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Abstract. The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM),

is widely used in climate research. Most current work in CESM-POP focuses on improving the model’s efficiency or accuracy,

such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism.

Because ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guar-

anteed for even tiny code modifications, and determining whether modifications are admissible (i.e. statistically consistent with5

the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software

verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency

testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare

future simulations and make a determination of statistical distinguishability. The capability to determine consistency without

BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations10

and the use of heterogeneous execution environments. Because ocean and atmosphere models have differing characteristics in

term of dynamics, spatial variability, and time-scales, we present a new statistical method to evaluate ocean model simulation

data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution

from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid

point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model sim-15

ulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our

experiments indicate that the new POP ensemble consistency test (POP-ECT) tool is capable of distinguishing cases which

should be statistically consistent with the ensemble and those which should not, as well as providing a simple, subjective

and systematic way to detect errors in CESM-POP due to the hardware or software stack, positively contributing to quality

assurance for the CESM-POP code.20

1 Introduction

The Community Earth System Model (CESM) is a popular and fully-coupled climate simulation code (Hurrell et al., 2013) that

regularly contributes to the Intergovernmental Panel on Climate Change (IPCC) assessment reports (e.g., Stocker et al., 2013).
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CESM consists of multiple component models that are coupled together, including component models for the atmosphere,

ocean, sea ice, and land. Here, we focus on the Parallel Ocean Program (POP) component of CESM, an extension of the ocean

general circulation model originally developed at Los Alamos National Laboratory (Smith et al., 2010). The CESM-POP

solves the three-dimensional (3D) primitive equations for ocean dynamics with hydrostatic and Boussinesq approximations,

representing ocean processes across a broad range of spatial and temporal scales. Much new development in CESM-POP5

is aimed at reducing computational costs (e.g., Hu et al., 2015), but ongoing development of any type in a simulation code

requires software quality assurance to ensure that no errors are introduced. The need for some sort of quality assurance to

maintain confidence in the science results is particularly critical for climate models whose simulation output may influence

policy decisions with broad societal impact (Carson, 2002; Easterbrook et al., 2011).

Climate models such as CESM are generally large and complex, and the plethora of model configuration options makes them10

difficult to test exhaustively (Clune and Rood, 2011; Pipitone and Easterbrook, 2012). Further, because of the chaotic nature of

climate models, determining whether a difference in simulation results is due to an error or simply to the model’s natural vari-

ability can be challenging. Note that a roundoff-level perturbation added to an initial condition or intermediate result can lead

to sizable differences in the final result. New developments in CESM-POP, particularly those aimed at improving performance

(such as taking advantage of new heterogeneous computing technologies or improving numerical methods), typically result15

in data output that is not bit-for-bit (BFB) identical to the original code. For CESM-POP, even selecting a different number

of cores on the same architecture results in non-BFB identical output. The ability to directly evaluate climate consistency in

the CESM-POP ocean data facilitates the advancement of the code development in general and enables the flexibility to take

advantage of new computing (hardware and software) technologies.

The CESM ensemble consistency test (CESM-ECT), recently developed in Baker et al. (2015), addresses the difficulty20

in comparing climate model outputs via a new ensemble-based tool that evaluates whether a new climate run (e.g., resulting

from a hardware or software modification) is statistically distinguishable from an “accepted” ensemble of original (unmodified)

runs. However, the CESM-ECT tool presented in Baker et al. (2015) only evaluates variables from the Community Atmosphere

Model (CAM) component of CESM, and the experimental runs do not use a fully-coupled CESM configuration (i.e., rather than

POP, the ocean component is the Climatological Data Ocean Model, which contributes sea surface temperature data but does25

not respond to forcing from the atmosphere component). For clarity, we refer to the general ensemble statistical consistency

testing approach for CESM as CESM-ECT. We denote the methodology applicable to the Community Atmospheric Model

component by CAM-ECT, which is a module in the CESM-ECT suite of tools that we are developing. We note that applying

the CAM-ECT methodology “as is” directly to ocean data is not feasible because the ocean and atmosphere models greatly

differ in terms of their dynamics, spatial scales and time scales. For example, the synoptic scale in the ocean dynamics is one30

to two orders of magnitude smaller than that in the atmosphere, and the propagation time scale for adjusting the ocean is many

orders of magnitude slower than that in the atmosphere, particularly for the deep ocean. Therefore, we have developed a new

approach to provide an ocean-specific methodology for statistical consistency testing, which we denote POP-ECT. Although

the new POP-ECT tool is similarly based on using an ensemble of CESM simulations to gauge model variability, it is distinct

from CAM-ECT in that the statistical process does not use global means but instead takes spatial patterns of differing variability35
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into account in the ocean due to a larger time to reach the global quasi-steady state in the ocean than the atmosphere. Further,

the smaller number of diagnostic variables available from the ocean model (as compared to the atmosphere where over one

hundred variables are considered) allows for a different approach as well. However, like CAM-ECT, POP-ECT is intended

for software quality assurance, and a specific model setup is used to catch potential errors in the hardware of software stack,

for example, when porting to a new machine, after a code modification, or in general when non-BFB identical results and a5

consistent climate are both expected. The CESM-ECT tools are not intended as a substitute for appropriate unit testing (nor to

detect errors in cases where results that should be BFB are not). Finally, note that all experiments in this paper use the publicly

available CESM 1.2.2 release.

This paper is organized as follows. The background information is reviewed and discussed in Sect. 2. In Sect. 3, we introduce

the new statistical consistency testing methodology for ocean model data, referred to as POP-ECT, as well as the necessary10

software tools. We evaluate the approach and explore the effect of the simulation length with experimental tests in Sect. 4.

Finally, we explore the new approach’s sensitivity to ensemble size in Sect. 6 and provide concluding remarks in Sect. 7.

2 Background discussion

2.1 Current ocean model quality assurance testing

The current POP-specific quality assurance test, referred to as POP-RMSE, is a simple test that is intended to evaluate whether15

the CESM-POP code was successfully ported to a new architecture and aims to discover issues related to a new machine’s

hardware or software stack. This test consists of running five days of a specified case on a new machine and then comparing

the output to that of a standard dataset released by the National Center for Atmospheric Research (NCAR). The comparison

is done only for the sea surface height (SSH) field via a root-mean-square error (RMSE) calculation, which measures the

difference between the two datasets, X0 and X1, each containing n grid point values:20

RMSE(X0,X1) =

√√√√ 1

n

n∑
i=1

(X1(i)−X0(i))2.

The rate of growth of RMSE was compared to the growth between two reference cases in which the convergence criteria for

the solver was changed by one order of magnitude.

The simple methodology in POP-RMSE is convenient for evaluating CESM output on a new machine, but it is far less

comprehensive than CAM-ECT for atmospheric simulation data. For example, POP-RMSE was unable to quantify the small25

climate state changes due to recent linear solver modifications in CESM-POP in Hu et al. (2015). In Hu et al. (2015), the

authors replaced the default preconditioned conjugate gradient (PCG) solver for the barotropic mode of POP by an alternative

preconditioned Chebyshev-type iterative (P-CSI) solver to enhance the computational performance. While the P-CSI solver

had considerably lower communication costs for high-resolution simulations than PCG, showing that the use of an alternative

solver did not negatively impact the ocean simulation results was critical for acceptance. Therefore, in Hu et al. (2015), to gauge30

the effectiveness of the POP-RMSE test in detecting solver differences over time, monthly data was collected for 36 months
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from a CESM-POP 1◦ resolution case with multiple convergence tolerances between 10−10 and 10−16. Figure 1 displays the

RMSE between the strictest case (10−16) and the other tolerances listed in the figure’s legend for the temperature field. Despite

the range in convergence tolerances used, Fig. 1 gives scant evidence of any solver-induced error (Hu et al., 2015).

2.2 Ensemble consistency testing with CESM-POP

Because the RMSE approach did not elucidate differences between convergence tolerances, Hu et al. (2015) adapted the en-5

semble approach that was initially described in the context of atmospheric data compression in Baker et al. (2014) (a precursor

to the CESM-ECT approach) for CESM-POP data. In particular, Hu et al. (2015) created an ensemble consisting of 40 runs

of 36 months in length that differed by an O(10−14) perturbation in the initial ocean temperature field. Next the root-mean-

squared Z-score between the new case, X̃ , and the ensemble of test cases was calculated as follows. If size of ensemble E is

denoted by Nens, then at each grid point i, Nens values exist for each variable X . The average and standard deviation at each10

grid point i for the Nens ensemble members of E are denoted by µi and σi, respectively. Recalling that n is the number of grid

points, for each variable X̃ in the new run, the root-mean-square Z-score of X̃ as compared to ensemble E is

RMSZ(X̃,E) =

√√√√ 1

n

n∑
i=1

(
x̃i−µi

σi
)2. (1)

Figure 2 shows the results of the RMSZ scores for the same five selected convergence tolerances as in Fig. 1, and now the error

induced by the least strict tolerances is more evident. Based on this result in Fig. 2, Hu et al. (2015) evaluated the suitability of15

a new solver in CESM-POP.

2.3 Ensemble consistency testing for the Community Atmosphere Model

The CESM-ECT approach presented in Baker et al. (2015) uses an ensemble to quantify the natural variability of the CESM

model’s climate and then compares new simulations (resulting from a software, hardware, or non-BFB change) against the

ensemble distribution. The key idea is that if the output data from a new simulation is not statistically distinguishable from the20

ensemble of runs, then the new run is deemed “consistent”. Statistical consistency is a key ingredient in the quality assurance

aspect of model code verification (Oberkamf and Roy, 2010). The CESM-ECT approach was first applied to history output

from the Community Atmosphere Model (CAM) component, resulting in the CAM-ECT tool. CAM data were a logical first

target as the time scales for changes to propagate throughout the atmosphere are shorter compared to other CESM components

and CAM contains a large number of independent variables that cover the whole globe.25

As described in Baker et al. (2015), the ensemble for CAM-ECT is created on a trusted machine with an accepted version and

configuration of CESM. The ensemble consists of 151 simulations of 1-year in length that differ only in a random perturbation

of the initial atmospheric temperature field of O(10−14). The output data contains only the annual averages at each grid point

for the number of specified variables from CAM, denoted by Nvar, which represent whole atmospheric fields (by default,

Nvar = 120). The CAM-ECT tool creates a statistical distribution that characterizes the ensemble using principal component30

analysis (PCA) on the global area-weighted mean distributions for each variable across the ensemble. The distribution of
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principal component (PC) scores are retained for comparison with new simulation runs. A small set of new runs (generally

3) either passes or fails based on the number of PC scores that fall outside a specified confidence interval (typically 95%).

Parameters specifying the pass/fail criteria can be tuned to achieve a desired false positive rate for the test.

2.4 Motivation

While the solver verification work in Hu et al. (2015) was illuminating and adequate for the task at hand, it prompted several5

questions that motivated our work to develop a more comprehensive technique such as CAM-ECT for evaluating CESM-POP

data. First, a key consideration for a more general POP verification tool was the concern over spatial variability in the ocean,

which is much more pronounced than in the atmosphere. Both CAM-ECT as well as the RMSZ strategy in Hu et al. (2015)

evaluate the differences in terms of spatial averages, and it was unclear whether this approach would be sufficient to detect

any accuracy issue or model error in the ocean. Second, because CESM-POP has fewer independent diagnostic variables than10

the CAM, we re-visit the question of appropriate metrics for consistency evaluation. Third, the selection of different metrics

prompted further examination of the appropriate ensemble size. While an ensemble of size 40 ensemble was sufficient for

detecting linear solver errors in Hu et al. (2015), the ensemble size itself was not thoroughly explored. Finally, the difference in

temporal scales between the ocean and atmosphere prompted us to investigate the required length of ensemble runs. Because

the time-scales in the ocean are slower than in the atmosphere, intuitively a longer ensemble length is needed for statistical15

consistency testing with CESM-POP. Note, though, that the initial results in Fig. 2 suggest that this presumption may not be

true. The RMSZs continue to decrease with time after a few months when the tolerances are small enough (i.e., tolerance is

smaller than 10−12), suggesting the required length of simulation merits further investigation. In fact, Fig. 2 shows that this

particular 1-degree ocean data is relatively deterministic and the initial differences begin to damp out after the first year when

the tolerances are small, but grow when they are set too large.20

3 A new statistical consistency test for POP

Expanding the CESM-ECT suite to include a consistency test for CESM-POP, which we denote POP-ECT, data requires

determining an appropriate ensemble to represent ocean model variability and developing a methodology to address ocean-

specific characteristics. We first discuss the ensemble creation. We then describe the new testing procedure.

3.1 POP ensemble construction25

We evaluate whether differences in CESM-POP output data are statistically significant (i.e., indicative of a changed climate

state) by comparing to an ensemble of simulations representing an accepted ocean state. Therefore, the first stage in applying

the CESM-ECT approach to CESM-POP data is creating an appropriate ensemble. Clearly, the ensemble composition is critical

to an effective test, and simulations should be produced on an accepted machine with an accepted version of CESM. Note that

as compared to CAM, the ocean model has fewer independent diagnostic variables: temperature (TEMP), sea surface height30
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(SSH), salinity (SALT), and the zonal and meridional velocities with respect to the model grid (UVEL and VVEL, respectively).

Of these five variables, SSH is 2D and the remainder are 3D.

For POP-ECT, we create an ensemble E of Nens simulations, denoted by E = {E1,E2, . . . ,ENens}, that differ only by an

O(10−14) perturbation to the initial ocean temperature field. This initial perturbation size is on the order of double-precision

round-off error and should not be climate-changing. The size of the ensemble must be sufficient to create a representative5

distribution, but as small as possible to avoid high computational cost. While we address in detail our choice of ensemble size

later in Sect. 6, we use Nens = 40 for the discussion in this section and the experiments in the next. Our experiments indicate

that this choice of ensemble size adequately represents the natural variability in the ocean for testing purposes. The ensemble

simulation data consists of monthly temporal averages at each grid point i for the 5 POP diagnostic variables: TEMP, SSH,

SALT, UVEL, and VVEL. Each of these variable datasetsX containsNX grid points and is denoted byX = {x1,x2, . . . ,xNX
},10

where xi is a scalar monthly average at grid point i. Data is collected for T months (i.e., T time slices of monthly data).

The next step in CESM-ECT approach is to characterize the ensemble distribution in a qualitative way to facilitate the

evaluation of new runs. This statistical description of the ensemble is stored in a so-called ensemble summary file and is

associated with the CESM softare tag used to generate the ensemble simulations. The history files from the Nens simulations

do not need to be retained once the summary file has been created. Recall that for CAM data, CAM-ECT calculates the global15

weighted-area mean for each variable from the annual temporal averages available at each grid point. This calculation results

in a distribution of Nens global means for each variable. However, this approach of using global weighted-area means will not

be appropriate for ocean model data, as ocean variability is less heterogeneous across the grid than atmospheric data.

For example, consider an ensemble ofNens = 40 CESM simulations with a 1◦ resolution CESM-POP grid run for T = 36

months. In Fig. 3, we show spatial plots of the standard deviations of the sea surface temperature (SST), across the ensemble20

members after 1, 12, 24, and 36 months. Note that the SST is simply the top layer of the 3D variable TEMP (more precisely, the

top 10 meters of upper ocean). Figure 3 shows that the standard deviation is far from heterogeneous with orders of magnitude

differences across the grid (see the color bar scale). Also notable is the change from 1 month to 12 months associated with

the model instability associated with the development of hydrodynamic instability of the flow as the model spins up. At the

end of one year, the larger standard deviation in the tropical regions suggest a larger uncertainty due to the growth of tropical25

instability waves (Legeckis, 1977) in the ensembles. The large variability can be easily enhanced in the equatorial regions

because of the finer resolution in the tropics (approximately 1/3◦). There are also some pools of large standard deviation in the

downstream of the major ocean current systems. The change from 12 months to 36 is more subtle, indicating the associated

physical instability may not grow further due to the ocean dissipation. Given the range in variability evident in Fig. 3, the RMSZ

score strategy as used for verification in Hu et al. (2015) (and discussed in Sect. 2) may include the uncertainty introduced by30

the actual physical instability in regions with large variability (e.g., the equatorial Pacific) and may unnecessarily flag potential

errors in regions with little to no variability due to the denominator in Eq. (1). Note the range of variability shown in Fig. 3 is

certainly resolution dependent, and the results in Fig. 3 are specific to the rather dissipative low-resolution ocean model (e.g.,

1◦ CESM-POP) used in most climate studies.
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Therefore to create an ensemble statistical consistency test that is robust for CESM-POP data, we must create a distribution

describing the ensemble that contains spatial as well as temporal information. In particular, POP-ECT creates an ensemble file

with T monthly time slices of CESM-POP data that contains:

– Nvar ×NX ×T monthly mean values across the ensemble at each grid point i (µi)

– Nvar ×NX ×T standard deviations of ensemble monthly mean values at each grid point i (σi),5

which is to say that we retain the ensemble mean and standard deviation at each of Nx grid points (note that NX depends on

whether X is a 2D or 3D variable) for the specified number of months, e.g. T = 36.

Finally, we note that without special treatments, the CESM-POP could generate unrealistic salinity distributions in the

closed marginal seas because there is no appreciable freshwater feedback between the freshwater and salinity (e.g. Hudson

Bay, the Mediterranean Sea). The current CESM-POP has strong freshwater restoring in the marginal seas, and weak restoring10

elsewhere; a salinity restoring to the Polar Science Center Hydrographic Climatology version 2 (updated from Steele et al.

(2001)). These specific treatments can maintain a salinity balance but act as artificial forcings to the model dynamics. Therefore,

in this work we do not address the complexity of how to do verification properly in the marginal seas and instead restrict our

attention to the open oceans.

3.2 Testing procedure15

Given the POP-ECT summary file, we determine whether new simulation output data (e.g. from a code modification, a new

machine, a new compiler option) is statistically consistent with the ocean climate categorized by the reference ensemble

distribution as follows. We take the approach of evaluating the standardized difference between the ensemble and the new run

at each grid point. For each grid point i and each new variable X̃ , we calculate the distance between X̃ and the ensemble

data via a standard Z-score measurement for a given monthly time slice t. In particular, given the values of X̃ at time t,20

X̃ = {x̃1,t, x̃2,t, . . . , x̃NX ,t}, the Z-score at grid point i for variable X̃ at time t is

Zx̃i,t =
x̃i,t−µi,t

σi,t
,

where µi,t and σi,t are the ensemble mean and standard deviation respectively, at grid point i for variable X at the specified

month t as specified in the ensemble summary file.

Now for a particular time slice t, we drop all subscripts t from relevant variables, e.g. the Z-score becomes Zx̃i
. We define25

an allowable tolerance tolZ for the Z-score at each point, meaning that if Zx̃i
> tolZ , then point i is denoted a “failed” point.

Recall that a Z-score indicates the number of standard deviations away from the mean, and a large Z-score indicates that the

new case is far from its climate state in the ensemble. Next we look at the overall percentage of grid points that have passing

Z-scores, defining the Z-score Passing Rate (ZPR) for variable X̃ as:

ZPRX̃ =
#{i | x̃i ∈ X̃ ∧ |Zx̃i

| ≤ tolZ}
#{i | x̃i ∈ X̃}

. (2)30
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To make an overall determination of whether variable X̃ passed, we set a minimum threshold for the ZPR (minZPR). In partic-

ular, if ZPRX̃ ≥minZPR then variable X̃ passes. By default, the Z-score tolerance is tolZ = 3.0, and the ZPR threshold is

minZPR = 0.9. In other words, 90% of the new values for variable X̃ must be within 3.0 standard deviations of the ensemble

mean (µi) at each grid point i for X̃ to ”pass”. This process is repeated for all five independent diagnostic variables, and all

variables must pass for the overall simulation to be deemed statistically consistent.5

Note that the calculated Z-scores change with simulation length. Because of the longer time-scales present in the ocean, we

ran the CESM simulations for most of the experiments in the paper for 36-months. In addition, we output monthly time slice

data for POP-ECT (as opposed to the annual temporal mean for CAM-ECT) to determine whether the ensemble ocean states

stabilize (or not) over time. In addition, for some of the experimental results in this paper, we find it more useful to plot the

Z-score failure rate (i.e., 1−ZPR) than the ZPR.10

As will be evident in the following section, the ZPRs generally become stable after a few months, and the stability trends

across the diagnostic variables are similar. Therefore, in addition to picking a suitable Z-score tolerance and passing rate, we

choose a checkpoint (tC) at which to evaluate the new run result (instead of checking at all T months of data). Note that the

length of the ensemble simulations does not need to be longer than tC .

3.3 Software tools15

To make our new POP-specific testing methodology accessible to both users and developers, we added POP-ECT to the existing

CESM-ECT suite of Python tools (pyCECT v2.0) , which are included in the CESM public releases. The CESM-ECT Python

tools include the tools that create the CESM module-specific ensemble summary files as well as pyCECT, which performs

the statistical consistency test using the specified ensemble summary file. Because the POP-ECT summary file is distinct from

the CAM-ECT summary file, we created the parallel Python code pyEnsSumPop to generate the POP-ECT summary files.20

In particular, from an ensemble of CESM-POP simulation output files, pyEnsSumPop creates the ensemble summary file (in

parallel) containing the ocean model statistics as described in Sect. 3.1. The CESM Software Engineering Group creates a

new ensemble of POP simulation data as needed, which currently coincides with the release of a software tag that contains

modifications known to alter the climate from the previously tagged version’s climate. The appropriate POP-ECT ensemble

summary files are included in development and release tags for CESM as noted in Sect. 8. Given a POP-ECT summary file, a25

user or developer can then evaluate “new” simulation data for consistency using the pyCECT Python tool, which is now able

to evaluate results based on either the POP-ECT or CAM-ECT methodology. New CESM-POP simulation data to be evaluated

may be the result of using a new architecture or a different compiler option, making a code modification, or changing the input

data deck. pyCECT evaluates whether the new ocean model simulation results are statistically consistent with the specified

POP-ECT ensemble and issues an overall “pass” or “fail” designation. In addition, the Z-score passing rate is given for each30

ocean model variable at the selected checkpoint time tC .
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4 Experiments

The primary objective of this section is to evaluate the new POP-ECT tool on CESM-POP simulation data with a series of

experiments on configurations with expected outcomes, including revisiting the effect of changing the barotropic solver con-

vergence tolerance as in Hu et al. (2015) and discussed in Section 2. Experiments were run with the CESM 1.2.2 release with

the default Intel 13.2.1 compiler, using CESM-POP for the active ocean component, the CICE model for the active sea ice5

component, and data-driven atmosphere and land components. In addition, we use the climatologically-averaged atmospheric

forcing (one-year repeating forcing) framework for ocean-ice simulations. Therefore, there are no year-to-year correspond-

ing events (such as El Niño Southern Oscillation), and the variance in the equatorial Pacific may be artificially suppressed.

(Note that this particular CESM component configuration is referred to in CESM documentation as a “G_NORMAL_YEAR”

component set). The CESM grid resolution was “T62_g16”, which corresponds to a 1◦grid (320× 384) for the ocean and10

ice components, with 60 vertical levels and a displaced Greenland pole. Simulations were run on 96 processor cores on the

Yellowstone machine at NCAR (unless otherwise specified).

For these experiments, we evaluate 36 months of data as opposed to a single time slice to provide insight as to how the ZPRs

vary over time and guide the selection of tC . Further, to illuminate the relationship between the Z-score and simulation month

in terms of ZPR and guide the selection of tolZ and minZPR, we utilize a Response Surface Methodology (RSM) (e.g., Box15

and Draper, 2007). That is, we provide plots of the response surfaces for variable X̃ where the percentage of grid points i that

meet the Z-score tolerance criteria, Zx̃i
> tolZ , are shown with a cumulative distribution function (CDF) for a range of tolZ

values and simulation months. Finally, as noted previously, we find an ensemble size of 40 to be sufficient for our experiments,

but we further explore and discuss the ensemble size parameter selection in Sect. 6.

For simplicity, we show results for temperature (TEMP) and sea surface height (SSH). Though we analyzed the other20

variables as well, these two are representative of the ocean system model in general as SSH is related to ocean circulation

dynamics and TEMP is determined by model scalar transport.

4.1 Barotropic solver convergence tolerance

First we use the newly enhanced CESM-ECT to revisit the effect of changing the barotropic solver convergence tolerance,

as discussed in Sect. 2 in reference to the work in Hu et al. (2015). The default barotropic solver convergence tolerance in25

CESM-POP is 10−13, and we ran experiments with convergence tolerances ranging from 10−9 to 10−16, outputting monthly

temporal averages at each grid point for 36 months. We expect convergence tolerances tighter than the default 10−13 to result

in a consistent climate, but looser tolerances to introduce some error.

Response surfaces for TEMP and SSH are given in Fig. 4 and Fig. 5, respectively. Each figure contains four response

surfaces: the original default convergence tolerance (10−13) and a tighter tolerance (10−16) in the top two subplots and looser30

tolerances (10−10 and 5.0 ∗ 10−9) in the bottom two subplots. For each response surface, the x-axis indicates the simulation

month (ranging from 1 to 36), and the y-axis indicates the range of Z-score values used for tolZ when calculating the percentage

of grid points that fall below the Z-score tolerance, i.e. ZPR in Eq. (2) . The color bar indicates the ZPR as a percentage in
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increments of 10%. The response surface plots are useful for evaluating various combinations of options for tolZ andminZPR.

For example, consider the effect on variable TEMP of modifying the solver convergence tolerance. The upper left subplot in

Fig. 4 indicates that for the original convergence tolerance (10−13), 90% of all grid points had a Z-score of less than 2.0 at

all simulation months. In contrast, the subplot below for 10−10 shows that after the first 9 simulation months, 90% of the grid

points have a Z-score less 3.0, and by 12 months, between 70 and 80 percent of the grid points have Z-scores less than 2.0.5

Further loosening the convergence tolerance to 5.0 ∗ 10−9 as in the lower right subplot shows pronounced errors in terms of

the relatively low ZPR percentages. If we turn our attention to SSH in Fig. 5 for the same four convergence tolerances, the

overall trends are similar. In particular, for 10−13, 90% of all grid points have a Z-score of less than 2.0 at all simulation

months (except month 6). Similarly to TEMP, the subplot for 10−10 shows that errors have been introduced and errors are even

more pronounced for 5.0 ∗ 10−9. A notable difference between the response surfaces for TEMP and SSH is that the plots for10

temperature are smoother over time because diffusion is an important process in the temperature calculation.

If we fix the Z-score tolerance for the data shown in Fig. 4 and Fig. 5, we can more easily evaluate the ZPR. Consider setting

tolZ = 3.0, a rather conservative choice. Fig. 6 illustrates the percentage of grid points with Z-scores that exceed tolZ = 3.0

(i.e. fail) for both TEMP and SSH. If we choose a ZPR threshold of minZPR = 0.9, which corresponds to a 10% Z-score

failure rate in Fig. 6, it is clear that a convergence tolerance of 10−10 is borderline in terms of passing or failing (and therefore15

should not be used in practice). Whereas tolerances tighter than 10−10 have low Z-score failure rates and appear statistically

consistent with the original tolerance for both variables. This plot in Fig. 6 is of interest as well as it nicely demonstrates that as

the convergence tolerance becomes less strict, the number of grid points exceeding the Z-score tolerance increases. This result

is much clearer than in Hu et al. (2015).

4.2 Processor layouts20

While CESM simulations that are identical except for differing numbers of CESM-POP processor cores yield non-BFB iden-

tical results, the results from such simulations should represent the same climate state (i.e., they should not be statistically

distinguishable). Here we verify that such simulations definitively pass CESM-ECT. Recall that the simulations comprising

our CESM-ECT ensemble were run on 96 cores. We ran additional simulations on 48, 192, and 384 cores. Note that we are not

using threading in CESM-POP at this time.25

The response surface plots for 96 cores (labeled “original”) and 384 cores are the top subplots in Fig. 8 and Fig. 9 for

TEMP and SSH, respectively. These plots show that for both core counts, 90% of all grid points have a Z-score of less than 2.0

for nearly all simulation months, and as expected, there is little discernable difference between the two core counts for both

variables. As before, we fix the Z-score tolerance at tolZ = 3.0 and show the Z-score failure rates for TEMP with all four

core count options (48, 96, 192, and 384) in Fig. 7. As anticipated, the Z-score failure percentages are quite low (below 1.2%)30

for all configurations at all monthly time slices, confirming that differences in simulation output due to varying the core count

in CESM-POP are not statistically significant and correctly identified as such by the new CESM-ECT methodology. Note that

the corresponding plot for SSH is not provided as is looks similarly good in terms of very low Z-score failure rates.
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4.3 Physical parameters

Now we change two physical parameters expected to alter the ocean climate from the tracer equations: the tracer’s vertical

mixing coefficient for convective instability and the tracer advection scheme. Results from these modifications should fail the

CESM-ECT. First, by default, the vertical mixing coefficient for convective instability (convect_diff ) is set to be convect_diff

= 10,000 for the tracer mixing coefficient in the 1◦CESM-POP configuration. We increase this parameter by factors of 2, 5,5

and 10, which is expected to increase the vertical mixing in the ocean interior when the density profile is unstable. This should

noticeably impact the CEM-POP results due to the different mixing property. Second, we change the POP tracer advection

scheme (t_advect_ctype) from the default 3rd-order upwind scheme (upwind3) to the Lax-Wendroff scheme with 1D flux

limiters (lw_lim). This change is also significant and should lead to a different climate state because the associated diffusion

and dispersion errors differ.10

The response surface plots for increasing convect_diff by a factor of 10 are given in the lower left subplots in Fig. 8 and

Fig. 9 for TEMP and SSH, respectively. This change clearly affects the climate state significantly, particularly as compared to

changing the CESM-POP core count to 384 as depicted in the upper right subplot in both figures. In fact, the impact on TEMP

of increasing convect_diff in Fig. 8 is almost as strong as changing the solver convergence tolerance to 10−9 in Fig. 4. The

change of the advection scheme also leads to different climate state, evident in the lower right subplots in Fig. 8 and Fig. 9 for15

TEMP and SSH, respectively. Note that the Z-scores at nearly every grid point are failing.

The Z-score failure rates for tolZ = 3.0 are shown in Fig. 10 for advection scheme change as well as all the modifications

to the tracer vertical mixing coefficient for convective instability. If we choose a ZPR threshold of minZPR = 0.9, which

corresponds to a maximum of 10% Z-score failure rate, then doubling the vertical mixing coefficient (convect_diff *2) is

borderline in terms of passing or failing. The remaining tests clearly fail for both TEMP and SSH, as expected. Based on our20

experiments thus far, choosing a Z-score tolerance of tolZ = 3.0 and a ZPR threshold of minZPR = 0.9 yields the expected

outcome, and these parameter settings are the default for the pyCECT tool.

4.4 Simulation length

Our experiments in Fig. 10 indicate that the percentage of grid points with failing Z-scores differs little from month to month

after the first 12 months for both TEMP and SSH. This conclusion can also be reached from Fig. 8 and Fig. 9 for TEMP25

and SSH, respectively. In particular, the response of SSH to the initial temperature perturbation is largely stabilized after 12

months. The SSH may be affected through the circulation change resulting from the change of density stratification. Based on

our experimental results, evaluating the output at a single well-chosen checkpoint time tC appears reasonable.

We generally choose tC = 12 to minimize the computational requirements of creating the ensemble for each candidate

CESM tag. (The ensemble simulations runs can be length tC .) Consider the surface plots for month tC = 12 in Fig. 11 that30

illustrate the Z-score values for SST as compared to the ensemble for four different model configurations. The top subplot

is the original case. The second plot from the top is the result of changing the number of CESM-POP processor cores to

384, which resembles the topmost plot as expected. While the patterns are not identical for the upper two plots, the Z-score
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magnitudes and distributions are similar, indicating a degree of statistical consistency when changing the number of processors.

In contrast, increasing the tracer mixing coefficient for convective instability by a factor of 10 was shown to change the climate

state in Sect. 4.3, and this result is clearly evident in the Z-score at month 12 in the third plot from the top of Fig. 11. Finally,

the bottom subplot in Fig. 11 indicates a largely altered climate state due to the use of a different advection scheme, which

corroborates the substantial effects seen in Fig. 8 and Fig. 9. Using a different advection scheme significantly changes the5

numerical dissipation and diffusion associated with the scheme (Tseng, 2008) and effectively influences the circulation pattern

and structure in the ocean model (e.g., Tseng and Dietrich, 2006). In particular, the Lax-Wendroff scheme with flux limiters

can introduce excessive numerical mixing which may interact with the physical mixing of temperature and salinity, though it

can result in a much smoother solution in general.

4.5 Hardware and compiler modifications10

A primary quality assurance responsibility of POP-ECT is to ensure that changes to either the hardware or software stack do

not negatively affect POP-CESM simulation output. Here we use POP-ECT to evaluate the consistency of simulations that

result for compiler or hardware modifications that lead to non-BFB results, but are not expected to be climate-changing. We

run POP-ECT with the default parameters suggested in the previous subsections: tC = 12, tolZ = 3.0, and minZPR = 0.9.

Results from all of these experiments are listed in Table 1, where the Z-score passing rate (ZPR) is given for all five diagnostic15

variables, which are described in Sect. 3.1. Note that minZPR = 0.9 means that POP-ECT returns a pass only if the ZPR is

at least 0.9 for all five variables. Recall that the default compiler for CESM 1.2.2 on NCAR’s Yellowstone machine is Intel

13.1.2 with -O2 optimization. The first two experiments use the same Intel compiler version but different optimizations levels:

Intel 13.1.2 with -O0 and Intel 13.1.2 with -O3. The next two experiments use more recent versions of the Yellowstone Intel

compiler: Intel 15.0.0 with -O2 and 16.0.2 with -O2. We then evaluate the two additional CESM 1.2.2-supported compiler20

configurations on Yellowstone: GNU 14.8.0 and PGI 13.9, and also evaluate a more recent version of PGI (14.7). Finally,

for completeness, we run simulations on alternative CESM-supported platforms: the Edison and Cori machines located at the

National Energy Research Scientific Computing Center (NERSC). Table 1 indicates that all of these simulations results pass

the POP-CECT, with the exception of the fail result for PGI 13.9 on Yellowstone. The failure for PGI 13.9 suggests that some

aspect of the CESM-POP code may be sensitive to this compiler version. While we have not determined why PGI 13.9 causes25

the discrepancy in simulation output, POP-ECT appropriately returns a fail as notable differences do exist between the default

Intel 13.1.2 and the PGI 13.9 simulations (as compared, for example to differences between the default Intel 13.1.2 and GNU

14.8 simulations), as shown for the top-level zonal velocity (UVEL) in Fig. 12. Note, however, that results with PGI 14.7 are

consistent, perhaps indicating a correction in this more recent version of PGI.

5 Ensemble size30

The size (i.e., number of members) of the ensemble must be large enough to sufficiently capture ocean model variability, but

as small as possible for computational efficiency. In this section, we discuss the sensitivity of POP-ECT to ensemble size. We
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setup experiments to determine the false positive rate associated with multiple ensembles sizes as follows. First, we generate

a total of 80 ensemble members that differ by an O(10−14) perturbation to the initial ocean temperature field. Second, from

the 80 members, we remove 10 to use as our test set. Next, from the remaining 70 members, we create ensembles of sizes

10, 20, 30, 40, 50, and 60. In particular, for each ensemble size, we do 100 random draws for each ensemble size from the

set of 70 members, resulting in 100 distinct ensembles corresponding to each ensemble size. Then for each ensemble size, we5

run POP-ECT at tc = 12 months for each of the 10 members of the test set with all 100 ensembles of that size, resulting in

1000 tests per ensemble size. We consider the measured experimental failure rate to be the type I error, or “false positive” rate.

Because the test set and the ensemble members are all drawn from the larger 80 member collection that represents a statistically

consistent climate, the Z-score failure rate would ideally be as low as possible.

Figure 13 shows the results of performing these experiments for variables TEMP and SSH. The x-axis indicates the ensemble10

size, and the y-axis indicates the Z-score failure rate. For each ensemble size, the squares denote the mean and the error bars

indicate one standard deviation of uncertainty. As expected, as the ensemble size increases, the false positive rate decreases

and the range of uncertainty shrinks. However, increasing the ensemble size has diminishing returns; the improvement in false

positive rate when using 20 instead of 10 members is much greater than the improvement gained by using 60 instead of 50

members. We choose an ensemble size of 40 as improvement beyond that is marginal and we balance a low false positive rate15

with keeping the cost of the ensemble generation low.

6 Additional discussion: scope and limitations

The purpose of POP-ECT is to test for statistical consistency with an established ensemble, and its main application is to

identify potential errors introduced during the CESM-POP development cycle, such as porting to a new machine architecture,

optimizing the code, changing compilers, or minor modifications to the machine hardware or software stack. We note that20

POP-ECT has not been designed for scientific exploration, and cannot test for "climate consistency" of low-frequency mode

ocean events. Indeed, many other works emphasize that the ENSO and low-frequency modes do not meet the statistical consis-

tency as defined here. A well-known example for the CESM framework is the CESM Large Ensemble Project (LENS) which

perturbs SST at O(10−12) round-off level and takes advantage of this inconsistency driven by the small initial differences

to establish the large ensemble bases (Kay et al., 2015). In fact, because our purpose here and in Baker et al. (2015) is not to25

evaluate the climate consistency in the coupled climate production simulation but to identify potential errors induced during the

software development lifecycle, our design for POP-ECT minimizes the natural variability introduced by the surface bound-

ary conditions and other potential forcing by using the climatological data-driven forcing. ENSO or low-frequency variability

simulations will fail the POP-ECT if coupled simulations are conducted because of the chaotic behaviors in the atmosphere

model.30

As noted in Sect. 3.1, the current test criteria setup is resolution dependent, and it is not obvious that the same criteria

would be appropriate for tenth degree resolution, for example. This same comment applies to CAM-ECT as well. That said,

because the tool is specifically intended to verify modifications that are intended to result in a consistent climate, a single test
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configuration will be sufficient in most cases. One cannot hope to test every possible configuration and resolution, but an error

in the software or hardware will likely manifest itself regardless of the configuration. If, however, one made a code change that

only affected high resolutions, then POP-ECT with a low resolution would not catch such an error. We would argue, though,

that such testing should be done in the context of software unit testing, however, not via this ensemble statistical consistency

test.5

7 Conclusions and Future Work

Because the CESM-POP ocean model is widely-used and critical to many climate simulations, assuring its quality is of

paramount importance. However, the chaotic nature of ocean dynamics often leads to simulation results that are not identical in

the presence of minor differences, such as a change in processor core count for the simulation. Therefore, the ability to easily

determine whether differences in model results are statistically significant is important to both climate scientists and model10

developers. The ensemble methodology developed for evaluating consistency with atmospheric data, CAM-ECT, was not ap-

propriate for ocean simulation data based on its differing characteristics. Therefore, we developed a new ocean model-specific

methodology for statistical consistency testing, POP-ECT, that allows for the subjective detection of statistically significant

changes in CESM-POP. Together with the new methodology, using an appropriately-sized ensemble is critical as well. Our

experiments indicate the appropriateness of the new approach for detecting differences in the model ocean state. The addition15

of POP-ECT to the CESM-ECT suite of tools has greatly enhanced the capability to ensure quality CESM simulations in the

midst of the on-going state of CESM development and continually evolving hardware and software environments.

We plan to extend this work in a number of ways. First, the existing spatial approach lends itself to the examination of

regional ocean diagnostics. For example, named oceans could be identified individually as the source of failure if the global

test fails. Enabling the move from coarse- to fine-grain diagnostics would facilitate determining the root cause of an error or20

difference. Second, we plan to extend the evaluation of the effects of data compression on climate data in Baker et al. (2014) to

ocean model data and will use the testing methodology presented here to evaluate the impact. The ability to determine whether

changes in the ocean state are statistically significant or not due to data loss during compression is critical to the acceptance of

compression as a tool to reduce data volumes for ocean simulation data.

8 Code availability25

The CESM-ECT Python tools (pyCECT v2.0) can be obtained independently of CESM from NCAR’s public git repository

(https://github.com/NCAR/PyCECT/releases). The version of CESM used for our experiments, CESM 1.2.2, is available at

http://www.cesm.ucar.edu/models/cesm1.2. The CESM-ECT software tools are also included in the CESM public releases,

with the POP-ECT addition available starting with the CESM 2.0 release series. CESM-POP simulation data is available from

the corresponding author upon request.30
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Figure 1. Monthly Root Mean Square Error (RMSE) of temperature for experiments with different barotropic solver convergence tolerances.

Note that this is a subset of Fig. 12 in Hu et al. (2015).
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Figure 2. Monthly Root Mean Square Z-score (RMSZ) of temperature with respect to an ensemble (denoted by yellow) for experiments with

barotropic different convergence tolerances. Note that this is subset of Fig. 13 in Hu et al. (2015).
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Figure 3. The ensemble distribution for the standard deviation of sea surface temperature (SST) at months 1, 12, 24, and 36.
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Figure 4. Response surfaces for Z-score of temperature (TEMP) over time (monthly) and Z-score tolerance. Each subplot represents a

different barotropic solver convergence tolerance (labeled above). The color bar indicates the percentage of grid points with a Z-score below

the Z-score tolerance (on the y-axis).
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Figure 5. Response surface for Z-score of sea surface height (SSH) over time (monthly) and Z-score tolerance. Each subplot represents a

different barotropic solver convergence tolerance (labeled above). The color bar indicates the percentage of grid points with a Z-score below

the Z-score tolerance (on the y-axis).
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Figure 6. Percentage of grid points with Z-scores for temperature (TEMP) and sea surface height (SSH) that exceed the 3.0 tolerance for

simulations with various barotropic solver convergence tolerances.
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Figure 7. Percentage of grid points with Z-scores for temperature (TEMP) that exceed the 3.0 tolerance for simulations with various numbers

of processor cores. (Note that the left and right subplots contain the same information, with different scales for the y-axis.)
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Figure 8. Response surfaces for Z-score of temperature (TEMP) over time (monthly) and Z-score threshold. The top two subplots represent

two different processor core layouts. The bottom left has a tracer mixing coefficient for convective instability that is 10 times larger than the

original (100000.0), and the bottom right uses a different tracer advection scheme (Lax-Wendroff scheme with 1D flux limiters). The color

bar indicates the percentage of grid points with a Z-score below the Z-score tolerance (on the y-axis).
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Figure 9. Response surfaces for Z-score of sea surface height (SSH) over time (monthly) and Z-score threshold. The top two subplots

represent two different processor core layouts. The bottom left has a tracer mixing coefficient for convective instability 10 times larger than

the original (100000.0), and the bottom right uses a different tracer advection scheme (Lax-Wendroff scheme with 1D flux limiters). The

color bar indicates the percentage of grid points with a Z-score below the Z-score tolerance (on the y-axis).
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Figure 10. Percentage of grid points with Z-scores for temperature (TEMP) and sea surface height (SSH) that exceed the 3.0 threshold for

simulations with an alternative tracer advection scheme (lw_lim) and several tracer mixing coefficients for convective instability.
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Figure 11. Z-score of sea surface temperature (SST) at month 12 for the original (default) case, a 384 processor core case, a case with a

10 times larger tracer mixing coefficient for convective instability (100000.0), and a case with an alternate tracer advection scheme (Lax-

Wendroff scheme with 1D flux limiters).
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Table 1. Z-score passing rate (ZPR) for POP-ECT with default parameters tC = 12, tolZ = 3.0, and minZPR = 0.9 for each of the 5

diagnostic variables (described in Section 3.1). Note that the top 7 experiments all use NCAR’s Yellowstone machine.

Experiment POP-ECT UVEL VVEL TEMP SALT SSH

result Z-score passing rate

Intel 13.1.2 -O0 PASS 0.988 0.988 0.989 0.992 0.992

Intel 13.1.2 -O3 PASS 0.995 0.995 0.994 0.994 0.996

Intel 15.0.0 -O2 PASS 0.988 0.988 0.989 0.992 0.992

Intel 16.0.2 -O2 PASS 0.993 0.993 0.993 0.994 0.995

GNU 14.8.0 PASS 0.993 0.994 0.994 0.996 0.992

PGI 13.9 FAIL 0.073 0.088 0.004 0.006 0.002

PGI 14.7 PASS 0.995 0.995 0.994 0.995 0.996

Edison machine (NERSC): Intel 16.0.0.109 PASS 0.995 0.995 0.994 0.995 0.996

Cori machine (NERSC): Intel 16.0.0.109 PASS 0.993 0.995 0.994 0.996 0.997
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Figure 12. Differences in the top-level zonal velocity (UVEL) in cm/s at month 12. The top plot shows the differences between the GNU 14.8

and default Intel simulation ouput. The lower plot shows the differences between PGI 13.9 and the default Intel 13.1.2 simulation outputs.

Note that the min, max, and mean data values for UVEL for the default Intel 13.1.2 simulations at month 12 (top-level) are -80.9, 77.0,

and -0.8 cm/s, respectively. For comparison, the min, max, and mean data values for UVEL are -87.9, 69.8 and -0.9 cm/s for the PGI 13.9

simulation data.
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Figure 13. The distributions of experimental failure rates based on 1000 tests for variables temperature (TEMP) and sea surface height

(SSH). For each ensemble size, the green bars indicate the maximum and minimum values obtained, and the red boxes indicate the mean.

31


