantzig (1956)). 

 

The uncertain parameters considered in this cost-benefit analysis include the initial flood frequency with no 

heightening (y-1); the exponential flood frequency constant (m-1); the value of goods protected by the dike ring 15 

(billion US dollars); the net discount rate (%); the uncertainty in investment costs (a unitless multiplicative factor); 

and the land subsidence rate (m y-1) (Table 1). The central estimates for the exponential flood frequency constant 

(a) and the initial flood frequency with no heightening (p0) are taken from Van Dantzig (1956). The exponential 

flood frequency constant relates the increase in flood probability that results from an increase in sea level relative to 

the dike height. We make the assumption that this factor should scale (to first order) relatively well from Dutch case 20 

considered by Van Dantzig (1956) to the test case of New Orleans considered presently. The initial flood frequency 

with no heightening (p0) may not translate directly between these two cases, but highlights our intent for this 

experiment to serve as an example of future applications of the BRICK model to inform decision analyses. The 

admittedly ad hoc distributions assumed for a and p0 were selected to sample tightly around the central estimates 

from Jonkman et al. (2009). A more detailed treatment of this risk management problem would include using 25 

methods from extreme value theory to address the risks posed by storm surges (Coles, 2001). 

 

The investment uncertainty considered in the sensitivity tests of Jonkman et al. (2009) included a base case, 50% 

lower, and 100% higher than the base case. We use this range for the investment uncertainty, applied as a 

multiplicative factor ranging from 0.5 to 2. The range for the value of good protected by the dike ring is taken from 30 

Jonkman et al. (2009), where the lower bound is the lowest estimate of value of goods protected by the three dike 

rings considered in that work (US$5 billion), and the upper bound is the estimated combined value protected by all 
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three dike rings (US$30 billion). The net discount rate range is centered at 4%, the estimate from Jonkman et al. 

(2009) accounting for inflation and interest rate. Those authors’ net discount rate is decreased to 2% due to 

economic growth (1%) and increased flooding probability due to sea-level rise (1%). Our demonstrative example 

endogenizes the effects of sea-level rise and accounts for parametric uncertainty in the value of good protected by 

the dike ring. Hence, we center our range for the net discount rate at 4% but allow for ±2% uncertain range. The 5 

rate of land subsidence is based on the estimates of Dixon et al. (2006), with mean 5.6 mm y-1 and standard 

deviation 2.5 mm y-1. We transform this to a log-normal distribution to disallow negative rates of land subsidence. 

 

We sample the uncertainty in these parameters via Latin hypercube, where the population size is given by the 

number of sea-level rise ensemble members that are present (10,589 for the control BRICK ensemble). The 10 

distributions from which the economic model parameters are drawn are given in Table 1. Each realization of 

regional sea level is assigned a concomitant sample of flood risk model parameters. An economically-efficient dike 

heightening is calculated for each ensemble member. “Return periods” (years) correspond to the frequency of 

storms with the potential to overtop dikes with the corresponding dike height – essentially, the inverse of the annual 

flood probability. Return periods are a convenient and intuitive way to view the probabilities of flooding in this 15 

economic analysis. 

 

We present results for the flood risk management experiment using sea level projections under RCP8.5. We note 

that many factors are not incorporated into this analysis and this simple illustration is not designed to be used for 

real decision making. For example, storm surge and structural failure are not considered (Grinsted et al., 2013; 20 

Moritz et al., 2015). The purpose of this illustration is to demonstrate the flexibility and transparency of the BRICK 

model framework. This experiment highlights the importance of transparency in particular when linking physical 

modeling results to the impacts on socioeconomic modeling and policy decision-making. 

4.4.2 Experimental results: regional sea-level changes 

In order to link projections of sea-level rise to problems of local coastal adaptation, regional sea level is projected to 25 

2100 under the climate change scenarios of RCP2.6, 4.5, and 8.5 (Fig. 4). These projections use the control 

configuration of the model, with GIC-MAGICC and the full sea-level rise sub-model set-up depicted in Fig. 1. The 

ensemble median projection is shown in Fig. 4. Sea level rises by 2100 globally by about 55 cm (43-72 cm), 74 cm 

(56-100 cm), and 130 cm (93-177 cm) under RCP2.6, 4.5, and 8.5, respectively (ensemble median and 5-95% range 

in parentheses). The Arctic Ocean is an obvious exception to the rest of the ocean. Due to the Greenland ice mass 30 

loss, Arctic regional sea level will fall as a result of the loss of gravitational attraction. However, the addition of 
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mass raises sea level in other parts of the ocean farther away. Arctic sea level (median sea level of all latitudes 

higher than 60°N) increases by 7 cm under RCP2.6, but falls by 2 cm under RCP4.5 and by 30 cm under RCP8.5. 

By contrast, the tropical sea level (median of all latitudes between 30°S and 30°N) rises by 57 cm, 82 cm, and 147 

cm under RCP2.6, 4.5, and 8.5, respectively, which is greater than the global mean rise. Due to the asymptotically 

increasing gravitational effects in proximity to the melting Greenland ice sheet, sea-level fall below -1.5 m is cut off 5 

at -1.5 m.  

4.4.3 Experimental results: Link to coastal defense strategies 

We now focus on the regional sea-level projections for the gridcell containing New Orleans, Louisiana under 

RCP8.5 (Fig. 4c), to demonstrate the use of these sea-level projections in a common local flood risk management 

example. We find the economically-efficient (i.e., cost-minimizing) dike heightening to be 1.5 m (ensemble mean; 10 

90% range is 0.75 to 1.95 m; Fig. 5). This heightening corresponds to a return period of about 760 years (ensemble 

mean; 90% range is roughly 200-3000 years; Fig. 5). The simple analysis presented here should not be used to 

inform on-the-ground decisions in New Orleans. This experiment is meant to demonstrate BRICK’s ability to 

contribute in risk assessment applications.  

5 Conclusions 15 

We present BRICK v0.2, a modeling framework for global and regional sea-level change. BRICK has been 

designed with four epistemic modeling goals: accessibility, transparency, efficiency, and flexibility.  BRICK can  

skillfully match observational data for individual sea level contributions in hindcast (Bakker et al., 2017).  Here we 

focus on how BRICK achieves our epistemic values using a set of modeling experiments. 

 20 

BRICK is coded in the widely available and simple coding language R (R Core Team, 2016), to achieve the goals 

of accessibility and transparency. The main physics (global mean temperature and sea-level rise) codes are also 

(redundantly) transcribed in Fortran 90, for more efficient simulations. BRICK is designed to be transparent, as well 

as efficient, by coupling previously published simple, mechanistically motivated models for the major contributors 

to global sea level. The efficient physical modeling approach provides the opportunity to incorporate a rigorous 25 

statistical calibration framework as well, wherein various sources of uncertainty are incorporated into model 

projections (see Bakker et al. (2017) for a more detailed discussion of this). Finally, the model comparison 

experiments in Sect. 4.2 and 4.3 demonstrate the flexibility of the BRICK modeling framework. These sections 

bring into focus the importance of these epistemic modeling values. A modeling framework that is (in particular) 
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transparent and accessible can help to streamline the process of quantifying the local impacts of the physical model 

results, to link to decision-analytical models, and to communicate these results to stakeholders and decision-makers.   

 

We hope that the accessibility and transparency of BRICK are helpful to others, and will stimulate the continuous 

peer-reviewing, challenging, and improving of the BRICK framework. Of course, although we tried to couple 5 

models that fit our epistemic model values as close as possible, we assume that others may prefer other models and 

may have different epistemic values. Our framework is designed in such a way that it is possible to plug in other 

model components to reflect these different values. For example, it would be very interesting to add the components 

models used for the semi-empirical model frameworks of Mengel et al. (2016) and Nauels et al. (2016). 

 10 

We demonstrated the flexibility and transparency of BRICK in connecting projections from the physical model to 

the impacts on a local risk and decision-analysis problem. The simple probabilistic calibration method and cost-

benefit analysis that we adopted for the simple demonstration can be expanded to incorporate aspects of deep 

uncertainties (Lempert et al., 2004; Weaver et al., 2013) as well as more complex decision-making frameworks 

(e.g., considering multiple objectives, beyond only expected total costs) (Kasprzyk et al., 2013; Lempert, 2014; 15 

Lempert and Collins, 2007). Climate change poses decision problems where strong connections across academic 

disciplines are critical. Further, the study of climate modeling relies on communal modeling efforts. The need for 

transparent communication among modelers and between disciplines is where the BRICK framework and the 

epistemic modeling values presented here can facilitate future developments. Above all, we hope that BRICK 

inspires the involved communities to pay careful attention to enhance flexibility, transparency, and accessibility of 20 

modelling frameworks.   

 

Code and Data Availability 

All BRICK v0.2 code is available at https://github.com/scrim-network/BRICK under the GNU general public open 

source license. Large parameter files as well as model codes forked from the repository to reproduce this work 25 

(including the sea level projections) may be found at https://download.scrim.psu.edu/Wong_etal_BRICK/. 
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Appendix A: Prior probability distribution ranges for the sub-model parameters, and median, 5th, and 95th 
quantiles of the calibrated posterior parameter distributions. 

Table A1. Prior probability distribution ranges for the DOECLIM climate model parameters, and median, 5th, and 

95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly distributed. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

S °C 0.1 10 1.7 2.5 4.1 
kDOECLIM cm2 s-1 0.1 4 0.55 2.2 3.8 
aDOECLIM [-] 0 2 0.49 0.80 1.1 
T0 °C -0.3 0.3 -0.084 -0.043 -0.0022 
H0 1022 J -50 0 -48 -32 -7.7 
sT °C 0.05 5 0.069 0.080 0.091 
sH 1022 J 0.1 10 0.17 0.92 2.5 
rT [-] 0 0.999 0.31 0.44 0.56 
rH [-] 0 0.999 0.62 0.91 0.99 
 5 

Table A2. Prior probability distribution ranges for the thermal expansion model parameters, and median, 5th, and 

95th quantiles of the calibrated posterior parameter distributions. The prior distribution for 1/tTE is a gamma 

distribution (see main text). The other priors are all uniformly distributed. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

aTE m °C-1 0 0.8595 0.11 0.45 0.81 
bTE m 0 2.193 0.038 0.35 1.5 
1/tTE y-1 0 1 0.00047 0.0016 0.0046 
S0,TE m  -0.0484 0.0484 -0.043 0.0019 0.044 
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Table A3. Prior probability distribution ranges for the GIS-SIMPLE Greenland ice sheet model parameters, and 

median, 5th, and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly 

distributed. Due to convergence issues, rGIS is held fixed at a value calculated from a preliminary optimized model 

simulation (see main text). 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

cGIS m °C-1 -4 -0.001 -3.9 -3.0 -1.6 
bGIS m  5.888 8.832 7.4 7.8 8.1 
aGIS °C-1 y-1 0 0.001 0.00036 0.00073 0.00097 
bGIS y-1 0 0.001 2.8x10-5 0.00014 0.00040 
V0,GIS m  7.16 7.56 7.2 7.4 7.5 
sGIS m  0 0.002 0.00017 2.0x10-4 0.00025 
rGIS [-] [-] [-] [-] 0.90 [-] 
 5 

Table A4. Prior probability distribution ranges for the DAIS Antarctic ice sheet model parameters, and median, 5th, 

and 95th quantiles of the calibrated posterior parameter distributions. An inverse gamma prior distribution is used 

for s2
DAIS (see Ruckert et al. (2017)). All other prior distributions are uniform. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

aANTO °C °C-1 0 1 0.037 0.44 0.94 
bANTO °C  0 2 0.1 1.0 1.9 
g [-] 0.5 4.25 1.4 3.1 4.1 
aDAIS [-] 0 1 0.038 0.36 0.77 
µ m1/2 7.05 13.65 7.4 10 13 
n m-1/2 y-1/2 0.003 0.015 0.0038 0.0089 0.014 
P0 m y-1 0.026 1.5 0.13 0.50 1.3 
kDAIS °C-1 0.025 0.085 0.029 0.057 0.082 
f0 m y-1 0.6 1.8 0.7 1.3 1.8 
h0 m 735.5 2206.5 1100 1700 2200 
C m °C-1 47.5 142.5 51 80 120 
b0 m 740 820 740 780 820 
slope [-] 0.00045 0.00075 0.00055 0.00065 0.00074 
s2

DAIS m2 SLE 0 [-] 0.19 0.51 2.2 
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Table A5. Prior probability distribution ranges for the GIC-MAGICC glaciers and ice caps model parameters, and 

median, 5th, and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly 

distributed. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

bGIC m y-1 °C-1 0 0.041 0.00059 0.00089 0.0013 
V0,GIC m  0.3 0.5 0.31 0.40 0.49 
N [-] 0.55 1 0.57 0.78 0.98 
S0,GIC m -0.0041 0.0041 -0.0037 -2.0x10-5 0.0037 
sGIC m  0 0.0015 1.7x10-5 0.00021 0.00064 
rGIC [-] -0.999 0.999 0.15 0.84 0.99 
 

Table A6. Prior probability distribution ranges for the GIC-SIMPLE model parameters, and median, 5th, and 95th 5 

quantiles of the calibrated posterior parameter distributions. The priors are all uniformly distributed. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

cGIC m °C-1 -4  -0.001 -3.60 -1.80 -0.74 
bGIC m  0.3  0.5 0.31 0.39 0.49 
aGIC °C-1 y-1 0  0.001 4.3 x10-5 0.00045 0.00093 
bGIC y-1 0  0.001 8.7 x10-5 0.00048 0.00094 
V0,GIC m  0.3  0.5 0.31 0.41 0.49 
sGIC m  0  0.0015 2.2x10-5 0.00023 0.00064 
rGIC [-] -0.999  0.999 0.55 0.90 0.99 
 

Table A7. Prior probability distribution ranges for the Rahmstorf (2007) global mean sea level model parameters, 

and median, 5th, and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly 

distributed. 10 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

aGMSL m °C-1 0 0.0035 0.0012 0.0020 0.0031 
Teq,GMSL m  -1.5 1.5 -1.1 -0.57 -0.28 
sGMSL m  0 0.05 6.2x10-5 0.00070 0.0020 
rGMSL [-] 0 0.999 0.36 0.62 0.88 
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Tables 

 

Table 1. Parameter descriptions and prior probability distributions for flood protection cost-benefit analysis. 

Parameter Description Distribution 

p0 Initial flood frequency (yr-1) with zero heightening log-N(log-µ=log(0.0038), log-s=0.25) 

a Exponential flood frequency constant (m-1) N(µ=2.6, s=0.1) 

V Value of goods protected by dike ring (billion US$) U(5, 30) 

d Net discount rate (-)                                                   U(0.02, 0.06) 

Iunc Investment uncertainty (-) U(0.5, 2) 

rsubs Land subsidence rate (m yr-1) log-N(log-µ=log(0.0056), log-s=0.4) 
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Figures 

 
Figure 1. BRICK model structural diagram. Dashed connectors indicate couplings that are non-essential for 

projections of global mean sea level. These dashed couplings are required for projecting regional sea level and 

climate impacts. DOECLIM is the Diffusion-Ocean-Energy balance CLIMate model (Kriegler, 2005); GIC-5 

MAGICC is the Glaciers and Ice Caps module from the climate model MAGICC (Meinshausen et al., 2011a); TE is 

the Thermal Expansion model (Grinsted et al., 2010; Mengel et al., 2016); SIMPLE is the Simple Ice-sheet Model 

for Projecting Large Ensembles (Bakker et al., 2016); ANTO is the ANTarctic Ocean temperature model; DAIS is 

the Danish Center for Earth System Science Antarctic Ice Sheet model (Shaffer, 2014); regional sea level 

fingerprinting downscales from global sea-level contributions to regional (Slangen et al., 2014); and the model of 10 

Van Dantzig (1956) assesses flood risk. 
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Figure 2. Comparison of global mean sea-level rise hindcast skill relative to sea level data (Church and White, 

2011), using (a) the full sub-model approach (GIC, GIS, TE, and AIS) and (b) the model for global mean sea-level 

rise of Rahmstorf (2007). Sea level is relative to 1961-1990 global mean sea level. Both model configurations use 

DOECLIM as the climate module. Lower values of Akaike Information Criterion (AIC), Bayesian Information 5 

Criterion (BIC), and root-mean-squared error (RMSE) indicate a better model fit to the data. These error metrics are 

all calculated using the maximum likelihood ensemble member, which is represented by the solid blue line. Green 

highlighting indicates the model structure suggested by each comparison metric. 
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Figure 3. Comparison of (a) GIC-MAGICC versus (b) GIC-SIMPLE model performance in hindcasting the glaciers 

and ice caps (GIC) contribution to sea-level rise. GIC sea-level rise is presented relative to 1960 GIC sea level 

contribution. Lower values of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and root-

mean-squared error (RMSE) indicate a better model fit to the data (Dyurgerov and Meier, 2005). These error 5 

metrics are all calculated using the maximum likelihood ensemble member, which is represented by the solid blue 

line. Green highlighting indicates the model structure suggested by each comparison metric. 
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Figure 4. Regional projections of median sea-level changes under Representative Concentration Pathways (RCP) 

(a) 2.6, (b) 4.5, and (c) 8.5 in the year 2100. Sea-level rise is presented relative to 1986-2005 global mean sea level.  
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Figure 5. Illustrative cost-benefit analysis for the economically efficient dike heightening (lower horizontal axis) 

and return period (upper horizontal axis) for the north-central dike ring in New Orleans, Louisiana. The bold dot 

denotes the economically-efficient (i.e., cost-minimizing) solution. The shaded region gives the 90% ensemble 5 

range of trade-off curves and the bold line denotes the ensemble mean trade-off curve. 

 


