
10 April 2017 
 
Re: GMD Paper gmd-2016-303 
Authors: Tony E. Wong et al. 
 
Dear Dr. Olivier Marti, 
 
We have carefully addressed all the referees’ comments, suggestions, and questions. The reviews 
pointed out important ways to improve the exposition of the methods and assumptions, as well as 
expand and better define our model framework. While the additional analyses suggested by the 
referees changed slightly some of the ensemble statistics presented here (<5 cm over a century), 
none of the main conclusions of our study have changed. We are thankful for this opportunity to 
improve the quality of the manuscript. 
 
Based on the instructions provided, we uploaded responses to each of the Referee Comments in 
the Interactive Discussion portal. We have also uploaded the flattened changes file of the revised 
manuscript and the electronic source files to the online submission site, and include a point-by-
point response to the Referee Comments here, as well as a tracked changes version of the 
manuscript. We have typeset the original referee comments in black and our responses in blue, to 
more easily distinguish the two. We have structured the point-by-point response in the order: 
Comment, Reply, Action (where appropriate). 
 
We would like to take this opportunity to express our sincere thanks to the three reviewers who 
identified areas of our manuscript that needed corrections or modification. We would like to also 
thank you and the peer-review team for allowing us to resubmit a revised copy of the manuscript 
and for the service to our community. 
 
We hope that the revised manuscript is found to be suitable for publication in Geoscientific Model 
Development. 
 
Sincerely yours, 
 
Tony E. Wong and Alexander Bakker (for the author team) 
2217 Earth and Engineering Sciences Building 
University Park, PA 16802 
Phone: +1.216.978.8254 
E-mail: twong@psu.edu 
 
  



 
Referee #1 
 
=== 
 
Comment #1 
The submitted manuscript, “BRICK, a simple, accessible, and transparent model framework for 
climate and regional sea-level projections,” presents a good example for other geophysical 
modelers to follow. The authors describe a modular and transparent framework for projecting 
changes in regional sea level under different uncertain future scenarios, and they also give an 
example of how the framework can be used to plug in other modules enabling decision support 
based on the climate model outputs. While the flood risk management example is simplistic, it is 
illustrative of the potential for the BRICK model to be leveraged in a variety of useful applications. 
Further, the authors make a nice case for the value and importance of open-source, transparent, 
and simple modeling. 
 
I believe the paper is of high quality and nearly ready for publication, but I have included a number 
of suggested revisions or comments on certain elements as outlined below: 
 
Reply 
Thank you very much. We address the suggestions below. 
 
Action 
None required 
 
=== 
 
Comment #2 
P2, line 25 – difficulty can be due to a variety of things: closed platforms, reliance on 
databases or other inputs that are less portable than source code, etc. 
 
Reply 
We agree that it is important to stress that good coding practice is not the sole requisite for 
reproducibility.  
 
Action 
In response, we added the statement of: 
“Studies based on simple, mechanistically-motivated models have the potential to be transparent 
and reproducible when presented in open platforms and when the underlying data are readily 
available. Yet, although there ...” 
 
=== 
 
Comment #3 
P3, line 26 – Is that intended to be conservative, rather than “underconfident”? Worth explaining 
underconfident about what, exactly. 
 
Reply 
Conservative estimates and underconfidence are certainly related. In our view conservative 
estimates are deliberately risk-adverse (e.g. by using wide uncertainty ranges) whereas 
underconfidence refers to the tendency to have more outcomes within the estimated probabilistic 
uncertainty range than expected. 
 
Action 
We add the following short explanation: “…, e.g. by applying conservative estimates in the sense of 
being risk-averse” 
 
=== 
 
Comment #4/5 
I am unqualified to comment on the fundamental dynamics described in section 3. However, this 
section provides what appears to be an appropriate level of detail, and the components are based 
in reputable sources and representations from other well vetted models. 
 



P14, 1-5 – Ability to easily recalibrate model in future with new data and/or methods is a very nice 
feature that should provide more longevity to the model 
 
Reply 
That is what we aimed for. Yet, we hope that the accessibility and flexibility will help others and 
ourselves to test alternative model choices and assumptions, as well as data. 
 
Action 
None required. 
 
=== 
 
Comment #6 
P18, 21-22 – “With respect to dike heightening, the expected investments are a linearly increasing 
function”: this is not strictly accurate, as written, and should be explained more clearly. Jonkman 
(2009) makes a reasonable assumption that construction costs are proportional to the length of 
levee being constructed or upgraded, but the resulting calculations appear to show that investment 
costs are linear with respect to the log of the return period of level of protection provided. This is 
also a bit different than what readers might reasonably interpret the highlighted phrase to mean. 
Raw material costs when upgrading levees scale with the square of the levee height, because when 
raising the height, the base must also be widened. 
 
Reply 
The focus of this manuscript is especially the transparency, the accessibility and flexibility of the 
BRICK framework. The simple approximation of Jonkman et al. (together with its extremely clear 
description) is designed to fit this purpose. The reviewer is, of course, absolutely correct that our 
description should be as clear as possible too. Besides, the description contained a small error.  
 
Action 
We rephrased it as follows: 
“In this simplified model, the investment costs only depend on dike heightening and are 
approximated by linear interpolation between data points provided by Jonkman et al. (and linear 
extrapolation for dike heightenings outside this range).” 
 
=== 
 
Comment #7/8 
P18, 27 – what does the “exponential flood frequency constant” represent? Is this related to the 
amount the probability of flooding is reduced per meter of increased dike height? 
 
P18, 27-28 – What factors are rolled up into the net discount rate? Jonkman (2009) assumes a real 
interest rate, net of inflation, and then makes further reductions for economic growth and changes 
in the yearly probability of flooding due to sea level rise. This is perhaps a small point because the 
discount rate is treated as uncertain, but if the intent is to follow Jonkman, it should be noted that 
the flood probability due to SLR is now endogenized in the BRICK analysis, rather than being an 
exogenous factor for Jonkman. 
 
Reply 
This is a great point, and in the revised manuscript we elaborate on details of the parameters of 
the flood risk module. Specifically, we now have added two separate paragraphs that provide a 
more detailed explanation about the uncertain parameters, including their assumed sampling 
distributions.  
 
Action 
We point to specific textual examples in our response to Comment #9, as those changes address 
both points. 
 
=== 
 
Comment #9 
P18, 30-31 – How were the plausible ranges for each of these parameters chosen? Some of the 
choices seem a bit odd, such as assuming that the top end of the range for the investment cost 
uncertainty is 1. Why was the particular mean probability of flooding chosen? I acknowledge that 
this is not particularly important, given the illustrative nature of this simplified example, but some 



additional explanation of the experimental setup would be helpful to put it on par with the level of 
thoroughness given to previous sections. 
 
Reply 
We completely agree that a more thorough discussion and description of this simple model 
formulation would benefit the manuscript. As the reviewer notes, we acknowledge that some of the 
ranges are somewhat ad hoc. They are meant, of course, to serve as a demonstration of model 
capability and not to inform on-the-ground decisions. 
 
Action 
We have clarified the choices for these parameter ranges in the revised text. A summary of these 
motivations has been added to the revised manuscript’s text, and is included below. This new text 
also includes a more thorough description of the flood risk parameters (addressing the reviewer’s 
comments #7/8 above).  
 
“The uncertain parameters considered in this cost-benefit analysis include the initial flood 
frequency with no heightening (y-1); the exponential flood frequency constant (m-1); the value of 
goods protected by the dike ring (billion US dollars); the net discount rate (%); the uncertainty in 
investment costs (a unitless multiplicative factor); and the land subsidence rate (m y-1). The 
central estimates for the exponential flood frequency constant (alpha) and the initial flood 
frequency with 0 heightening (p0) are taken from Van Dantzig (1956). The exponential flood 
frequency constant relates the increase in flood probability that results from an increase in sea 
level relative to the dike height. We make the assumption that this factor should scale (to first 
order) relatively well from Dutch case considered by Van Dantzig (1956) to the test case of New 
Orleans considered presently. The initial flood frequency with 0 heightening (p0) may not translate 
directly between these two cases, but highlights our intent for this experiment to serve as an 
example of future applications of the BRICK model to inform decision analyses. The admittedly ad 
hoc distributions assumed for alpha and p0 were selected to sample tightly around the central 
estimates from Jonkman et al. (2009). A more detailed treatment of this risk management problem 
would include using methods from extreme value theory to address the risks posed by storm 
surges (Coles et al. 2001). 
 
The investment uncertainty considered in the sensitivity tests of Jonkman et al. (2009) included a 
base case, 50% lower, and 100% higher than the base case. We use this range for the investment 
uncertainty, applied as a multiplicative factor ranging from 0.5 to 2. The range for the value of 
good protected by the dike ring is taken from Jonkman et al (2009), where the lower bound is the 
lowest estimate of value of goods protected by the three dike rings considered in that work (US$5 
billion), and the upper bound is the estimated combined value protected by all three dike rings 
(US$30 billion). The net discount rate range is centered at 4%, the estimate from Jonkman et al 
(2009) accounting for inflation and interest rate. Those authors’ net discount rate is decreased to 
2% due to economic growth (1%) and increased flooding probability due to sea-level rise (1%). 
Our demonstrative example endogenizes the effects of sea-level rise and accounts for parametric 
uncertainty in the value of good protected by the dike ring. Hence, we center our range for the net 
discount rate at 4% but allow for +/-2% uncertain range. The rate of land subsidence is based on 
the estimates of Dixon et al. (2006), with mean 5.6 mm/y and standard deviation 2.5 mm/y. We 
transform this to a log-normal distribution to disallow negative rates of land subsidence. 
 
We sample the uncertainty in these parameters via Latin hypercube, where the population size is 
given by the number of sea-level rise ensemble members that are present (10,671 for the control 
BRICK ensemble). …” (proceeds as in original manuscript) 
 
Additional notes: 
 
We also have revised the notation in Table 1 to more clearly convey how the Iunc factor translates 
to uncertainty in the investment costs for dike heightening. We changed the notation to Iunc in [0.5, 
2], which is more precisely conveys 50% lower to 100% higher. 
 
=== 
 
Comment #10 
4.4.2. – Given the local example, it would be nice to say something about the sea level rise 
encountered by Louisiana here. Otherwise, this section seems a bit out of place. In the previous 
section, it is stated that results (for the decision-analysis module) are presented for RCP 8.5, but 
then this section dives into sea level rise elsewhere in the world and also in RCPs 2.6 and 4.5. The 



authors may wish to consider i) removing this section, ii) making more clear that the sea level rise 
serves as an input into the flood risk module and integrating it better into the rest of the section 
4.4 discussion, or iii) moving this section back to 4.3 or elsewhere, then mentioning the local sea 
level rise in Louisiana as part of 4.4.1, in relation to being an input to the flood risk module. 
 
Reply 
This is a great point, and we appreciate the opportunity to streamline the manuscript. 
 
Action 
We have revised the first sentence of Section 4.4.2 in order to make clear how the maps of 
regional sea level changes are related to the flood risk experiment of Section 4.4: 
 
“In order to link projections of sea-level rise to problems of local coastal adaptation, regional sea 
level is projected to 2100 under the climate change scenarios of RCP2.6, 4.5, and 8.5 (Fig. 4).” 
 
We have also revised the transition from 4.4.2 to 4.4.3 by modifying first sentence of Section 
4.4.3: 
 
“We now focus on the regional sea-level projections for the gridcell containing New Orleans, 
Louisiana (29° 57’ N, 90° 4’ W) under RCP8.5 (Fig. 4c), to demonstrate the use of these sea-level 
projections in a common local flood risk management example.” 
  



Referee #2 
 
=== 
 
General comment 
The manuscript, “BRICK v0.1, a simple, accessible, and transparent model framework for climate 
and regional sea-level projections, describes and open-source, modular modeling framework to 
investigate change in global and regional sea level. The authors details the modeling framework 
well all with conveying the value of this type of modeling. I suggest publication with a few minor 
comments to be addressed below. 
 
Reply 
Thank you very much.  
 
Action 
We address the suggestions below 
 
=== 
 
Comment #1 
My main concern is that the model is contained in a zip file. This made it difficult to look at the 
structure and code without downloading the whole package. For maximum visibility and 
reproducibility it would be great to publish this model on github or bitbucket. This would allow for 
easy code review, version control, and issue tracking etc. 
 
Reply 
Thank you for pointing this out – it is exactly our intent *not* to distribute the model widely using 
a zip file or tarball. Indeed, this would go against our stated interest in reproducibility, longevity, 
and transparency. Our codes are maintained on Github, and we only put a preliminary version out 
to accompany the GMD Discussions manuscript as a tarball. In hindsight, this seems to have been 
a poor choice, which we have rectified in our revised manuscript. 
 
Action 
In our updated manuscript, Code and Data Availability section, we point to a Github site where the 
codes will be maintained for the long term: 
 
“All BRICK v0.2 code is available at https://github.com/scrim-network/BRICK under the GNU 
general public open source license. Large parameter files as well as model codes forked from the 
repository to reproduce this work (including the sea level projections) may be found at 
https://download.scrim.psu.edu/Wong_etal_BRICK/.” 
 
=== 
 
Comment #2 
It would be useful to the reader to make it clear upfront that you are coupling multiple, already 
published, models together. 
 
Reply 
The reviewer is, of course, correct.  
 
Action 
In the abstract we now have:  
“Here, we  introduce  a  simple  model  framework  (largely building on existing models) for  
projections  of …” 
 
And in the introduction: “In this model framework, we present a set of existing, well-tested, and 
easy-to-couple simple models for…” 
 
=== 
 
Comment #3 
A description of the inputs and outputs along with the spatial and temporal scales 
and rough run times would be useful. For example, does the model take in an emission 
pathway? Concentrations? Only CO2? 



 
Reply 
All of the component-models are zero-dimensional, with the following exceptions. The ocean-model 
is a 3-layer 1D model. The Antarctic ice sheet model (DAIS) considers a two-dimensional 
axisymmetric geometry. These exceptions are noted in the original manuscript, Page 10 Line 7 
(DAIS) and Page 7 Line 4 (ocean). In Section 2.2.4 in the original manuscript, we give rough 
estimates of the run times (order of thousandths of a second per 1850-present hindcast 
simulation).  
 
At page 7 line 25 in the original manuscript, we point out that the sea-level rise model uses a one-
year time step: “The differential equations for the GIC, GIS, AIS, and TE contributions to global 
mean sea level (below) are integrated in BRICK using first-order numerical integration schemes 
with a one-year time step.” The annual time scale can be easily adjusted. 
 
In the revised manuscript, we have added text to make clear that the climate component uses a 
one-year time step as well, and state the required forcing is a radiative forcing time series:  
“We use a one-year time step for the DOECLIM model, and the required input to drive the model is 
the radiative forcing time series (W m-2).”  
 
For projections, this uses Representative Concentration Pathways (as seen in the presentation of 
the results) and for the hindcasts, we use the same data as Urban and Keller (2010) and Urban et 
al. (2014). 
 
The other component models are driven by global temperature and the Antarctic ice sheet 
contribution and the local sea-levels also require sea-level contributions from all sea-level 
components. 
 
Action 
We have revised the text within Sections 3.1 and 3.2 to make these details more clear: 
 
“DOECLIM is a zero-dimensional energy balance model coupled to a three-layer, one-dimensional 
diffusive ocean model.” 
 
“We adopt a simple zero-dimensional sub-model for the contribution to global sea-level rise from 
Glaciers and Ice Caps (GIC) from Wigley and Raper (2005).” 
 
“BRICK uses the mechanistically-motivated, zero-dimensional SIMPLE (Simple Ice-sheet Model for 
Projecting Large Ensembles) model as the parameterization for the Greenland ice sheet (GIS) 
contribution to global mean sea level change (Bakker et al., 2016a).” 
 
=== 
 
Comment #4 
Does the user have to calibrate the model? Or does the model come already 
calibrated? 
 
Reply 
We will provide the larger calibrated parameter sets at a download server if users wish to use the 
sea-level projections showcased in the revised manuscript; we have run a larger ensemble since 
the initial submission, but the resulting conclusions have not changed. We hope that these 
projections, along with the “BRICK_LSL.R” script to fingerprint to local sea level at a user-defined 
latitude and longitude, will be useful for readers to incorporate numerous uncertainties in sea level 
projections into their own work. Thus, the model may be used already calibrated, but the model’s 
accessibility enables easy experiments with alternative calibration schemes.  
 
Action 
Additionally, we have added a “Code Example” for using our sea-level projections and 
fingerprinting to yield local sea-level projections in a new README.md file, available from the 
Github repository. 
 
=== 
 
Small points 
 



Comment 
pg1 ln17 ‘easier to reproduce’ Easier than what? -> change in “easy” 
 
Reply 
We thank the reviewer for this nice textual suggestion. 
 
Action 
Corrected in the revised Abstract. 
 
=== 
 
Comment 
Section 2.2.2 - are there instructions on how to incorporate new datasets? 
 
Reply 
We aim for a transparent easy to access framework. To test this, we need feedback from users and 
we will try (maybe with the help of other users) to incorporate this feedback.  
 
Action 
We have added a note about this to the “README_calibration” file in the “calibration” directory: 
 
“Additional observational datasets for calibration may be introduced by making the following 
modifications.  
In the calibration directory: 

(1) [submodel]_readData.R – read the dataset, match the model and observational data 
indices (using “compute_indices” function) 

(2) BRICK_calib_driver.R – add to the obs.all, obs.err.all, midx.all, oidx.all, ind.norm.data lists 
(these tell the BRICK_assimLikelihood.R routines how to compare the model and data) 

(3) BRICK_assimLikelihood.R – calculate a likelihood function value for these data and add to 
“log.lik” routine. Note that simply adding the log-likelihood from the new dataset assumes 
independence between residuals from one dataset to the next. 

In the data directory: 
(1) Add the dataset, and make sure to point to this in [submodel]_readData.R” 

 
=== 
 
Comment 
pg7 ln14 – what data is used for this comparison? 
 
pg7 ln14-21 – I suggest expanding this paragraph a bit more. 
 
Reply 
In the original manuscript, we mention these data sets at Page 7 Line 17: “We add the 
heteroscedastic observational error estimates from Morice et al. (2012) and Gouretski and 
Koltermann (2007)” 
 
Action 
We have expanded this to specify that the data are temperature and ocean heat uptake in the 
revised text, as suggested: 
“We add the heteroscedastic observational error estimates for global mean surface temperature 
from Morice et al. (2012) and for ocean heat uptake from Gouretski and Koltermann (2007)” 
 
This type of calibration approach has been used previously, and we point to those studies for 
further details at the end of the paragraph in question: 
“This type of calibration approach for DOECLIM has been implemented previously in the literature 
(Urban and Keller, 2010; Urban et al., 2014), and we direct the interested reader to these studies 
for further details.” 
 
=== 
 
Comment 
pg9 ln31 - are the projections in the manuscript all relative to this mean? 
 
Reply 



Yes, that is correct. 
 
Action 
None required. 
 
=== 
 
Comment 
Figure 2 – the coloring on my end was hard to see. 
 
Reply 
We appreciate this opportunity to improve the clarity of our figures. 
 
Action 
We have revised the color schemes for both Figure 2 and Figure 3.  
 
  



Referee #3 
 
=== 
 
General comment 
This manuscript outlines design choices for the simplified contribution-based sea level model 
BRICK, lists the underlying equations and shows some of its features. Further, it discusses a simple 
application deriving regional flood risk. I expected the manuscript to be a model description paper, 
(which is also the chosen GMD category), but it is not. The reader is directed to another manuscript 
(Bakker16b, https://arxiv.org/pdf/1609.07119.pdf), which is currently under review elsewhere. 
Figures on calibration of sea level components as well as global sea level projections for the RCP 
scenarios, which I expected in this manuscript, are instead found in Bakker16b. It is therefore 
difficult for me to judge what is new and original in this paper (except for the applications) and 
would provide sufficiently substantial advance for publication in its current form. Both the 
manuscripts seem to point to the same source code and I think that attribution of the code needs 
to be clarified. Further, on p13,L9 the authors mention that the calibration has been modified. 
Therefore, the reader does not have means to build trust in the calibration even when reading the 
Bakker16b paper. As I guess there is no possibility to merge the two manuscript (which I would 
find ideal), I therefore find it necessary that the title and abstract are adjusted so that it becomes 
clear that this is an application paper of the model (with the extra of presenting the equations, 
which are missing in Bakker16b). Alternatively, to make this an original contribution as model 
description paper, it clearly has to be highlighted what is new and different in this paper as 
compared to Bakker16b. I would then like to see the figures for the calibration and projections of 
the sea level components repeated (I expect they are not completely the same). On a positive 
note, I highly appreciate the effort of the authors to be as transparent as possible, providing input 
data, calibration data and source code. I quickly managed to reproduce the core figures. I 
acknowledge the open-source approach, which is missing for still too many of the climate modeling 
papers published. See also the specific comments. 
 
Reply to general comment 
Thank you for pointing out this avenue to clarify the difference in scope between this manuscript 
and Bakker16b. Whereas Bakker16b focuses on the model (i.e. set of equations) and its 
calibration, this study focuses on the code behind the model which has been specifically designed 
to support transparency, accessibility and flexibility. We note that the GMD description of a 
model description paper contains the statement: 
 

“In addition to complete models, this type of paper may also describe 
model components and modules, as well as frameworks and utility 
tools used to build practical modelling systems, such as coupling 
frameworks or other software toolboxes with a geoscientific 
application.”  In particular, we interpret this to mean that describing 
and demonstrating a useful coupling framework for pre-existing 
models does qualify ours as a GMD model description paper. 

 
One may argue that this should be common practice in scientific modelling and we couldn’t agree 
more. Yet, in our assessment, this is not common practice. Transparency, accessibility and 
flexibility are (interrelated) modeling values that are of utmost importance for the scientific process 
(which obviously continues after successful peer-review and publication of a manuscript). 
 
For example, the specific comments below contain some well justified and well considered concerns 
about the model choices of Bakker16b. The model values behind BRICK can facilitate discussing, 
exploring and testing such concerns. We hope that good coding practice, with care for the 
mentioned model values, will be to the advantage of the scientific modelling. As a result, this 
paper, in our assessment, fits nicely the category “model description paper”. 
 
Action 
Although not perfect, all reviewers express their appreciation for our attempts to be transparent, 
accessible and flexible. In the revised manuscript, we try to better clarify the scope, model values 
and coding practice. Further, we feel that the model description and the small modifications with 
respect should be better explained in order to improve transparency (see replies to specific 
comments). 
 
To address the reviewer’s concern regarding clarity regarding the originality of the models, in the 
revised abstract, we now write: 



 
“The BRICK model framework is written in R and Fortran and expands upon a recently published 
model setup. BRICK gives special attention to the model values of transparency, accessibility and 
flexibility in order to mitigate the above-mentioned issues, while ….” 
 
In the revised Introduction, we additionally emphasize that BRICK is built from “existing, well 
tested” simple models. 
 
=== 
 
Specific comment #1  
Though the authors refer to Bakker16b for details on calibration, p13,L9 mentions that the 
calibration has been modified. This is also evident from the posterior ranges in Tables A1-A5 as 
compared to Bakker16b Table S3. Therefore, even with Bakker16b at hand, it is not easily possible 
for the reader to assess the quality of the here presented numbers. This needs thorough further 
discussion, see general comment above. 
 
Reply 
We have modified the calibration relative to Bakker et al. 2016b by including a contribution from 
land water storage (per the reviewer’s later suggestion) and using rejection sampling to join the 
Antarctic ice sheet model parameters (calibrated using a paleo simulation of 240,000+ years) with 
the rest of the model parameters (calibrated using a modern simulation from 1850-2009).  
 
Action 
We have added this point to the overview of the sea-level rise module in the revised manuscript: 
“BRICK accounts for land water storage contributions to global mean sea level using mass balance 
trends from the International Panel on Climate Change (IPCC) Fifth Assessment Report (AR5, 
Church et al., 2013) and from the work of Dieng et al. (2015).” 
 
We have also added the land water storage term to the sea-level mass balance in Eq. (1): 
 

!"
!# # = 	!"&'()!# # + !"&('!# # + !"+('!# # + !",-!# # + !"./'!# # , 

 
where SLWS is the sea level contribution from changes in land water storage. 
 
We have moved the sentence the reviewer mentioned (original manuscript at p13, L9) to the 
following paragraph, and clarify that the use of rejection sampling and subtraction of land water 
storage contributions (estimated from the IPCC AR5 (Church et al., 2013, Table 13.1)) are the key 
differences between this work and that of Bakker et al. 2016b: 
 
“We combine these two disjoint sets of parameters to form concomitant full BRICK model  
parameters sets, and calibrate these to global mean sea level data (Church and White, 2011) using 
rejection sampling (Votaw Jr. and Rafferty, 1951). Prior to rejection sampling, contributions from 
land water storage are estimated using trends from the IPCC (Church et al., 2013) and subtracted 
from global mean sea level. When projecting global mean sea-level rise, we estimate land water 
storage contributions by extrapolating using the 2003-2013 trend of 0.30+/-0.18 mm/y found by 
Dieng et al. (2013). This approximation may not hold in reality (Wada et al., 2012), but serves as a 
starting point for future model developments. The use of rejection sampling and the estimation of 
land water storage contributions to sea level are the two aspects in which our calibration approach 
differs from that of Bakker et al. (2016b). In this rejection sampling step, each full BRICK 
parameter set is constructed by…”  
 
=== 
 
Specific comment #2 
You shortly discuss overparametrization but I find your argumentation not yet convincing. In p16 
L8: Wouldn’t a lower BIC for the full BRICK model be a stronger indicator for the full model being 
superior? The higher BIC than BRICK-GMSL actually hints to over parametrization, right? Also, on 
p16L11 you discuss that missing annual variability is of little concern. Shouldn’t your more complex 
full BRICK model with 39 parameters better capture the dynamics and thus also better capture the 
shorter timescales of variability than the 13 parameter BRICK-GMSL model? Please discuss this and 
include some hints on where “variability got lost” and on potential improvements. 
 



Reply 
Thanks for pointing out this opportunity to clarify the exposition. You are, of course, correct, that 
the AIC for the full BRICK model is lower than for the Rahmstorf 2007 emulator, which indicates 
that the full BRICK model fits “better”, but the BIC for the Rahmstorf emulator is lower, which 
suggests the contrary. The BIC more heavily penalizes based on the number of parameters, which 
we note at Page 15 Line 30 in the original manuscript. At Page 16 Line 8 of the original text, we 
address this mixed result, but aim to make this point clearer in the revised text by writing: 
 
“These mixed results for the model comparison metrics indicate that using the full BRICK sea-level 
rise module is not unreasonably over-parameterized; if the full BRICK model were obviously over-
parameterized, we would expect the AIC for the GMSL emulator experiment to be lower than for 
the full BRICK model.” 
 
As to the point about capturing the variability: The full BRICK model in these experiments is not 
directly calibrated using GMSL data. Rather, the GMSL data are invoked in the rejection sampling 
step that joins the paleoclimate (Antarctic ice sheet parameters) with the modern (rest of the 
model components’ parameters) calibrations. Thus, the full BRICK model ensemble captures the 
individual components of sea-level rise (and temperature and ocean heat uptake), then is culled 
via rejection sampling to only those ensemble members which also match GMSL data. This can 
readily be seen in Figure 3, that the interannual variability in glaciers and ice caps contribution to 
sea level is better captured. By averaging over the ensemble and the four major contributions to 
global mean sea level, this variability is – as expected – smoothed. 
 
Action 
We completely agree with the reviewer that this is an important point that the original manuscript 
was in need of improvement. We have revised our discussion of this experiment in Section 4.2.3 of 
the revised manuscript: 
 
“The full BRICK simulation does not capture the annual variation in global mean sea level that the 
BRICK-GMSL simulation successfully captures. This is attributed to the smoothing effect of 
averaging over the model ensemble the four major contributions to global mean sea level, as 
opposed to calibrating the BRICK-GMSL simulations directly to global mean sea level data.” 
 
=== 
 
Specific comment #3 
You use the model for thermal expansion that uses global mean temperature as input (equ. 15) 
though the DOECLIM model explicitly provides ocean heat uptake, which could be used to 
calculated thermal expansion. Why did you not go the DOECLIM way? Can you compare the two 
approaches and discuss the difference? 
 
Reply 
This would be a nice experiment indeed. The reason why we did not do this is the difficulty to 
obtain ocean heat uptake data that match the spatial and temporal resolution of the model. That 
means that we cannot separately test the proposed model to estimate expansion from ocean heat. 
In this paper, we focus on observational data sets for calibration as opposed to modeled 
reconstructions (which are more widely available). Also note our response to Specific Comment #7 
below. 
 
Action 
No further action required. We note that our model framework is designed specifically to enable the 
interested user to perform such experiments as this one with relative ease, as demonstrated by our 
GIC-SIMPLE/GIC-MAGICC experiment. 
 
=== 
 
Specific comment #4 
Your model equations 3-7 cannot be easily related to equations 8-9, which are the relevant ones 
for model calibration and slr contribution from Greenland. They are not in Bakker16a. Your 
sentence on p9L20 “SIMPLE algebra ...” is not enough to understand the simplification from equs 
3-7 to 8-9. Please outline this derivation clearly. Equ 3-7 may be moved to an Appendix together 
with such outline as they are not fully necessary to understand your equ 8-9 model. 
 
Reply 



You are absolutely correct. Equations 3-7 cannot be easily related to equations 8-9. Our original 
text neglected several further approximations, hence and the two sets of equations are not fully 
interchangeable.  
 
Action 
We removed the equations 3-7 (originally intended to clarify) from the manuscript, as suggested, 
and slightly reordered the section. 
 
=== 
 
Specific comment #5 
Land water storage changes through dams and groundwater pumping plays a role for past and 
future sea level rise, see the papers of Yoshihide Wada for example. Ignoring such influences your 
ensemble selection as you use past global mean sea level rise as a criterion. It will also add to 
future sea level rise and thus flood risk. If not included in the model this should at least be 
discussed appropriately. It would be good to shift in ensemble members if LWS is subtracted from 
global mean sea level rise. 
 
Reply 
We thank the reviewer for this nice insight.  
 
Action 
We have revised the rejection sampling step of our calibration to global mean sea level (GMSL) 
data (Church and White, 2011) such that contributions from land water storage estimated from 
IPCC AR5 (Church et al., 2013; Table 13.1, Ch. 13, p.1151) are subtracted from the GMSL data set 
prior to rejection sampling.  
 
We have added a rudimentary estimation of the land water storage contributions to global mean 
sea level to our projections as well. We use the 2003-2013 trend of 0.30 +/- 0.18 mm/y from 
Dieng et al. (2013), and assume this trend continues to 2100. We sample annual contributions to 
sea level from land water storage normally with mean 0.30 mm and standard deviation 0.18 mm. 
This addition shifts the ensemble 5-95% range for projected GMSL by 2100 from 0.91-1.73 m to 
0.95-1.74 m in RCP8.5, for example. We appreciate the suggestion and opportunity to include land 
water storage contributions in at least a rudimentary way in our model framework  
 
We note the limitation of these assumptions in the revised text. Namely, that extrapolation of the 
trend of Dieng et al. (2013) may not hold in reality (Wada et al., 2012). The following text is added 
to Section 4.1: 
 
“We combine these two disjoint sets of parameters to form concomitant full BRICK model  
parameters sets, and calibrate these to global mean sea level data (Church and White, 2011) using 
rejection sampling (Votaw Jr. and Rafferty, 1951). Prior to rejection sampling, contributions from 
land water storage are estimated using trends from the IPCC (Church et al., 2013) and subtracted 
from global mean sea level. When projecting global mean sea-level rise, we estimate land water 
storage contributions by extrapolating using the 2003-2013 trend of 0.30+/-0.18 mm/y found by 
Dieng et al. (2013). This approximation may not hold in reality (Wada et al., 2012), but serves as a 
starting point for future model developments. The use of rejection sampling and the estimation of 
land water storage contributions to sea level are the two aspects in which our calibration approach 
differs from that of Bakker et al. (2016b). In this rejection sampling step, each full BRICK 
parameter set is constructed by…”  
 
We also point to this in the overview of the sea-level rise module in the revised manuscript in 
Section 3.2: 
“BRICK accounts for land water storage contributions to global mean sea level using mass balance 
trends from the International Panel on Climate Change (IPCC) Fifth Assessment Report (AR5, 
Church et al., 2013) and from the work of Dieng et al. (2015).” 
 
=== 
 
Specific comment #6 
Similarly, not all sea level change can be attributed to climate change since the start of 
industrialization as the ocean, glaciers and ice sheets all have longer memory. If I see this 
correctly, you assume global mean temperature change being the sole driver, thus attributing all 
sea level change to temperature change since preindustrial. This has been a main critique to so-



called semi-empirical models and you should comment on this here or, best, do some sensitivity 
tests. 
 
Reply 
Only the DOECLIM model to estimate global temperature assumes that the initial (pre-industrial) 
temperature was close to the equilibrium temperature belonging to the then atmospheric 
composition. The other models are not necessarily in equilibrium at the start of the calculations. 
 
Action 
No further changes necessary. 
 
=== 
 
Specific comment #7 
You do not mention how thermal expansion (or more generally: ocean dynamics) enters your 
regional sea level projections though it is an important contribution. I see in your code that you 
assume constant thermal expansion around the globe. This should a) be mentioned and b) be 
justified. 
 
Reply 
Thank you for this excellent point. We are currently not aware of a method to estimate (the effect 
on changing) ocean dynamics (on local sea-level rise) by means of simple semi-empirical models. 
It may take a while before a satisfying simple model has been developed. In the meantime, 
emulators of GCM’s may prove useful. Our stated aim with the BRICK model, however, is to avoid 
emulating other models but rather employ preferentially observational data. In order to resolve 
these ocean dynamics, a depth- and latitudinally-resolved ocean model would be required.  
 
Action 
We have added text to the revised manuscript at Section 3.2.4 (Thermal Expansion) to make clear 
these assumptions and modeling choices: 
 
“BRICK uses a simple parameterization for the contribution of thermal expansion (TE) of the 
Earth’s oceans to sea-level rise. We make the simplifying assumption that thermal expansion of the 
oceans occurs uniformly around the globe. While this is, of course, not strictly true, the next 
obvious step up in model complexity would be to use a vertically- and latitudinally-resolved model 
for thermal expansion, incorporating the DOECLIM model output for ocean heat uptake. This two-
dimensional ocean model is beyond the scope of the simple model framework described presently, 
but an excellent subject for future work. Here, we employ a simple zero-dimensional thermal 
expansion emulator based on the parameterizations of the sea-level rise sub-models of (Mengel et 
al., 2016) and was originally used by (Grinsted et al., 2010) to model the total global mean sea 
level changes.” 
 
=== 
 
Specific comment #8 
Equation 13, p30 is unclear to me. Sea level rise and Antarctic ice volume loss should be related by 
a constant factor. Instead, your right side of the equation is a sum. I think this is wrong. Please 
correct or explain. 
 
Reply 
We thank the reviewer for catching this typo. Indeed, they should be related by the constant factor 
(57 m SLE)/(V0,AIS m3). That is, the “1” in our original equation 13 should not have been there.  
 
Action 
We have corrected this error in the revised manuscript. Our apologies. 
 
=== 
 
Specific comment #9 
One important last point: you provide the source code and the data as a zip file (though section 2.3 
highlights the importance of version tracking.) Transparency and accessibility (as highlighted in sec 
2.2 would profit if you’d follow your words: using one of the gitlab/github/bitbucket sites would 
make your code easier accessible and changes to it transparent. I think this is a precondition for 



publication of the manuscript if you want to keep section 2. Such repository should hold a 
README.md similar to your current readme, which names the additional R packages needed, 
i.e. Deoptim, ncdf4, gplots, fields. http://joss.theoj.org/about#reviewer_guidelines provides 
guidelines for such readme. A short and illustrative example with global sea level projections would 
be great. Why not creating a notebook for such? See https://github.com/tanyaschlusser/Jupyter-
with-R/blob/master/example-Jupyter-R.ipynb as example. I guess such gitlab/github/bitbucket 
repository is on your plan after publication, as also indicated in Bakker16b. 
 
Reply 
This is, again, an excellent point – it is exactly our intent *not* to distribute the model widely using 
a zip file or tarball. Indeed, this would go against our stated interest in reproducibility, longevity, 
and transparency. Our codes are maintained on Github, and we only put a preliminary version out 
to accompany the GMD Discussions manuscript as a zip file.  
 
Action 
In our updated manuscript Code and Data Availability section, we point to a Github site where the 
codes will be maintained for the long term: 
 
“All BRICK v0.2 code is available at https://github.com/scrim-network/BRICK under the GNU 
general public open source license. Large parameter files as well as model codes forked from the 
repository to reproduce this work (including the sea level projections) may be found at 
https://download.scrim.psu.edu/Wong_etal_BRICK/.” 
 
We have also added a README.md file – this was a great suggestion. This file can be found in the 
top-layer directory at the Github link above. 
 
=== 
 
## Minor comments 
 
Minor comment #1 
Section 2: Framework design As said before, I highly appreciate your efforts to be open source and 
transparent, but I think this section can be shortened considerably here as it does not contribute to 
the understanding of the model. You could address the points mentioned in a more direct way as 
outlined in the last paragraph of the specific comments. 
 
Reply 
We appreciate the reviewer’s understanding of our stated epistemic modeling values. It is 
specifically these sections of text, elaborating upon the needs for accessibility, transparency, 
efficiency and flexibility, that we feel are an important part of our message and contribution to the 
greater modeling community.  
 
Action 
Perhaps our release of a zip file of model codes instead of providing the Github link immediately 
sent the wrong message, and we have corrected this in the revised manuscript (see above reply to 
Specific Comment #9). We have also expanded to include a README.md file, as suggested above. 
We strongly feel, however, that these sections are relevant to put the model coupling framework 
(the key development here that makes this a model description paper) into context. 
 
=== 
 
Minor comment #2 
There is a zoo of reference periods, including 1850-1870, 1850-1970, 1961-1990, 
 
Reply 
This is true, and a result of the different observational datasets and assumed reference periods for 
the sub-models. Often, these sub-models include parameters whose values rely on preserving 
these reference periods. Our codes aim to keep track of these in a user-friendly way by passing 
explicitly a list object in R that keeps track of reference periods for each sub-model and dataset, 
and avoiding global variables (when possible) which may hide these types of bugs.  
 
Action 
The 1850-1970 reference period was another nice typo catch, which has been corrected in the 
revised manuscript in Section 3.2.3 (Antarctic Ice Sheet). We apologize. 



 
=== 
 
Minor comment #4 
1986-2005 and 1960. I wonder if this could be reduced for clarity. 
Timeseries figures: Think about your color scheme: pink and violet may not be the best 
combination. 
 
Reply 
We use 1961-1990 for the hindcast reference period because all observational time series cover 
this period (the glaciers and ice caps data extend only to 2003 (Dyurgerov and Meier, 2005)). For 
the projections, we use 1986-2005 as the reference period, following the examples of Mengel et al. 
(2016), Church et al. (2013), and others. 
 
Action 
We have revised the color scheme used for Figures 2 and 3. 
 
=== 
 
Minor comment #5 
Citations: The introduction includes a lot of references to co-authors. It is therewith a bit difficult to 
assess the paper’s position within the field. Could you be broader? 
 
Reply 
Thank you for the pointer. In our view, there are two important aspects to cover in the 
Introduction: (1) [semi-empirical] modeling and (2) communication/connecting to decision-making. 
With respect to these aspects, we  
 

(1) include references to: Hartin et al. (2015), Meinshausen et al. (2011a), Jevrejeva et al. 
(2016), Rahmstorf (2007), Mengel et al. (2016), and Nauels et al. (2016), as well as the 
co-author references to Applegate et al. (2012), Urban et al. (2014), Urban and Keller 
(2010), and Bakker et al. (2016a and 2016b). 
 

(2) include references to: Herman et al. (2015), Weaver et al. (2013), and Lempert et al. 
(2004), as well as the co-author references to Hall et al. (2011), Garner et al. (2016) and 
Goes et al. (2011). 

 
The most relevant citations in our introduction to place our model within the realm of other semi-
empirical sea-level rise models are to the groundbreaking works of Mengel et al. (2016) and Nauels 
et al. (2016), which are not co-author citations. We note as well the need in all scientific literature 
to communicate relevant references (in this case, some works our co-authors have contributed to). 
 
Action 
We have added a references to Grinsted et al. (2010) and Kopp et al. (2016), regarding semi-
empirical modeling and uncertainty quantification. 
 
We have added references to Gauderis et al. (2013), Fischbach et al. (2012), and Johnson et al. 
(2013), regarding uncertainty and coastal risk management. 
 
=== 
 
Minor comment #6 
Introduction: If you expand this to be a model description paper, I would like to see a 
recap of the state of the art of sea level projections. What about the past, what data is 
available, what can large climate models do … ? 
 
Reply 
This comment is addressed largely by our “Reply to general comment” above. To recap, our 
manuscript is well within the boundaries of a model description paper, as outlined by the GMD 
website: 
 

“In addition to complete models, this type of paper may also describe 
model components and modules, as well as frameworks and utility tools 



used to build practical modelling systems, such as coupling frameworks or 
other software toolboxes with a geoscientific application.” 

 
The model philosophy behind BRICK is such that it is relatively easy address this kind of questions. 
However, this is not the scope of this paper (see reply to general comment). The focus of the 
present manuscript is to present the model framework and demonstrate its flexibility and –as the 
reviewer’s “Source Code Comment” points out- transparency and relative ease-of-use. Hence, we 
leave discussion of sea-level hindcasts and projections to Bakker et al. (2016b, “Sea-level 
projections accounting for deeply uncertain ice-sheet contributions”), which is the more appropriate 
manuscript to elaborate on the sea-level projections.  
 
In our view, a comparison of a semi-empirical modeling framework such as BRICK against a large 
climate model (e.g., the NCAR Community Earth System Model) would be to compare apples and 
oranges; their purposes are quite different. We note in the Introduction the trade-off between 
physical model complexity and statistical model complexity (Page 2 Line 30 to Page 3 Line 3), and 
specify our aim to support decision-making with a nimble model capable of thoroughly exploring 
the low-probability, high-risk tails of distributions. 
 
“…what data is available…” – Each sub-section of Section 3 (Model Components) includes a 
reference for the dataset used for calibration of BRICK. It is our intention that the assimilation of 
additional datasets is made simple by our transparent modeling framework. 
 
Action 
No further action required. 
 
=== 
 
Textual comments 
 
Comment 
p1: L18: useful for uncertainty quantification: repeats the “pivotal role in the quantification 
: : : of uncertainties: : :” of L16. Rephrase or delete this sentence L23: “aims to help mitigate”: 
maybe two verbs would be enough. L23: “these issues”: I can guess what you mean, but it is not 
clear. Be more precise. 
 
Reply 
These are good points. 
 
Action 
L16/18: We have rephrased L18 to read: “These qualities also make simple models useful for the 
characterization of risk.” 
 
L23: We have rephrased this to read “…BRICK gives special attention to the model values of 
transparency, accessibility, and flexibility in order to mitigate the above-mentioned issues, while…” 
 
=== 
 
Comment 
p2: L9: “allotment” is this “allocation”? L32: “there is a wide range ...”: I would move such outlook 
to the end of the paper. 
 
Reply 
These are also nice textual suggestions. 
 
Action 
L9: We have revised the word “allotment” to read “allocation”, as suggested. 
 
L32: The aim of this paragraph is to link our epistemic modeling values to making our model useful 
to inform decision-making, as well as a wide range of other useful applications. In our view, this is 
a key aspect of the BRICK model framework (flexibility), and we would very much like to keep 
these key points in the Introduction. 
 
=== 
 



Comment 
p3: L10: “They simulate climate ...”: they simulate global mean temperature change 
would be more appropriate at this level of complexity I think. L15: “drive high-risk 
events” suggests some physical driver. this is not true I think. rather “represent” or 
similar L17: “its flexibility”: not clear -> “the flexibility of ...” 
 
Reply 
We thank the reviewer for the nice ways to improve specificity and clarity of the manuscript. 
 
Action 
L10: We have revised this to read “They simulate global mean surface temperature and 
contributions to global mean sea-level rise.” 
 
We have also revised in the Conclusion (Sect. 5) to read “The main physics (global mean 
temperature and sea-level rise) codes are also…” 
 
L15: We have replaced “drive” with “represent”, as suggested. We have replaced the previous use 
of “represent” in this sentence with “resolve.” 
 
L17: Thank you for pointing out this inclarity. We have revised this to read “Yet, the flexibility of 
the BRICK model framework also enables the …” 
 
=== 
 
Comment 
p4: L3: “to simulate climate change”, as before: you rather try to model the response of 
global mean temperature to perturbations in the radiative forcing. “simulating climate 
change” is bigger than this. L4 rather “simulated temperature and sea level rise” 
 
Reply 
The reviewer is indeed correct. 
 
Action 
L3: We have revised this to read “The essence of the BRICK physical model is to simulate changes 
in global mean surface temperature and sea level, in response to perturbations in radiative 
forcing.” 
 
L4: Revised to “temperature and sea-level changes”, as suggested. 
 
=== 
 
Comment 
p.5: L9: “ through a clear outlet for coupling to socioeconomic models”: I think you talk 
about a stable and well documented API (application programming interface). 
 
Reply 
In broad terms, yes, this is our intention. Within the context of the manuscript, however, we only 
aim to demonstrate how linking the BRICK projections for global mean sea level may be connected 
via the regional sea level fingerprinting to local coastal risk management problems (for example). 
This is a very nice suggestion and nudge into a direction to employ more sophisticated software 
engineering than is currently implemented in the BRICK model. Our intention is to use a high level 
programming language (R) as the user interface, in order to make the model accessible and 
comfortable to use for a broad audience.  
 
Action 
None required, although by providing the access to the Github repository along with the revised 
manuscript, we encourage users to become involved in future model developments, including a 
stable, well-documented, and more sophisticated API. 
 
=== 
 
Comment 
p7: L26: “below” can go I think L27-29: “Initial conditions : : : earliest year of the simulation” 



These two sentences do not make sense to me. Why do you start at “certain years” and why would 
you integrate backwards? If this is not the standard forward in 
time modeling, you should explain this in more detail. 
 
Reply 
The reviewer makes some good points.  
 
L27-29: This numerical modeling choice was motivated by the ability of this scheme to implement 
an initial condition for each sub-model at the reference point for the initial condition assumed by 
that particular sub-model. For example, as detailed in Wigley and Raper (2005), the glacier and ice 
cap sub-model assumes the parameter V0 is given in the year 1990. It would be possible to 
initialize the model in 1850, say, but this begs the question: what value should be used in this 
year? The most straightforward way to integrate the sub-model of Wigley and Raper (2005) is to 
integrate forward in time (their equation 4/5). However, the glacier data (Dyurgerov and Meier, 
2005) spans 1961-2003. Solving the backwards integration problem is a trivial rearrangement of 
our first-order differential equations. 
 
Action 
L26: We have removed the parenthetical comment “(below)”, as suggested. 
 
L27-29: We understand and apologize for the ambiguity in our phrasing. To clarify this, we have 
revised the text here to read: 
 
“Initial conditions are specified at a year dictated by the sub-model’s assumed reference point. This 
differs, in general, among the sub-models and some model parameters depend on preserving this 
reference year. Starting from this initial condition, a first-order explicit numerical integration 
method integrates forward in time to the end of the simulation and a first-order implicit (backward 
differentiation) method integrates backward in time to the earliest year of the simulation.” 
 
=== 
 
Comment 
p8: L14: Why do you not calibrate the uncertain glacier equilibrium temperature -0.15C? 
 
Reply 
This is a good point. This was a modeling choice motivated by the need to balance computational 
feasibility and thoroughness. Several other temperature-related parameters exist in the Antarctic 
ice sheet model, and adding three more parameters (especially two to the already quite heavily 
parameterized AIS model) seemed to be too much. 
 
Action 
We have clarified at several points in the revised manuscript the notions of overparameterization, 
as the reviewer suggested. 
 
=== 
 
Comment 
p9 L20: “SIMPLE (algebra) simplifies : : :” not clear. please rephrase and expand. 
 
Reply 
See our response to “Specific comment #4”, above. 
 
Action 
No further action required. 
 
=== 
 
Comment 
p8-p9, equations 3-7 How do these equations relate to the model you use? The relation 
is also not evident from Bakker16a. See specific comment above. 
 
Reply 
See our response to “Specific comment #4”, above. 
 



Action 
No further action required. 
 
=== 
 
Comment 
p10: L10: Why include the time rate of sea level change? L27: 14 parameters: I think 
over-parametrization should be discussed also here. 
 
Reply 
L10: This is described in greater detail by Shaffer (2014) (his equations 13 and 14), but the time 
rate of change in sea level arises from accounting for the isotstatic adjustment of the Antarctic ice 
sheet, and in particular the effect of that adjustment (ice displacement) on sea level. 
 
L27: This is a good point and overparameterization may seem to be a concern. However, our aim is 
to account for a wide a range of model uncertainties as possible, and constrain our simulations 
using observational data. Parametric uncertainty plays a large role in this accounting of 
uncertainty, and the Antarctic ice sheet model parameters (Shaffer, 2014; his Table 1) are no 
exception. If we were to assume that these parameters were known with certainty when in fact, 
they are not, then we would be potentially cutting off decision-relevant upper tails of the 
distributions of (for example) sea-level rise. 
 
Action 
We have added a sentence to address this: 
“The heavily parameterized Antarctic ice sheet module reflects our focus on including a broad range 
of model and observational uncertainties, and consideration of the critical role of the Antarctic ice 
sheet in driving substantial uncertainty in future sea levels (Church et al., 2013).” 
 
=== 
 
Comment 
p11 L3: “Each mass ...” This is about fingerprints and valid for all contributions. I would 
suggest to mere it into the more general section 3.3. L13: “is the main equation ...” 
 
Reply 
The reviewer is correct, these are nice areas for refining and streamlining the text. 
 
Action 
L3: We have revised this text to read: 
 
“Antarctic shore-average local mean sea level functions as the input to DAIS when run as a sub-
model of the coupled BRICK model. This is estimated as described in Sect. 3.3.” 
 
And we have added the following text to Section 3.3, as suggested:  
 
“We couple changes in global sea level to the Antarctic ice sheet model using an Antarctic shore-
average fingerprint ratio of -1.0 for the AIS contribution to global sea level, and Antarctic shore-
average fingerprint factors of 1.0 for the other contributions to sea-level rise from all BRICK 
submodels (Slangen et al., 2014). Preliminary experiments indicated that our results are not 
sensitive to the precise choices of these fingerprints.” 
 
L13: Corrected to “is the main equation”, as suggested. 
 
=== 
 
Comment 
p12 L18: You assume the fingerprints to be constants, they would not be so in reality. 
As you explain later, this assumption is ok here. 
 
Reply 
Quite true. 
 
Action 
No change necessary. 



 
=== 
 
Comment 
p13 L9: There seems to be a modification to the approach of Bakker16b, it is however 
unclear how this changes your results. See general comment. 
 
Reply 
Indeed this is true – see “Reply to general comment”. 
 
Action 
No further action required. 
 
=== 
 
Comment 
p14 “Exchanging BRICKs and full sea-level rise module intercomparison” This heading 
is rather confusing to me. In the first part you talk about plugging in a global sea level 
model. In the second part you discuss several goodness-of-fit measures. You can be 
more precise in the heading. And have a subheading for the goodness of fit paragraph. 
 
Reply 
This is a good observation – we agree this is unclear in the original text.  
 
Action 
In the revised text, this section heading has been updated to “Testing alternative model 
components: a sea-level rise module intercomparison”. We have also added a subsection (4.2.2) 
for the goodness of fit paragraph, as suggested. 
 
=== 
 
Comment 
p15 L5: “this specific emulator ...” refer to Rahmstorf once again here, otherwise unclear. 
 
Reply 
The reviewer is correct – this is a nice place to improve clarity. 
 
Action 
We have revised this in the manuscript revision to read: 
“Note that the Rahmstorf (2007) emulator is arguably not the state-of-the-art anymore…” 
 
=== 
 
Comment 
p16 L8: “These mixed results ...”: I think this sentence has no strong basis. You should 
explain better why you think your model is not overparametrized if you get “mixed results.” 
Wouldn’t a lower BIC for the full BRICK model be a stronger indicator for the full model being 
superior? The higher BIC actually hints towards overparametrization, right? See also specific 
comments. 
 
Reply 
See “Reply to specific comment #2” above. 
 
Action 
No further action required. 
 
=== 
 
Comment 
L11: Paragraph about variability “: : : missing annual variability is of little concern.” You 
are running over this, but you should not. Your 39 parameter model captures much 
less short term variability than the GMSL model. You add complexity just to note that 
you can resolve less the dynamics of SLR? You should find a good reasoning here to 
justify this. 



 
Reply 
See “Reply to specific comment #2” above. 
 
Action 
No further action required. 
 
=== 
 
Comment 
p19, paragraph 4.4.3: You should name somewhere Fig. 5 as I think that is what you 
are talking about here. 
 
Reply 
We thank the reviewer for pointing out this oversight.  
 
Action 
We have revised the second and third sentences of this section to read “We find the economically-
efficient (i.e., cost-minimizing) dike heightening to be 1.45 m (ensemble mean; 90% range is 0.75 
to 25 1.95 m; Fig. 5). This heightening corresponds to a return period of about 1270 years 
(ensemble mean; 90% range is roughly 200-3000 years; Fig. 5).” 
 
=== 
 
Comment 
Fig. 2: I think you here name “BRICK-R07” what you normally call “BRICK-GMSL”. 
 
Reply 
Quite right.  
 
Action 
It has been corrected in Figure 2 of the revised manuscript. 
 
=== 
 
Source Code Comment: 
Just to let you know how a person new to the code may address this: I had a look 
into the code and found the READMEs and comments within the code files, great! 
I did not get the model running straight away, but almost. Here is my way: First, 
look into ./README: Ok, I need to compile fortran files. This was easy after reading 
fortran/README and deleting the *so and obj/* files. I think it is better to not 
deliver them with the code, as they are platform dependent (at least). As I did not 
want to do the full calibration, I wanted to test the projections. I searched for projections 
and you write in ./README to have a look into /calibration/README_projections, 
which I did. However, the script described therein, run_BRICK.R, is not given in the 
repository, so I could not run the projections. I went back to the ./README, followed 
the text and read further about./calibration/processingPipeline_BRICKexperiments.R, 
which I got running after an install.packages(“ncdf4”). I adjusted the plotdir, 
needed to install.packages(’fields’) and install.packages(’gplots’) and could then 
source("analysis_and_plots_BRICKexperiments.R"). Nice! 
 
Reply 
We thank the reviewer very much for the nice code review! This is precisely the level of scrutiny we 
hoped ours and future codes may be evaluated with. We greatly appreciate the reviewer’s 
comments and suggestions here, and encourage future referees to follow this reviewer’s nice 
example. 
 
Action 
In the Github repository accompanying the revised manuscript, we have removed the *so and 
obj/* files (added to .gitignore), included all required routines (we apologize – this was an 
oversight in the codes accompanying the original manuscript), and in the top-level README file, we 
provide a list of the R packages needed, which may be copy-pasted into an R terminal from the 
README. 
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Abstract 15 

Simple models can play pivotal roles in the quantification and framing of uncertainties surrounding climate change 

and sea-level rise. They are computationally efficient, transparent, and easy to reproduce. These qualities also make 

simple models useful for the characterization of risk. Simple model codes are increasingly distributed as open 

source, as well as actively shared and guided. Alas, computer codes used in the geosciences can often be hard to 

access, run, modify (e.g., with regards to assumptions and model components), and review. Here, we introduce a 20 

simple model framework (largely building on existing models) for projections of global mean temperature as well 

as regional sea levels and coastal flood risk (BRICK: Building blocks for Relevant Ice and Climate Knowledge). 

The BRICK model framework is written in R and Fortran and expands upon a recently published model setup. 

BRICK gives special attention to the model values of transparency, accessibility, and flexibility in order to mitigate 

the above-mentioned issues, while maintaining a high degree of computational efficiency. We demonstrate the 25 

flexibility of this framework through simple model intercomparison experiments. Furthermore, we demonstrate that 

BRICK is suitable for risk assessment applications by using a didactic example in local flood risk management. 
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1 Introduction 

Simple, mechanistically-motivated Earth system models often play a pivotal role in climate and flood risk 15 

management (Hartin et al., 2015). For example, they are used for uncertainty quantification (Bakker et al., 2016b; 

Grinsted et al., 2010; Urban et al., 2014; Urban and Keller, 2010), complex model emulation (Applegate et al., 

2012; Bakker et al., 2016a; Hartin et al., 2015; Meinshausen et al., 2011a), and incorporated in integrated 

assessment models (Hartin et al., 2015; Meinshausen et al., 2011a). 

 20 

Computational constraints often impose hard trade-offs between physical model complexity and statistical model 

complexity. For example, a sizable allocation of computational time could be spent running a small number of 

simulations using a high-complexity physical model. Highly detailed simulations are useful to better understand the 

complex system, but with just a small number of simulations, only weak ensemble statistics can be drawn. In 

contrast, numerous realizations of a less detailed physical model could be run. This would provide the opportunity 25 

for more advanced ensemble statistical techniques including the characterization and quantification of uncertainties. 

It is important in climate-related applications such as mitigation of greenhouse gas emissions or adaptation to sea-

level rise that the relevant uncertainties are explored and communicated clearly to policy-makers (e.g., Garner et al., 

2016; Gauderis et al., 2013; Goes et al., 2011; Hall et al., 2012; Lempert et al., 2004). 

 30 

Several studies have broken important new ground in tackling these challenges.  For example, Nauels et al. (2016) 

present a platform of sea-level emulators (i.e. simple models of complex models) that efficiently produces future 
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projections and characterizes key model structural uncertainties using statistical calibration methods. Semi-

empirical modeling (SEM) approaches trade detailed physics for a model that can efficiently project sea level using 

statistical, but mechanistically motivated, relationships between sea-level changes and climate conditions such as 

temperature and radiative forcing (Grinsted et al., 2010; Jevrejeva et al., 2010; Kopp et al., 2016; Rahmstorf, 2007). 

Recent work has expanded upon the SEM approach to use simple models to resolve individual contributions to 5 

global sea level (Bakker et al., 2016b; Mengel et al., 2016; Nauels et al., 2016).  

 

Studies based on simple, mechanistically-motivated models have the potential to be transparent and reproducible 

when presented in open platforms and when the underlying data are readily available. Yet, although there is an 

increasing tendency to share scientific code, it can be (perhaps surprisingly) hard to get the models running and to 10 

reproduce the results. A likely cause for this is that not enough attention is given to the scientific coding itself. 

Careful coding, documentation, and review require a dedicated commitment of time, but scientific incentives to do 

so can be weak.  

 

Here we introduce BRICK v0.2 (“Building blocks for Relevant Ice and Climate Knowledge”), a new model 15 

framework that focuses on accessibility, transparency, and flexibility while maintaining, as much as possible, the 

computational efficiency that make simple models so appealing. There is a wide range of potential applications for 

such a model. A simple framework enables uncertainty quantification via statistical calibration approaches (Higdon 

et al., 2004; Kennedy and O’Hagan, 2001), which would be infeasible with more computationally expensive 

models. A transparent modeling framework enables communication between scientists as well as communication 20 

with stakeholders. This leads to potential application of the model framework in decision support and education 

(Fischbach et al., 2012; Johnson et al., 2013; Weaver et al., 2013). The present work expands on previous studies by 

(i) providing a platform of simple, but mechanistically-motivated sea-level process models that resolve more 

processes, (ii) providing a model framework that can facilitate model comparisons (for example, between our 

models and those of Nauels et al. (2016)), (iii) exploring combined effects of key structural and parametric 25 

uncertainties, (iv) explicitly demonstrating the flexibility of our framework for interchanging model components, 

and (v) explicitly demonstrating the utility of our model framework for informing decision analyses. 

 

In this model framework, we present a set of existing, well-tested, and easy-to-couple simple models for climate 

and flood risk management. They simulate global mean surface temperature and contributions to global mean sea-30 

level rise. BRICK also includes a regional sea-level rise module, which translates the global mean sea level 

contributions to regional sea level at a user-defined location. We use these regional sea level projections to 

demonstrate how the physical model may be linked to decision-making and impacts. We implement a Bayesian 
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calibration approach with an aim to adequately resolve the tails of the distribution of future sea level because these 

low-probability areas represent high-risk events. In robust decision-making approaches, it can be favorable to be 

underconfident as opposed to overconfident, e.g. by applying conservative estimates in the sense of being risk-

averse (Herman et al., 2015).  We hence include in our Bayesian approach wide, mechanistically-motivated prior 

parameter probability distributions (Bakker et al., 2016b). Yet, the flexibility of the BRICK model framework also 5 

enables the implementation of other calibration schemes. This paper is intended to showcase a useful model 

framework that is attractive for a sustainable approach to model development, for example by inspiring fellow 

researchers to contribute to the framework, to rethink their coding practice, and maybe even to adopt some of the 

demonstrated design objectives in their future research proposals. 

 10 

The hindcast skill of the BRICK model has been previously demonstrated (Bakker et al., 2016b). Thus, the present 

work focuses on outlining a set of epistemic modeling values that we believe facilitates advances in the modeling 

community. The remainder of this work is organized as follows. In Sect. 2, we describe these values and the ways 

in which the BRICK model implementation strives to attain them. Section 3 contains an overview of the BRICK 

model components for climate and the contributions to sea-level rise. Section 4 describes and presents the results of 15 

a set of model experiments conducted to demonstrate how BRICK lives up to our epistemic modeling values. 

Section 5 summarizes the findings of this work and provides conclusions and guidance for future work. 

2 Framework design 

2.1 Model design 

The essence of the BRICK physical model is to simulate changes in global mean surface temperature and sea level, 20 

in response to perturbations in radiative forcing. The socioeconomic impacts of the simulated temperature and sea-

level changes may then be assessed. This is depicted in Fig. 1. The climate component, each individual contribution 

to global sea-level rise, and an impacts module are sub-models of BRICK, or “BRICKs.” We defer details of the 

specific sub-models to Sect. 3. The physical model (climate and sea-level rise) components of BRICK are 

intentionally simple. This choice is guided by the epistemic modeling values outlined below.  25 

2.2 Epistemic modeling values 

2.2.1 Accessibility 

We selected R (R Core Team, 2016) as the base language for BRICK because it is (i) stable, (ii) freely available and 

open source, (iii) relatively easy to use, and (iv) easy to call subroutines written in faster languages. In the BRICK 
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source code accompanying this study, the physical sub-models within the climate and sea-level rise modules are all 

provided as both R and Fortran 90 routines. It is our aim that the full physical-statistical model of BRICK is 

accessible using a modern laptop. This means that sizable Monte Carlo simulations (on the order of a million 

samples) must be possible on a time scale of hours. This is made possible by calling Fortran 90 sub-models from 

the base code in R.  5 

 

In addition to conceptual accessibility, it is our view that useful model codes are physically accessible too. 

Openness with scientific codes is likely to lead to higher quality codes (Easterbrook, 2014). In an effort to be truly 

open source and freely available, all codes – including the physical model, statistical model, and processing and 

plotting scripts used for the results shown here – are available through a download server as well as the Github 10 

repository provided in the Code Availability section of this article. Providing all code and data necessary to recreate 

this study is a critical component of reproducible research (Murray-Rust and Murray-Rust, 2014) and can help to 

build trust between the general public and scientific community (Easterbrook, 2014; Grubb and Easterbrook, 2011). 

2.2.2 Transparency 

We aim to achieve transparency in two areas: the physical modeling, including the related model code, and the 15 

communication of scientific findings. 

 

In regards to transparent physical modeling, we use simple numerical integration schemes whenever possible. We 

use as few global variables as possible, in order to “write programs for people, not computers” (Wilson et al., 2014). 

The essence of these authors’ advice is that users should not be expected to remember more than a few pieces of 20 

information as they read and develop code. To this end, in BRICK we aim to give appropriately suggestive names 

to our variables within the code, such that a human intuitively understands what the quantity at hand represents. For 

example, when naming a logical or Boolean variable, we prefer for its name to read as a question that the variable 

itself answers, and begin the variable name with the letter “l” to imply it is a “logical” variable. One example of this 

in the BRICK source code is the variable “l.project”, which is true when the model is configured to make 25 

projections of future sea-level rise and climate, and false when the model is set up for hindcast simulations. While it 

may seem fussy to review these points, practices such as this will facilitate the sharing of scientific codes and 

enable the community to build stronger and more efficient collaborations. 

 

Transparency also serves to link the findings of a physical model to decision-making and policy impacts. BRICK 30 

can be a useful tool to link climate changes (global temperature and sea-level rise) to decision-making frameworks 

through a clear outlet for coupling to socioeconomic models. Perhaps most importantly, the coupled physical-
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statistical framework in BRICK incorporates many sources of uncertainty into the physical findings on which the 

decisions will be based. It is important that these uncertainties in climate projections are represented in the decision-

making framework (Lempert et al., 2004). 

2.2.3 Flexibility 

A modular programming approach is taken with BRICK, which allows each component sub-model to be exchanged 5 

for alternative models. In this way, as the scientific forefront progresses, the BRICK sub-models may advance as 

well. The flexible BRICK framework also permits a quantitative evaluation of model structural differences, which 

is valuable in the event that it is unclear which of two candidate models should be chosen. In these cases, the 

BRICK framework is valuable for model comparison and quantification of structural uncertainty. As new data sets 

for the calibration of the sub-models become available, these can also be incorporated instead of or in addition to 10 

the current data sets. We demonstrate the flexibility of the BRICK framework through a series of modeling 

experiments (Sect. 4). 

2.2.4 Efficiency 

Code efficiency is enabled primarily through (i) the use of simple models and (ii) using model versions written in R 

for easy preliminary experimentation, and Fortran 90 versions for production simulations. This practice also follows 15 

the advice of Wilson et al. (2014) for code developers to “write code in the highest-level language possible, and 

shift to lower-level languages like C and Fortran only when they are sure the performance boost is needed.” This 

boost indeed enables the generation of production simulations on most modern laptops. The simulation of one 

million model iterations spanning from 1850 to present, performed on each of four CPUs (two cores and two 

threads per core) yields an ensemble of four million model realizations. This procedure requires less than an hour on 20 

a model year 2012 laptop with a 2.9 GHz dual-core processor with 16 GB of RAM. Paleoclimatic simulations 

require longer wall clock times, but can still be completed in less than a day. All simulations for this study were 

completed on this machine. 

 

Providing computationally efficient code simplifies its use. For example, there may be limitations on the computing 25 

resources allocated for a particular project, or an instructor might be interested in enhancing coursework by 

incorporating computer modeling exercises. In these cases, transparency is critical (as mentioned above), but also 

the model must be sufficiently efficient that it neither (i) expires the computational allotment for the experiment, 

nor (ii) takes too long to be of any educational use. Our epistemic modeling values of accessibility, transparency, 

flexibility, and efficiency motivate the choice of a relatively simple physical modeling framework. Accordingly, a 30 

Deleted: the 

Deleted: 1

Deleted: 2



6 
 

detailed statistical calibration framework is implemented. Within this framework, physical model and statistical 

model parameters are calibrated using observational data sets and mechanistically-motivated prior ranges. The 

statistical model is reviewed at greater length by Bakker et al. (2016b), so we provide only an overview in Sect. 4.1.  

2.3 Code review and sharing 

We invite the readers to download and test our code, as well as provide feedback on how best to further develop 5 

BRICK to fulfill the four epistemic values outlined above. Frequent and thorough code review by other team 

members as well as outside agents is another critical step towards good scientific coding practices (Wilson et al., 

2014), and “peer review needs to be supplemented with a number of other mechanisms that help to establish the 

correctness and credibility of scientific research” (Grubb and Easterbrook, 2011). Wilson et al. (2014) also note that 

a number of high profile research articles have been retracted or revised because of errors in the code. The 10 

likelihood of these errors may be greatly reduced by thoroughly testing other group members’ codes. In our own 

experience conducting the experiments described in this study, we have anecdotal evidence for the value of testing 

one another’s code. Some errors were corrected through this process, and many more pieces of code were modified 

for clarity. We continue to invite all comments and suggestions for improvements and modifications (to the 

corresponding author). 15 

 

The use of a version control system greatly expands the accessibility of a code base, and also facilitates continuous 

improvement of the modelling framework itself. This is true and useful before, during, and after the peer-review 

process. Mistakes are inevitable and we assume that BRICK still contains some minor errors, ambiguities, and 

pieces of code that do not fully comply to our own standards. Openly sharing the code and documentation will help 20 

to address these issues. It is our hope that BRICK may be further developed as a community modeling tool, and that 

other users may contribute to the framework through added or revised models and data, or improved functionality. 

The use of a version control system facilitates this type of community effort (Wilson et al., 2014). 

3 Model components 

3.1 Global mean climate 25 

We adopt DOECLIM (Diffusion Ocean Energy balance CLIMate model, (Kriegler, 2005)) as a starting point for a 

simple climate model (Fig. 1). DOECLIM is a zero-dimensional energy balance model coupled to a three-layer, 

one-dimensional diffusive ocean model. The DOECLIM physical model outputs are global mean surface 

temperature anomaly (°C) and ocean heat uptake (1022 J). Calibration data for DOECLIM include both global 
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surface temperature (Morice et al., 2012) and ocean heat uptake (Gouretski and Koltermann, 2007). We use a one-

year time step for the DOECLIM model, and the required input to drive the model is the radiative forcing time 

series (W m-2). This forcing is partitioned into aerosol and non-aerosol components, to enable a representation of 

the uncertainty associated with these forcings. The BRICK model considers this as an uncertain model parameter 

denoted as the aerosol forcing scaling factor (aDOECLIM). This aerosol scaling factor has been used elsewhere in the 5 

literature (Urban et al., 2014; Urban and Keller, 2010) and accounts for some uncertainty in the radiative forcing of 

aerosols (Meinshausen et al., 2011b). The interested reader is directed to Kriegler (2005) and Tanaka and Kriegler 

(2007) for more information about the DOECLIM model.  

 

We fit a first-order autoregressive (AR1) error model to the model-data discrepancy between temperature and ocean 10 

heat uptake model output and calibration data. We estimate the first-order lag autocorrelation parameters (rT and 

rH) and homoscedastic component of the AR1 innovation variance (sT and sH) within the calibration framework as 

statistical model parameters. We add the heteroscedastic observational error estimates for global mean surface 

temperature from Morice et al. (2012) and for ocean heat uptake from Gouretski and Koltermann (2007) in 

quadrature to sT and sH (respectively) for the complete heteroscedastic temperature and ocean heat uptake error 15 

estimates. The model calibration approach implemented here assumes normally-distributed model-data residuals 

with mean zero (Higdon et al., 2004). The AR1 error model has the effect of “whitening” the residuals to satisfy this 

assumption. This type of calibration approach for DOECLIM has been implemented previously in the literature 

(Urban et al., 2014; Urban and Keller, 2010), and we direct the interested reader to these studies for further details. 

3.2 Sea level components 20 

The BRICK global mean sea level module calculates global sea level change as the sum of four individual 

components: glaciers and ice caps (GIC), Greenland ice sheet (GIS), Antarctic ice sheet (AIS), and thermal 

expansion (TE). These component sub-models are described in the following sections. BRICK accounts for land 

water storage contributions to global mean sea level using mass balance trends from the International Panel on 

Climate Change (IPCC) Fifth Assessment Report (AR5, Church et al., 2013) and from the work of Dieng et al. 25 

(2015). The differential equations for the GIC, GIS, AIS, and TE contributions to global mean sea level are 

integrated in BRICK using first-order numerical integration schemes with a one-year time step. Initial conditions 

are specified at a year dictated by the sub-model’s assumed reference point. This differs, in general, among the sub-

models and some model parameters depend on preserving this reference year. Starting from this initial condition, a 

first-order explicit numerical integration method integrates forward in time to the end of the simulation and a first-30 

order implicit (backward differentiation) method integrates backward in time to the earliest year of the simulation. 
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Preliminary experiments (not shown) demonstrated that the one-year time step is sufficiently short to maintain 

numerical stability. The total global mean sea-level rise from the coupled BRICK model is 
!"
!# $ = 	 !"'()*!# $ + !"')(

!# $ + !",)(
!# $ + !"-.

!# $ + !"/0(
!# $ ,     (1) 

where S(t) is the global mean sea level (m) in year t, SGIC is the sea level contribution from GIC (m), SGIS is the sea 

level contribution from the GIS (m), SAIS is the sea level contribution from the AIS (m), STE is the sea level 5 

contribution from thermal expansion (m), and SLWS is the sea level contribution from changes in land water storage. 

We report projections of future sea level relative to the 1986-2005 mean.  

3.2.1 Glaciers and ice caps 

We adopt a simple zero-dimensional sub-model for the contribution to global sea-level rise from Glaciers and Ice 

Caps (GIC) from Wigley and Raper (2005). This same formulation is used in the MAGICC climate model 10 

(Meinshausen et al., 2011a). The parameterization for the GIC contribution to global sea-level rise is: 

!"')*
!# ($) = 45 67($) − 69:,;<= 1 − "')*(#)

?@,')*

A
.       (2) 

In Eq. (2), SGIC is the cumulative sea level contribution from GIC (m), b0 is the initial mass balance sensitivity to 

global temperatures (m °C-1 y-1), Teq,GIC is the theoretical equilibrium temperature at which the GIC mass balance is 

at steady state (°C), V0,GIC is the initial total volume of GIC available in 1990 (m sea level equivalent (SLE)), and n 15 

is an exponent parameter for area-to-volume scaling. An initial condition, S0,GIC, is provided as an uncertain model 

parameter. Teq,GIC is taken equal to -0.15°C (Wigley and Raper, 2005). Note that in this formulation for GIC 

contribution to sea-level rise, whether the GIC mass is increasing or decreasing depends only on Tg(t) relative to 

Teq,GIC; it is independent of the current state SGIC(t). Within this model for the GIC sea-level contribution, Tg is 

relative to the 1850-1870 mean global surface temperature (Wigley and Raper, 2005). 20 

 

The uncertain physical model parameters for GIC-MAGICC (which will be tested in Sect. 4.2) are b0, V0,GIC, S0,GIC, 

and n. We fit an AR1 model to the model-data discrepancy between GIC model output and calibration data 

(Dyurgerov and Meier, 2005) in the same manner as the temperature and ocean heat uptake calibration (Sect. 3.1). 

Uniform prior distributions are used for the GIC-MAGICC physical and statistical model parameters. These prior 25 

distributions, as well as calibrated posterior medians, 5, and 95% quantiles, are given in Appendix A. 

3.2.2 Greenland ice sheet 

BRICK uses the mechanistically-motivated, zero-dimensional SIMPLE (Simple Ice-sheet Model for Projecting 

Large Ensembles) model as the parameterization for the Greenland ice sheet (GIS) contribution to global mean sea 
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level change (Bakker et al., 2016a). SIMPLE estimates the GIS response to changes in global mean surface 

temperature by first estimating an equilibrium ice sheet volume (Veq,GIS, m SLE) at which the sea level contribution 

from the GIS is zero, and estimating the e-folding time-scale of GIS volume changes due to changes in global 

temperature (tGIS, y-1). 

B9:,;<"($) = 	 C;<"	67($) + 	D;<"         (3) 5 
 

E
F')((#)

= 	G;<"	67($) + 	4;<"         (4) 

 
In Eqs. (3) and (4), aGIS, bGIS, aGIS, and bGIS are uncertain physical model parameters. aGIS is the sensitivity of the 

equilibrium volume to changes in temperature (m SLE °C-1); bGIS is the equilibrium volume Veq,GIS for zero 10 

temperature anomaly (m SLE); aGIS is the sensitivity to temperature of the time-scale of GIS volume response to 

changes in temperature (°C-1 y-1); and bGIS is the equilibrium (Tg=0°C) time-scale of GIS volume response to 

changes in temperature (y-1). Global mean surface temperature, Tg, is taken relative to 1961 to 1990 mean. The GIS 

volume changes can then be written as 
!?')(
!# ($) = E

F')((#)
B9:,;<"($) − B;<"($) .        (5) 15 

The initial condition V0,GIS is provided as an uncertain model parameter (m SLE). Using this initial condition, 

designated in the year 1961, the sea-level rise due to the GIS is calculated as the change from V0,GIS to the current 

GIS volume, VGIS(t). This formulation, of course, assumes that all GIS volume lost makes its way into the oceans. 

An AR1 model is fitted to the GIS model-data residuals. Due to poor convergence, the first-order lag 

autocorrelation parameter (rGIS) is held constant at a value determined by a preliminary model simulation that is 20 

optimized using a differential evolution optimization algorithm (Storn and Price, 1997). The GIS training data set 

does not provide heteroscedastic error estimates, so the AR1 innovation variance is taken to be the estimated 

statistical parameter sGIS added in quadrature to the provided error estimate (Sasgen et al., 2012). All GIS physical 

and statistical model parameters are assigned uniform prior distributions. The ranges for these priors and posterior 

distribution medians, 5, and 95% quantiles are given in Appendix A. Further details regarding SIMPLE are 25 

provided in Bakker et al. (2016a). 

3.2.3 Antarctic ice sheet 

We employ the Danish Center for Earth System Science Antarctic Ice Sheet (DAIS) model to simulate the Antarctic 

ice sheet contribution to global sea level (Shaffer, 2014). This is a two-dimensional model for the Antarctic ice 

sheet that assumes an axisymmetric geometry, shown graphically in Shaffer (2014), his Fig. 2. The DAIS model 30 

tracks changes in Antarctic ice sheet volume, considering contributions from (i) incident precipitation, (ii) runoff of 

ice melt, (iii) ice flow, and (iv) ice sheet disintegration from rising and warming sea levels. Input forcings for the 
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DAIS model include Antarctic surface temperature reduced to sea level (TA, °C), high latitude ocean subsurface 

temperature (TANTO, °C), global mean sea level (m), and the time rate of change of global mean sea level (m y-1). 

 

When calibrated as a stand-alone model, the DAIS forcings are provided based on temperature reconstructions (see 

Shaffer (2014)). When the DAIS model is run as a component in the coupled BRICK model, a separate sub-model 5 

is needed to convert the global mean surface temperature from the climate model (DOECLIM) to the Antarctic 

surface and ocean subsurface temperatures required by the DAIS model. The Antarctic surface temperature is 

estimated from a linear regression with global mean surface temperature (Morice et al., 2012; Shaffer, 2014). The 

Antarctic ocean temperatures (TANTO) are modeled through a simple relation with the global mean surface 

temperature, Tg (relative to 1850-1870 mean). TANTO is bounded below at the freezing point of salt water (Tf = -10 

1.4°C): 

6HIJK($) = 6L +
M,N-O∗JQ(#)RS,N-OTJU

ERVWX (M,N-O∗JQ(#)RS,N-OTJU /M,N-O]
 .      (6) 

Equation (6) is a modified linear regression between the global mean surface temperature Tg and the Antarctic 

ocean temperature TANTO, such that the Antarctic ocean temperature is bounded below by the freezing temperature 

of sea water, Tf. In Eq. (6), aANTO is the sensitivity of the Antarctic ocean temperature to global mean surface 15 

temperature (unitless), and bANTO (°C) is the approximate Antarctic ocean temperature for Tg=0°C. banto is the 

approximate ocean temperature because the relationship in Eq. (6) is not a simple linear regression. aANTO and bANTO 

are both estimated as uncertain model parameters. The DAIS model contains 11 physical and one statistical 

parameter, for a total of 14 Antarctic ice sheet parameters to be estimated. The heavily parameterized Antarctic ice 

sheet module reflects our focus on including a broad range of model and observational uncertainties, and 20 

consideration of the critical role of the Antarctic ice sheet in driving substantial uncertainty in future sea levels 

(Church et al., 2013). 

 

Here, we use an updated and corrected version of the DAIS model (Ruckert et al., 2017; Shaffer, 2014). In the 

original formulation of the DAIS model, the input forcing from year t is used to determine the AIS contribution to 25 

sea-level rise in year t. This implicit numerical scheme assumes sea level and temperatures for the current year are 

known during that model iteration. For this study, in which temperatures and sea level originate in other BRICK 

model components, the DAIS model is re-cast using an explicit numerical scheme. The sea level and temperatures 

from the year t-1 are used to calculate the AIS contribution in year t. Antarctic shore-average local mean sea level 

functions as the input to DAIS when run as a sub-model of the coupled BRICK model. This is estimated as 30 

described in Sect. 3.3.  
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The dynamical core of the DAIS model is more detailed than the GIC, GIS, and TE emulators given above. For this 

reason, we do not undertake a full review of the model equations here. The interested reader is directed to Shaffer 

(2014) and Ruckert et al. (2017) for further details regarding the DAIS model and its hindcast forcings. Equation (3) 

of Shaffer (2014) is the main equation of state for the Antarctic ice sheet volume (VAIS, m3): 
!?,)(
!#

$ = [#\# 6H, ] + ^ _, ] .         (7) 5 

In Eq. (7), Btot is the total rate of accumulation of mass on the Antarctic ice sheet (m3 y-1), TA is the Antarctic surface 

temperature reduced to sea level (°C), S is the sea level (m), R is the Antarctic ice sheet radius (m), and F is the ice 

flux at grounding line (m3 y-1). Following Shaffer (2014), we take the present sea level equivalent Antarctic ice 

sheet volume to be 57 m SLE, and the initial ice sheet volume (V0,AIS, m3) to be consistent with an initial ice sheet 

radius of 1.86x106 m. Thus, the Antarctic ice sheet contribution to global sea level may be calculated as 10 

!",)(
!#

$ = −57	c ∗
de,)(
df (#)

?@,,)(
.         (8) 

3.2.4 Thermal expansion 

BRICK uses a simple parameterization for the contribution of thermal expansion (TE) of the Earth’s oceans to sea-

level rise. We make the simplifying assumption that thermal expansion of the oceans occurs uniformly around the 

globe. While this is, of course, not strictly true, the next obvious step forward in model complexity would be to use 15 

a vertically- and latitudinally-resolved model for thermal expansion, incorporating the DOECLIM model output for 

ocean heat uptake. This two-dimensional ocean model is beyond the scope of the simple model framework 

described presently, but an excellent subject for future work. Here, we employ a simple zero-dimensional thermal 

expansion emulator based on the parameterizations of the sea-level rise sub-models of Mengel et al. (2016) and was 

originally used by Grinsted et al. (2010) to model the total global mean sea level changes. First, an equilibrium sea-20 

level rise from thermal expansion, due to changing global surface temperature (Seq,TE, m) is calculated as 

_9:,Jg($) = 	 CJg	67($) + 	DJg.         (9) 

In Eq. (9), aTE is the sensitivity of the equilibrium sea-level rise from thermal expansion, due to changing global 

surface temperatures (m °C-1), and bTE is the equilibrium sea-level rise from thermal expansion with no temperature 

anomaly (m). The sea-level rise due to thermal expansion evolves with time as 25 
!"-.
!#

($) = E
F-.

_9:,Jg($) − _Jg($)  ,        (10) 

where the quantity tTE is the e-folding time-scale with which current sea-level adjusts to the equilibrium state, and 

1/tTE is taken as an uncertain model parameter. This parameter is assigned a gamma prior distribution with shape 

1.81 and scale 0.00275, which places the 5th and 95th quantiles for tTE at 82 and 1,290 years (Mengel et al., 2016). 

This choice of prior distribution is motivated by the fact that tTE functions similarly to the uncertain time-scale 30 
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associated with an exponentially-distributed random variable. A gamma distribution is the conjugate prior for such 

a random variable. The initial condition S0,TE is provided as an uncertain model parameter (m), designated in year 

1850. To match this accounting for sea-level rise relative to pre-industrial, forcing temperature is taken relative to 

its 1850-1870 mean. We calibrate the thermal expansion component of sea-level rise using trends reported by the 

IPCC (Church et al., 2013). 5 

3.3 Regional sea-level patterns 

In order to link the projections of global mean sea-level change from BRICK to a local coastal adaptation, 

information on regional sea level change is needed. Thus, the global mean sea level from BRICK is downscaled to 

regional sea level using previously published maps of scaling factors for the glacier and ice sheet components of 

sea-level change (Slangen et al., 2014). Any redistributions of mass between the cryosphere and the ocean (e.g. ice 10 

melt) leads not only to a change in the total mass of the ocean, but also to changes in regional sea level as a result of 

variations in the gravitational field of the Earth, which in turn affects the solid Earth and the rotation of the Earth 

(e.g., Mitrovica et al., 2001). This typically (and counterintuitively) leads to a sea-level fall close to the source of 

mass loss and larger-than-average sea-level rise at larger distances (> 6700 km) from the source. These so-called 

regional sea-level “fingerprints” are constant for the time scales used in this study, as long as the location of the ice 15 

mass change remains the same. The fingerprints can therefore be used to relate global glacier and ice sheet 

contributions to sea level (Sect. 3.2.1–3.2.3) to their regional sea level contribution. We couple changes in global 

sea level to the Antarctic ice sheet model using an Antarctic shore-average fingerprint ratio of -1.0 for the AIS 

contribution to global sea level, and Antarctic shore-average fingerprint factors of 1.0 for the other contributions to 

sea-level rise from all BRICK sub-models (Slangen et al., 2014). Preliminary experiments indicated that our results 20 

are not sensitive to the precise choices of these fingerprints. 

 

The glacier fingerprint is based on projected changes in glacier mass in 2100 using a glacier model driven by 

temperature and precipitation information from the Fifth Climate Model Intercomparison Project database (Taylor 

et al., 2012) under the Representative Concentration Pathway 8.5 climate change scenario (RCP8.5, Moss et al., 25 

2010), as presented in Slangen et al. (2014). It is assumed that the mass change ratios between the different glacier 

regions on Earth remain the same throughout the 20th and 21st century, which is a valid assumption as long as none 

of the glacier regions “finishes” (which is not expected to happen in the next century). For the Greenland and 

Antarctic ice sheets, it is assumed that ice melt takes place uniformly over the ice sheet surface. Within the BRICK 

model structure, users may define a latitude and longitude to obtain regional sea level change. 30 

Deleted: International Panel on Climate Change (IPCC) Fifth 
Assessment Report

Deleted: AR5, 



13 
 

4 Model experiments 

4.1 Model calibration 

We calibrate the model through a coupled physical-statistical calibration framework. The relatively simple physical 

modeling framework of BRICK is motivated by our epistemic modeling values (Sect. 2.1). This efficient model 

permits the use of a sophisticated model calibration technique. The calibration uses a robust adaptive Markov chain 5 

Monte Carlo (MCMC) approach (Vihola, 2012). The specifics of how it is applied to the BRICK model as well as a 

demonstration of calibrated BRICK model hindcast skill are documented in Bakker et al. (2016b). 

 

The vastly different time scales and characterizations of uncertainty in the Antarctic paleoclimatic calibration period 

and the modern period (1850 to present) lead to two separate sets of calibration parameters: (i) DAIS parameters, 10 

calibrated using paleoclimatic data, and (ii) DOECLIM, GIC, GIS, and TE parameters, jointly calibrated using 

modern data. The paleoclimatic calibration is done using four parallel MCMC chains of 500,000 iterations each. 

The first 120,000 iterations of each chain are removed for burn-in. The paleoclimatic calibration requires about 10 

hours on a laptop with a 2.9 GHz dual-core processor with 16 GB of RAM. The modern calibration is done using 

four parallel MCMC chains of 1x106 iterations each. The first 500,000 iterations of each chain are removed for 15 

burn-in. This requires less than one hour on the same machine as the paleoclimatic calibration. Convergence and 

burn-in lengths are assessed using Gelman and Rubin diagnostics (Gelman and Rubin, 1992). 

 

We combine these two disjoint sets of parameters to form concomitant full BRICK model parameters sets, and 

calibrate these to global mean sea level data (Church and White, 2011) using rejection sampling (Votaw Jr. and 20 

Rafferty, 1951). Prior to rejection sampling, contributions from land water storage are estimated using trends from 

the IPCC (Church et al., 2013) and subtracted from global mean sea level. When projecting global mean sea-level 

rise, we estimate land water storage contributions by extrapolating using the 2003-2013 trend of 0.30 ± 0.18 mm y-1 

found by Dieng et al. (2015). This approximation may not hold in reality (Wada et al., 2012), but serves as a 

starting point for future model developments. The use of rejection sampling and the estimation of land water storage 25 

contributions to sea level are the two aspects in which our calibration approach differs from that of Bakker et al. 

(2016b). In this rejection sampling step, each full BRICK parameter set is constructed by parsing a random draw 

from the calibrated DAIS parameter sets with a random draw from the DOECLIM-GIC-GIS-TE calibrated 

parameter sets. This full BRICK model has the major components of global mean sea-level rise represented, so only 

at this stage is calibration using global mean sea level data possible. The calibration to global sea level data initially 30 

proposes 135,000 full BRICK model parameter sets. We use a joint Gaussian normal likelihood function centered at 

the time series of the global mean sea level data, with standard deviation given by the observational uncertainty of 
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the sea level data (corrected to account for land water storage). For rejection sampling, the enveloping distribution 

is this likelihood function evaluated at the observed sea level time series itself. Thus, no model simulation can yield 

a realization of the likelihood function that exceeds this value. Rejection sampling accepts each model simulation 

with probability equal to the ratio of the likelihood function evaluated at the selected model simulation to the 

maximal value of the likelihood function. 10,671 ensemble members remain after the calibration to global mean sea 5 

level data. These model realizations serve as the control ensemble for analysis. The entire analysis for the control 

model, including paleoclimatic simulations and the risk assessment presented in Sect. 4.4, requires about 4 hours on 

a modern laptop, but constructing smaller ensembles is much faster (an ensemble of about 600 members requires 

less than 10 minutes). 

 10 

In the spirit of our epistemic values, calibration routines are provided with the available BRICK source code. These 

routines use modern methods readily available in R. It is our aim that the interested user can easily substitute their 

own likelihood function (as physical scientific knowledge progresses), a new calibration method (as the statistical 

state-of-the-art progresses), or both. To this end, we provide a sub-routinized likelihood function, called from an R-

packaged calibration method (Vihola, 2012). We also provide individual likelihood functions and calibration scripts 15 

for each sub-model of BRICK individually, to enable interested users to perform experiments using stand-alone 

sub-models or pre-calibration (Edwards et al., 2011). 

 

In the interest of accessibility and transparency, with the available BRICK source code we also provide the sets of 

calibrated model parameters for all experiments presented here. The purpose of this is twofold. First, it greatly 20 

enhances the reproducibility of these results. Second, these data sets enable users who would like to run their own 

ensembles and make projections of local sea levels to do so. This supports our goal of accessibility. The calibrated 

parameter sets are provided in netCDF format, with ensemble member as the “unlimited” dimension. This permits 

concatenating multiple data sets by using netCDF operators (NCO) such “ncrcat” (Zender, 2008). These are freely 

available tools for manipulating data stored in netCDF format. 25 

4.2 Testing alternative model components: a sea-level rise module intercomparison 

4.2.1 Experimental description 

We achieve the accessibility, transparency, and computational efficiency of the BRICK modeling framework 

through use of simple models written in a simple programming environment (R, R Core Team, 2016). It remains to 

be demonstrated that this framework is flexible and efficient in post-processing.  30 

 

Deleted: 573 

Deleted: less than 10 minutes

Deleted: Exchanging BRICKs and full sea-level rise module 
intercomparisons35 



15 
 

We demonstrate BRICK’s flexibility and efficiency by implementing and switching in an alternative formulation 

for the global mean sea level, S(t). We exchange the more detailed model configuration for global mean sea level 

(the BRICK control, see Fig. 1) for the simple emulator described by Rahmstorf (2007). This is 

!"
!# ($) = C;h"i(67($) − 69:,;h"i) ,         (11) 

where t is time (years), S is the global mean sea level (m), aGMSL is a sensitivity constant (m °C-1 y-1), Tg is the global 5 

mean surface temperature anomaly (°C), and Teq,GMSL is the theoretical temperature at which the global sea level is 

steady (°C). The parameters aGMSL and Teq,GMSL, as well as the statistical parameters rGMSL (the first-order lag) and 

sGMSL (the homoscedastic component of the innovation variance), are calibrated using the same global mean sea 

level data set as the full BRICK sea-level rise module (Church and White, 2011). The “BRICK-GMSL” model 

performance using Eq. (11) for the sea-level rise module (while still coupled to DOECLIM as the climate module) 10 

is compared against the full BRICK model configuration. This BRICK-GMSL model configuration is calibrated 

using four parallel MCMC chains of 100,000 iterations each. The first 50,000 iterations are removed for burn-in, as 

determined using Gelman and Rubin diagnostics (Gelman and Rubin, 1992). We randomly sample from the 

resulting posterior distribution to form an ensemble for analysis of 10,671 model realizations. This ensemble size is 

chosen to be consistent with the BRICK control model ensemble size. The prior ranges and posterior medians, 5, 15 

and 95% quantiles for the BRICK-GMSL parameters are provided in Appendix A. 

 

Note that the Rahmstorf (2007) emulator is arguably not the state-of-the-art anymore (Grinsted et al., 2010; Kopp et 

al., 2016). However, it serves here the purpose of demonstrating the ease with which alternative model formulations 

can be tested. This greatly simplifies, for example, model intercomparisons and improvements. Some advantages of 20 

a simple emulator such as this include fewer parameters to estimate and a transparent analysis. Disadvantages of 

such a model include the inability to resolve individual contributions to global mean sea level. This disables the use 

of sea level fingerprinting to obtain regional sea-level patterns. Thus, the choice of model should not only be 

motivated by goodness-of-fit metrics, but also by applications. 

4.2.2 Metrics for model-data comparison 25 

Many goodness-of-fit metrics are available for the comparison of models and data. We focus on three metrics that 

are motivated by the heavily-parameterized full BRICK model framework. There are 39 free parameters in the 

coupled climate/sea-level rise model. By contrast, BRICK-GMSL has 13 free parameters. We use the global mean 

sea level time series of Church and White (2011) for the model-data comparisons in skill hindcasting global mean 

sea level. 30 
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Root-mean-squared-error (RMSE) is a commonly-used error metric, so we employ it here. For consistency with 

other error criteria defined below, we define the RMSE for a model as the RMSE of the model ensemble member 

that maximizes the likelihood function. 

Akaike Information Criterion (AIC) is a measure of the relative goodness-of-fit between two potential models for 

the same data (Akaike, 1974). 5 

jkl = −2 ln pqMr + 2	s         (12) 

In Eq. (12), Lmax is the maximum value of the likelihood function and N is the number of model parameters. Lower 

values of AIC provide a better match between model output and data, and consider a penalty for over-

parameterizing a model. 

Bayesian Information Criterion (BIC) is formulated similarly to AIC, but enacts a different penalty for over-10 

parameterization (Schwarz, 1978). 

[kl = −2 ln pqMr + s	ln	(s\St)	         (13) 

In Eq. (13), Nobs is the number of observational data points used in the model-data comparison. Thus, for Nobs>e2, 

the BIC metric penalizes over-parameterization more harshly than does AIC. 

4.2.3 Experimental results: sea-level rise module intercomparison 15 

The full BRICK sea-level rise module (Fig. 1) performs better than the GMSL emulator (Eq. 11) according to 

RMSE; the full sea-level rise module has RMSE of 0.0059 m, which is about half the GMSL emulator RMSE of 

0.012 m (Fig. 2). These hindcasts are presented as sea level relative to 1961-1990 global mean sea level. This is of 

course expected, because the number of free model parameters in the full BRICK model is 39, while the GMSL 

emulator contains only 13 free parameters. The BIC metric gives the expected result for this disparity in model 20 

complexity. The BIC for the full BRICK model with respect to the sea level data is 61.6 higher than the BIC for the 

GMSL emulator. The AIC is actually lower (by 12.9) for the full BRICK model than for the BRICK-GMSL 

emulator. These mixed results for the model comparison metrics indicate that the full BRICK sea-level rise module 

is not unreasonably over-parameterized; if the full BRICK model were obviously over-parameterized, we would 

expect the AIC for the GMSL emulator experiment to be lower than for the full BRICK model.  25 

 

These results also show that the sea level hindcast in the full BRICK model smooths much of the year-to-year 

variability in sea-level rise. This can be seen by contrasting the full BRICK maximum likelihood ensemble member 

(solid blue line) in Fig. 2a with the BRICK-GMSL emulator maximum likelihood ensemble member in Fig. 2b. The 

full BRICK simulation does not capture the annual variation in global mean sea level that the BRICK-GMSL 30 

simulation successfully captures. This is attributed to the smoothing effect of averaging over the model ensemble 

the four major contributions to global mean sea level, as opposed to calibrating the BRICK-GMSL simulations 

Deleted: 7

Deleted: 7

Deleted: 835 

Deleted: 8

Deleted: 2

Deleted: (
Deleted: 6
Deleted: )40 
Deleted: 68

Deleted: 5

Deleted: 57

Deleted: 7

Deleted: These mixed results for the model comparison metrics 45 
indicate that using the full BRICK sea-level rise module is not 
unreasonably over-parameterized.

Deleted: pink 



17 
 

directly to global mean sea level data. This does not affect ensemble statistics, however, which can be seen from the 

shaded envelopes around the model simulations in Fig. 2. The BRICK model has been developed with efficiency 

and large ensemble simulations in mind, so missing annual variability is of little concern. 

 

This demonstrates the ease with which model intercomparisons may be undertaken using BRICK. Deactivating the 5 

glaciers and ice caps, thermal expansion, and Greenland and Antarctic ice sheet components and integrating the 

GMSL emulator into BRICK involves low overhead in computer code. GMSL is the main output of the BRICK 

physical model. As such, it is our aim to provide a framework in which users can easily integrate new processes and 

models into the climate and sea-level rise modules as the scientific forefront progresses. 

4.3 Interchanging BRICKs and sub-model intercomparisons 10 

4.3.1 Experimental description 

We conduct an experiment to demonstrate the flexibility of BRICK to permit easy exchanging of a single sub-

model for one component of global sea-level rise. In the control BRICK model set-up, SIMPLE is used to emulate 

the sea-level rise contributions from the Greenland ice sheet (GIS) and GIC-MAGICC is used to emulate the 

contributions from glaciers and ice caps (GIC). In this model intercomparison experiment, a second version of 15 

SIMPLE is calibrated to represent the GIC component of sea-level rise. This experiment is motivated by potential 

structural shortcomings of the GIC-MAGICC model. In Eq. (2), the implied GIC volume equilibrium depends only 

on the current surface temperature relative to the fixed parameter Teq,GIC. If the GIC volume is quite low (almost 

entirely melted), this structure potentially enables unphysically fast growth of GIC volume. The SIMPLE model 

(Eqs. 3–5) contains an arguably more realistic representation of the relaxation of ice sheet volume towards an 20 

equilibrium. In this formulation, the time-scale of the relaxation and the equilibrium itself both depend on the 

surface temperature state. This type of potential disagreement within the scientific community regarding model 

structure is precisely where the BRICK model framework can be useful. The flexibility of BRICK enables easy 

exchange of one component sub-model (GIC-MAGICC) for another (GIC-SIMPLE). This enables experiments 

examining the impacts of model structural choices. 25 

 

This GIC-SIMPLE model configuration calibrates GIC-SIMPLE using the same observational data as the control 

GIC-MAGICC set-up. One key difference is that the prior distributions of the model parameters for GIC-SIMPLE 

were modified to be specific to the GIC conditions instead of the GIS. These prior distributions are given in 

Appendix A. The same calibration method and likelihood functions are used for the GIC-SIMPLE experiment as in 30 

the GIC-MAGICC control model. We use the same calibration approach as in the control ensemble, which yields an 
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ensemble of 10,400 model realizations for analysis in the GIC-SIMPLE experiment. As in Sect. 4.2, we focus on 

RMSE, AIC, and BIC as model goodness-of-fit metrics. The GIC-MAGICC model has six model parameters (four 

physical model, two statistical) and the GIC-SIMPLE model has seven parameters (five physical model, two 

statistical). 

4.3.2 Experimental results: glaciers and ice caps sub-model intercomparison 5 

When the GIC-MAGICC model is used, RMSE, AIC, and BIC are all lower than when the GIC-SIMPLE model is 

used (Fig. 3). But the AIC and BIC are not drastically lower for GIC-MAGICC than for GIC-SIMPLE.  This 

indicates that the addition of a model parameter (GIC-SIMPLE) may not be justified (Kass and Raftery, 1995). The 

GIC contribution to global sea level in Fig. 3 is presented relative to 1960 GIC sea-level rise. The median, 5, and 

95% quantiles of the calibrated GIC-SIMPLE parameters are given in Appendix A. 10 

 

The two models display similar levels of under-confidence, illustrated by the wide model ensemble envelope 

around the narrower range of observational data (Fig. 3) (Dyurgerov and Meier, 2005). That both models show 

under-confidence is often judged to be preferable to over-confidence, especially when physical models are linked of 

applications-oriented decision-making frameworks (Herman et al., 2015). This experiment demonstrates BRICK's 15 

flexibility, and ability to allow the user to isolate and examine any source of uncertainty or dissatisfaction in the 

modeling framework. These results also provide guidance for the use of the BRICK model framework for model 

intercomparison and selection experiments. At present we do not make any recommendations regarding which GIC 

sub-model to use. The GIC-MAGICC component has both strengths (e.g., fewer parameters and appropriate in 

melting regimes) and weaknesses (unphysical GIC growth, does not encourage growth beyond V0,GIC, state-20 

independent equilibrium). 

4.4 Linking an impacts and decision-analysis module to BRICK 

4.4.1 Experimental description 

We demonstrate the ability of the BRICK framework to incorporate additional structure to link the physical model 

for surface temperature and sea-level rise (climate and sea level modules, Fig. 1) to socioeconomic implications 25 

(impacts module, Fig. 1). In this example application, we use the calibrated ensemble in the BRICK control 

configuration to obtain local sea level projections for New Orleans, Louisiana (29° 57’ N, 90° 4’ W). We use a 

common didactic model for coastal flood protection (Van Dantzig, 1956; Jonkman et al., 2009). In this flood risk 

model, the policy lever available to decision-makers is the amount by which to heighten the dikes protecting the 

coastal community. We consider a previously published simple analysis that focuses on the northern dike ring in 30 
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central New Orleans (Jonkman et al., 2009). We use this illustrative cost-benefit approach to calculate an 

economically-efficient dike-heightening by weighing the decrease in probable losses due to flooding achieved by 

building taller dikes against the increase in costs due to investments in construction. 

 

The flood risk model implemented here follows a commonly used simple approach (Van Dantzig, 1956). The 5 

present implementation considers the current year as 2015 and a time horizon of 85 years (to 2100). We consider 

discrete dike heightenings in increments of 5 centimeters, between 0 and 10 meters. The average annual flood 

probability is calculated from the simulated local sea-level rise, the land subsidence rate (Dixon et al., 2006), and 

flood frequency parameters (Jonkman et al., 2009). We calculate the expected losses (US dollars) for each proposed 

dike heightening from the flood probabilities for each heightening, the value of goods protected by the dike ring, 10 

and the net discount rate (Jonkman et al., 2009). The total expected costs are the sum of the expected losses and the 

expected investments. In this simplified model, the investment costs only depend on dike heightening and are 

approximated by linear interpolation between data points provided by Jonkman et al. (2009) (and linear 

extrapolation for dike heightenings outside this range), and the expected losses are an exponentially decreasing 

function of dike height above mean sea level. The minimum total expected cost then is the economically-efficient 15 

dike heightening strategy in the framework of this simple illustrative model (Eq. 14 of Van Dantzig (1956)). 

 

The uncertain parameters considered in this cost-benefit analysis include the initial flood frequency with no 

heightening (y-1); the exponential flood frequency constant (m-1); the value of goods protected by the dike ring 

(billion US dollars); the net discount rate (%); the uncertainty in investment costs (a unitless multiplicative factor); 20 

and the land subsidence rate (m y-1) (Table 1). The central estimates for the exponential flood frequency constant 

(a) and the initial flood frequency with no heightening (p0) are taken from Van Dantzig (1956). The exponential 

flood frequency constant relates the increase in flood probability that results from an increase in sea level relative to 

the dike height. We make the assumption that this factor should scale (to first order) relatively well from Dutch case 

considered by Van Dantzig (1956) to the test case of New Orleans considered presently. The initial flood frequency 25 

with no heightening (p0) may not translate directly between these two cases, but highlights our intent for this 

experiment to serve as an example of future applications of the BRICK model to inform decision analyses. The 

admittedly ad hoc distributions assumed for a and p0 were selected to sample tightly around the central estimates 

from Jonkman et al. (2009). A more detailed treatment of this risk management problem would include using 

methods from extreme value theory to address the risks posed by storm surges (Coles, 2001). 30 
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The investment uncertainty considered in the sensitivity tests of Jonkman et al. (2009) included a base case, 50% 

lower, and 100% higher than the base case. We use this range for the investment uncertainty, applied as a 

multiplicative factor ranging from 0.5 to 2. The range for the value of good protected by the dike ring is taken from 

Jonkman et al. (2009), where the lower bound is the lowest estimate of value of goods protected by the three dike 

rings considered in that work (US$5 billion), and the upper bound is the estimated combined value protected by all 5 

three dike rings (US$30 billion). The net discount rate range is centered at 4%, the estimate from Jonkman et al. 

(2009) accounting for inflation and interest rate. Those authors’ net discount rate is decreased to 2% due to 

economic growth (1%) and increased flooding probability due to sea-level rise (1%). Our demonstrative example 

endogenizes the effects of sea-level rise and accounts for parametric uncertainty in the value of good protected by 

the dike ring. Hence, we center our range for the net discount rate at 4% but allow for ±2% uncertain range. The 10 

rate of land subsidence is based on the estimates of Dixon et al. (2006), with mean 5.6 mm y-1 and standard 

deviation 2.5 mm y-1. We transform this to a log-normal distribution to disallow negative rates of land subsidence. 

 

We sample the uncertainty in these parameters via Latin hypercube, where the population size is given by the 

number of sea-level rise ensemble members that are present (10,671 for the control BRICK ensemble). The 15 

distributions from which the economic model parameters are drawn are given in Table 1. Each realization of 

regional sea level is assigned a concomitant sample of flood risk model parameters. An economically-efficient dike 

heightening is calculated for each ensemble member. “Return periods” (years) correspond to the frequency of 

storms with the potential to overtop dikes with the corresponding dike height – essentially, the inverse of the annual 

flood probability. Return periods are a convenient and intuitive way to view the probabilities of flooding in this 20 

economic analysis. 

 

We present results for the flood risk management experiment using sea level projections under RCP8.5. We note 

that many factors are not incorporated into this analysis and this simple illustration is not designed to be used for 

real decision making. For example, storm surge and structural failure are not considered (Grinsted et al., 2013; 25 

Moritz et al., 2015). The purpose of this illustration is to demonstrate the flexibility and transparency of the BRICK 

model framework. This experiment highlights the importance of transparency in particular when linking physical 

modeling results to the impacts on socioeconomic modeling and policy decision-making. 

4.4.2 Experimental results: regional sea-level changes 

In order to link projections of sea-level rise to problems of local coastal adaptation, regional sea level is projected to 30 

2100 under the climate change scenarios of RCP2.6, 4.5, and 8.5 (Fig. 4). These projections use the control 
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configuration of the model, with GIC-MAGICC and the full sea-level rise sub-model set-up depicted in Fig. 1. The 

ensemble median projection is shown in Fig. 4. Sea level rises by 2100 globally by about 54 cm (42-69 cm), 75 cm 

(58-99 cm), and 130 cm (95-174 cm) under RCP2.6, 4.5, and 8.5, respectively (ensemble median and 5-95% range 

in parentheses). The Arctic Ocean is an obvious exception to the rest of the ocean. Due to the Greenland ice mass 

loss, Arctic regional sea level will fall as a result of the loss of gravitational attraction. However, the addition of 5 

mass raises sea level in other parts of the ocean farther away. Arctic sea level (median sea level of all latitudes 

higher than 60°N) increases by 8 cm under RCP2.6, but falls by 1 cm under RCP4.5 and by 28 cm under RCP8.5. 

By contrast, the tropical sea level (median of all latitudes between 30°S and 30°N) rises by 56 cm, 80 cm, and 143 

cm under RCP2.6, 4.5, and 8.5, respectively, which is greater than the global mean rise. Due to the asymptotically 

increasing gravitational effects in proximity to the melting Greenland ice sheet, sea-level fall below -1.5 m is cut off 10 

at -1.5 m.  

4.4.3 Experimental results: Link to coastal defense strategies 

We now focus on the regional sea-level projections for the gridcell containing New Orleans, Louisiana under 

RCP8.5 (Fig. 4c), to demonstrate the use of these sea-level projections in a common local flood risk management 

example. We find the economically-efficient (i.e., cost-minimizing) dike heightening to be 1.45 m (ensemble mean; 15 

90% range is 0.75 to 1.95 m; Fig. 5). This heightening corresponds to a return period of about 790 years (ensemble 

mean; 90% range is roughly 200-3000 years; Fig. 5). The simple analysis presented here should not be used to 

inform on-the-ground decisions in New Orleans. This experiment is meant to demonstrate BRICK’s ability to 

contribute in risk assessment applications.  

5 Conclusions 20 

We present BRICK v0.2, a modeling framework for global and regional sea-level change. BRICK has been 

designed with four epistemic modeling goals: accessibility, transparency, efficiency, and flexibility.  BRICK can  

skillfully match observational data for individual sea level contributions in hindcast (Bakker et al., 2016b).  Here we 

focus on how BRICK achieves our epistemic values using a set of modeling experiments. 

 25 

BRICK is coded in the widely available and simple coding language R (R Core Team, 2016), to achieve the goals 

of accessibility and transparency. The main physics (global mean temperature and sea-level rise) codes are also 

(redundantly) transcribed in Fortran 90, for more efficient simulations. BRICK is designed to be transparent, as well 

as efficient, by coupling previously published simple, mechanistically motivated models for the major contributors 

to global sea level. The efficient physical modeling approach provides the opportunity to incorporate a rigorous 30 
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statistical calibration framework as well, wherein various sources of uncertainty are incorporated into model 

projections (see Bakker et al. (2016b) for a more detailed discussion of this). Finally, the model comparison 

experiments in Sect. 4.2 and 4.3 demonstrate the flexibility of the BRICK modeling framework. These sections 

bring into focus the importance of these epistemic modeling values. A modeling framework that is (in particular) 

transparent and accessible can help to streamline the process of quantifying the local impacts of the physical model 5 

results, to link to decision-analytical models, and to communicate these results to stakeholders and decision-makers.   

 

We hope that the accessibility and transparency of BRICK are helpful to others, and will stimulate the continuous 

peer-reviewing, challenging, and improving of the BRICK framework. Of course, although we tried to couple 

models that fit our epistemic model values as close as possible, we assume that others may prefer other models and 10 

may have different epistemic values. Our framework is designed in such a way that it is possible to plug in other 

model components to reflect these different values. For example, it would be very interesting to add the components 

models used for the semi-empirical model frameworks of Mengel et al. (2016) and Nauels et al. (2016). 

 

We demonstrated the flexibility and transparency of BRICK in connecting projections from the physical model to 15 

the impacts on a local risk and decision-analysis problem. The simple probabilistic calibration method and cost-

benefit analysis that we adopted for the simple demonstration can be expanded to incorporate aspects of deep 

uncertainties (Lempert et al., 2004; Weaver et al., 2013) as well as more complex decision-making frameworks 

(e.g., considering multiple objectives, beyond only expected total costs) (Kasprzyk et al., 2013; Lempert, 2014; 

Lempert and Collins, 2007). Climate change poses decision problems where strong connections across academic 20 

disciplines are critical. Further, the study of climate modeling relies on communal modeling efforts. The need for 

transparent communication among modelers and between disciplines is where the BRICK framework and the 

epistemic modeling values presented here can facilitate future developments. Above all, we hope that BRICK 

inspires the involved communities to pay careful attention to enhance flexibility, transparency, and accessibility of 

modelling frameworks.   25 

 

Code and Data Availability 

All BRICK v0.2 code is available at https://github.com/scrim-network/BRICK under the GNU general public open 

source license. Large parameter files as well as model codes forked from the repository to reproduce this work 

(including the sea level projections) may be found at https://download.scrim.psu.edu/Wong_etal_BRICK/. 30 
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Appendix A: Prior probability distribution ranges for the sub-model parameters, and median, 5th, and 95th 
quantiles of the calibrated posterior parameter distributions. 

Table A1. Prior probability distribution ranges for the DOECLIM climate model parameters, and median, 5th, and 

95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly distributed. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

S °C 0.1 10 1.7 2.3 3.6 
kDOECLIM cm2 s-1 0.1 4 0.4 1.6 3.5 
aDOECLIM [-] 0 2 0.48 0.79 1.1 
T0 °C -0.3 0.3 -0.084 -0.04 0.0053 
H0 1022 J -50 0 -43 -29 -16 
sT °C 0.05 5 0.069 0.080 0.092 
sH 1022 J 0.1 10 0.19 1.1 2.9 
rT [-] 0 0.999 0.054 0.5 0.95 
rH [-] 0 0.999 0.36 0.48 0.61 
 5 

Table A2. Prior probability distribution ranges for the thermal expansion model parameters, and median, 5th, and 

95th quantiles of the calibrated posterior parameter distributions. The prior distribution for 1/tTE is a gamma 

distribution (see main text). The other priors are all uniformly distributed. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

aTE m °C-1 0 0.8595 0.11 0.43 0.81 
bTE m 0 2.193 0.033 0.31 1.5 
1/tTE y-1 0 1 0.00048 0.0018 0.0053 
S0,TE m  -0.0484 0.0484 -0.043 0.003 0.044 
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Table A3. Prior probability distribution ranges for the GIS-SIMPLE Greenland ice sheet model parameters, and 

median, 5th, and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly 

distributed. Due to convergence issues, rGIS is held fixed at a value calculated from a preliminary optimized model 

simulation (see main text). 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

aGIS m °C-1 -4 -0.001 -3.9 -3.0 -1.6 
bGIS m  5.888 8.832 7.4 7.8 8.1 
aGIS °C-1 y-1 0 0.001 0.00037 0.00074 0.00097 
bGIS y-1 0 0.001 2.4x10-5 0.00013 0.00041 
V0,GIS m  7.16 7.56 7.2 7.4 7.5 
sGIS m  0 0.002 0.00017 2.0x10-4 0.00025 
rGIS [-] [-] [-] [-] 0.92 [-] 
 5 

Table A4. Prior probability distribution ranges for the DAIS Antarctic ice sheet model parameters, and median, 5th, 

and 95th quantiles of the calibrated posterior parameter distributions. An inverse gamma prior distribution is used 

for s2
DAIS (see Ruckert et al. (2017)). All other prior distributions are uniform. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

aANTO °C °C-1 0 1 0.038 0.43 0.95 
bANTO °C  0 2 0.1 1.0 1.9 
g [-] 0.5 4.25 1.4 3.1 4.2 
aDAIS [-] 0 1 0.039 0.36 0.79 
µ m1/2 7.05 13.65 7.5 10 13 
n m-1/2 y-1/2 0.003 0.015 0.0037 0.0089 0.014 
P0 m y-1 0.026 1.5 0.13 0.51 1.3 
kDAIS °C-1 0.025 0.085 0.029 0.057 0.082 
f0 m y-1 0.6 1.8 0.7 1.3 1.8 
h0 m 735.5 2206.5 1100 1700 2200 
C m °C-1 47.5 142.5 51 80 120 
b0 m 740 820 740 780 820 
slope [-] 0.00045 0.00075 0.00055 0.00065 0.00074 
s2

DAIS m2 SLE 0 [-] 0.19 0.51 2.2 
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Table A5. Prior probability distribution ranges for the GIC-MAGICC glaciers and ice caps model parameters, and 

median, 5th, and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly 

distributed. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

bGIC m y-1 °C-1 0 0.041 0.00054 0.00090 0.0013 
V0,GIC m  0.3 0.5 0.31 0.40 0.49 
N [-] 0.55 1 0.57 0.77 0.98 
S0,GIC m -0.0041 0.0041 -0.0036 -3.1x10-5 0.0037 
sGIC m  0 0.0015 2.0x10-5 0.00022 0.00065 
rGIC [-] -0.999 0.999 0.27 0.87 0.99 
 

Table A6. Prior probability distribution ranges for the GIC-SIMPLE model parameters, and median, 5th, and 95th 5 

quantiles of the calibrated posterior parameter distributions. The priors are all uniformly distributed. 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

aGIC m °C-1 -4  -0.001 -3.70 -1.90 -0.75 
bGIC m  0.3  0.5 0.31 0.39 0.49 
aGIC °C-1 y-1 0  0.001 4.3 x10-5 0.00043 0.00093 
bGIC y-1 0  0.001 8.9 x10-5 0.00046 0.00093 
V0,GIC m  0.3  0.5 0.31 0.41 0.49 
sGIC m  0  0.0015 1.9x10-5 0.00021 0.00064 
rGIC [-] -0.999  0.999 0.57 0.91 0.99 
 

Table A7. Prior probability distribution ranges for the Rahmstorf (2007) global mean sea level model parameters, 

and median, 5th, and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly 

distributed. 10 

Parameter Units 
Lower 
bound 

Upper 
bound 

5% Median 95% 

aGMSL m °C-1 0 0.0035 0.0012 0.0020 0.0031 
Teq,GMSL m  -1.5 1.5 -1.2 -0.57 -0.28 
sGMSL m  0 0.05 6.2x10-5 0.00069 0.0020 
rGMSL [-] 0 0.999 0.36 0.63 0.89 
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Tables 

 

Table 1. Parameter descriptions and prior probability distributions for flood protection cost-benefit analysis. 

Parameter Description Distribution 

p0 Initial flood frequency (yr-1) with zero heightening log-N(log-µ=log(0.0038), log-s=0.25) 

a Exponential flood frequency constant (m-1) N(µ=2.6, s=0.1) 

V Value of goods protected by dike ring (billion US$) U(5, 30) 

d Net discount rate (-)                                                   U(0.02, 0.06) 

Iunc Investment uncertainty (-) U(0.5, 2) 

rsubs Land subsidence rate (m yr-1) log-N(log-µ=log(0.0056), log-s=0.4) 
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Figures 

 
Figure 1. BRICK model structural diagram. Dashed connectors indicate couplings that are non-essential for 

projections of global mean sea level. These dashed couplings are required for projecting regional sea level and 

climate impacts. DOECLIM is the Diffusion-Ocean-Energy balance CLIMate model (Kriegler, 2005); GIC-5 

MAGICC is the Glaciers and Ice Caps module from the climate model MAGICC (Meinshausen et al., 2011a); TE is 

the Thermal Expansion model (Grinsted et al., 2010; Mengel et al., 2016); SIMPLE is the Simple Ice-sheet Model 

for Projecting Large Ensembles (Bakker et al., 2016a); ANTO is the ANTarctic Ocean temperature model; DAIS is 

the Danish Center for Earth System Science Antarctic Ice Sheet model (Shaffer, 2014); regional sea level 

fingerprinting downscales from global sea-level contributions to regional (Slangen et al., 2014); and the model of 10 

Van Dantzig (1956) assesses flood risk. 
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Figure 2. Comparison of global mean sea-level rise hindcast skill relative to sea level data (Church and White, 

2011), using (a) the full sub-model approach (GIC, GIS, TE, and AIS) and (b) the model for global mean sea-level 

rise of Rahmstorf (2007). Sea level is relative to 1961-1990 global mean sea level. Both model configurations use 

DOECLIM as the climate module. Lower values of Akaike Information Criterion (AIC), Bayesian Information 5 

Criterion (BIC), and root-mean-squared error (RMSE) indicate a better model fit to the data. These error metrics are 

all calculated using the maximum likelihood ensemble member, which is represented by the solid blue line. Green 

highlighting indicates the model structure suggested by each comparison metric. 
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Figure 3. Comparison of (a) GIC-MAGICC versus (b) GIC-SIMPLE model performance in hindcasting the glaciers 

and ice caps (GIC) contribution to sea-level rise. GIC sea-level rise is presented relative to 1960 GIC sea level 

contribution. Lower values of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and root-

mean-squared error (RMSE) indicate a better model fit to the data (Dyurgerov and Meier, 2005). These error 5 

metrics are all calculated using the maximum likelihood ensemble member, which is represented by the solid blue 

line. Green highlighting indicates the model structure suggested by each comparison metric. 
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Figure 4. Regional projections of median sea-level changes under Representative Concentration Pathways (RCP) 

(a) 2.6, (b) 4.5, and (c) 8.5 in the year 2100. Sea-level rise is presented relative to 1986-2005 global mean sea level.  
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Figure 5. Illustrative cost-benefit analysis for the economically efficient dike heightening (lower horizontal axis) 

and return period (upper horizontal axis) for the north-central dike ring in New Orleans, Louisiana. The bold dot 

denotes the economically-efficient (i.e., cost-minimizing) solution. The shaded region gives the 90% ensemble 5 

range of trade-off curves and the bold line denotes the ensemble mean trade-off curve. 
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is a linear mass balance between precipitation PGIS, runoff of meltwater QGIS, and the dynamic outflow of ice DGIS, 

 
!"#$%
!& = ()*+ − -)*+ − .)*+,                       (3) 

 

and assumes height HGIS, volume VGIS, mass MGIS, and slope slGIS of the ice sheet to vary proportionally. PGIS is often 

assumed to exponentially increase with temperature at mean sea-level TGIS by a rate of 5-7% K-1 (e.g., Applegate et 

al., 2012). For a small temperature interval, this can be approximated by linearity, 

 

()*+ 0 = 	 23	4)*+ 0 + 	26.                       (4) 

 

In Eqs. (4) – (7), cj are all constants, j=1,2,…,7. Similarly, QGIS depends on the mean temperature at the ice sheet 

surface TGIS,surface, 

 

-)*+ 0 = 	 27	4)*+,89:;<=> 0 + 	2?,                       (5) 

 

where the difference between TGIS,surface  and TGIS depends linearly on HGIS, 

 

4)*+,89:;<=> 0 = 	 	4)*+ 0 + 2@A)*+ 0 .                                           (6) 

 

The dynamic ice outflow is linearly dependent on the slope (thus, on the height), where the sensitivity is a function 

of temperature TGIS, 

.)*+ 0 = 	 2C4)*+ + 2D A)*+                       (7) 

 

SIMPLE (algebra) simplifies Eqs. (3) – (7) to Eqs. (8) and (9)  
 

 


