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Abstract. An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is de-

scribed. This technique is designed to generate very high-quality staggered Voronoi/Delaunay meshes appropriate for general

circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather

prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality

unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associ-5

ated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique

allows for the generation of very high-quality unstructured triangulations, satisfying a-priori bounds on element size and shape.

Grid-quality is further improved through the application of hill-climbing type optimisation techniques. Overall, the algorithm

is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low

computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale10

general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with con-

temporary unstructured C-grid type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The

use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type studies

is discussed in detail.

Keywords. Grid-generation; Frontal-Delaunay refinement; Voronoi tessellation; Grid-optimisation; Geophysical fluid dynam-15

ics; Ocean modelling; Atmospheric modelling; Numerical weather predication; Model for Prediction Across Scales (MPAS)

1 Introduction

The development of atmospheric and oceanic general circulation models based on unstructured numerical discretisation

schemes is an emerging area of research. This trend necessitates the development of unstructured grid-generation algorithms

designed to produce very high-resolution, guaranteed-quality unstructured triangular and polygonal meshes that satisfy non-20

uniform mesh-spacing distributions and embedded geometrical constraints. This study investigates the applicability of a re-

*A short version of this paper appears in the proceedings of the 24th International Meshing Roundtable (Engwirda, 2015).
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Figure 1. Conventional semi-structured meshing for the sphere, showing a regular cubed-sphere type grid (left), and a regular icosahedral

class grid (right). Both grids were generated using equivalent target mean edge lengths, and are coloured according to mean topographic

height at grid-cell centres. Topography is drawn using an exaggerated scale, with elevation from the reference geoid amplified by a factor of

20 in both cases.

cently developed surface meshing algorithm (Engwirda and Ivers, 2016; Engwirda, 2016) based on restricted Frontal-Delaunay

refinement and hill-climbing type optimisation for this task.

1.1 Semi-structured grids

While simple structured grid types for the sphere can be obtained by assembling a uniform discretisation in spherical coordi-

nates, the resulting lat-lon grid is often inappropriate for numerical simulation, due to the presence of strong grid-singularities5

at the two poles. Such features manifest as local distortions in grid-quality, consisting of regions of highly distorted quadrilat-

eral grid-cells. These low-quality elements can lead to a number of undesirable numerical effects — imposing restrictions on

model time-step and stability, and compromising local spatial accuracy. As a result, a majority of current generation general

circulation models are instead based on semi-structured quadrilateral discretisation schemes, including the cubed-sphere (Ad-

croft et al., 2004; Marshall et al., 1997; Putman and Lin, 2007) and tri-polar type configurations (Murray, 1996; Madec et al.,10

2015; Bleck, 2002).

In the cubed-sphere framework, the spherical surface is decomposed into a cube-like topology, with each of the six quadri-

lateral faces discretised as a structured curvilinear grid. In such an arrangement, the two strong grid-singularities of the lat-lon

configuration are replaced by eight weak discontinuities at the cube corners, leading to significant improvements in numerical
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performance. Putman and Lin (2007) present detailed discussions of techniques for the generation and optimisation of cube-

sphere type grids. A regular gnomonic-type cubed-sphere grid is illustrated in Figure 1a. In the tri-polar grid, the present-day

continental configuration is exploited to bury the singularities associated with a three-way polar decomposition of the sphere

outside of the ocean mask. The resulting numerically-active subset of the grid is well-conditioned as a result. While such con-

figurations are a popular choice for models designed for present-day Earth-based ocean studies, the generality of these methods5

is clearly limited. In this study, we instead pursue the development of more general-purpose techniques, applicable for both

ocean and atmospheric modelling in general planetary, present-day and paleo-Earth environments.

In addition to the standard cubed-sphere and tri-polar type configurations, a second class of semi-structured spherical grid

can be constructed through icosahedral-type decompositions (Heikes and Randall, 1995; Randall et al., 2002). In such cases,

the primary grid is defined as a regular spherical triangulation, obtained through recursive bisection of the icosahedral config-10

uration. Additionally, a staggered polygonal dual grid, consisting of hexagonal and pentagonal cells, is often used as a basis

for finite-volume type numerical schemes. This geometrical duality is an example of the locally-orthogonal Delaunay/Voronoi

type grid staggering that forms the basis of this paper. Icosahedral-type grids provide a near-perfect tessellation of the sphere —

free of topological discontinuities and/or geometric irregularity. Such methods are applicable to both atmospheric and oceanic

type simulations. A regular icosahedral-class grid is illustrated in Figure 1b.15

1.2 Unstructured grids

While the semi-structured grids described previously each provide effective frameworks for uniform resolution global simu-

lation, the development of multi-resolution modelling environments requires alternative techniques. A range of new general

circulation models, including the Finite Element Sea Ice-Ocean Model (FESOM) (Wang et al., 2014), the Finite Volume

Community Ocean Model (FVCOM) (Chen et al., 2003, 2007; Lai et al., 2010), the Stanford Unstructured Non-hydrostatic20

Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS) (Fringer et al., 2006; Vitousek and Fringer, 2014), and the

Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM) (Bernard et al., 2007; Comblen et al., 2009) are based on semi-

structured triangular grids, with the horizontal directions discretised according to an unstructured spherical triangulation, and

the vertical direction represented as a stack of locally structured layers. The Model for Predication Across Scales (MPAS) (Ska-

marock et al., 2012; Ringler et al., 2013, 2008) adopts a similar arrangement, except that a locally-orthogonal unstructured25

discretisation is adopted, consisting of both a Spherical Voronoi Tessellation (SVT) and its dual Delaunay triangulation. The

use of fully unstructured representations, based on general tetrahedral and/or polyhedral grids, are also under investigation in

the Fluidity framework (Ford et al., 2004a, b; Pain et al., 2005; Piggott et al., 2008). Such models all impose different require-

ments on the quality of the underlying unstructured grids, with some models, including FESOM, SLIM and Fluidity, offering

additionally flexibility. In all cases though, the performance of the numerical simulation can be expected to improve with30

increased grid-quality — encouraging the search for optimised grid-generation algorithms. A full discussion of grid-quality

constraints for general circulation modelling is presented in Section 2.

Existing approaches for unstructured grid-generation on spherical geometries have focused on a number of techniques, in-

cluding: (i) the use of iterative, optimisation-type algorithms designed to construct Spherical Centroidal Voronoi Tessellations
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(SCVT’s) (Jacobsen et al., 2013), and (ii) the adaptation of anisotropic two-dimensional meshing techniques (Lambrechts

et al., 2008) that build grids in associated parametric spaces. The MPI-SCVT algorithm (Jacobsen et al., 2013) is a massively

parallel implementation of iterative Lloyd-type smoothing (Du et al., 1999) for the construction of SVCT’s for use in the

MPAS framework. In this approach, a set of vertices are distributed over the spherical surface and iteratively smoothed until

a high-quality Voronoi tessellation is obtained. Specifically, each iteration repositions vertices to the centroids of their asso-5

ciated Voronoi cells and updates the topology of the underlying spherical Delaunay triangulation. While such an approach

typically leads to the generation of high-quality centroidal Voronoi tessellations on the sphere (SCVT’s), the algorithm does

not provide theoretical guarantees on minimum element quality, and often requires significant computational effort to achieve

convergence. Additionally, current implementations of the MPI-SCVT algorithm do not provide a mechanism to constrain the

grid to embedded features, such as coastal boundaries.10

Lambrechts et al. (2008) present an unstructured spherical triangulation framework using the general-purpose grid-

generation package Gmsh (Geuzaine and Remacle, 2009). In this work, unstructured spherical triangulations are generated

for the world ocean using a parametric meshing approach. Specifically, a triangulation of the spherical surface is generated

by mapping the full domain (including coastlines) on to an associated two-dimensional parametric space via stereographic

projection. Importantly, as a result of the projection, the grids constructed in parametric space must be highly anisotropic, such15

that a well-shaped, isotropic triangulation is induced on the sphere. A range of existing two-dimensional anisotropic meshing

algorithms are investigated, including Delaunay-refinement, advancing-front, and adaptation-type approaches. In particular,

the algorithm is designed to ensure a faithful representation of complex coastal boundary conditions. While a detailed model

of such constraints is often neglected in global simulations, resolution of these features is a key factor for regional and coastal

models. Several algorithms support the generation of unstructured two-dimensional grids for such domains, including the20

ADmesh package (Conroy et al., 2012) and the Stomel library (Holleman et al., 2013).

The current study explores the development of a new algorithm for the generation of high-resolution, guaranteed-quality

spheroidal Delaunay triangulations and associated Voronoi tessellations — appropriate for a range of unstructured-grid type

general circulation models. In this work, meshes are generated on the spheroidal surface directly, without need for local param-

eterisation or projection. Such an approach will be shown to exhibit significant flexibility — immune to issues of coordinate25

singularity and/or continental configuration. The applicability of this approach to grid-generation for imperfect spheres, includ-

ing oblate spheroids and general ellipsoidal surfaces is also explored. Overall, significant effort is invested to develop techniques

designed to produce very high-quality multi-resolution grids appropriate for contemporary unstructured C-grid type models,

such as the MPAS framework. The paper is organised as follows: an overview of grid-generation for general circulation mod-

elling is presented in Section 2, outlining various constraints and minimum requirements on grid-quality. A description of the30

Frontal-Delaunay refinement and hill-climbing type optimisation algorithms is given in Sections 3 and 4. A set of uniform and

non-uniform grids appropriate for high-resolution, multi-scale general circulation modelling are presented Section 5, alongside

an analysis of computational performance and optimality. Avenues for future work are outlined in Section 6.
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Figure 2. Construction of the staggered surface Voronoi control-volumes, illustrating: (left) locally-orthogonal Voronoi/Delaunay staggering,

and (right) an associated unstructured C-grid type numerical discretisation scheme, as per the MPAS model. The formulation is a combination

of conservative cell-centred tracer quantities ψ̄i, edge-centred normal velocity components (u · n̂)j , and auxiliary vertex-centred vorticity

variables ξk.

2 Grid-generation for general-circulation modelling

Numerical formulations for large-scale atmospheric and/or oceanic general circulation modelling are often based on a staggered

grid configuration, with quantities such as fluid pressure, geopotential, and density discretised using a primary control-volume,

and the fluid velocity field and vorticity distribution represented at secondary, spatially distinct grid-points. In the context of

standard structured grid types, various staggered arrangements are described by the well-known Arakawa schemes (Arakawa5

and Lamb, 1977).

The development of general circulation models based on unstructured grid types is an emerging area of research, and,

as a result, a variety of numerical formulations are currently under investigation. In this study, the development of locally-

orthogonal grids appropriate for staggered unstructured C-grid type numerical schemes are pursued, as these methods are

thought to represent the most logical extension of the conventional structured Arakawa-type techniques to the unstructured10

setting. Such formulations require that grids satisfy a local-orthogonality constraint, with adjacent grid-cell edges in the primary

and secondary control-volumes required to be mutually perpendicular. In the unstructured setting, it is known that the Delaunay

triangulation and Voronoi tessellation constitute a locally-orthogonal staggered dual, leading to a natural framework for the

construction of such unstructured meshes.

Consisting of a set of (convex) polygonal grid-cells centred on each vertex in the underlying triangulation, the surface15

Voronoi diagram Vor |Σ(X) obeys a number of local orthogonality constraints. Specifically, grid-cell edges in the Voronoi
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Figure 3. Comparison of well-centred and poorly-staggered Voronoi/Delaunay dual grids, from left to right, respectively. In the well-centred

configuration, each vertex of the Voronoi polygon lies within the interior of its associated Delaunay triangle. A conservative computation of

the vertex-centred vorticity variables can therefore be achieved using the three velocity components adjacent to each circumcentre. In the

poorly-staggered configuration, one Voronoi vertex lies outside its associated triangle (shaded). The associated Voronoi and Delaunay edges

do not intersect as a result, and the triangle-based vorticity reconstruction is no longer valid. Note that the quality of the triangulation here is

not pathological, with all angles bounded below θf ≤ 120◦. The construction of fully well-centred grids can be seen as a difficult problem

as a result, requiring the assembly of very high-quality Delaunay triangulations.

tessellation are guaranteed to be perpendicular to their associated edges in the underlying Delaunay triangulation, passing

through the Delaunay-edge midpoints. Additionally, in the case of perfectly regular and centroidal tessellations, the Delaunay-

edges are guaranteed to pass through the midpoints of their associated Voronoi duals. Voronoi grid-cells are formed as the

convex-hull of the incident element circumcentres associated with the set of surface triangles adjacent to each vertex. Example

Voronoi/Delaunay type unstructured grid staggering is illustrated in Figure 2.5

While detailed comparisons of particular numerical discretisation schemes lie outside the scope of the current study, brief

comments regarding the benefits of locally-orthogonal grid-staggering arrangements are made. Pursuing an unstructured vari-

ant of the widely-used Arakawa C-grid, the placement of fluid pressure, geopotential and density degrees-of-freedom within the

primary Voronoi control-volumes, and orthogonal velocity vectors on Delaunay-edges achieves a similar configuration. Such

an arrangement facilitates construction of a standard conservative finite-volume type scheme for the transport of fluid proper-10

ties and a mimetic class (Lipnikov et al., 2014; Bochev and Hyman, 2006) finite-difference formulation for the evolution of

velocity components. Additionally, exploiting alignment with Delaunay-edges, a conservative evaluation of the fluid vorticity

can be made on the staggered Delaunay triangles. Overall, this scheme is known to posses a variety of desirable conservation

properties, conserving mass, potential vorticity and enstrophy, and preserving geostrophic balance. This unstructured C-grid

scheme is currently employed in the Model for Prediction Across Scales (MPAS) for both atmospheric and oceanic modelling15

(Skamarock et al., 2012; Ringler et al., 2013, 2010). See Figure 2 for additional details.
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While numerically elegant, such unstructured C-grid schemes impose a heavy-burden on the quality of the underlying un-

structured grid, requiring not only that grids be locally-orthogonal, but also well-centred and mutually centroidal. The well-

centred-ness and centroidal-ness of an unstructured grid are constraints related to the nature of the staggering between the

primary and secondary grid-cells. Specifically, a grid is well-centred when all dual Voronoi vertices lie within the interior of

their associated Delaunay triangles. Such a constraint guarantees that adjacent Delaunay and Voronoi edges intersect, and, in5

the context of the unstructured C-grid scheme described previously, guarantees that a consistent stencil exists for the recon-

struction of the discrete vorticity variable. In practice, the construction of well-centred grids is known to be particularly onerous

(VanderZee et al., 2008; Vanderzee et al., 2010), requiring that the triangulation consist of all-acute elements. See Figure 3 for

additional detail.

Unstructured grids are centroidal when their primary and secondary vertices lie at the centres-of-mass of their associated10

dual grid-cells, with the vertices of the Voronoi polygons lying at the centroids of the Delaunay triangles and visa-versa. Such

a condition is effectively an implicit constraint on the regularity of the grid, with an increase in the centroidal-ness of a grid

associated with improvements in the shape of its Delaunay triangles and Voronoi polygons. Centroidal grids typically lead

to high-quality numerical discretisations, with grids containing near-perfect element configurations achieving optimal conver-

gence rates. The unstructured C-grid scheme outlined previously is known to achieve fully second-order accurate convergence15

when applied to centroidal Voronoi grids (Ringler et al., 2010).

While a number of unstructured grid-generation algorithms currently exist, as outlined in Section 1, I am not aware of

any that are successful in generating the very high-quality locally-orthogonal, well-centred and centroidal grids required by

unstructured C-grid type general circulation models. As a result, throughout the remainder of this paper, the development of

methods for the generation of such staggered Delaunay/Voronoi tessellations is pursued in detail.20

2.1 Grid-quality metrics

Before moving on to a detailed description of the grid-generation algorithm itself, a number of mesh-quality metrics are first

introduced.

Definition 1. (radius-edge ratio) Given a surface triangle fi ∈Del |Σ(X), its radius-edge ratio, ρ(fi), is given by

ρ(fi) =
ri
‖emin‖

, (1)25

where ri is the radius of the circumscribing ball associated with fi and ‖emin‖ is the length of its shortest edge.

The radius-edge ratio is a measure of element shape-quality. It achieves a minimum, ρ(fi) = 1/
√

3 for equilateral triangles

and increases toward +∞ as elements tend toward degeneracy. The radius-edge ratio is directly related to the minimum plane-

angle θmin between adjacent edges in the triangulation, such that ρ(fi) = 1
2 (sin(θmin))−1. Due to the summation of angles in a

triangle, given a minimum angle θmin the largest angle θmax is also clearly bounded, such that θmax ≤ π− 2θmin.30

Definition 2. (area-length ratio) Given a surface triangle fi ∈Del |Σ(X), its area-length ratio, a(fi), is given by

a(fi) =
4
√

3

3

Af
‖erms‖2

, (2)
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where Af is the signed-area of fi and ‖erms‖ is the root-mean-square edge length.

The area-length ratio is a robust, scalar measure of element shape-quality, and is typically normalised to achieve a score

of +1 for ideal elements. The area-length ratio decreases with increasing distortion, achieving a score of +0 for degenerate

elements and −1 for tangled elements with reversed orientation.

Definition 3. (relative edge-length) Given an edge in the surface tessellation ej ∈Del |Σ(X), its relative edge-length, hr(ej),5

is given by

hr(ej) =
‖ej‖
h̄(xm)

, (3)

where ‖ej‖ is the length of the j-th edge and h̄(xm) is the value of the mesh-spacing function sampled at the edge midpoint.

The relative-length distribution hr(ej) is a measure of mesh-spacing conformance, expressing the ratio of actual-to-desired

edge-length for all edge-segments in Del |Σ(X). A value of hr(ej) = 1 indicates perfect mesh-spacing conformance.10

3 A restricted Frontal-Delaunay refinement algorithm for spheroidal surfaces

The task is to generate very high-resolution, guaranteed-quality unstructured Delaunay triangulations for planetary atmospheres

and/or oceans. These grids will form a baseline for the hill-climbing mesh-optimisation techniques presented in subsequent

sections. In addition to bounds on minimum element quality, these grids are also required to satisfy general non-uniform, user-

defined mesh-spacing constraints. In this work, the applicability of a recently developed Frontal-Delaunay surface meshing15

algorithm (Engwirda and Ivers, 2016; Engwirda, 2016) is investigated for this task.

An unstructured Delaunay triangulation of the reference spheroid associated with a general planetary geometry is sought. In

a general form, this reference surface can be expressed as an axis-aligned triaxial ellipsoid

3∑
i=1

(
xi
ri

)2

= 1 , (4)

where the xi’s are the Cartesian coordinates in a locally aligned coordinate system, and the scalars ri > 0 are its principal radii.20

Such a definition can be used to represent ellipsoidal surfaces in general position, based on the application of additional rigid-

body translations and rotations. Note that while grid-generation for global climate modelling is often restricted to spherical

surfaces, setting r1,2,3 = 6371km, this formulation supports mesh-generation on general spheroidal and ellipsoidal domains.

3.1 Preliminaries

In this work, attention is restricted to the generation of locally-orthogonal staggered unstructured grids, consisting of Delaunay25

triangulations and their associated Voronoi duals. A full account of such structures is not presented here, instead, the reader is

referred to the detailed theoretical exposition presented in, for example, Cheng et al. (2013).

The Delaunay triangulation Del(X) associated with a set of points X ∈ Rd is characterised by the so-called empty-circle

criterion — requiring that the set of circumscribing spheres B(ci, ri) associated with each Delaunay triangle τi ∈Del(X) be
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Figure 4. Illustration of the geometrical predicates used to define the restricted Delaunay surface triangules fi ∈Del |Σ(X), showing details

of the intersecting Voronoi edge ve ∈Vor(X) associated with the surface triangle fi ∈Del |Σ(X) and its associated surface-ball B(ci, ri).

Note that the full three-dimensional Delaunay tessellation Del(X) is a tetrahedral complex that fills the interior of the spheroid.

empty of all points other than its own vertices. It is well known that for tessellations restricted to two-dimensional manifolds,

the Delaunay triangulation leads to a maximisation of the minimum enclosed angle in the grid (Cheng et al., 2013). Such

behaviour is clearly beneficial when seeking to construct high quality triangular meshes.

The Voronoi tessellation Vor(X) is the so-called geometric-dual associated with the Delaunay triangulation, consisting

of a set of convex polygonal cells formed by connecting the centres of adjacent circumscribing balls — the so-called ele-5

ment circumcentres ci’s. The Voronoi tessellation represents a closest-point map for the points in X , with each Voronoi cell

vc ∈Vor(X) defining the convex region adjacent to a given vertex xi ∈X for which xi is the nearest point. Importantly, the

Voronoi/Delaunay grid staggering, defines a locally-orthogonal arrangement, in which grid-cell edges in the Voronoi tessella-

tion are orthogonal to adjacent edges in the underlying Delaunay triangulation.

3.2 Restricted Delaunay triangulation10

In this study, grid-generation is carried out on the surface of the spheroidal geometry directly by making use of so-called re-

stricted Delaunay mesh generation techniques. Specifically, given a reference surface Σ, grid-generation proceeds to discretise

the surface into a mesh of triangles. In the restricted Delaunay framework, a full-dimensional Delaunay triangulation Del(X)

(i.e. a tetrahedral tessellation) is maintained, with the surface triangulation represented as a subset of tetrahedral faces. The re-
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stricted Delaunay surface-complex is said to be embedded in Del(X) as a result. Use of this fully three-dimensional approach

elides any reliance on local parametric projections.

Definition 4. (restricted Delaunay tessellation) Let Σ be a smooth surface embedded in R3. Let Del(X) be a full-dimensional

Delaunay tetrahedralisation of a point-wise sample X ⊆ Σ and Vor(X) be the associated Voronoi tessellation. The restricted

Delaunay surface triangulation Del |Σ(X) is a sub-complex of Del(X) including any triangle fi ∈Del(X) associated with an5

intersecting Voronoi edge ve ∈Vor(X) where ve ∩Σ 6= ∅.

The development of restricted Delaunay techniques for general mesh-generation applications has been the subject of previous

research, and a detailed discussion of such concepts is not presented here as a result. The reader is referred to the original work

of Edelsbrunner and Shah (1997) or the detailed reviews presented in Cheng et al. (2013) for additional details and mathematical

background.10

In the context of this work, it is sufficient to note that the restricted Delaunay triangulation framework provides a convenient

mechanism to identify elements in the surface triangulation Del |Σ(X). In practice, implementation of this scheme requires

the definition of a single geometrical-predicate, designed to compute intersections between Voronoi edges and the underlying

surface. Triangles associated with non-empty intersections Vor |f (X)∩ 6= ∅ form part of the surface mesh. In this study, this

predicate is computed analytically, following standard spheroidal trigonometric manipulations, as detailed in Appendix A. See15

Figure 4 for detailed schematics.

3.3 Mesh-spacing functions

Local mesh density can be controlled via user-specified mesh-spacing functions h̄(x) : R3→ R+ that define the target edge-

length values over the surface Σ. In this work, mesh-spacing functions are specified as a discrete set of target values h̄i,j ,

defined on a simple background ‘lat-lon’ grid G. The continuous mesh-spacing function h̄(x) is reconstructed using bilinear20

interpolation. As will be illustrated in subsequent sections, such an approach provides support for a wide range of mesh-spacing

definitions, including distributions derived from high-resolution topographic data (Amante and Eakins, 2009) or solution-

adaptive metrics.

In order to generate high-quality grids, it is necessary to ensure that the imposed mesh-spacing function is sufficiently

smooth. Rather than requiring the user to accommodate such constraints, a Lipschitz smoothing process is adopted here.25

Following the work of Persson (2006), a gradient-limited mesh-spacing function h̄
′
(x) is constructed, by limiting the allowable

spatial fluctuation over each element in the background grid G. In this study, a scalar smoothing parameter g ∈ R+ is used to

limit variation, such that

h̄
′
(xi)≤ h̄

′
(xj) + g ·dist(xi, xj) , (5)

for all adjacent vertex pairs xi, xj in G. The gradient-limited mesh-spacing function h̄
′
(x) becomes more uniform as g→ 0. In30

this work, maximum gradient constraints are implemented following a fast-marching method, as described in Persson (2006).
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Algorithms for JIGSAW-GEO

Algorithm 1 Restricted Frontal-Delaunay Refinement

1: function DelFront(Σ, ρ̄, h̄(x),Del |Σ(X))

2: Place 12 vertices on the spheroidal surface Σ to
form a regular icosahedron. Initialise the full
Delaunay complex Del(X) and the restricted
surface triangulation Del |Σ(X).

3: while (∃BadTriangle(Del |Σ(X))) do

4: Find the worst bad frontal triangle in the
surface triangulation fi ← Del |Σ(X).

5: Call xi ← OffCentre(fi) to form the new
off-centre vertex xi, designed to eliminate
the bad triangle fi.

6: Push Del(X) ← xi and update the re-
stricted surface triangulation Del |Σ(X).

7: end while

8: return surface triangulation object Del |Σ(X).

9: end function

1: function BadTriangle(f)

2:

if (h (f) > h̄(xf )) return TRUE

if (ρ2(f) > ρ̄) return TRUE

else return FALSE

3: end function

1: function OffCentre(f,x)

2: Form the restricted triangle circumcentre
xc ← Vor |f (X) ∩ Σ and the associated sur-
face ball B = SDB(f).

3: Find the minimum length edge e in the triangle
f . Edge e is the frontal segment.

4: Place the size-optimal point xh along the arc
Vor |e(X) ∩ Σ to satisfy local spacing con-
straints h̄(x).

5: Place the shape-optimal point xθ along the arc
Vor |e(X) ∩ Σ to satisfy minimum angle con-
straints ρ(f) ≤ ρ̄.

6: Compute the distances dh = dist(xe,xh) and
dθ ← dist(xe,xθ), where xe is the midpoint of
the short edge e.

7: Set x to the point {xh,xθ} of minimum dis-
tance dj , such that dj ≥ 1

2
‖e‖. Fall-back to

x← xc if {xh,xθ} do not satisfy constraints.

8: return off-centre vertex x.

9: end function
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3.4 Restricted Frontal-Delaunay refinement

In this study, a high-quality triangular surface mesh is generated on the spheroidal reference surface (4) using a Frontal-

Delaunay variant of the conventional restricted Delaunay-refinement algorithm (Boissonnat and Oudot, 2003, 2005; Jamin

et al., 2015; Cheng et al., 2007, 2010). This technique is described by the author in detail in Engwirda and Ivers (2016);

Engwirda (2016) and differs from standard Delaunay-refinement approaches in terms of the strategies used for the placement5

of new Steiner vertices. Specifically, the Frontal-Delaunay algorithm employs a generalisation of various off-centre type point-

placement techniques (Rebay, 1993; Erten and Üngör, 2009), designed to position vertices such that that element-quality and

mesh-size constraints are satisfied in a locally-optimal fashion. Previous studies have shown that such an approach typically

leads to substantial improvements in mean element-quality and mesh smoothness.

While a variety of grid-generation algorithms for the surface meshing problem have been described previously (e.g. Frey and10

George, 2007; Rypl and Krysl, 1997; Schreiner et al., 2006; Löhner, 1996), the restricted Frontal-Delaunay method presented

here has been found to offer a unique combination of characteristics — combining the smooth, high quality grid-generation

capabilities of an advancing-front approach, with the theoretical robustness and provable guarantees associated with conven-

tional Delaunay-refinement techniques. Specifically, the Frontal-Delaunay approach presented here is known to generate grids

11



with very high mean element quality, bounded minimum and maximum angles, tight conformance to grid-spacing constraints,

and provable guarantees on topological consistency and convergence. A full description of the algorithm, including detailed

discussions of its theoretical foundations and proofs of worst-case grid-quality bounds, can be found in Engwirda and Ivers

(2016); Engwirda (2016).

Given a user-defined mesh-spacing function h̄(x) and an upper-bound on the element radius-edge ratios ρ̄≥ 1, the Frontal-5

Delaunay algorithm proceeds to sample the spheroidal surface Σ by refining any surface triangle that violates either the mesh-

spacing or element-quality constraints. The full algorithm is described in Algorithm 1, and detailed snap-shots of the refinement

process are shown in Figure 5. The surface is seeded with a set of twelve vertices to form a standard icosahedron. Refinement

then proceeds to insert a new Steiner vertex at the off-centre refinement point associated with each given element to be elim-

inated. Refinement continues until all constraints are satisfied. The refinement process is priority scheduled, with triangles10

fi ∈Del |Σ(X) ordered according to their radius-edge ratios ρ(fi). This ordering ensures that the element with the worst ratio

is refined at each iteration. Additionally, triangles are subject to a frontal filtering — requiring that a low-quality element be

adjacent to a converged triangle before being considered for refinement. This logic helps the algorithm mimic the behaviour of

advancing-front type algorithms, with new vertices and elements expanding from initial seeds. Upon termination, the resulting

surface triangulation is guaranteed to contain nicely shaped elements, satisfying both the radius-edge constraints ρ(fi)≤ ρ̄15

and mesh-spacing bounds h(fi)≤ h̄(xf ) for all surface triangles fi ∈Del |Σ(X) in the mesh. Setting ρ̄= 1 guarantees that

element angles are bounded, such that 30◦ ≤ θf ≤ 120◦, ensuring that the grid does not contain any highly distorted elements.

3.5 Off-centre point-placement

The performance of the Frontal-Delaunay algorithm hinges on the use of off-centre refinement rules — locally-optimal point-

placement strategies designed to create very high-quality vertex distributions. A set of candidate off-centre points are con-20

sidered at each new vertex insertion. Type I vertices, xc, are equivalent to conventional element circumcentres (positioned at

the centre of the associated surface balls), and are used to preserve global convergence. Type II vertices, xh, are so-called

size-optimal points, and are designed to satisfy grid-spacing constraints in a locally optimal fashion. Type III vertices, xθ, are

so-called shape-optimal points, and are designed to ensure minimum-angle bounds are satisfied in a worst-first manner. The

Type II and Type III strategies employed here can be seen as a generalisation of the two-dimensional off-centre techniques25

presented by Rebay (1993) and Erten and Üngör (2009), respectively. See Figure 6 for additional detail.

Given a low-quality triangle fi ∈Del |Σ(X), the Type II and Type III vertices xh and xθ are positioned along the intersec-

tion of an adjacent segment of the Voronoi complex and the spheroidal surface. This intersection Vor |e(X) ∩ Σ, defines a

frontal-curve inscribed on Σ — a locally-optimal geodesic segment on which to insert new vertices. Here, Vor |e(X) is the

polygonal face of the Voronoi complex associated with the short edge e0 ∈ fi. In the context of conventional advancing-front30

type methods, the edge e0 would denote the current frontal-segment about which vertex insertion occurs.

The points xh and xθ are positioned to form new candidate triangles about the frontal edge e0, such that local constraints are

satisfied optimally. The size-optimal point xh is positioned to adhere to local grid-spacing constraints h̄(x), with the altitude

of the new triangle candidate calculated to define correctly sized edges, such that ‖e1‖ ≤ h̄(m1) and ‖e2‖ ≤ h̄(m2), where

12



Figure 5. Progress of the Frontal-Delaunay refinement algorithm, clockwise from top-left. New vertices are inserted incrementally until

all constraints on element-shape and edge-length are satisfied globally. In contrast with standard advancing-front type grid-generation tech-

niques, new vertices are inserted according to a greedy priority-schedule. Grid-generation proceeds along a pseudo space-filling trajectory as

a result.

13



the mi’s are the edge midpoints. These constraints can be solved for an associated altitude

ah = min
(
a∗h,
√

3/2 h̄
)
, where: a∗h =

√
h̄2− 1

2‖e0‖2 , h̄= 1
2

(
h̄(m1) + h̄(m2)

)
(6)

Similarly, the shape-optimal point is positioned to adhere to minimum angle constraints, sliding the point xθ along the inscribed

curve Vor |e(X) ∩ Σ such that the new triangle candidate satisfies ρ≤ ρ̄. Setting ρ= ρ̄ leads to a solution for the associated

shape-optimal altitude5

aθ =
‖e0‖

2tan
(

1
2 θ̄
) , where: θ̄ = arcsin

(
1

2ρ̄

)
(7)

The position of the points xh and xθ is calculated by computing the intersection of balls of radius ah and aθ, centred at the

midpoint of the frontal edge e0 and the frontal curve Vor |e(X) ∩ Σ. This approach ensures that new vertices are positioned by

advancing a specified distance along the surface Σ in the frontal direction. For non-uniform h̄(x), expressions for the position

of the point xh are non-linear, with the altitude ah depending on an evaluation of the mesh-size function at the edge midpoints10

h̄(mi) and visa-versa. In practice, since h̄(x) is guaranteed to be sufficiently smooth, a simple iterative predictor-corrector

procedure is sufficient to solve these expressions approximately.

Given the set of candidate vertices {xc, xh, xθ}, the position of the refinement point x for the triangle fi is selected. A

worst-first strategy is adopted, choosing the point that satisfies local constraints in a greedy fashion. Specifically, the closest

point lying on the adjacent Voronoi segment Vor |e(X) and outside the neighbourhood of the frontal edge e0 is selected, with15

x =

 xj , if
(
dj ≤ dc and dj ≥ 1

2‖e0‖
)

xc, otherwise
, where: j = argmin(dh,dθ) . (8)

Here, dj = dist(xe,xj) are distances from the midpoint of the frontal edge e0 to the size- and shape-optimal points xh and xθ.

The cascading selection criteria (8) seeks a balance between local optimality and global convergence, smoothly degenerating

to a conventional circumcentre-based Delaunay-refinement strategy in limiting cases, while using locally optimal points where

possible. Specifically, these constraints guarantee that refinement points lie within a local safe region on the Voronoi complex20

— being positioned on an adjacent Voronoi segment and bound between the circumcentre of the element itself and the diametric

ball of the associated frontal edge. These constraints ensure that new points are never positioned too close to an existing vertex,

leading to provable guarantees on the performance of the algorithm. See previous work by the author (Engwirda and Ivers,

2016; Engwirda, 2016) for additional detail.

3.6 Additional remarks25

As a restricted Delaunay-refinement approach, a full three-dimensional Delaunay tetrahedralisation Del(X) is incremen-

tally maintained throughout the surface meshing phase, where X ∈ R3 is the set of vertices positioned on the surface of

the spheroidal geometry. The set of restricted surface triangles Del |Σ(X) that conform to the underlying spheroidal geometry

are expressed as a subset of the tetrahedral faces, such that Del |Σ(X)⊆Del(X). In an effort to minimise the expense asso-

ciated with maintaining the full-dimensional topological tessellation, an additional scaffolding vertex xs is initially inserted30
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Figure 6. A two-dimensional representation of the off-centre refinement strategies utilised for a given low-quality triangle fi (shaded),

illustrating (a) the frontal segment of the Voronoi diagram associated with the short edge e0 ∈ fi, (b) placement of the size-optimal vertex

xh such that local size constraints h̄(xf ) are enforced, and (c) placement of a shape-optimal vertex xθ such that the required radius-edge

ratio ρ̄ is satisfied.

at the centre of the spheroid. This has the effect of simplifying the resulting topological structure of the interior mesh, with

the resulting tetrahedral elements forming a simple wheel-like configuration, in which they emanate radially outward from the

central scaffolding vertex xs. See Figure 4 for additional detail.

As per Figure 5, an interesting characteristic of the Frontal-Delaunay algorithm described here relates to the refinement-

trajectory that is followed when inserting new vertices and triangles. Unlike standard Delaunay-refinement or advancing-front5

type methods, it can be seen that the algorithm adopts a space-filling curve type pattern, covering the surface in a fractal-like

configuration, before recursively filling in the gaps. Note that no explicit space-filling curve constraint has been implemented

here — this behaviour is simply an emergent property of the algorithm itself, due to interactions between the greedy priority

schedule, the frontal filtering and off-centre point-placement strategies. In practice, it has been found that this space-filling

type behaviour leads to the construction of very high-quality triangulations, typically exceeding the performance of standard10

advancing-front type schemes.

4 Hill-climbing mesh optimisation

While the spheroidal Delaunay grids generated using the Frontal-Delaunay refinement algorithm described in Section 3 are

guaranteed to be of very high-quality, producing triangulations with angles bounded between θf = 30 and θf = 120 degrees,

these tessellations can often be further improved through subsequent mesh-optimisation operations. Recalling that the con-15

struction of the well-centred grids appropriate for unstructured C-grid schemes require that maximum angles be bounded below

θf = 90◦, the application of such optimisation procedures can in fact be seen as a necessary component of the grid-generation

work-flow for such models.
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In the present work, grid-optimisation is realised as a coupled geometrical and topological optimisation task — seeking to

reposition vertices and update grid topology to maximise a given element-wise mesh-quality metric Qf (x). A hill-climbing

type optimisation strategy is pursued here, in which a locally-optimal solution is sought based on an initial grid configuration.

In this study, the grid is optimised according to the area-length quality metric (2.1), a robust scalar measure of grid-quality

that achieves a score of +1 for ‘perfect’ elements — decreasing toward zero with increasing levels of element distortion.5

Optimisation predicates are implemented in a so-called hill-climbing fashion (Freitag and Ollivier-Gooch, 1997; Klingner and

Shewchuk, 2008), with modifications to the grid accepted only if the local mesh-quality metrics are sufficiently improved.

Specifically, a worst-first strategy is adopted, in which each given optimisation predicate is required to improve the worst-case

quality associated with elements in the local subset being acted upon. Such a philosophy ensures that global mesh-quality is

increased monotonically as optimisation proceeds. Note that such behaviour is designed to maximise the minimum element10

quality metric in the grid, rather than improving a mean measure. This represents an important distinction when compared to

other iterative mesh-optimisation algorithms, such as Centroidal Voronoi Tessellation (CVT) type schemes (Jacobsen et al.,

2013), in which all nodes are typically adjusted simultaneously until a global convergence criterion is satisfied.

4.1 ‘Spring’-based mesh smoothing

Considering firstly the geometric optimality of the grid, a mesh-smoothing procedure is undertaken — seeking to reposition the15

nodes of the grid to improve element quality and mesh-spacing conformance. Following the work of Persson and Strang (2004),

a spring-based approach is pursued, in which edges in the Delaunay triangulation are treated as elastic-rods with a prescribed

natural length. Nodes are iteratively repositioned until a local equilibrium configuration is reached. See Algorithm 2 for full

details. In the original work of Persson, nodal positions are adjusted via a local time-stepping loop, with all nodes updated

concurrently under the action of explicit spring forces. In the current study, a non-iterative variant is employed, in which each20

node is repositioned one-by-one, such that constraints in each local neighbourhood are satisfied directly. Specifically, a given

node xi is repositioned as a weighted sum of contributions from incident edges

xn+1
i =

∑
wk(xni + ∆kvk)∑

wk
, where: vk = xni −xnj , ∆k =

h̄(xnk )− lk
lk

. (9)

Here, xni , x
n
j are the current positions of the two nodes associated with the k-th edge, lk is the edge length and h̄(xk) is the value

of the mesh-spacing function evaluated, at the edge midpoint. ∆k is the relative spring extension required to achieve equilibrium25

in the k-th edge. The scalars wk ∈ R+ are edge weights. Setting wk = 1 results in an unweighted scheme, consisting of simple

linear springs. In this study, the use of nonlinear weights, defined by settingwk = ∆2
k, was found to offer superior performance.

Noting that application of the spring-based operator (9) may move nodes away from the underlying spheroidal surface Σ,

an additional projection operator is introduced to ensure that the grid conforms to the surface geometry exactly. Following the

application of each spring-based adjustment (9), nodes are moved back onto the geometry via a closest-point projection.30

Consistent with the hill-climbing paradigm described previously, each nodal adjustment (9) is required to be validated before

being committed to the updated grid configuration. Specifically, nodal adjustments are accepted only if there is sufficient

improvement in the mesh-quality metrics associated with the set of adjacent elements. A sorted comparison of quality metrics
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Algorithm 2 Spring and gradient-based node-smoothing

1: function NodeSmooth(x,Del |Σ(X), Q̄)

2: if (min(Q(x)) ≥ Q̄) then

3: Call {v̂,∆} ← SpringVec(x,Del |Σ(X))
to form the spring-based search vector and
step-length.

4: else

5: Call {v̂,∆} ← AscentVec(x,Del |Σ(X))
to form the gradient-based search vector
and step-length.

6: end if

7: while (i ≤M) do

8: Set x′ ← proj |Σ(x+∆iv̂) to move the ver-
tex x along the search vector v̂ and project
onto the surface Σ.

9: if (Better(Q(x′), Q(x))) then

10: Set x← x′ and break.

11: end if

12: Step-length bisection ∆i+1 ← 1
2
∆i.

13: end while

14: end function

1: function SpringVec(x,Del |Σ(X), v̂,∆)

2: Scan edges adj. to x, calc. x′ ←
∑
we(x+∆ee)∑

we
,

where we ← ∆2
e and ∆e ← h(xe)−‖e‖

‖e‖ .

3: Set v← x′ − x, v̂← v
‖v‖ and ∆← ‖v‖.

4: return search vector v̂ and step-size ∆.

5: end function

1: function AscentVec(x,Del |Σ(X), v̂,∆)

2: Scan faces adj. to x and return the worst
adj. element f ← argmin(Qf (x)).

3: Compute the local gradient-ascent search vec-
tor v← ∂

∂x
(Qf (x)).

4: Solve Qf (x)+∆ v̂ · ∂
∂x

(Qf (x)) ≤ Q̃j(x) for the

initial step-size ∆, where Q̃j(x) is the quality
of the second-worst triangle adj. to x.

5: return search vector v̂ and step-size ∆.

6: end function

1: function Better(Q′, Q)

2: Sort the mesh-quality vectors Q′ and Q.

3: return FALSE if any Q′i < Qi, else TRUE.

4: end function

2

before and after nodal repositioning is performed, with nodal adjustments successful if grid-quality is improved in a worst-first

manner. This lexicographical quality comparison is consistent with the methodology employed in Klingner and Shewchuk

(2008).

4.2 Gradient-based mesh smoothing

While the spring-based mesh-smoothing operator described previously is effective in adjusting a grid to satisfy mesh-spacing5

constraints, and tends to improve grid-quality on average, it is not guaranteed to improve worst-case element quality metrics

in all cases. As such, an additional steepest-ascent type optimisation strategy is pursued (Freitag and Ollivier-Gooch, 1997),

in which nodal positions are adjusted using the local gradients of incident element quality functions. See Algorithm 2 for full

details. Specifically, a given node xi is repositioned along a local search-vector chosen to improve the quality of the worst

incident element10

xn+1
i = xni + ∆f v̂f , where: vf =

∂

∂x
(Qf (xi)) , f = argminj(Qj(xi)) . (10)
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Here, the index j is taken as a loop over the Delaunay triangles fj ∈Del |Σ(X) incident to the node xi. The scalar step-length

∆f ∈ R+ is computed via a line-search along the gradient ascent vector v̂f , and in this study, is taken as the first value found

that leads to a net improvement in the worst-case incident quality metricQf (xi). A simple bisection-type strategy is used in the

present work, iteratively testing ∆p
f =

(
1
2

)p
α until a successful nodal adjustment is found. Here p denotes the local line-search

iteration. The scalar length α ∈ R+ is determined as a solution to the first-order Taylor expansion5

Qf (xi) +α v̂f ·
∂

∂x
(Qf (xi))≤ Q̃j(xi) . (11)

The index j is again taken as a loop over the Delaunay triangles fj ∈Del |Σ(X) incident to the central node xi, with the quantity

Q̃j(xi) representing the second-lowest adjacent grid-quality score. This selection strategy (Freitag and Ollivier-Gooch, 1997)

is designed to compute an initial displacement α that will improve the worst element in the adjacent set until its quality is

equal that of its next best neighbour. Noting that such an expansion is only first-order accurate, the step-length is iteratively10

decreased using bisection. In this study, a limited line-search is employed, testing iterations p= {0,1, . . . ,5} until a successful

step is found. Consistent with the spring-based procedure described previously, a geometry-projection operator is implicitly

incorporated within each update (10), ensuring that nodes remain constrained to the spheroidal surface.

4.3 Topological ‘flips’

In addition to purely geometrical operations, general grid optimisation also requires that adjustments be made to the underlying15

mesh topology, such that the surface triangulation remains a valid Delaunay structure. While it is possible to simply re-compute

the full restricted Delaunay topology after each nodal position adjustment, such an approach carries significant computational

costs, especially when considering that a majority of nodal position updates involve small perturbations. In this work, an

alternative strategy is pursued, based on local element-wise transformations, known as topological flips.

For any given pair of adjacent surface triangles fi, fj ∈Del |Σ(X), a local re-triangulation can be achieved by flipping local20

connectivity about the shared edge xi, xj to instead form a new edge between the opposing vertices xa, xb. Such an operation

results in the deletion of the existing triangles fi, fj and the creation of a new pair f ′i , f
′
j . This operation is illustrated in

Figure 7a. In the present study, the iterative application of such edge-flipping operations is used to adjust the topology of the

surface triangulation, such that it remains Delaunay. Specifically, given a general, possibly non-Delaunay, surface triangulation

Tri |Σ(X), a cascade of edge-flips are used to achieve a valid restricted Delaunay surface tessellation Del |Σ(X). For each25

adjacent triangle pair fi, fj ∈ Tri |Σ(X) an edge-flip is undertaken if a local violation of the Delaunay criterion is detected.

New elements created by successful edge-flips are iteratively re-examined until no further modifications are necessary. This

approach follows the standard flip-based algorithms described in, for instance Lawson (1977); Cheng et al. (2013).

Given a triangle fi ∈ Tri |Σ(X), the local Delaunay criterion is violated if there exists a node xq /∈ fi interior to the cir-

cumscribing ball associated with the triangle fi. In this work, violations to the Delaunay criterion are detected by considering30

the restricted circumballs B(ci, ri) associated with each triangle fi ∈ Tri |Σ(X), where the ball-centre ci is a projection of

the planar element circumcentre onto the spheroidal surface Σ. Such constructions account for the curvature of the surface.

Given an adjacent triangle pair fi, fj ∈ Tri |Σ(X) an edge-flip is undertaken if either opposing vertex xa, xb lies within the
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Figure 7. Topological operations for grid optimsiation, showing (left) an edge-flip, (middle) an edge-contraction, and (c) an edge-refinement

operation. Grid configurations before and after each flip are shown in the upper and lower panels, respectively.

circumball associated with the adjacent triangle. To prevent issues associated with exact floating-point comparisons, a small

relative tolerance is incorporated. Specifically, nodes are required to penetrate the opposing circumball by a distance ε before

an edge-flip is undertaken, with ε= 1
2 (ri + rj)ε̄ and ε̄= 1× 10−10 in the current double-precision implementation.

4.4 Edge contraction

In some cases, grid-quality and mesh-spacing conformance can be improved through the use of so-called edge-contraction5

operations, whereby nodes are removed from the grid by collapsing certain edges. Given an edge ek ∈ Tri |Σ(X), a re-

triangulation of the local cavity Ci ⊆ Tri |Σ(X), formed by the set of triangles incident to the nodes xi, xj ∈ ek, can be achieved

by merging the nodes xi, xj at some midpoint along the edge ek. In addition to collapsing the edge ek, edge-contraction also

removes the two surface triangles fi, fj ∈ Tri |Σ(X) adjacent to ek, resulting in a new re-triangulation of the local cavity

C ′i ⊆ Tri |Σ(X). See Figure 7b for illustration. In the present work, nodes are merged to a mean position xn — taken as an10

average of the adjacent element circumcentres, such that xn = 1
|Ci|
∑

cj , where the cj’s are centres of the circumballs asso-

ciated with the adjacent surface triangles fj ∈ Ci. The mean position xn is projected onto the spheroidal surface Σ. While
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Algorithm 3 Hill-climbing grid optimisation

1: function Optimise(Σ, h̄(x),Del |Σ(X))

2: for (iouter ≤ Nouter) do

3: for (iinner ≤ Ninner) do

4: for (∀ nodes j ∈ X) do

5: Call NodeSmooth(xj , Del |Σ(X))
to improve geometric distribution of
triangle vertices.

6: end for

7: end for

8: Call MergeNode(Del |Σ(X)) to collapse
any short edges.

9: Call SplitEdge(Del |Σ(X)) to refine any
long edges.

10: Call EdgeFlips(Del |Σ(X)) to restore grid
Delaunay-ness (i.e. local-orthogonality).

11: end for

12: return surface triangulation object Del |Σ(X).

13: end function

1: function EdgeFlips(X,Del |Σ(X))

2: for (∀ edges e ∈ Del |Σ(X)) do

3: Given the adj. triangle-pair C ← {fi, fj},
flip the common diagonal to re-triangulate
the cavity C ′.

4: if Better(Q(C ′), Q(C )), Del |Σ(X)← C ′.

5: end for

6: end function

1: function MergeNode(X,Del |Σ(X))

2: for (∀ edges e ∈ Del |Σ(X)) do

3: Form a local merge point x′ about the
edge e. Given xi, xj ∈ e, set x′ ←
proj |Σ( 1

|C |
∑

cf ), where C is the set of tri-
angles adj. to xi, xj and cf are the associ-
ated circumcentres.

4: Merge the vertices xi, xj ← x′, and re-
triangulate the cavity C ′ as a result.

5: if Better(Q(C ′), Q(C )), Del |Σ(X)← C ′.

6: end for

7: return updated X and Del |Σ(X).

8: end function

1: function SplitEdge(X,Del |Σ(X))

2: for (∀ edges e ∈ Del |Σ(X)) do

3: Form a local refinement point x′ about the
edge e. Given the two adj. triangles, C ←
{fi, fj}, set x′ equal to the circumcentre of
the lower quality element.

4: Append the new vertex X ← x′, and re-
triangulate the cavity C ′ as a result.

5: if Better(Q(C ′), Q(C )), Del |Σ(X)← C ′.

6: end for

7: return updated X and Del |Σ(X).

8: end function

3

such an approach is slightly more computationally intensive than use of the simple edge-midpoint, the local circumcentre-

based strategy has proved to be substantially more effective in practice. Consistent with the hill-climbing philosophy pursued

throughout this study, edge-contraction operations are only successful if there is sufficient improvement in the mesh-quality

metrics associated with the set of adjacent elements. As per previous discussions, edge-contraction is undertaken based on a

lexicographical comparison of the grid-quality vectors associated with the initial and final grid states Ci and C ′i , respectively.5

4.5 Edge refinement

Fulfilling the opposite role to edge-contraction, so-called edge-refinement operations seek to improve grid-quality and mesh-

spacing conformance through the addition of new nodes and elements. In the present study, a simplified refinement operation
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is utilised, in which a given edge ek ∈ Tri |Σ(X) is refined by placing a new node xn at the centre of the restricted circumball

B(ci, ri) associated with the lower quality adjacent triangle fi ∈ Tri |Σ(X). Insertion of the new node xn induces the re-

triangulation of a local cavity Ci ∈ Tri |Σ(X) — constructed by expanding about xn in a local greedy fashion. Starting from

the initial cavity Ci = {fi, fj} adjacent to the edge ek, additional elements are added in a breadth-first manner, with a new,

unvisited neighbouring element fk added to the cavity Ci if doing so will improve the worst-case element quality metric. The5

final cavity Ci is therefore a locally-optimal configuration. In practice, the iterative deepening of Ci typically convergences

in one or two iterations. See Figure 7c for illustration. As per the edge-contraction and node-smoothing operations described

previously, edge-refinement is implemented according to a hill-climbing type philosophy, with operations successful only if

there is sufficient improvement in local grid-quality. Consistent with previous discussions, a lexicographical comparison of the

grid-quality metrics associated with elements in the initial and final states Ci and C ′i is used to determine success.10

4.6 Optimisation schedule

The full grid optimisation procedure is realised as a combination of the various geometrical and topological operations de-

scribed previously, organised into a particular iterative optimisation schedule. See Algorithm 3 for full details. Each outer

iteration consists of a fixed set of operations: four node-smoothing passes, a single pass of edge refinement/contraction opera-

tions, and, finally, iterative edge-flipping to restore the Delaunay criterion. In this study, sixteen outer iterations are employed.15

Each node-smoothing pass is a composite operation, with the spring-based technique used to adjust nodes adjacent to high-

quality elements, and the gradient-ascent method used otherwise. Specifically, spring-based smoothing is used to adjust nodes

adjacent to elements with a minimum quality score of Q̄f ≥ 0.9375. Such thresholding ensures that the expensive gradient-

ascent type iteration is reserved for the worst elements in the grid. The optimisation schedule employed here is not based

on any rigorous theoretical derivation, but is simply a set of heuristic choices that have proven to be effective in practice.20

The application of multiple node-smoothing passes within an outer iteration containing subsequent topological, contraction

and refinement operations is consistent with the methodologies employed in, for instance Freitag and Ollivier-Gooch (1997);

Klingner and Shewchuk (2008).

5 Results & Discussions

The performance of the Frontal-Delaunay refinement and hill-climbing optimisation algorithms presented in Sections 3 and 425

was investigated experimentally, with the methods used to mesh a series of benchmark problems. The algorithm was imple-

mented in C++ and compiled as a 64-bit executable. The full algorithm has been implemented as a specialised variant of the

general-purpose JIGSAW meshing package, denoted JIGSAW-GEO, and is currently available online (Engwirda, 2017) or by

request from the author. All tests were completed on a Linux platform using a single core of an Intel i7 processor. Visualisation

and post-processing was completed using MATLAB.30
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Figure 8. Mesh-spacing functions h̄(x) for the regionally-refined North Atlantic and topographically-refined Southern Ocean grids. Mesh-

spacing is shown in km.
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5.1 Preliminaries

The JIGSAW-GEO algorithm was used to mesh a set of benchmark problems, suitable for various atmospheric and oceanic

general circulation problems. The UNIFORM-SPHERE test-case describes a fixed resolution meshing problem on the sphere,

suitable for uniformly resolved atmospheric and/or oceanic studies. The REGIONAL-ATLANTIC test-case describes a sim-

ple, regionally-refined grid for global ocean modelling, incorporating a high-resolution, eddy-permitting representation of the5

North Atlantic ocean basin. Lastly, the SOUTHERN-OCEAN test-case describes a multi-resolution, regionally-refined grid

for global ocean simulation, with a very high-resolution representation of the Southern Ocean and Antarctic regions. The

mesh-spacing function for this problem was designed using a combination of topographic gradients and regional-refinement.

The Voronoi/Delaunay grids for these test-cases are shown in Figures 9, 13, 14 and 16 with associated grid-quality statistics

presented in Figures 10, 12 and 15. The underlying mesh-spacing functions used to define the REGIONAL-ATLANTIC and10

SOUTHREN-OCEAN problems are shown in Figure 8.

In all test cases, limiting radius-edge ratios were specified, such that ρ̄f = 1.05. These constraints ensure that the minimum

enclosed angle in any triangle is θmin ≥ 28.4◦. For all test problems, detailed statistics on element quality are presented, in-

cluding histograms of element area-length ratios af , element-angles θf , and relative-edge-length hr. The element area-length

ratios are robust measures of element quality, where high-quality elements attain scores that approach unity. The relative15

edge-length metric is defined to be the ratio of the measured edge-length ‖e‖ to the target value h̄(xe), where xe is the edge

midpoint. Relative edge-lengths close to unity indicate tight conformance to the imposed mesh-spacing function. High-quality

surface triangles contain angles approaching 60◦. Histograms further highlight the minimum, maximum and mean values of

the relevant distributions as appropriate.

5.2 Uniform global grid20

The performance of the JIGSAW-GEO algorithm was first assessed using the UNIFORM-SPHERE test-case, seeking to build a

uniformly resolved, staggered Voronoi/Delaunay-type dual grid for general circulation modelling. Spatially uniform mesh-size

constraints were enforced, setting h̄(x) = 150km over the full sphere. The resulting grid is shown in Figure 9 and contains

83,072 Delaunay triangles and 41,538 Voronoi cells. Grid-quality metrics are presented in Figure 10, showing distributions

before and after the application of the grid-optimisation procedure.25

Overall, the high quality of the Voronoi/Delaunay grids presented in Figure 9 illustrates the effectiveness of the JIGSAW-

GEO algorithm. Based on visual inspection, it is clear that the grids achieve very high levels of geometric quality — being

absent of distorted grid-cell configurations and/or areas of over- or under-refinement. Focusing on the distribution of triangle

shape-quality explicitly, it is noted that very high levels of mesh regularity are achieved, with the vast majority of element area-

length scores tightly clustered about af = 1. Similarly, the distribution of element angles shows strong convergence around30

θf = 60◦, revealing most triangles to be near equilateral. Finally, analysis of the relative-length distributions show that edge-

lengths follow the imposed mesh-spacing constraints closely, with very tight clustering about hr = 1.
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Figure 9. A uniform resolution global grid, showing (left) the underlying spheroidal Delaunay triangulation, and (right) the associated

staggered Voronoi dual. 150km grid-spacing was specified globally. Topography is drawn using an exaggerated scale, with elevation from

the reference geoid amplified by a factor of 10.
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Figure 10. Mesh-quality metrics associated with the uniform resolution global grid, before (left) and after (right) the application of hill-

climbing mesh optimisation. Normalised histograms of element area-length ratio af , enclosed-angle θf and relative-length hr are illustrated,

with minimum, maximum and mean values annotated.
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The effect of the grid-optimisation procedure can be assessed by comparing the mesh-quality statistics presented in Fig-

ure 10. The application of mesh-optimisation is seen to be most pronounced at the tails of the distributions, showing that, as

expected, the hill-climbing type procedure is effective at improving the worst elements in the grid. Specifically, the minimum

area-length metric is improved from af = 0.67 to af = 0.94, and the distribution of element-wise angles is narrowed from

31◦ ≤ θf ≤ 112◦ to 44◦ ≤ θf ≤ 78◦. A slight broadening of the mean parts of the distributions is also evident, showing that5

in some cases, higher-quality elements are slightly compromised to facilitate improvements to their lower-quality neighbours.

This behaviour is consistent with the worst-first philosophy employed in this study.

Beyond improvements to standard grid-quality metrics, the impact of mesh-optimisation can be further understood by con-

sidering the so-called well-centredness of the resulting staggered Voronoi/Delaunay dual grid. Well-centred triangulations are

those for which all element circumcentres are located within their parent triangles, ensuring that the associated Voronoi cells10

are nicely-staggered with respect to the underlying triangulation as a result. Such a constraint is equivalent to requiring that all

Delaunay triangles are acute, such that θf ≤ 90◦. Further details are outlined in the discussion presented in Section 2.

Well-centred grids are highly desirable from a numerical perspective, allowing, for instance, the mimetic-type C-grid dis-

cretisation scheme employed in the MPAS framework to achieve optimal rates of convergence. Specifically, when a grid is

well-centred, it is guaranteed that associated edges in the staggered Voronoi and Delaunay cells intersect, ensuring that eval-15

uation of the element-wise transport and circulation terms can be accurately computed using compact numerical stencils. In

the case of perfectly-centred grids, such intersections occur at edge-midpoints — allowing a numerical scheme based on local

linear interpolants to achieve fully second-order accuracy.

The construction of well-centred grids is known to be a difficult problem, and the development of algorithms for their

generation is an ongoing area of research (VanderZee et al., 2008; Vanderzee et al., 2010). For the uniform resolution case20

studied here, it is clear that the hill-climbing type optimisation procedure is successful in generating a well-centred staggered

Voronoi/Delaunay dual grid, with all enclosed angles less than 77.9◦.

5.3 Regionally-refined North Atlantic grid

The multi-resolution capabilities of the JIGSAW-GEO algorithm were investigated in the REGIONAL-ATLANTIC test-case,

seeking to build a regionally-resolved, staggered Voronoi/Delaunay-type dual grid for high-resolution modelling of the North25

Atlantic ocean basin. Non-uniform mesh-size constraints were enforced, setting h̄(x) = 150km globally, with 15km eddy-

permitting mesh-spacing specified over the North Atlantic region. The resulting grid is shown in Figure 13 and contains

358,064 Delaunay triangles and 179,081 Voronoi cells. Grid-quality metrics are presented in Figure 12, showing distributions

before and after the application of the grid-optimisation procedure.

Consistent with results presented previously, a very high-quality Voronoi/Delaunay grid was generated for the REGIONAL-30

ATLANTIC problem, with each grid-quality metric tightly clustered about its optimal value, such that af → 1, θf → 60◦ and

hr→ 1. The effect of the grid-optimisation procedure can be assessed by comparing the mesh-quality statistics presented

in Figure 12. As per the uniform resolution test-case, mesh-optimisation appears to be most aggressive at the tails of the

distributions, acting to improve the worst elements in the grid. The minimum area-length metric is improved from af = 0.60
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Figure 11. A regionally-refined Voronoi-type grid of the North Atlantic region. Global coarse grid resolution is 150km, with a 15km eddy-

permitting grid-spacing specified over the Atlantic ocean basin. Topography is drawn using an exaggerated scale, with elevation from the

reference geoid amplified by a factor of 10.
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Figure 12. Mesh-quality metrics associated with the regionally-refined Voronoi-type grid of the North Atlantic region, before (left) and after

(right) the application of hill-climbing mesh optimisation. Normalised histograms of element area-length ratio af , enclosed-angle θf and

relative-length hr are illustrated, with minimum, maximum and mean values annotated.
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Figure 13. Detail of the regionally-refined Voronoi-type grid of the North Atlantic region. Global coarse grid resolution is 150km, with a

15km eddy-permitting grid-spacing specified over the Atlantic ocean basin. Topography is drawn using an exaggerated scale, with elevation

from the reference geoid amplified by a factor of 10.

to af = 0.94, and the distribution of element-wise angles is narrowed from 29◦ ≤ θf ≤ 120◦ to 44◦ ≤ θf ≤ 78◦. The resulting

optimised Voronoi/Delaunay staggered grid is also clearly well-centred, with all angles in the Delaunay trianglulation less than

78.2◦. Overall, grid-quality can be seen to achieve essentially the same levels of optimality as the uniform resolution test-

case, showing that the JIGSAW-GEO algorithm can be used to generate high-quality spatially-adaptive grids without obvious

degradation in mesh-quality.5

5.4 Multi-resolution Southern Ocean grid

The JIGSAW-GEO algorithm was then used to mesh the challenging SOUTHERN-OCEAN test-case, allowing its performance

for large-scale problems involving rapidly-varying mesh-spacing constraints to be analysed in detail. This test-case seeks to

build a multi-resolution, staggered Voronoi/Delaunay-type dual grid for regionally-refined ocean-modelling, with a particular

focus on resolution of the Antarctic Circumpolar Current (ACC), and adjacent Antarctic processes. Composite mesh-spacing10

constraints were enforced, consisting of a coarse global background resolution of 150km, with an eddy-permitting 15km

grid-spacing specified south of 32.5◦S. Additional topographic adaptation is also utilised in the southern annulus region, with

grid-resolution increased in regions of large bathymetric gradient. A minimum grid-spacing of 4km was specified. Topographic

gradients were computed using the high-resolution ETOPO1 Global Relief dataset (Amante and Eakins, 2009). The resulting

grid is shown in Figure 14, with additional detail shown in Figure 16. The grid contains 3,119,849 Delaunay triangles and15
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Figure 14. A multi-resolution Voronoi-type grid of the Southern Ocean. Global coarse grid resolution is 150km, with a 15km eddy-

permitting grid-spacing specified south of 32.5◦ S. Additional topographic adaptation is also utilised in the southern annulus region, with

grid-resolution increased in areas of large bathymetric gradient. Minimum grid-spacing is 4km. Topography is drawn using an exaggerated

scale, with elevation from the reference geoid amplified by a factor of 10.
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Figure 15. Mesh-quality metrics associated with the multi-resolution Voronoi-type grid of the Southern Ocean, before (left) and after (right)

the application of hill-climbing mesh optimisation. Normalised histograms of element area-length ratio af , enclosed-angle θf and relative-

length hr are illustrated, with minimum, maximum and mean values annotated.
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1,559,927 Voronoi cells. Associated grid-quality metrics are presented in Figure 15, showing distributions before and after the

application of the grid-optimisation procedure.

Consistent with the uniform resolution test-case presented previously, visual inspection of Figures 14 and 16 confirm that

the JIGSAW-GEO algorithm is capable of generating very high quality multi-resolution grids, containing a majority of near-

perfect Delaunay triangles and Voronoi cells. Additionally, it can be seen that grid resolution varies smoothly, even in regions of5

rapidly-fluctuating mesh-spacing constraints, as per the topographically induced refinement patterns shown in Figure 16. Anal-

ysis of the grid-quality metrics shown in Figure 15 shows that very high levels of mesh regularity are achieved, with element

area-length scores tightly clustered about af = 1 and element-angles showing strong convergence around θf = 60◦. Interest-

ingly, despite the complexity of the imposed mesh-spacing function, analysis of the relative-length distribution still shows

relatively tight conformance, with a sharp clustering about hr = 1. Overall, mean grid-quality is slightly reduced compared10

to the uniform resolution case, illustrated by a slight broadening of the grid-quality distributions. Note that such behaviour is

expected in the multi-resolution case, with slightly imperfect triangle geometries required to satisfy the non-uniform mesh-

spacing constraints. The minimum enclosed-angle in the un-optimised grid can also be seen to lie exactly at the lower angle

bound of 28.4◦.

The effect of the grid-optimisation procedure can be assessed by comparing the mesh-quality statistics presented in Fig-15

ure 15. As per the uniform resolution test-case, mesh-optimisation appears to be most aggressive at the tails of the distributions,

acting to improve the worst elements in the grid. The minimum area-length metric is improved from af = 0.59 to af = 0.90,

and the distribution of element-wise angles is narrowed from 28◦ ≤ θf ≤ 121◦ to 40◦ ≤ θf ≤ 80◦. Consistent with previous

results, a moderate broadening of the mean components of the distributions can be observed, especially in the enclosed-angle

and relative-length metrics. This behaviour shows that, in this case, improvements to worst-case grid-quality are achieved20

through slight compromises to mean-quality and mesh-spacing conformance, with very high-quality elements being slightly

degraded to improve their lower quality neighbours. Note that the resulting optimised Voronoi/Delaunay staggered grid is also

well-centred, with all angles in the Delaunay trianglulation less than 80◦. This result shows only a marginal degradation com-

pared to the uniform resolution example presented previously — despite the complexity of the imposed grid-spacing function.

This result demonstrates the effectiveness of the optimisation strategies presented here, and shows that very high-quality, well-25

centred grids can be generated even for general multi-resolution cases. Nonetheless, the construction of well-centred grids

remains a challenging task, and it is expected that it may be possible to design test-cases that defeat the current strategy. As

such, the pursuit of alternative mesh optimisation strategies, designed to target grid well-centredness directly, is an interesting

avenue for future research.

5.5 Computational performance30

In addition to the generation of very high-quality grids, the new JIGSAW-GEO algorithm also imposes a relatively moderate

computational burden, producing large-scale, multi-resolution grids in a matter of minutes using standard desktop-based com-

puting infrastructure. Specifically, grid-generation for the UNIFORM-SPHERE, REGIONAL-ATLANTIC and SOUTHERN-

OCEAN test-cases required 12 seconds, 1 1
2 minutes and 10 minutes of computation time, respectively, running on a single
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Figure 16. Detail of the multi-resolution Voronoi-type grid of the Southern Ocean. Global coarse grid resolution is 150km, with a 15km

eddy-permitting grid-spacing specified south of 32.5◦ S. Additional topographic adaptation is also utilised in the southern annulus region,

with grid-resolution increased in areas of large bathymetric gradient. Minimum grid-spacing is 4km. Topography is drawn using an exag-

gerated scale, with elevation from the reference geoid amplified by a factor of 10.
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core of an Intel i7 processor. In all cases, grid-optimisation was found to be approximately four times as expensive as the initial

Frontal-Delaunay refinement. Compared to the existing iterative MPI-SCVT algorithm (Jacobsen et al., 2013), commonly used

to generate grids for the MPAS framework, these results represent a significant increase in productivity, with the MPI-SCVT

algorithm often requiring days, or even weeks of distributed computing time.

Additionally, practical experience with the MPI-SCVT algorithm has shown that it cannot always be relied upon to generate5

an appropriate grid, irrespective of the amount of computational time allowed for convergence to be reached. While always

generating a locally-orthogonal and centroidal Voronoi tessellation with very high mean grid-quality, the MPI-SCVT algo-

rithm does not provide bounds on worst-case grid-quality. In practice, multi-resolution grids generated using the MPI-SCVT

algorithm are often observed to contain a minority of obtuse triangles that violate the well-centred constraint, and, due to

the nature of the numerical formulation, such grids are inappropriate for use in an unstructured C-grid model such as the10

MPAS framework. Grid generation for such models often requires a degree of user-driven trial-and-error as a result, making

grid-generation a somewhat arduous task for model-users. Initial experiments conducted using the JIGSAW-GEO algorithm

have shown it to be a useful alternative, reliably generating valid well-centred multi-resolution grids for the MPAS ocean and

land-ice frameworks given a wide range of user-defined constraints and configuration settings.

6 Conclusions & Future Work15

A new algorithm for the generation of multi-resolution staggered unstructured grids for large-scale general circulation mod-

elling on the sphere has been described. Using a combination of Frontal-Delaunay refinement and hill-climbing type optimi-

sation techniques, it has been shown that very high-quality locally-orthogonal, centroidal and well-centred spheroidal grids

appropriate for unstructured C-grid type general circulation models can be generated. The performance of this new approach

has been verified using a number of multi-scale global benchmarks, including difficult problems incorporating highly non-20

uniform mesh-spacing constraints.

This new algorithm is available as part of the JIGSAW meshing package, providing a simple and easy-to-use tool for

the oceanic and atmospheric modelling communities. A number of global-scale benchmark problems have been analysed,

examining the performance of the new approach. The Frontal-Delaunay refinement algorithm has been shown to generate

guaranteed-quality spheroidal Delaunay triangulations — satisfying worst-case bounds on element-wise angles and exhibiting25

smooth grading characteristics. This algorithm has been shown to produce very high-quality multi-resolution triangulations,

with a majority of elements exhibiting near-perfect conformance to element-shape and grid-spacing based constraints.

The use of a coupled geometrical and topological hill-climbing type optimisation procedure was shown to further improve

grid-quality statistics, especially for the lowest quality elements in each mesh. It was demonstrated that these optimisation

techniques allow grid-quality to be improved to the extent that fully well-centred mesh configurations can be achieved, with30

all angles in the surface triangulation bounded below 90◦. For the three global test-cases presented here, enclosed-angles were

bounded above θf ≥ 40◦ and below θf ≤ 80◦.

31



The construction of locally-orthogonal staggered polygonal grids appropriate for a range of contemporary unstructured C-

grid type general circulation models was discussed in detail, with a focus on the generation of multi-resolution grids for the

MPAS framework. The availability of this new algorithm is expected to significantly reduce the grid-generation burden for

MPAS model-users. Future work will focus on a generalisation of the algorithm and improvements to its efficiency, includ-

ing: (i) support for inscribed geometrical constraints, such as coastlines, (ii) the use of multi-threaded programming patterns5

to improve computational performance, and (iii) further enhancements to the mesh optimisation procedures, with a focus on

improving the well-centredness of the resulting staggered grids. The investigation of solution-adaptive multi-scale representa-

tions, in which grid-resolution is adapted to spatial variability in model state (Sein et al., 2016), is also an obvious direction for

future investigation.
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7 Code availability15

The JIGSAW-GEO grid-generator used in this study is available as a Zenodo archive: https://doi.org/10.5281/zenodo.556602.

The JIGSAW-GEO framework is under active development and the latest version can be accessed here: https://github.com/

dengwirda/jigsaw-geo-matlab.

Appendix A: Spheroidal Predicates

Recalling the methodology described in Section 3, computation of the restricted Delaunay surface tessellation Del |Σ(X)20

requires the evaluation of a single geometric predicate. Given a spheroidal surface Σ, the task is to compute intersections

between edges in the Voronoi tessellation Vor(X) and the input features Σ.

A1 Restricted surface triangles

Restricted surface triangles fi ∈Del |Σ(X) are defined as those associated with an intersecting Voronoi edge ve ∈Vor(X),

where ve ∩Σ 6= ∅. These triangles provide a good piecewise linear approximation to the surface Σ. For a given triangle fi, the25

associated Voronoi edge ve is defined as the line-segment joining the two circumcentres ci and cj associated with the pair of

tetrahedrons that share the face fi. The task then is to find intersections between the line-segments ve and the surface Σ.

Let p be a point on a given Voronoi edge-segment ve

p = c̄+ t∆ , −1≤ t≤+1 , where: c̄ = 1
2 (ci + cj) , ∆ = 1

2 (cj − ci) . (A1)
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Substituting (A1) into the expression for the spheroidal surface (4), the existence of real, bounded solutions, such that −1≤
t≤+1, indicates a non-trival intersection ve ∩Σ 6= ∅. Specifically, expanding and rearranging after substitution

3∑
i=1

(
c̄i + t∆i

ri

)2

= 1 ,

3∑
i=1

c̄2
i + 2tc̄i∆i + t2∆2

i

r2
i

= 1 ,

3∑
i=1

(
∆2
i

r2
i

)
t2 +

(
2c̄i∆i

r2
i

)
t+

(
c̄2
i

r2
i

− 1

)
= 0 , (A2)

which is simply a quadratic expression for the parameter t and can be solved using the standard approach. Given a real solution

−1≤ tΣ ≤+1 the corresponding point of intersection pΣ can be found using (A1).5
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