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Abstract. An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is de-

scribed. This technique is designed to generate
::::
very

:
high-quality staggered Voronoi/Delaunay dual meshes appropriate for

general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numer-

ical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction

of
::::::::::
high-quality

:
unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived5

from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Delaunay-refinement

::::::::::::::
Frontal-Delaunay

:::::::::
refinement

:
technique allows for the generation of unstructured grids that satisfy a priori constraints on

minimum mesh-quality. The initial staggered Voronoi/Delaunay tessellation is iteratively improved through
:::
very

:::::::::::
high-quality

::::::::::
unstructured

::::::::::::
triangulations,

::::::::
satisfying

:::::::
a-priori

::::::
bounds

:::
on

::::::
element

::::
size

:::
and

::::::
shape.

::::::::::
Grid-quality

::
is

::::::
further

::::::::
improved

:::::::
through

:::
the

:::::::::
application

::
of

:
hill-climbing

:::
type

:
optimisation techniques. Such an approach

::::::
Overall,

:::
the

::::::::
algorithm

:
is shown to produce grids10

with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial

results are presented for a
:
A
:

selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-

scale general circulation modelling
::
are

:::::::::
presented.

::::::
These

::::
grids

:::
are

::::::
shown

::
to

::::::
satisfy

:::
the

::::::::
geometric

::::::::::
constraints

:::::::::
associated

::::
with

:::::::::::
contemporary

:::::::::::
unstructured

::::::
C-grid

::::
type

:::::::::::
finite-volume

:::::::
models,

::::::::
including

:::
the

::::::
Model

:::
for

:::::::::
Prediction

::::::
Across

::::::
Scales

:::::::::
(MPAS-O).

The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type15

studies is discussed in detail.

Keywords. Grid-generation; Frontal-Delaunay refinement; Voronoi tessellation; Grid-optimisation; Geophysical fluid dynam-

ics; Ocean modelling; Atmospheric modelling; Numerical weather predication; Model for Prediction Across Scales (MPAS)

1 Introduction

The development of atmospheric and oceanic general circulation models based on unstructured numerical discretisation20

schemes is an emerging area of research. This trend necessitates the development of unstructured grid-generation algorithms

for the production of
:::::::
designed

:::
to

:::::::
produce

:
very high-resolution, guaranteed-quality unstructured triangular and polygonal

*A short version of this paper appears in the proceedings of the 24th International Meshing Roundtable (?).
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Figure 1. Conventional semi-structured meshing for the sphere, showing a regular cubed-sphere type grid (left), and a regular icosahedral

class grid (right). Both grids were generated using equivalent target mean edge lengths, and are coloured according to mean topographic

height at grid-cell centres. Topography is drawn using an exaggerated scale, with elevation from the reference geoid amplified by a factor of

20 in both cases.

meshes that satisfy non-uniform mesh-spacing distributions and embedded geometrical constraints. This study investigates

the applicability of a recently developed surface meshing algorithm (??) based on restricted Frontal-Delaunay refinement and

hill-climbing type optimisation for this task.

1.1 Related Work
::::::::::::::
Semi-structured

:::::
grids

While simple structured grid types for the sphere can be obtained by assembling a uniform discretisation in spherical coordi-5

nates, the resulting lat-lon grid is
::::
often inappropriate for numerical simulation, due to the presence of strong grid-singularities

at the two poles. Such features manifest as local distortions in grid-quality, consisting of regions of highly distorted quadrilat-

eral grid-cells. These low-quality elements
:::
can lead to a number of undesirable numerical effects — imposing restrictions on

model time-step and stability, and compromising local spatial accuracy. A
:::
As

:
a
:::::
result,

::
a majority of current generation general

circulation models , (i.e. ???), are instead based on a semi-structured quadrilateral discretisation known as
:::::::::::::
semi-structured10

::::::::::
quadrilateral

:::::::::::
discretisation

::::::::
schemes,

::::::::
including

:
the cubed-sphere . In this

::::::::
(???) and

:::::::
tri-polar

:::
type

::::::::::::
configurations

::::::
(???).

::
In

:::
the

:::::::::::
cubed-sphere

:
framework, the spherical surface is decomposed into a cube-like topology, with each of its

:::
the six

quadrilateral faces discretised as a structured curvilinear grid. In such an arrangement, the two strong grid-singularities of the

lat-lon configuration are replaced by eight weak discontinuities at the cube corners, leading to significant improvements in
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numerical performance. ? present detailed discussions of techniques for the generation and optimisation of cube-sphere type

grids. A regular gnomonic-type cubed-sphere grid is illustrated in Figure 1a.
::
In

:::
the

:::::::
tri-polar

::::
grid,

:::
the

::::::::::
present-day

::::::::::
continental

:::::::::::
configuration

::
is

::::::::
exploited

::
to

::::
bury

::
the

:::::::::::
singularities

::::::::
associated

:::::
with

:
a
:::::::::
three-way

::::
polar

:::::::::::::
decomposition

::
of

:::
the

::::::
sphere

::::::
outside

:::
of

::
the

::::::
ocean

:::::
mask.

::::
The

:::::::
resulting

::::::::::::::::
numerically-active

:::::
subset

::
of

:::
the

::::
grid

::
is

::::::::::::::
well-conditioned

::
as

::
a

:::::
result.

::::::
While

::::
such

::::::::::::
configurations

::
are

::
a
::::::
popular

::::::
choice

:::
for

::::::
models

::::::::
designed

:::
for

::::::::::
present-day

::::::::::
Earth-based

:::::
ocean

::::::
studies,

:::
the

:::::::::
generality

::
of

:::::
these

:::::::
methods

::
is

::::::
clearly5

::::::
limited.

::
In

::::
this

:::::
study,

:::
we

::::::
instead

::::::
pursue

:::
the

:::::::::::
development

::
of

:::::
more

::::::::::::::
general-purpose

:::::::::
techniques,

:::::::::
applicable

:::
for

::::
both

:::::
ocean

::::
and

::::::::::
atmospheric

::::::::
modelling

::
in
:::::::
general

::::::::
planetary,

::::::::::
present-day

:::
and

::::::::::
paleo-Earth

::::::::::::
environments.

In addition to the
:::::::
standard

:
cubed-sphere type configuration

:::
and

::::::::
tri-polar

::::
type

::::::::::::
configurations, a second class of semi-

structured spherical grid can be realised
:::::::::
constructed

:
through icosahedral-type decompositions (??). In such cases, the pri-

mary grid is defined as a regular spherical triangulation, obtained through recursive bisection of the icosahedron
:::::::::
icosahedral10

:::::::::::
configuration. Additionally, a staggered polygonal dual grid, consisting of hexagonal and pentagonal cells, is often used

as a basis for finite-volume type numerical schemes. This geometrical duality is an example of the locally-orthogonal

:::::::::::::::
locally-orthogonal Delaunay/Voronoi type grid staggering that forms the basis of this paper. Icosahedral-type grids provide

a near-perfect tessellation of the sphere — free of topological discontinuities and/or geometric irregularity.
::::
Such

::::::::
methods

:::
are

::::::::
applicable

::
to

::::
both

:::::::::::
atmospheric

:::
and

:::::::
oceanic

::::
type

::::::::::
simulations. A regular icosahedral-class grid is illustrated in Figure 1b.15

While both the cubed-sphere and icosahedral type grids provide an effective framework

1.2
:::::::::::

Unstructured
:::::
grids

:::::
While

:::
the

::::::::::::::
semi-structured

:::::
grids

::::::::
described

::::::::::
previously

:::::
each

:::::::
provide

:::::::
effective

:::::::::::
frameworks

:
for uniform resolution global

circulation models
::::::::
simulation, the development of multi-resolution modelling environments has recently attracted considerable

interest
::::::
requires

:::::::::
alternative

:::::::::
techniques. A range of new general circulations

:::::::::
circulation

:
models, including the Finite Element20

Sea Ice-Ocean Model (FESOM) (?), the Finite Volume Community Ocean Model (FVCOM) (???), the Stanford Unstructured

Non-hydrostatic Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS) (??), and the Second-generation Louvain-

la-Neuve Ice-ocean Model (SLIM) (??) are based on semi-structured triangular grids, with the horizontal directions discretised

according to an unstructured spherical triangulation, and the vertical direction represented as a stack of locally structured lay-

ers. The Model for Predication Across Scales (MPAS) (???) adopts a similar arrangement, except that a locally-orthogonal25

unstructured discretisation is adopted, consisting of both a Spherical Voronoi Tessellation (SVT) and its dual Delaunay trian-

gulation. The use of fully unstructured representations, based on general tetrahedral and/or polyhedral grids, are also under

investigation in the Fluidity framework (????).
::::
Such

::::::
models

:::
all

::::::
impose

:::::::
different

:::::::::::
requirements

:::
on

:::
the

::::::
quality

::
of

:::
the

:::::::::
underlying

::::::::::
unstructured

:::::
grids,

:::::
with

::::
some

::::::::
models,

::::::::
including

::::::::
FESOM,

:::::
SLIM

::::
and

:::::::
Fluidity,

:::::::
offering

:::::::::::
additionally

:::::::::
flexibility.

::
In

:::
all

:::::
cases

::::::
though,

:::
the

::::::::::
performance

::
of
:::
the

:::::::::
numerical

:::::::::
simulation

:::
can

::
be

:::::::
expected

::
to
:::::::
improve

::::
with

::::::::
increased

::::::::::
grid-quality

:::
—

::::::::::
encouraging

:::
the30

:::::
search

:::
for

::::::::
optimised

:::::::::::::
grid-generation

::::::::::
algorithms.

::
A

:::
full

:::::::::
discussion

::
of

::::::::::
grid-quality

:::::::::
constraints

:::
for

::::::
general

:::::::::
circulation

:::::::::
modelling

:
is
::::::::
presented

:::
in

::::::
Section

::
2.

:

Existing approaches for unstructured grid-generation on spherical geometries have focused on a number of techniques,

including: (i) the use of iterative, optimisation-type
::::::::::::::
optimisation-type

:
algorithms designed to construct Spherical Centroidal
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Voronoi Tessellations (SCVT’s) (?), and (ii) the adaptation of anisotropic two-dimensional meshing techniques (?) that build

grids in associated parametric spaces. The MPI-SCVT algorithm (?) is a massively parallel implementation of iterative Lloyd-

type smoothing (?) for the construction of SVCT’s for use in the MPAS framework. In this approach, a set of vertices are

distributed over the spherical surface and iteratively smoothed until a high-quality Voronoi tessellation is obtained. Specifically,

each iteration repositions vertices to the centroids of their associated Voronoi cells and updates the topology of the underlying5

spherical Delaunay triangulation. While such an approach typically leads to the generation of high-quality centroidal Voronoi

tessellations on the sphere (SCVT’s), the algorithm does not provide theoretical guarantees on minimum element quality, and

often requires significant computational effort to achieve convergence. Additionally, current implementations of the MPI-SCVT

algorithm do not provide a mechanism to constrain the grid to embedded features, such as coastal boundaries.

? present an unstructured spherical triangulation framework using the general-purpose grid-generation package Gmsh (?).10

In this work, unstructured spherical triangulations are generated for the world ocean using a parametric meshing approach.

Specifically, a triangulation of the spherical surface is generated by mapping the full domain (including coastlines) on to

an associated two-dimensional parametric space via stereographic projection. Importantly, as a result of the projection, the

grids constructed in parametric space must be highly anisotropic, such that a well-shaped, isotropic triangulation is induced

on the sphere. A range of existing two-dimensional anisotropic meshing algorithms are investigated, including Delaunay-15

refinement, frontal
:::::::::::::
advancing-front, and adaptation-type approaches.

:
In

:::::::::
particular,

:::
the

::::::::
algorithm

::
is

:::::::
designed

::
to
::::::
ensure

:
a
:::::::
faithful

:::::::::::
representation

:::
of

::::::::
complex

::::::
coastal

::::::::
boundary

::::::::::
conditions.

::::::
While

:
a
:::::::

detailed
::::::

model
:::

of
::::
such

::::::::::
constraints

::
is

:::::
often

::::::::
neglected

:::
in

:::::
global

::::::::::
simulations,

:::::::::
resolution

:::
of

::::
these

:::::::
features

::
is
::

a
::::
key

:::::
factor

:::
for

:::::::
regional

::::
and

::::::
coastal

:::::::
models.

:::::::
Several

:::::::::
algorithms

:::::::
support

::
the

::::::::::
generation

::
of

:::::::::::
unstructured

::::::::::::::
two-dimensional

::::
grids

:::
for

:::::
such

::::::::
domains,

::::::::
including

:::
the

::::::::
ADmesh

:::::::
package

::::::
(?) and

:::
the

:::::::
Stomel

:::::
library

::::
(?).20

The current study explores the development of an
:
a
::::
new

:
algorithm for the generation of high-resolution, guaranteed-

quality spheroidal Delaunay triangulations and associated Voronoi tessellations
::
— appropriate for a range of unstructured grid

::::::::::::::
unstructured-grid

::::
type general circulation models. In this work, meshes are generated on the spheroidal surface directly, without

::::
need

:::
for local parameterisation or projection. Such an approach will be shown to exhibit significant flexibility — immune to is-

sues of coordinate singularity and/or continental configuration. The applicability of this approach to grid-generation for imper-25

fect spheres, including oblate spheroids and general ellipsoidal surfaces is explored. Adherence to user-defined mesh-spacing

constraints is also discussed
:::
also

::::::::
explored.

:::::::
Overall,

:::::::::
significant

:::::
effort

::
is

:::::::
invested

::
to
:::::::

develop
::::::::::

techniques
:::::::
designed

:::
to

:::::::
produce

::::
very

::::::::::
high-quality

::::::::::::::
multi-resolution

::::
grids

::::::::::
appropriate

:::
for

::::::::::::
contemporary

:::::::::::
unstructured

::::::
C-grid

::::
type

:::::::
models,

::::
such

:::
as

:::
the

::::::
MPAS

:::::::::
framework.

::::
The

:::::
paper

::
is

::::::::
organised

::
as
::::::::

follows:
::
an

::::::::
overview

::
of

:::::::::::::
grid-generation

:::
for

:::::::
general

:::::::::
circulation

:::::::::
modelling

:
is
:::::::::

presented

::
in

::::::
Section

::
2,

::::::::
outlining

::::::
various

::::::::::
constraints

:::
and

::::::::
minimum

:::::::::::
requirements

:::
on

::::::::::
grid-quality.

::
A
::::::::::
description

::
of

:::
the

:::::::::::::::
Frontal-Delaunay30

:::::::::
refinement

:::
and

:::::::::::
hill-climbing

::::
type

:::::::::::
optimisation

:::::::::
algorithms

::
is
::::::

given
::
in

:::::::
Sections

::
3
::::
and

::
4.

::
A

:::
set

::
of

:::::::
uniform

::::
and

:::::::::::
non-uniform

::::
grids

::::::::::
appropriate

:::
for

:::::::::::::
high-resolution,

:::::::::
multi-scale

:::::::
general

:::::::::
circulation

::::::::
modelling

:::
are

:::::::::
presented

::::::
Section

::
5,

::::::::
alongside

:::
an

:::::::
analysis

::
of

::::::::::::
computational

::::::::::
performance

::::
and

:::::::::
optimality.

:::::::
Avenues

:::
for

:::::
future

:::::
work

:::
are

:::::::
outlined

::
in

::::::
Section

::
6.

:
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Figure 2.
:::::::::
Construction

::
of
:::
the

:::::::
staggered

::::::
surface

::::::
Voronoi

:::::::::::::
control-volumes,

::::::::
illustrating:

::::
(left)

::::::::::::::
locally-orthogonal

:::::::::::::
Voronoi/Delaunay

:::::::::
staggering,

:::
and

:::::
(right)

::
an

:::::::
associated

::::::::::
unstructured

:::::
C-grid

:::
type

::::::::
numerical

::::::::::
discretisation

::::::
scheme,

::
as

:::
per

::
the

:::::
MPAS

::::::
model.

:::
The

:::::::::
formulation

:
is
:
a
::::::::::
combination

:
of
::::::::::

conservative
:::::::::
cell-centred

::::
tracer

:::::::
quantities

:::
ψ̄i,::::::::::

edge-centred
:::::
normal

::::::
velocity

:::::::::
components

:::::::
(u · n̂)j ,:::

and
:::::::
auxiliary

:::::::::::
vertex-centred

::::::
vorticity

::::::
variables

:::
ξk.

2
::::::::::::::
Grid-generation

:::
for

:::::::::::::::::
general-circulation

:::::::::
modelling

::::::::
Numerical

:::::::::::
formulations

:::
for

:::::::::
large-scale

::::::::::
atmospheric

:::::
and/or

:::::::
oceanic

::::::
general

:::::::::
circulation

:::::::::
modelling

::
are

:::::
often

:::::
based

::
on

::
a

::::::::
staggered

:::
grid

::::::::::::
configuration,

::::
with

::::::::
quantities

::::
such

::
as

::::
fluid

::::::::
pressure,

:::::::::::
geopotential,

:::
and

:::::::
density

:::::::::
discretised

::::
using

::
a

::::::
primary

::::::::::::::
control-volume,

:::
and

:::
the

::::
fluid

:::::::
velocity

::::
field

::::
and

:::::::
vorticity

::::::::::
distribution

::::::::::
represented

::
at

:::::::::
secondary,

:::::::
spatially

:::::::
distinct

::::::::::
grid-points.

::
In

:::
the

::::::
context

:::
of

:::::::
standard

::::::::
structured

::::
grid

:::::
types,

:::::::
various

::::::::
staggered

:::::::::::
arrangements

:::
are

::::::::
described

:::
by

:::
the

::::::::::
well-known

:::::::
Arakawa

:::::::
schemes

::::
(?).5

:::
The

:::::::::::
development

:::
of

:::::::
general

::::::::::
circulation

::::::
models

::::::
based

:::
on

:::::::::::
unstructured

::::
grid

::::::
types

::
is

:::
an

::::::::
emerging

:::::
area

:::
of

::::::::
research,

:::
and,

:::
as

::
a

:::::
result,

::
a
::::::
variety

:::
of

:::::::::
numerical

:::::::::::
formulations

:::
are

::::::::
currently

::::::
under

:::::::::::
investigation.

:::
In

:::
this

::::::
study,

:::
the

:::::::::::
development

:::
of

:::::::::::::::
locally-orthogonal

::::
grids

:::::::::
appropriate

:::
for

::::::::
staggered

:::::::::::
unstructured

:::::
C-grid

::::
type

:::::::::
numerical

:::::::
schemes

:::
are

::::::::
pursued,

::
as

::::
these

::::::::
methods

::
are

:::::::
thought

::
to

::::::::
represent

:::
the

::::
most

::::::
logical

::::::::
extension

::
of

:::
the

:::::::::::
conventional

::::::::
structured

::::::::::::
Arakawa-type

:::::::::
techniques

::
to

:::
the

:::::::::::
unstructured

::::::
setting.

::::
Such

:::::::::::
formulations

::::::
require

:::
that

:::::
grids

:::::
satisfy

:
a
::::::::::::::::
local-orthogonality

::::::::
constraint,

::::
with

:::::::
adjacent

:::::::
grid-cell

:::::
edges

::
in

:::
the

:::::::
primary10

:::
and

::::::::
secondary

::::::::::::::
control-volumes

:::::::
required

::
to

::
be

::::::::
mutually

::::::::::::
perpendicular.

::
In

:::
the

::::::::::
unstructured

::::::
setting,

::
it

::
is

:::::
known

::::
that

:::
the

::::::::
Delaunay

::::::::::
triangulation

::::
and

:::::::
Voronoi

:::::::::
tessellation

:::::::::
constitute

:
a
::::::::::::::::

locally-orthogonal
::::::::
staggered

:::::
dual,

::::::
leading

:::
to

:
a
::::::
natural

::::::::::
framework

:::
for

:::
the

::::::::::
construction

::
of

::::
such

:::::::::::
unstructured

:::::::
meshes.

:::::::::
Consisting

::
of

::
a

:::
set

::
of

::::::::
(convex)

:::::::::
polygonal

::::::::
grid-cells

:::::::
centred

::
on

:::::
each

::::::
vertex

::
in

:::
the

:::::::::
underlying

::::::::::::
triangulation,

:::
the

:::::::
surface

::::::
Voronoi

::::::::
diagram

:::::::::
Vor |Σ(X)

:::::
obeys

::
a
:::::::
number

::
of

:::::
local

:::::::::::
orthogonality

::::::::::
constraints.

::::::::::
Specifically,

::::::::
grid-cell

:::::
edges

::
in
::::

the
:::::::
Voronoi15

:::::::::
tessellation

:::
are

::::::::::
guaranteed

::
to

:::
be

:::::::::::
perpendicular

:::
to

::::
their

:::::::::
associated

:::::
edges

:::
in

:::
the

:::::::::
underlying

:::::::::
Delaunay

:::::::::::
triangulation,

:::::::
passing
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Figure 3.
:::::::::
Comparison

::
of

:::::::::
well-centred

::
and

:::::::::::::
poorly-staggered

::::::::::::::
Voronoi/Delaunay

:::
dual

:::::
grids,

:::
from

:::
left

::
to

::::
right,

::::::::::
respectively.

::
In

::
the

::::::::::
well-centred

::::::::::
configuration,

::::
each

:::::
vertex

::
of

::
the

:::::::
Voronoi

::::::
polygon

:::
lies

:::::
within

:::
the

:::::
interior

::
of
::
its

::::::::
associated

::::::::
Delaunay

::::::
triangle.

::
A

:::::::::
conservative

::::::::::
computation

::
of

::
the

:::::::::::
vertex-centred

:::::::
vorticity

:::::::
variables

:::
can

:::::::
therefore

::
be

:::::::
achieved

:::::
using

::
the

::::
three

:::::::
velocity

:::::::::
components

:::::::
adjacent

::
to

:::
each

:::::::::::
circumcentre.

::
In

:::
the

::::::::::::
poorly-staggered

:::::::::::
configuration,

:::
one

::::::
Voronoi

:::::
vertex

:::
lies

:::::
outside

:::
its

:::::::
associated

::::::
triangle

:::::::
(shaded).

::::
The

::::::::
associated

::::::
Voronoi

:::
and

:::::::
Delaunay

:::::
edges

::
do

:::
not

::::::
intersect

::
as

:
a
:::::
result,

:::
and

:::
the

::::::::::
triangle-based

:::::::
vorticity

:::::::::::
reconstruction

:
is
:::
no

:::::
longer

::::
valid.

::::
Note

:::
that

:::
the

:::::
quality

::
of

:::
the

::::::::::
triangulation

:::
here

::
is

::
not

::::::::::
pathological,

::::
with

::
all

:::::
angles

:::::::
bounded

:::::
below

:::::::::
θf ≤ 120◦.

:::
The

:::::::::
construction

::
of

::::
fully

::::::::::
well-centred

::::
grids

:::
can

::
be

::::
seen

::
as

:
a
::::::
difficult

:::::::
problem

:
as
::

a
:::::
result,

:::::::
requiring

::
the

:::::::
assembly

::
of
::::
very

:::::::::
high-quality

::::::::
Delaunay

::::::::::
triangulations.

::::::
through

::::
the

:::::::::::::
Delaunay-edge

::::::::::
midpoints.

:::::::::::
Additionally,

:::
in

:::
the

:::::
case

:::
of

::::::::
perfectly

:::::::
regular

:::
and

:::::::::
centroidal

::::::::::
tessellations,

::::
the

:::::::::::::
Delaunay-edges

:::
are

:::::::::
guaranteed

::
to

::::
pass

:::::::
through

:::
the

::::::::
midpoints

::
of
:::::
their

::::::::
associated

:::::::
Voronoi

::::::
duals.

::::::
Voronoi

::::::::
grid-cells

:::
are

:::::::
formed

::
as

:::
the

::::::::::
convex-hull

::
of

:::
the

:::::::
incident

:::::::
element

::::::::::::
circumcentres

::::::::
associated

::::
with

:::
the

:::
set

::
of

::::::
surface

::::::::
triangles

:::::::
adjacent

::
to
:::::

each
::::::
vertex.

:::::::
Example

:::::::::::::::
Voronoi/Delaunay

::::
type

:::::::::::
unstructured

:::
grid

:::::::::
staggering

::
is

:::::::::
illustrated

::
in

:::::
Figure

::
2.
:

:::::
While

:::::::
detailed

:::::::::::
comparisons

::
of

::::::::
particular

:::::::::
numerical

:::::::::::
discretisation

:::::::
schemes

:::
lie

::::::
outside

:::
the

:::::
scope

:::
of

:::
the

::::::
current

:::::
study,

:::::
brief5

::::::::
comments

::::::::
regarding

:::
the

:::::::
benefits

::
of

:::::::::::::::
locally-orthogonal

::::::::::::
grid-staggering

::::::::::::
arrangements

::
are

::::::
made.

:::::::
Pursuing

::
an

:::::::::::
unstructured

::::::
variant

::
of

:::
the

::::::::::
widely-used

::::::::
Arakawa

::::::
C-grid,

:::
the

:::::::::
placement

::
of

:::::
fluid

:::::::
pressure,

:::::::::::
geopotential

:::
and

:::::::
density

::::::::::::::::
degrees-of-freedom

::::::
within

:::
the

::::::
primary

:::::::
Voronoi

::::::::::::::
control-volumes,

::::
and

:::::::::
orthogonal

:::::::
velocity

::::::
vectors

:::
on

:::::::::::::
Delaunay-edges

::::::::
achieves

:
a
::::::
similar

::::::::::::
configuration.

:::::
Such

::
an

::::::::::
arrangement

::::::::
facilitates

:::::::::::
construction

::
of

:
a
:::::::
standard

:::::::::::
conservative

:::::::::::
finite-volume

::::
type

::::::
scheme

:::
for

:::
the

:::::::
transport

::
of

::::
fluid

:::::::::
properties

:::
and

::
a

:::::::
mimetic

::::
class

:::::::::::::::::
(??) finite-difference

:::::::::::
formulation

:::
for

:::
the

::::::::
evolution

:::
of

:::::::
velocity

:::::::::::
components.

::::::::::::
Additionally,

:::::::::
exploiting10

::::::::
alignment

::::
with

:::::::::::::::
Delaunay-edges,

:
a
:::::::::::

conservative
:::::::::
evaluation

:::
of

:::
the

:::::
fluid

:::::::
vorticity

::::
can

::
be

::::::
made

::
on

::::
the

::::::::
staggered

:::::::::
Delaunay

:::::::
triangles.

:::::::
Overall,

::::
this

:::::::
scheme

::
is

::::::
known

::
to

::::::
posses

:
a
::::::
variety

:::
of

::::::::
desirable

::::::::::
conservation

::::::::::
properties,

:::::::::
conserving

:::::
mass,

::::::::
potential

:::::::
vorticity

:::
and

:::::::::
enstrophy,

::::
and

:::::::::
preserving

::::::::::
geostrophic

:::::::
balance.

::::
This

:::::::::::
unstructured

:::::
C-grid

:::::::
scheme

::
is

::::::::
currently

::::::::
employed

:::
in

:::
the

:::::
Model

:::
for

:::::::::
Prediction

::::::
Across

::::::
Scales

:::::::
(MPAS)

:::
for

::::
both

:::::::::::
atmospheric

:::
and

:::::::
oceanic

:::::::::
modelling

:::::
(???).

::::
See

::::::
Figure

:
2
:::
for

:::::::::
additional

::::::
details.15
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:::::
While

::::::::::
numerically

:::::::
elegant,

:::::
such

:::::::::::
unstructured

::::::
C-grid

:::::::
schemes

:::::::
impose

:
a
::::::::::::

heavy-burden
:::
on

:::
the

:::::::
quality

::
of

:::
the

::::::::::
underlying

::::::::::
unstructured

:::::
grid,

::::::::
requiring

:::
not

::::
only

::::
that

:::::
grids

:::
be

::::::::::::::::
locally-orthogonal,

:::
but

::::
also

:::::::::::
well-centred

::
and

::::::::
mutually

:::::::::
centroidal

:
.
::::
The

::::::::::
well-centred

::::
-ness

:::
and

:::::::::
centroidal

::::
-ness

::
of

:::
an

::::::::::
unstructured

::::
grid

:::
are

:::::::::
constraints

::::::
related

::
to

::
the

::::::
nature

::
of

:::
the

:::::::::
staggering

:::::::
between

:::
the

::::::
primary

::::
and

:::::::::
secondary

::::::::
grid-cells.

:::::::::::
Specifically,

:
a
::::
grid

::
is

::::::::::
well-centred

::::
when

:::
all

::::
dual

:::::::
Voronoi

:::::::
vertices

::
lie

::::::
within

:::
the

::::::
interior

:::
of

::::
their

::::::::
associated

::::::::
Delaunay

::::::::
triangles.

::::
Such

::
a
::::::::
constraint

:::::::::
guarantees

:::
that

:::::::
adjacent

::::::::
Delaunay

::::
and

:::::::
Voronoi

:::::
edges

:::::::
intersect,

::::
and,

::
in

:::
the5

::::::
context

::
of

:::
the

::::::::::
unstructured

::::::
C-grid

::::::
scheme

::::::::
described

::::::::::
previously,

:::::::::
guarantees

:::
that

:
a
:::::::::
consistent

:::::
stencil

:::::
exists

:::
for

:::
the

::::::::::::
reconstruction

::
of

:::
the

:::::::
discrete

:::::::
vorticity

:::::::
variable.

:::
In

:::::::
practice,

:::
the

:::::::::::
construction

::
of

::::::::::
well-centred

:::::
grids

::
is

::::::
known

::
to

:::
be

:::::::::
particularly

:::::::
onerous

:::::
(??),

:::::::
requiring

::::
that

:::
the

::::::::::
triangulation

:::::::
consist

::
of

:::::::
all-acute

::::::::
elements.

::::
See

:::::
Figure

::
3
:::
for

::::::::
additional

::::::
detail.

::::::::::
Unstructured

:::::
grids

:::
are

:::::::::
centroidal

::::
when

::::
their

:::::::
primary

::::
and

::::::::
secondary

:::::::
vertices

:::
lie

::
at

:::
the

:::::::::::::
centres-of-mass

:::
of

::::
their

:::::::::
associated

:::
dual

:::::::::
grid-cells,

:::::
with

:::
the

:::::::
vertices

:::
of

:::
the

::::::::
Voronoi

::::::::
polygons

:::::
lying

::
at

:::
the

::::::::
centroids

::
of

::::
the

::::::::
Delaunay

::::::::
triangles

:::
and

::::::::::
visa-versa.10

::::
Such

::
a

::::::::
condition

::
is

:::::::::
effectively

::
an

:::::::
implicit

:::::::::
constraint

::
on

:::
the

:::::::::
regularity

::
of

:::
the

::::
grid,

:::::
with

::
an

:::::::
increase

::
in
::::

the
::::::::
centroidal

::::
-ness

:::
of

:
a
::::
grid

:::::::::
associated

::::
with

::::::::::::
improvements

::
in

:::
the

:::::
shape

::
of

:::
its

::::::::
Delaunay

::::::::
triangles

:::
and

:::::::
Voronoi

::::::::
polygons.

::::::::::
Centroidal

::::
grids

::::::::
typically

:::
lead

:::
to

::::::::::
high-quality

:::::::::
numerical

:::::::::::::
discretisations,

::::
with

:::::
grids

:::::::::
containing

::::::::::
near-perfect

:::::::
element

::::::::::::
configurations

:::::::::
achieving

:::::::
optimal

::::::::::
convergence

:::::
rates.

::::
The

:::::::::::
unstructured

::::::
C-grid

:::::::
scheme

:::::::
outlined

::::::::::
previously

::
is

::::::
known

::
to
:::::::

achieve
:::::

fully
:::::::::::
second-order

::::::::
accurate

::::::::::
convergence

:::::
when

::::::
applied

::
to

:::::::::
centroidal

:::::::
Voronoi

::::
grids

:::
(?).

:
15

:::::
While

::
a

::::::
number

:::
of

:::::::::::
unstructured

:::::::::::::
grid-generation

:::::::::
algorithms

::::::::
currently

:::::
exist,

::
as

::::::::
outlined

::
in

:::::::
Section

::
1,

:
I
::::

am
:::
not

:::::
aware

:::
of

:::
any

:::
that

::::
are

::::::::
successful

:::
in

:::::::::
generating

:::
the

::::
very

::::::::::
high-quality

::::::::::::::::
locally-orthogonal,

:::::::::::
well-centred

::
and

:::::::::
centroidal

::::
grids

:::::::
required

:::
by

::::::::::
unstructured

::::::
C-grid

::::
type

::::::
general

:::::::::
circulation

:::::::
models.

:::
As

::
a

:::::
result,

::::::::::
throughout

:::
the

::::::::
remainder

:::
of

:::
this

::::::
paper,

:::
the

::::::::::
development

:::
of

:::::::
methods

:::
for

:::
the

::::::::
generation

:::
of

::::
such

::::::::
staggered

:::::::::::::::
Delaunay/Voronoi

::::::::::
tessellations

::
is
:::::::
pursued

:
in detail.

2.1
::::::::::
Grid-quality

:::::::
metrics20

:::::
Before

:::::::
moving

:::
on

::
to

:
a
:::::::
detailed

::::::::::
description

::
of

:::
the

:::::::::::::
grid-generation

::::::::
algorithm

:::::
itself,

::
a

::::::
number

:::
of

:::::::::::
mesh-quality

::::::
metrics

:::
are

::::
first

:::::::::
introduced.

:

::::::::
Definition

::
1.

::::::::::
(radius-edge

:::::
ratio)

:::::
Given

:
a
::::::
surface

:::::::
triangle

:::::::::::::
fi ∈Del |Σ(X),

::
its

::::::::::
radius-edge

::::
ratio,

:::::
ρ(fi),

::
is
:::::
given

:::
by

ρ(fi) =
ri
‖emin‖

,

:::::::::::::::::

(1)

:::::
where

::
ri::

is
:::
the

:::::
radius

::
of

:::
the

:::::::::::::
circumscribing

:::
ball

:::::::::
associated

::::
with

::
fi::::

and
:::::
‖emin‖::

is
:::
the

::::::
length

::
of

::
its

:::::::
shortest

:::::
edge.25

:::
The

::::::::::
radius-edge

::::
ratio

::
is
::
a
:::::::
measure

::
of

:::::::
element

::::::::::::
shape-quality.

::
It

:::::::
achieves

::
a

::::::::
minimum,

:::::::::::
ρ(fi) = 1/

√
3
:::
for

:::::::::
equilateral

::::::::
triangles

:::
and

::::::::
increases

::::::
toward

:::::
+∞

::
as

::::::::
elements

::::
tend

:::::::
toward

::::::::::
degeneracy.

::::
The

::::::::::
radius-edge

::::
ratio

::
is
:::::::

directly
:::::::

related
::
to

:::
the

:::::::::
minimum

:::::::::
plane-angle

::::
θmin::::::::

between
:::::::
adjacent

::::::
edges

::
in

:::
the

::::::::::::
triangulation,

::::
such

::::
that

::::::::::::::::::::
ρ(fi) = 1

2 (sin(θmin))−1.
::::
Due

::
to
::::

the
:::::::::
summation

:::
of

:::::
angles

::
in

::
a

:::::::
triangle,

:::::
given

:
a
::::::::
minimum

:::::
angle

::::
θmin :::

the
:::::
largest

:::::
angle

::::
θmax::

is
::::
also

::::::
clearly

::::::::
bounded,

::::
such

:::
that

:::::::::::::::
θmax ≤ π− 2θmin.

::::::::
Definition

::
2.

::::::::::
(area-length

::::
ratio)

::::::
Given

::
a

::::::
surface

::::::
triangle

::::::::::::::
fi ∈Del |Σ(X),

::
its

::::::::::
area-length

:::::
ratio,

:::::
a(fi),

::
is

::::
given

:::
by30

a(fi) =
4
√

3

3

Af
‖erms‖2

,

::::::::::::::::::::::

(2)
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:::::
where

:::
Af ::

is
:::
the

:::::::::
signed-area

:::
of

::
fi :::

and
::::::
‖erms‖::

is
:::
the

::::::::::::::
root-mean-square

:::::
edge

::::::
length.

:::
The

::::::::::
area-length

::::
ratio

::
is

::
a

::::::
robust,

:::::
scalar

:::::::
measure

:::
of

:::::::
element

::::::::::::
shape-quality,

:::
and

::
is
::::::::
typically

:::::::::
normalised

:::
to

::::::
achieve

::
a
:::::
score

::
of

:::
+1

:::
for

::::
ideal

:::::::::
elements.

:::
The

::::::::::
area-length

::::
ratio

::::::::
decreases

:::::
with

:::::::::
increasing

::::::::
distortion,

:::::::::
achieving

:
a
:::::
score

::
of

::::
+0

::
for

::::::::::
degenerate

:::::::
elements

:::
and

::::
−1

::
for

:::::::
tangled

:::::::
elements

::::
with

::::::::
reversed

:::::::::
orientation.

:

::::::::
Definition

::
3.

::::::
(relative

:::::::::::
edge-length)

::::
Given

:::
an

::::
edge

::
in

:::
the

::::::
surface

:::::::::
tessellation

:::::::::::::
ej ∈Del |Σ(X),

:::
its

::::::
relative

::::::::::
edge-length,

:::::::
hr(ej),5

:
is
:::::
given

:::
by

hr(ej) =
‖ej‖
h̄(xm)

,

::::::::::::::::::

(3)

:::::
where

::::
‖ej‖::

is
:::
the

::::::
length

::
of

:::
the

:::
j-th

:::::
edge

:::
and

::::::
h̄(xm)

::
is

:::
the

::::
value

:::
of

:::
the

:::::::::::
mesh-spacing

:::::::
function

:::::::
sampled

::
at
:::
the

:::::
edge

::::::::
midpoint.

:::
The

::::::::::::
relative-length

::::::::::
distribution

::::::
hr(ej)::

is
:
a
:::::::
measure

::
of

::::::::::::
mesh-spacing

:::::::::::
conformance,

:::::::::
expressing

:::
the

:::::
ratio

::
of

::::::::::::::
actual-to-desired

:::::::::
edge-length

:::
for

:::
all

::::::::::::
edge-segments

::
in

::::::::::
Del |Σ(X).

:
A
:::::
value

::
of

::::::::::
hr(ej) = 1

:::::::
indicates

::::::
perfect

::::::::::::
mesh-spacing

:::::::::::
conformance.

:
10

3 A restricted Frontal-Delaunay refinement algorithm for spheroidal surfaces

The task is to generate very high-resolution, guaranteed-quality unstructured Delaunay triangulations for for planetary atmo-

spheres and/or oceans. These grids will form a baseline for the hill-climbing mesh-optimisation methods
:::::::::
techniques presented

in subsequent sections. In addition to bounds on minimum element quality, these meshes
::::
grids

:
are also required to satisfy

general non-uniform, user-defined mesh-spacing constraints. In this work, the applicability of a recently developed Frontal-15

Delaunay surface meshing algorithm (??) is investigated for this task.

An unstructured Delaunay triangulation of the reference spheroid associated with a general planetary geometry is sought. In

a general form, this reference surface can be expressed as an axis-aligned triaxial ellipsoid

3∑
i=1

(
xi
ri

)2

= 1 , (4)

where the xi’s are the Cartesian coordinates in a locally aligned coordinate system, and the scalars ri > 0 are its principal radii.20

Such a definition can be used to represent ellipsoidal surfaces in general position, based on the application of additional rigid-

body translations and rotations.
::::
Note

::::
that

:::::
while

:::::::::::::
grid-generation

:::
for

:::::
global

:::::::
climate

:::::::::
modelling

::
is

:::::
often

::::::::
restricted

::
to

::::::::
spherical

:::::::
surfaces,

::::::
setting

::::::::::::::
r1,2,3 = 6371km,

::::
this

::::::::::
formulation

:::::::
supports

::::::::::::::
mesh-generation

::
on

:::::::
general

:::::::::
spheroidal

:::
and

:::::::::
ellipsoidal

::::::::
domains.

3.1 Preliminaries

In this work, attention is restricted to the generation of locally-orthogonal staggered unstructured grids, consisting of Delaunay25

triangulations and their associated Voronoi duals. A full account of such structures is not presented here, instead, the reader is

referred to the detailed theoretical exposition presented in, for example,
:
?.

The Delaunay triangulation Del(X) associated with a set of points X ∈ Rd is characterised by the so-called empty-circle

criterion — requiring that the set of circumscribing spheres B(ci, ri) associated with each Delaunay triangle τi ∈Del(X) be

8



Figure 4. Illustration of the geometrical predicates used to identify
::::
define

:::
the restricted Delaunay surface triangules fi ∈Del |Σ(X), showing

details of the intersecting Voronoi edge ve ∈Vor(X) associated with the surface triangle fi ∈Del |Σ(X) and its restricted
::::::::
associated surface-

ball B(ci, ri).
::::
Note

:::
that

:::
the

::
full

::::::::::::::
three-dimensional

:::::::
Delaunay

::::::::
tessellation

:::::::
Del(X)

:
is
:
a
::::::::
tetrahedral

:::::::
complex

:::
that

:::
fills

:::
the

:::::
interior

::
of

:::
the

:::::::
spheroid.

empty of all points other than its own vertices. It is well known that for tessellations restricted to two-dimensional manifolds,

the Delaunay triangulation leads to a maximisation of the minimum enclosed angle in the grid (?). Such behaviour is clearly

beneficial when seeking to construct high quality triangular meshes.

The Voronoi tessellation Vor(X) is the so-called geometric-dual associated with the Delaunay triangulation, consisting

of a set of convex polygonal cells formed by connecting the centres of adjacent circumscribing balls — the so-called el-5

ement circumcentres ci’s. The Voronoi tessellation represents a closest-point map for the points in X , with each Voronoi

cell vc ∈Vor(X) defining the convex region adjacent to a given vertex xi ∈X for which xi is the nearest point. Im-

portantly, the Voronoi/Delaunay grid staggering, defines a locally-orthogonal arrangement, in which grid-cell edges in the

Voronoi tessellation are orthogonal to adjacent edges in the underlying Delaunay triangulation. These orthogonality constraints

make Voronoi/Delaunay type grids an attractive choice when seeking to construct staggered finite-volume type numerical10

discretisations. Such an approach is pursued by, for example, Ringler et al. in development of the MPAS modelling framework

(??).
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3.2 Restricted Delaunay triangulation

In this study, grid-generation is carried out on the surface of the spheroidal geometry directly by making use of so-called

restricted Delaunay mesh generation techniques. Specifically, given a reference spheroid
::::::
surface Σ, grid-generation pro-

ceeds to discretise Σ
::
the

:::::::
surface into a mesh of surface triangles. In the restricted Delaunay framework, a full-dimensional

:::::::::::::
full-dimensional

:
Delaunay triangulation Del(X) (i.e. a tetrahedral tessellation) is maintained, with surface triangles identified5

as the so-called
::
the

::::::
surface

:::::::::::
triangulation

::::::::::
represented

::
as

:
a
::::::
subset

::
of

:::::::::
tetrahedral

:::::
faces.

::::
The restricted Delaunay surface-complex

embedded
:
is

::::
said

::
to

::
be

:::::::::
embedded in Del(X) .

:
as

::
a
:::::
result.

::::
Use

::
of

::::
this

::::
fully

:::::::::::::::
three-dimensional

::::::::
approach

:::::
elides

:::
any

:::::::
reliance

:::
on

::::
local

:::::::::
parametric

::::::::::
projections.

Definition 1.
:
4. (restricted Delaunay tessellation) Let Σ be a smooth surface embedded in R3. Let Del(X) be a full-

dimensional Delaunay tetrahedralisation of a point-wise sample X ⊆ Σ and Vor(X) be the associated Voronoi tessellation.10

The restricted Delaunay surface triangulation Del |Σ(X) is a sub-complex of Del(X) including any triangle fi ∈Del(X)

associated with an intersecting Voronoi edge ve ∈Vor(X) such that
:::::
where

:
ve ∩Σ 6= ∅.

The development of restricted Delaunay techniques for general mesh-generation applications has been the subject of previous

research, and a detailed discussion of such concepts is not presented here as a result. The reader is referred to the original work

of ? or the detailed reviews presented in ? for additional details and mathematical background.15

In the context of this work, it is sufficient to note that the restricted Delaunay triangulation framework provides a convenient

mechanism to identify the triangles that provide good approximations to the spheroidal surface Σ. An implementation of these

ideas
:::::::
elements

::
in

:::
the

::::::
surface

:::::::::::
triangulation

::::::::::
Del |Σ(X).

::
In

:::::::
practice,

:::::::::::::
implementation

:::
of

:::
this

:::::::
scheme requires the definition of a

single geometrical-predicate, designed to compute intersections between Voronoi edges and the underlying surface.
::::::::
Triangles

::::::::
associated

::::
with

::::::::::
non-empty

::::::::::
intersections

::::::::::::::
Vor |f (X)∩ 6= ∅

:::::
form

::::
part

::
of

:::
the

::::::
surface

::::::
mesh. In this study, this predicate is com-20

puted analytically, following standard spheroidal trigonometric manipulations, as detailed in Appendix A. See Figure 4 for

detailed schematics.

3.3 Mesh-spacing functions

Local mesh density can be controlled via user-specified mesh-spacing functions h̄(x) : R3→ R+ that define the target edge-

length values over the domain to be meshed
:::::
surface

::
Σ. In this work, mesh-spacing functions are specified as a discrete set of25

target values h̄i,j , defined on a simple background ‘lat-lon’ grid G. The continuous mesh-spacing function h̄(x) is reconstructed

using bilinear interpolation. As will be illustrated in subsequent sections, such an approach provides support for a wide range

of mesh-spacing definitions, including distributions derived from high-resolution topographic data (?) or solution-adaptive

metrics.

In order to generate high-quality grids, it is necessary to ensure that the imposed mesh-spacing function is sufficiently30

smooth. Rather than requiring the user to accommodate such constraints, a Lipschitz smoothing process is adopted here.

Following the work of ?, a gradient-limited mesh-spacing function h̄
′
(x) is constructed, by limiting the allowable spatial

fluctuation over each element in the background grid G. In this study, a scalar smoothing parameter g ∈ R+ is used to limit

10



variation, such that

h̄
′
(xi)≤ h̄

′
(xj) + g ·dist(xi, xj) , (5)

for all adjacent vertex pairs xi, xj in G. The gradient-limited mesh-spacing function h̄
′
(x) becomes more uniform as g→ 0.

In this work, maximum gradient constraints are implemented following a fast-marching method, as described in ?.

3.4 Mesh-quality metrics
::::::::
Restricted

::::::::::::::::
Frontal-Delaunay

::::::::::
refinement5

Before moving on to a detailed description of the grid-generation algorithm itself, a number of mesh-quality metrics are first

introduced.

Definition 2. (radius-edge ratio) Given a surface triangle fi ∈Del |Σ(X), its radius-edge ratio, ρ(fi), is given by

ρ(fi) =
ri
‖emin‖

,

where ri is the radius of the circumscribing ball associated with fi and ‖emin‖ is the length of its shortest edge.10

The radius-edge ratio is a measure of element shape-quality. It achieves a minimum, ρ(fi) = 1/
√

3 for equilateral triangles

and increases toward +∞ as elements tend toward degeneracy. The radius-edge ratio is directly related to the minimum

plane-angle θmin between adjacent edges in the triangulation, such that ρ(fi) = 1
2 (sin(θmin))−1. Due to the summation of

angles in a triangle, given a minimum angle θmin the largest angle θmax is also clearly bounded, such that θmax ≤ π− 2θmin.

Definition 3. (area-length ratio) Given a surface triangle fi ∈Del |Σ(X), its area-length ratio, a(fi), is given by15

a(fi) =
4
√

3

3

Af
‖erms‖2

,

where Af is the signed-area of fi and ‖erms‖ is the root-mean-square edge length.

The area-length ratio is a robust, scalar measure of element shape-quality, and is typically normalised to achieve a score

of +1 for ideal elements. The area-length ratio decreases with increasing distortion, achieving a score of +0 for degenerate

elements and −1 for fully inverted elements.20

Definition 4. (relative edge-length) Given an edge in the surface tessellation ej ∈Del |Σ(X), its relative edge-length, hr(ej),

is given by

hr(ej) =
‖ej‖
h̄(xm)

,

where ‖ej‖ is the length of the j-th edge and h̄(xm) is the value of the mesh-spacing function sampled at the edge midpoint.

The relative-length distribution hr(ej) is a measure of mesh-spacing conformance, expressing the ratio of actual-to-desired25

edge-length for all edge-segments in Del |Σ(X). A value of hr(ej) = 1 indicates perfect mesh-spacing conformance.

In this study, a high-quality triangular surface mesh is generated on the spheroidal reference surface (4) using a Frontal-

Delaunay variant of the conventional restricted Delaunay-refinement algorithm (?????). This technique is described by the

11



Algorithms for JIGSAW-GEO

Algorithm 1 Restricted Frontal-Delaunay Refinement

1: function DelFront(Σ, ρ̄, h̄(x),Del |Σ(X))

2: Place 12 vertices on the spheroidal surface Σ to
form a regular icosahedron. Initialise the full
Delaunay complex Del(X) and the restricted
surface triangulation Del |Σ(X).

3: while (∃BadTriangle(Del |Σ(X))) do

4: Find the worst bad frontal triangle in the
surface triangulation fi ← Del |Σ(X).

5: Call xi ← OffCentre(fi) to form the new
off-centre vertex xi, designed to eliminate
the bad triangle fi.

6: Push Del(X) ← xi and update the re-
stricted surface triangulation Del |Σ(X).

7: end while

8: return surface triangulation object Del |Σ(X).

9: end function

1: function BadTriangle(f)

2:

if (h (f) > h̄(xf )) return TRUE

if (ρ2(f) > ρ̄) return TRUE

else return FALSE

3: end function

1: function OffCentre(f,x)

2: Form the restricted triangle circumcentre
xc ← Vor |f (X) ∩ Σ and the associated sur-
face ball B = SDB(f).

3: Find the minimum length edge e in the triangle
f . Edge e is the frontal segment.

4: Place the size-optimal point xh along the arc
Vor |e(X) ∩ Σ to satisfy local spacing con-
straints h̄(x).

5: Place the shape-optimal point xθ along the arc
Vor |e(X) ∩ Σ to satisfy minimum angle con-
straints ρ(f) ≤ ρ̄.

6: Compute the distances dh = dist(xe,xh) and
dθ ← dist(xe,xθ), where xe is the midpoint of
the short edge e.

7: Set x to the point {xh,xθ} of minimum dis-
tance dj , such that dj ≥ 1

2
‖e‖. Fall-back to

x← xc if {xh,xθ} do not satisfy constraints.

8: return off-centre vertex x.

9: end function

Preprint submitted to Ocean Modelling March 20, 2017

3.5 Restricted Frontal-Delaunay refinement

author in detail in ?? and differs from standard Delaunay-refinement approaches in terms of its strategies
::
the

::::::::
strategies

:::::
used

for the placement of new Steiner vertices. Specifically, the Frontal-Delaunay variant
:::::::
algorithm

:
employs a generalisation of

various off-centre type point-placement techniques (??), designed to position vertices so
::::
such

:::
that

:
that element-quality and

mesh-size constraints are satisfied in a locally-optimal fashion. Previous studies have shown that such an approach typically

leads to substantial improvements in mean element-quality and mesh smoothness. Additionally, it has been demonstrated that5

the

:::::
While

:
a
::::::
variety

:::
of

::::::::::::
grid-generation

::::::::::
algorithms

::
for

:::
the

:::::::
surface

:::::::
meshing

:::::::
problem

::::
have

:::::
been

::::::::
described

:::::::::
previously

::::::::::
(e.g. ????),

::
the

:::::::::
restricted Frontal-Delaunay method inherits much of

::::::::
presented

::::
here

::::
has

::::
been

::::::
found

::
to

:::::
offer

:
a
:::::::

unique
::::::::::
combination

:::
of

:::::::::::
characteristics

:::
—

:::::::::
combining

:::
the

:::::::
smooth,

:::::
high

::::::
quality

:::::::::::::
grid-generation

::::::::::
capabilities

::
of

:::
an

:::::::::::::
advancing-front

::::::::
approach,

:::::
with the

theoretical robustness of standard
:::
and

::::::::
provable

:::::::::
guarantees

:::::::::
associated

::::
with

:::::::::::
conventional

:
Delaunay-refinement techniques—10

offering guaranteed convergence, topological correctness, and minimum /maximum angle guarantees
:
.
::::::::::
Specifically,

::::
the

::::::::::::::
Frontal-Delaunay

::::::::
approach

::::::::
presented

::::
here

::
is

::::::
known

::
to

:::::::
generate

::::
grids

::::
with

::::
very

::::
high

:::::
mean

:::::::
element

::::::
quality,

:::::::
bounded

:::::::::
minimum

12



:::
and

:::::::::
maximum

::::::
angles,

::::
tight

:::::::::::
conformance

::
to

:::::::::::
grid-spacing

:::::::::
constraints,

::::
and

:::::::
provable

:::::::::
guarantees

:::
on

:::::::::
topological

::::::::::
consistency

::::
and

::::::::::
convergence.

:::
A

:::
full

::::::::::
description

::
of

:::
the

:::::::::
algorithm,

::::::::
including

:::::::
detailed

::::::::::
discussions

::
of

:::
its

:::::::::
theoretical

::::::::::
foundations

::::
and

:::::
proofs

:::
of

:::::::::
worst-case

:::::::::
grid-quality

:::::::
bounds,

::::
can

::
be

:::::
found

::
in

:::
??.

Given a user-defined mesh-spacing function h̄(x) and an upper-bound on the element radius-edge ratios ρ̄≥ 1, the Frontal-

Delaunay algorithm proceeds to sample the spheroidal surface Σ by refining any surface triangle that violates either the mesh-5

spacing or element-quality constraints. Refinement is accomplished by inserting
:::
The

:::
full

:::::::::
algorithm

::
is

::::::::
described

::
in

:::::::::
Algorithm

::
1,

:::
and

:::::::
detailed

:::::::::
snap-shots

::
of

:::
the

:::::::::
refinement

::::::
process

:::
are

::::::
shown

::
in

::::::
Figure

::
5.

::::
The

::::::
surface

::
is

::::::
seeded

::::
with

:
a
:::
set

::
of

::::::
twelve

:::::::
vertices

::
to

::::
form

:
a
::::::::
standard

::::::::::
icosahedron.

::::::::::
Refinement

::::
then

::::::::
proceeds

::
to

:::::
insert a new Steiner vertex at the off-centre

::::::::
off-centre refinement

point associated with a given element
::::
each

:::::
given

:::::::
element

::
to

:::
be

:::::::::
eliminated. Refinement continues until all constraints are

satisfied.
:::
The

:::::::::
refinement

:::::::
process

::
is

::::::
priority

:::::::::
scheduled,

:::::
with

:::::::
triangles

:::::::::::::
fi ∈Del |Σ(X)

:::::::
ordered

::::::::
according

::
to
:::::

their
::::::::::
radius-edge10

::::
ratios

::::::
ρ(fi).

::::
This

:::::::
ordering

:::::::
ensures

:::
that

:::
the

:::::::
element

::::
with

:::
the

:::::
worst

:::
ratio

::
is
::::::
refined

::
at
:::::
each

:::::::
iteration.

:::::::::::
Additionally,

::::::::
triangles

:::
are

::::::
subject

::
to

:
a
::::::
frontal

:::::::
filtering

::
—

::::::::
requiring

:::
that

::
a
:::::::::
low-quality

:::::::
element

::
be

::::::::
adjacent

::
to

:
a
:::::::::
converged

::::::
triangle

::::::
before

:::::
being

:::::::::
considered

::
for

::::::::::
refinement.

::::
This

:::::
logic

::::
helps

:::
the

:::::::::
algorithm

:::::
mimic

:::
the

:::::::::
behaviour

::
of

:::::::::::::
advancing-front

:::
type

::::::::::
algorithms,

::::
with

::::
new

::::::
vertices

::::
and

:::::::
elements

:::::::::
expanding

:::::
from

:::::
initial

:::::
seeds.

:
Upon termination, the resulting surface triangulation is guaranteed to contain nicely

shaped elements, satisfying both the radius-edge constraints ρ(fi)≤ ρ̄ and mesh-spacing bounds h(fi)≤ h̄(xf ) for all surface15

triangles fi ∈Del |Σ(X) in the mesh. Setting ρ̄= 1 guarantees that element angles are bounded, such that 30◦ ≤ θf ≤ 120◦,

ensuring that the grid does not contain any highly distorted elements. A full description

3.5
::::::::

Off-centre
:::::::::::::::
point-placement

:::
The

:::::::::::
performance

:
of the Frontal-Delaunay refinement procedure

::::::::
algorithm

::::::
hinges

::
on

::::
the

:::
use

::
of

:::::::::
off-centre

::::::::
refinement

:::::
rules

— including a detailed discussion of its theoretical foundations
::::::::::::
locally-optimal

:::::::::::::
point-placement

:::::::::
strategies

:::::::
designed

::
to
::::::
create20

::::
very

::::::::::
high-quality

:::::
vertex

:::::::::::
distributions.

::
A
:::
set

::
of

::::::::
candidate

:::::::::
off-centre

:::::
points

:::
are

:::::::::
considered

::
at
:::::

each
::::
new

:::::
vertex

::::::::
insertion.

:::::
Type

:
I

:::::::
vertices,

:::
xc,:::

are
:::::::::
equivalent

::
to

:::::::::::
conventional

:::::::
element

::::::::::::
circumcentres

::::::::::
(positioned

::
at

:::
the

:::::
centre

:::
of

:::
the

:::::::::
associated

::::::
surface

::::::
balls),

:::
and

:::
are

::::
used

::
to

:::::::
preserve

::::::
global

:::::::::::
convergence.

::::
Type

::
II

:::::::
vertices,

:::
xh,

:::
are

::::::::
so-called

::::::::::
size-optimal

:::::
points,

:::
and

:::
are

::::::::
designed

::
to

::::::
satisfy

::::::::::
grid-spacing

:::::::::
constraints

::
in

:
a
::::::
locally

:::::::
optimal

:::::::
fashion.

::::
Type

:::
III

:::::::
vertices,

:::
xθ,

:::
are

:::::::
so-called

::::::::::::
shape-optimal

:::::
points,

:::
and

:::
are

::::::::
designed

::
to

:::::
ensure

::::::::::::::
minimum-angle

::::::
bounds

:::
are

:::::::
satisfied

::
in

::
a

::::::::
worst-first

:::::::
manner.

::::
The

:::::
Type

:
II
::::
and

::::
Type

:::
III

::::::::
strategies

::::::::
employed

::::
here

::::
can25

::
be

::::
seen

::
as

::
a
::::::::::::
generalisation

::
of

:::
the

::::::::::::::
two-dimensional

::::::::
off-centre

:::::::::
techniques

:::::::::
presented

::
by

:::::
? and

::
?,
:::::::::::
respectively.

:::
See

::::::
Figure

::
6
:::
for

::::::::
additional

:::::
detail.

:

:::::
Given

:
a
::::::::::
low-quality

::::::
triangle

:::::::::::::
fi ∈Del |Σ(X),

:::
the

:::::
Type

:
II
::::
and

::::
Type

::
III

:::::::
vertices

:::
xh :::

and
:::
xθ ::

are
:::::::::
positioned

:::::
along

:::
the

::::::::::
intersection

::
of

::
an

::::::::
adjacent

::::::::
segment

::
of

::::
the

:::::::
Voronoi

::::::::
complex

:::
and

::::
the

:::::::::
spheroidal

:::::::
surface.

:::::
This

::::::::::
intersection

:::::::::::::
Vor |e(X) ∩ Σ,

:::::::
defines

::
a

::::::::::
frontal-curve

:::::::
inscribed

:::
on

::
Σ — can be found in ??.

:
a

::::::::::::
locally-optimal

:::::::
geodesic

:::::::
segment

::
on

::::::
which

::
to

:::::
insert

::::
new

:::::::
vertices.

:::::
Here,30

::::::::
Vor |e(X)

::
is

:::
the

::::::::
polygonal

::::
face

:::
of

:::
the

::::::
Voronoi

::::::::
complex

:::::::::
associated

::::
with

:::
the

::::
short

::::
edge

:::::::
e0 ∈ fi.::

In
:::
the

:::::::
context

::
of

:::::::::::
conventional

:::::::::::::
advancing-front

::::
type

:::::::
methods,

:::
the

:::::
edge

::
e0:::::

would
::::::
denote

:::
the

::::::
current

:::::::::::::
frontal-segment

::::
about

::::::
which

:::::
vertex

::::::::
insertion

::::::
occurs.

:::
The

:::::
points

:::
xh:::

and
:::
xθ:::

are
:::::::::
positioned

::
to

::::
form

::::
new

::::::::
candidate

:::::::
triangles

:::::
about

:::
the

::::::
frontal

::::
edge

:::
e0,

::::
such

:::
that

:::::
local

:::::::::
constraints

:::
are

:::::::
satisfied

::::::::
optimally.

::::
The

::::::::::
size-optimal

:::::
point

:::
xh::

is
:::::::::
positioned

::
to

::::::
adhere

::
to

::::
local

:::::::::::
grid-spacing

:::::::::
constraints

:::::
h̄(x),

::::
with

:::
the

:::::::
altitude

13



Figure 5.
::::::
Progress

::
of

:::
the

:::::::::::::
Frontal-Delaunay

::::::::
refinement

:::::::::
algorithm,

:::::::
clockwise

:::::
from

::::::
top-left.

::::
New

::::::
vertices

:::
are

::::::
inserted

:::::::::::
incrementally

::::
until

::
all

::::::::
constraints

:::
on

:::::::::::
element-shape

:::
and

::::::::::
edge-length

:::
are

::::::
satisfied

:::::::
globally.

:::
In

::::::
contrast

::::
with

:::::::
standard

::::::::::::
advancing-front

::::
type

::::::::::::
grid-generation

::::::::
techniques,

:::
new

::::::
vertices

:::
are

::::::
inserted

:::::::
according

::
to
:
a
::::::
greedy

:::::::::::::
priority-schedule.

:::::::::::
Grid-generation

:::::::
proceeds

:::::
along

:
a
:::::
pseudo

:::::::::
space-filling

:::::::
trajectory

:
as
::

a
:::::
result.
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::
of

:::
the

::::
new

::::::
triangle

:::::::::
candidate

::::::::
calculated

:::
to

:::::
define

::::::::
correctly

:::::
sized

:::::
edges,

:::::
such

:::
that

:::::::::::::
‖e1‖ ≤ h̄(m1)

:::
and

:::::::::::::
‖e2‖ ≤ h̄(m2),

::::::
where

::
the

:::::
mi’s:::

are
:::
the

::::
edge

:::::::::
midpoints.

:::::
These

:::::::::
constraints

::::
can

::
be

::::::
solved

:::
for

::
an

:::::::::
associated

::::::
altitude

:

ah = min
(
a∗h,
√

3/2 h̄
)
, where: a∗h =

√
h̄2− 1

2‖e0‖2 , h̄= 1
2

(
h̄(m1) + h̄(m2)

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

::::::::
Similarly,

:::
the

:::::::::::
shape-optimal

:::::
point

::
is

::::::::
positioned

::
to
::::::
adhere

::
to

::::::::
minimum

:::::
angle

::::::::::
constraints,

:::::
sliding

:::
the

:::::
point

::
xθ:::::

along
:::
the

::::::::
inscribed

::::
curve

:::::::::::::
Vor |e(X) ∩ Σ

::::
such

::::
that

:::
the

::::
new

::::::
triangle

:::::::::
candidate

:::::::
satisfies

:::::
ρ≤ ρ̄.

::::::
Setting

::::::
ρ= ρ̄

::::
leads

::
to
::

a
:::::::
solution

:::
for

:::
the

:::::::::
associated5

:::::::::::
shape-optimal

:::::::
altitude

aθ =
‖e0‖

2tan
(

1
2 θ̄
) , where: θ̄ = arcsin

(
1

2ρ̄

)
::::::::::::::::::::::::::::::::::::::::::

(7)

:::
The

:::::::
position

::
of

:::
the

::::::
points

:::
xh:::

and
:::
xθ::

is
:::::::::
calculated

::
by

:::::::::
computing

::::
the

:::::::::
intersection

:::
of

::::
balls

::
of

::::::
radius

:::
ah :::

and
:::
aθ,

:::::::
centred

::
at

:::
the

:::::::
midpoint

::
of

:::
the

::::::
frontal

::::
edge

:::
e0 :::

and
:::
the

::::::
frontal

::::
curve

:::::::::::::
Vor |e(X) ∩ Σ.

::::
This

::::::::
approach

:::::::
ensures

:::
that

::::
new

:::::::
vertices

::
are

:::::::::
positioned

:::
by

::::::::
advancing

::
a

:::::::
specified

:::::::
distance

:::::
along

:::
the

::::::
surface

::
Σ
::
in
:::
the

::::::
frontal

:::::::
direction.

::::
For

::::::::::
non-uniform

:::::
h̄(x),

::::::::::
expressions

:::
for

:::
the

:::::::
position10

::
of

:::
the

::::
point

:::
xh:::

are
:::::::::
non-linear,

::::
with

:::
the

::::::
altitude

:::
ah:::::::::

depending
::
on

:::
an

::::::::
evaluation

:::
of

::
the

:::::::::
mesh-size

:::::::
function

::
at

:::
the

::::
edge

:::::::::
midpoints

:::::
h̄(mi)::::

and
:::::::::
visa-versa.

::
In

::::::::
practice,

:::::
since

::::
h̄(x)

::
is
::::::::::

guaranteed
::
to

:::
be

:::::::::
sufficiently

:::::::
smooth,

::
a
::::::
simple

:::::::
iterative

::::::::::::::::
predictor-corrector

::::::::
procedure

::
is

::::::::
sufficient

::
to

::::
solve

:::::
these

::::::::::
expressions

::::::::::::
approximately.

:

:::::
Given

:::
the

:::
set

::
of

:::::::::
candidate

::::::
vertices

::::::::::::
{xc, xh, xθ},:::

the
:::::::
position

:::
of

:::
the

:::::::::
refinement

:::::
point

::
x

:::
for

:::
the

:::::::
triangle

::
fi::

is
::::::::
selected.

::
A

::::::::
worst-first

::::::
strategy

::
is

:::::::
adopted,

::::::::
choosing

:::
the

:::::
point

::::
that

:::::::
satisfies

::::
local

:::::::::
constraints

:::
in

:
a
::::::
greedy

:::::::
fashion.

:::::::::::
Specifically,

:::
the

::::::
closest15

::::
point

:::::
lying

::
on

:::
the

:::::::
adjacent

:::::::
Voronoi

:::::::
segment

:::::::::
Vor |e(X)

:::
and

:::::::
outside

:::
the

::::::::::::
neighbourhood

::
of

:::
the

::::::
frontal

::::
edge

:::
e0 ::

is
:::::::
selected,

::::
with

:

x =

 xj , if
(
dj ≤ dc and dj ≥ 1

2‖e0‖
)

xc, otherwise
, where: j = argmin(dh,dθ) .

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(8)

::::
Here,

:::::::::::::::
dj = dist(xe,xj):::

are
::::::::
distances

::::
from

:::
the

::::::::
midpoint

::
of

:::
the

:::::
frontal

:::::
edge

::
e0::

to
:::
the

::::
size-

:::
and

::::::::::::
shape-optimal

::::::
points

::
xh::::

and
:::
xθ.

:::
The

:::::::::
cascading

:::::::
selection

::::::
criteria

:::
(8)

:::::
seeks

::
a
::::::
balance

::::::::
between

::::
local

:::::::::
optimality

:::
and

::::::
global

:::::::::::
convergence,

::::::::
smoothly

:::::::::::
degenerating

::
to

:
a
:::::::::::
conventional

::::::::::::::::
circumcentre-based

:::::::::::::::::
Delaunay-refinement

:::::::
strategy

::
in

:::::::
limiting

:::::
cases,

:::::
while

:::::
using

:::::
locally

:::::::
optimal

:::::
points

::::::
where20

:::::::
possible.

::::::::::
Specifically,

:::::
these

:::::::::
constraints

:::::::::
guarantee

:::
that

:::::::::
refinement

::::::
points

::
lie

::::::
within

:
a
:::::
local

:::
safe

:::::
region

::
on

:::
the

:::::::
Voronoi

::::::::
complex

::
—

:::::
being

:::::::::
positioned

::
on

::
an

:::::::
adjacent

:::::::
Voronoi

:::::::
segment

:::
and

::::::
bound

:::::::
between

:::
the

:::::::::::
circumcentre

::
of

:::
the

::::::
element

:::::
itself

:::
and

:::
the

::::::::
diametric

:::
ball

::
of

:::
the

:::::::::
associated

:::::
frontal

:::::
edge.

:::::
These

::::::::::
constraints

:::::
ensure

::::
that

:::
new

::::::
points

:::
are

::::
never

:::::::::
positioned

:::
too

:::::
close

::
to

::
an

:::::::
existing

::::::
vertex,

::::::
leading

::
to

:::::::
provable

:::::::::
guarantees

:::
on

:::
the

::::::::::
performance

::
of

:::
the

:::::::::
algorithm.

:::
See

::::::::
previous

::::
work

:::
by

:::
the

:::::
author

:::::::
(??) for

::::::::
additional

::::::
detail.

25

3.6
:::::::::

Additional
:::::::
remarks

As a restricted Delaunay-refinement approach, a full three-dimensional Delaunay tetrahedralisation Del(X) is incremen-

tally maintained throughout the surface meshing phase, where X ∈ R3 is the set of vertices positioned on the surface of

15



Figure 6.
:
A

:::::::::::::
two-dimensional

:::::::::::
representation

::
of

:::
the

:::::::
off-centre

:::::::::
refinement

:::::::
strategies

::::::
utilised

:::
for

:
a
:::::

given
:::::::::
low-quality

::::::
triangle

::
fi::::::::

(shaded),

::::::::
illustrating

::
(a)

:::
the

:::::
frontal

::::::
segment

::
of

:::
the

::::::
Voronoi

::::::
diagram

::::::::
associated

::::
with

:::
the

::::
short

::::
edge

::::::
e0 ∈ fi,:::

(b)
::::::::
placement

::
of

::
the

::::::::::
size-optimal

:::::
vertex

::
xh::::

such
:::
that

::::
local

::::
size

::::::::
constraints

:::::
h̄(xf )

:::
are

:::::::
enforced,

:::
and

:::
(c)

::::::::
placement

::
of

:
a
:::::::::::
shape-optimal

:::::
vertex

::
xθ::::

such
:::
that

:::
the

:::::::
required

:::::::::
radius-edge

:::
ratio

::̄
ρ

:
is
:::::::
satisfied.

the spheroidal geometry. The set of restricted surface triangles Del |Σ(X) that conform to the underlying spheroidal geometry

are expressed as a subset of the tetrahedral faces
:
,
::::
such

::::
that Del |Σ(X)⊆Del(X). In an effort to minimise the expense asso-

ciated with maintaining the full-dimensional topological tessellation, an additional scaffolding vertex xs is initially inserted

at the centre of the spheroid. This has the effect of simplifying the resulting topological structure of the
::::::
interior

:
mesh, with

the resulting tetrahedral elements forming a simple wheel-like configuration, in which they emanate radially outward from the5

central scaffolding vertex xs.

3.7 Construction of Voronoi cells

Construction of the staggered surface Voronoi control-volumes, illustrating: (left) locally-orthogonal Voronoi/Delaunay

staggering, and (right) an associated unstructured C-grid type numerical discretisation scheme, as per the MPAS model.

The formulation is a combination of conservative cell-centred tracer quantities ψ̄i, edge-centred normal velocity components10

(u · n̂)j , and auxiliary vertex-centred vorticity variables ξk.

Typically, numerical formulations employed for large-scale atmospheric and/or oceanic general circulation modelling are

based on a staggered grid configuration, with quantities such as fluid pressure, geopotential, and density discretised using

a primary control-volume, and the fluid velocity field and vorticity distribution represented on a second, spatially distinct

grid-cell. In the context of standard structured grid types, various staggered arrangements are described by the well-known15

Arakawa schemes (?)
:::
See

::::::
Figure

:
4
:::
for

:::::::::
additional

:::::
detail.

The development of general circulation models based on unstructured grid types is an emerging area of research,

and, as a result, a variety of numerical formulations are currently under investigation. In this study, the development of

locally-orthogonal grids appropriate for staggered unstructured numerical schemes are pursued, as these methods are thought

to represent the most logical extension of the conventional structured Arakawa type techniques to the unstructured setting.20
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Noting that the
::
As

:::
per

::::::
Figure

::
5,

::
an

:::::::::
interesting

:::::::::::
characteristic

::
of

:::
the

:
Frontal-Delaunay refinement algorithm described previously

is guaranteed to construct triangulations that respect the Delaunay criterion, a natural staggered unstructured grid can be

constructed based on the associated Voronoi diagram.

Consisting of a set of (convex) polygonal grid-cells centred on each vertex in the underlying triangulation,
::::::::
algorithm

::::::::
described

:::
here

::::::
relates

::
to the surface Voronoi diagram Vor |Σ(X) obeys a number of local orthogonality constraints. Specifically,5

grid-cell edges in the Voronoi tessellation are guaranteed to be perpendicular to their associated edges in the underlying

Delaunay triangulation, passing through the Delaunay-edge midpoints. Additionally,
:::::::::::::::::
refinement-trajectory

:::
that

::
is

::::::::
followed

::::
when

::::::::
inserting

::::
new

:::::::
vertices

:::
and

::::::::
triangles.

::::::
Unlike

::::::::
standard

:::::::::::::::::
Delaunay-refinement

:::
or

:::::::::::::
advancing-front

::::
type

::::::::
methods,

::
it

:::
can

:::
be

::::
seen

:::
that

:::
the

:::::::::
algorithm

::::::
adopts

:
a
:::::::::::
space-filling

:::::
curve

:::
type

:::::::
pattern,

:::::::
covering

:::
the

:::::::
surface

:
in

:
a

:::::::::
fractal-like

::::::::::::
configuration,

::::::
before

:::::::::
recursively

:::::
filling

::
in

:::
the

:::::
gaps.

::::
Note

::::
that

::
no

::::::
explicit

:::::::::::
space-filling

:::::
curve

::::::::
constraint

:::
has

:::::
been

::::::::::
implemented

::::
here

:::
—

:::
this

:::::::::
behaviour10

:
is
:::::::

simply
::
an

::::::::
emergent

::::::::
property

::
of

::::
the

::::::::
algorithm

:::::
itself,

::::
due

::
to

::::::::::
interactions

::::::::
between

:::
the

::::::
greedy

:::::::
priority

::::::::
schedule,

:
the case

of perfectly regular and centroidal tessellations, the Delaunay-edges are guaranteed to pass through the midpoints of their

associated Voronoi duals. Voronoi grid-cells are formed as the convex-hull of the incident element surface-ball centres B(ci, ri)

associated with the set of surface triangles adjacent to each vertex. Example Voronoi/Delaunay type grid staggering is illustrated

in Figure 2.15

While detailed comparisons of particular numerical discretisation schemes lie outside the scope of the current study, brief

comments regarding the benefits of locally-orthogonal grid-staggering arrangements are made. Pursuing an unstructured variant

of the widely-used Arakawa C-grid, the placement of fluid pressure, geopotential and density degrees-of-freedom within

the primary Voronoi control-volumes, and orthogonal velocity vectors on Delaunay-edges achieves a similar configuration.

Such an arrangement facilitates construction of a standard conservative finite-volume type scheme for the transport of fluid20

properties and a mimetic class (??) finite-difference formulation for velocity components. Additionally, exploiting alignment

with Delaunay-edges, a conservative evaluation of the fluid vorticity can be made on the staggered Delaunay triangles. This

type of unstructured C-grid staggering is employed in the Model for Prediction Across Scales (MPAS), for both atmospheric

and oceanic modelling (???). See Figure 2 for additional details
:::::
frontal

:::::::
filtering

::::
and

::::::::
off-centre

::::::::::::::
point-placement

::::::::
strategies.

:::
In

:::::::
practice,

::
it

:::
has

::::
been

:::::
found

::::
that

:::
this

:::::::::::
space-filling

::::
type

:::::::::
behaviour

::::
leads

::
to
:::
the

:::::::::::
construction

::
of

::::
very

:::::::::::
high-quality

::::::::::::
triangulations,25

:::::::
typically

:::::::::
exceeding

:::
the

::::::::::
performance

::
of

::::::::
standard

:::::::::::::
advancing-front

::::
type

:::::::
schemes.

4 Hill-climbing mesh optimisation

While the staggered Voronoi/
:::::::::
spheroidal Delaunay grids generated using the Frontal-Delaunay refinement algorithm described

in Section 3 are guaranteed to be of very high-quality,
::::::::
producing

::::::::::::
triangulations

::::
with

::::::
angles

::::::::
bounded

:::::::
between

:::::::
θf = 30

::::
and

:::::::
θf = 120

::::::::
degrees, these tessellations can often be further improved through subsequent mesh-optimisation operations. Such a30

procedure
:::::::
Recalling

::::
that

:::
the

:::::::::::
construction

::
of

:::
the

::::::::::
well-centred

::::
grids

::::::::::
appropriate

:::
for

::::::::::
unstructured

::::::
C-grid

::::::::
schemes

::::::
require

:::
that

::::::::
maximum

::::::
angles

::
be

:::::::
bounded

:::::
below

:::::::::
θf = 90◦,

::
the

::::::::::
application

::
of

::::
such

::::::::::
optimisation

:::::::::
procedures

::::
can

::
in

:::
fact

::
be

::::
seen

::
as

:
a
:::::::::
necessary

:::::::::
component

::
of

:::
the

:::::::::::::
grid-generation

:::::::::
work-flow

::
for

:::::
such

::::::
models.

:
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::
In

:::
the

::::::
present

:::::
work,

:::::::::::::::
grid-optimisation is realised as a coupled geometrical and topological optimisation task — seeking to

reposition vertices and update grid topology to maximise a given element-wise mesh-quality metric Qf (x). In this study, a
::
A

hill-climbing type optimisation strategy is pursued
::::
here, in which a locally-optimal solution is sought based on an initial grid

configuration.

In the present work
::
In

:::
this

::::::
study, the grid is optimised according to the area-length quality metric (2.1), a robust scalar5

measure of mesh-quality
:::::::::
grid-quality

:
that achieves a score of +1 for ‘perfect’ elements — decreasing toward zero with in-

creasing levels of element distortion. Optimisation predicates are implemented in a so-called hill-climbing fashion (??), with

modifications to the grid accepted only if the local mesh-quality metrics are sufficiently improved. Specifically, a worst-first

strategy is adopted, in which each given optimisation predicate is required to improve the worst-case quality associated with

elements in the local subset being acted upon. Such a philosophy ensures that global mesh-quality is increased monotoni-10

cally as optimisation proceeds. Note that such behaviour is designed to maximise the minimum element quality metric in the

grid, rather than improving a mean measure. This represents an important distinction when compared to other iterative mesh-

optimisation algorithms, such as Centroidal Voronoi Tessellation (CVT) type schemes (?), in which all nodes are typically

adjusted simultaneously until a global convergence criterion is satisfied.

4.1 ‘Spring’-based mesh smoothing15

Considering firstly the geometric optimality of the grid, a mesh-smoothing procedure is undertaken — seeking to reposition

the nodes of the grid to improve element quality and mesh-spacing conformance. Following the work of ?, a spring-based

approach is pursued, in which edges in the Delaunay triangulation are treated as elastic-rods with a prescribed natural length.

Nodes are iteratively repositioned until a local equilibrium configuration is reached.
:::
See

:::::::::
Algorithm

::
2

:::
for

:::
full

::::::
details.

:
In the

original work of Persson, nodal positions are adjusted via a local time-stepping loop, with all nodes updated concurrently under20

the action of explicit spring forces. In the current study, a non-iterative variant is employed, in which each node is repositioned

one-by-one, such that constraints in each local neighbourhood are satisfied directly. Specifically, a given node xi is repositioned

as a weighted sum of contributions from incident edges

xn+1
i =

∑
wk(xni + ∆kvk)∑

wk
,where: where:

::::::
vk = xni −xnj , ∆k =

h̄(xnk )− lk
lk

. (9)

Here, xni , x
n
j are the current positions of the two nodes associated with the k-th edge, lk is the edge length and h̄(xk) is the value25

of the mesh-spacing function evaluated, at the edge midpoint. ∆k is the relative spring extension required to achieve equilibrium

in the k-th edge. The scalars wk ∈ R+ are edge weights. Setting wk = 1 results in an unweighted scheme, consisting of simple

linear springs. In this study, the use of nonlinear weights, defined by settingwk = ∆2
k, was found to offer superior performance.

Noting that application of the spring-based operator (9) may move nodes away from the underlying spheroidal surface Σ,

an additional projection operator is introduced to ensure that the grid conforms to the surface geometry exactly. Following the30

application of each spring-based adjustment (9), nodes are moved back onto the geometry via a closest-point projection.

Consistent with the hill-climbing paradigm described previously, each nodal adjustment (9) is required to be validated before

being committed to the updated grid configuration. Specifically, nodal adjustments are accepted only if there is sufficient
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Algorithm 2 Spring and gradient-based node-smoothing

1: function NodeSmooth(x,Del |Σ(X), Q̄)

2: if (min(Q(x)) ≥ Q̄) then

3: Call {v̂,∆} ← SpringVec(x,Del |Σ(X))
to form the spring-based search vector and
step-length.

4: else

5: Call {v̂,∆} ← AscentVec(x,Del |Σ(X))
to form the gradient-based search vector
and step-length.

6: end if

7: while (i ≤M) do

8: Set x′ ← proj |Σ(x+∆iv̂) to move the ver-
tex x along the search vector v̂ and project
onto the surface Σ.

9: if (Better(Q(x′), Q(x))) then

10: Set x← x′ and break.

11: end if

12: Step-length bisection ∆i+1 ← 1
2
∆i.

13: end while

14: end function

1: function SpringVec(x,Del |Σ(X), v̂,∆)

2: Scan edges adj. to x, calc. x′ ←
∑
we(x+∆ee)∑

we
,

where we ← ∆2
e and ∆e ← h(xe)−‖e‖

‖e‖ .

3: Set v← x′ − x, v̂← v
‖v‖ and ∆← ‖v‖.

4: return search vector v̂ and step-size ∆.

5: end function

1: function AscentVec(x,Del |Σ(X), v̂,∆)

2: Scan faces adj. to x and return the worst
adj. element f ← argmin(Qf (x)).

3: Compute the local gradient-ascent search vec-
tor v← ∂

∂x
(Qf (x)).

4: Solve Qf (x)+∆ v̂ · ∂
∂x

(Qf (x)) ≤ Q̃j(x) for the

initial step-size ∆, where Q̃j(x) is the quality
of the second-worst triangle adj. to x.

5: return search vector v̂ and step-size ∆.

6: end function

1: function Better(Q′, Q)

2: Sort the mesh-quality vectors Q′ and Q.

3: return FALSE if any Q′i < Qi, else TRUE.

4: end function

2

improvement in the mesh-quality metrics associated with the set of adjacent elements. A sorted comparison of quality metrics

before and after nodal repositioning is performed, with nodal adjustments successful if grid-quality is improved in a worst-first

manner. This lexicographical quality comparison is consistent with the methodology employed in ?.

4.2 Gradient-based mesh smoothing

While the spring-based mesh-smoothing operator described previously is effective in adjusting a grid to satisfy mesh-spacing5

constraints, and tends to improve mesh-quality
:::::::::
grid-quality

:
on average, it is not guaranteed to improve worst-case element

quality metrics in all cases. As such, an additional steepest-ascent type optimisation strategy is pursued (?), in which nodal

positions are adjusted using the local gradients of incident element quality functions.
:::
See

::::::::
Algorithm

::
2
:::
for

:::
full

::::::
details.

:
Specif-

ically, a given node xi is repositioned along a local search-vector chosen to improve the quality of the worst incident element

10

xn+1
i = xni + ∆f v̂f ,where: where:

::::::
vf =

∂

∂x
(Qf (xi)) , f = argminj(Qj(xi)) . (10)
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Here, the index j is taken as a loop over the Delaunay triangles fj ∈Del |Σ(X) incident to the node xi. The scalar step-length

∆f ∈ R+ is computed via a line-search along the gradient ascent vector v̂f , and in this study, is taken as the first value found

that leads to a net improvement in the worst-case incident quality metricQf (xi). A simple bisection-type strategy is used in the

present work, iteratively testing ∆p
f =

(
1
2

)p
α until a successful nodal adjustment is found. Here p denotes the local line-search

iteration. The scalar length α ∈ R+ is determined as a solution to the first-order Taylor expansion5

Qf (xi) +α v̂f ·
∂

∂x
(Qf (xi))≤ Q̃j(xi) . (11)

The index j is again taken as a loop over the Delaunay triangles fj ∈Del |Σ(X) incident to the central node xi, with the

quantity Q̃j(xi) representing the second-lowest adjacent grid-quality score. This selection strategy (?) is designed to compute

an initial displacement α that will improve the worst element in the adjacent set until its quality is equal that of its next best

neighbour. Noting that such an expansion is only first-order accurate, the step-length is iteratively decreased using bisection.10

In this study, a limited line-search is employed, testing iterations p= {0,1, . . . ,5} until a successful step is found. Consistent

with the spring-based procedure described previously, a geometry-projection operator is implicitly incorporated within each

update (10), ensuring that nodes remain constrained to the spheroidal surface.

4.3 Topological ‘flips’

In addition to purely geometrical operations, general grid optimisation also requires that adjustments be made to the underlying15

mesh topology, such that the surface triangulation remains a valid Delaunay structure. While it is possible to simply re-compute

the full restricted Delaunay topology after each nodal position adjustment, such an approach carries significant computational

costs, especially when considering that a majority of nodal position updates involve small perturbations. In this work, an

alternative strategy is pursued, based on local element-wise transformations, known as topological flips.

For any given pair of adjacent surface triangles fi, fj ∈Del |Σ(X), a local re-triangulation can be achieved by flipping local20

connectivity about the shared edge xi, xj to instead form a new edge between the opposing vertices xa, xb. Such an operation

results in the deletion of the existing triangles fi, fj and the creation of a new pair f ′i , f
′
j . This operation is illustrated in

Figure 7a. In the present study, the iterative application of such edge-flipping operations is used to adjust the topology of the

surface triangulation, such that it remains Delaunay. Specifically, given a general, possibly non-Delaunay, surface triangulation

Tri |Σ(X), a cascade of edge-flips are used to achieve a valid restricted Delaunay surface tessellation Del |Σ(X). For each25

adjacent triangle pair fi, fj ∈ Tri |Σ(X) an edge-flip is undertaken if a local violation of the Delaunay criterion is detected.

New elements created by successful edge-flips are iteratively re-examined until no further modifications are necessary. This

approach follows the standard flip-based algorithms described in, for instance ??.

Given a triangle fi ∈ Tri |Σ(X), the local Delaunay criterion is violated if there exists a node xq /∈ fi interior to the cir-

cumscribing ball associated with the triangle fi. In this work, violations to the Delaunay criterion are detected by considering30

the restricted circumballs B(ci, ri) associated with each triangle fi ∈ Tri |Σ(X), where the ball-centre ci is a projection of

the planar element circumcentre onto the spheroidal surface Σ. Such constructions account for the curvature of the surface.

Given an adjacent triangle pair fi, fj ∈ Tri |Σ(X) an edge-flip is undertaken if either opposing vertex xa, xb lies within the

20



Figure 7. Topological operations for grid optimsiation, showing (left) an edge-flip, (middle) an edge-contraction, and (c) an edge-refinement

operation. Grid configurations before and after each flip are shown in the upper and lower panels, respectively.

circumball associated with the adjacent triangle. To prevent issues associated with exact floating-point comparisons, a small

relative tolerance is incorporated. Specifically, nodes are required to penetrate the opposing circumball by a distance ε before

an edge-flip is undertaken, with ε= 1
2 (ri + rj)ε̄ and ε̄= 1× 10−10 in the current double-precision implementation.

4.4 Edge contraction

In some cases, grid-quality and mesh-spacing conformance can be improved through the use of so-called edge-contraction5

operations, whereby nodes are removed from the grid by collapsing certain edges. Given an edge ek ∈ Tri |Σ(X), a re-

triangulation of the local cavity Ci ⊆ Tri |Σ(X), formed by the set of triangles incident to the nodes xi, xj ∈ ek, can be achieved

by merging the nodes xi, xj at some midpoint along the edge ek. In addition to collapsing the edge ek, edge-contraction also

removes the two surface triangles fi, fj ∈ Tri |Σ(X) adjacent to ek, resulting in a new re-triangulation of the local cavity

C ′i ⊆ Tri |Σ(X). See Figure 7b for illustration. In the present work, nodes are merged to a mean position xn — taken as an10

average of the adjacent element circumcentres, such that xn = 1
|Ci|
∑

cj , where the cj’s are centres of the circumballs asso-

ciated with the adjacent surface triangles fj ∈ Ci. The mean position xn is projected onto the spheroidal surface Σ. While
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Algorithm 3 Hill-climbing grid optimisation

1: function Optimise(Σ, h̄(x),Del |Σ(X))

2: for (iouter ≤ Nouter) do

3: for (iinner ≤ Ninner) do

4: for (∀ nodes j ∈ X) do

5: Call NodeSmooth(xj , Del |Σ(X))
to improve geometric distribution of
triangle vertices.

6: end for

7: end for

8: Call MergeNode(Del |Σ(X)) to collapse
any short edges.

9: Call SplitEdge(Del |Σ(X)) to refine any
long edges.

10: Call EdgeFlips(Del |Σ(X)) to restore grid
Delaunay-ness (i.e. local-orthogonality).

11: end for

12: return surface triangulation object Del |Σ(X).

13: end function

1: function EdgeFlips(X,Del |Σ(X))

2: for (∀ edges e ∈ Del |Σ(X)) do

3: Given the adj. triangle-pair C ← {fi, fj},
flip the common diagonal to re-triangulate
the cavity C ′.

4: if Better(Q(C ′), Q(C )), Del |Σ(X)← C ′.

5: end for

6: end function

1: function MergeNode(X,Del |Σ(X))

2: for (∀ edges e ∈ Del |Σ(X)) do

3: Form a local merge point x′ about the
edge e. Given xi, xj ∈ e, set x′ ←
proj |Σ( 1

|C |
∑

cf ), where C is the set of tri-
angles adj. to xi, xj and cf are the associ-
ated circumcentres.

4: Merge the vertices xi, xj ← x′, and re-
triangulate the cavity C ′ as a result.

5: if Better(Q(C ′), Q(C )), Del |Σ(X)← C ′.

6: end for

7: return updated X and Del |Σ(X).

8: end function

1: function SplitEdge(X,Del |Σ(X))

2: for (∀ edges e ∈ Del |Σ(X)) do

3: Form a local refinement point x′ about the
edge e. Given the two adj. triangles, C ←
{fi, fj}, set x′ equal to the circumcentre of
the lower quality element.

4: Append the new vertex X ← x′, and re-
triangulate the cavity C ′ as a result.

5: if Better(Q(C ′), Q(C )), Del |Σ(X)← C ′.

6: end for

7: return updated X and Del |Σ(X).

8: end function

3

such an approach is slightly more computationally intensive than use of the simple edge-midpoint, the local circumcentre-

based strategy
:::
has proved to be substantially more effective in practice. Consistent with the hill-climbing philosophy pursued

throughout this study, edge-contraction operations are only successful if there is sufficient improvement in the mesh-quality

metrics associated with the set of adjacent elements. As per previous discussions, edge-contraction is undertaken based on a

lexicographical comparison of the grid-quality vectors associated with the initial and final grid states Ci and C ′i , respectively.5

4.5 Edge refinement

Fulfilling the opposite role to edge-contraction, so-called edge-refinement operations seek to improve grid-quality and mesh-

spacing conformance through the addition of new nodes and elements. In the present study, a simplified refinement operation
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is utilised, in which a given edge ek ∈ Tri |Σ(X) is refined by placing a new node xn at the centre of the restricted circumball

B(ci, ri) associated with the lower quality adjacent triangle fi ∈ Tri |Σ(X). Insertion of the new node xn induces the re-

triangulation of a local cavity Ci ∈ Tri |Σ(X) — constructed by expanding about xn in a local greedy fashion. Starting from

the initial cavity Ci = {fi, fj} adjacent to the edge ek, additional elements are added in a breadth-first manner, with a new,

unvisited neighbouring element fk added to the cavity Ci if doing so will improve the worst-case element quality metric. The5

final cavity Ci is therefore a locally-optimal configuration. In practice, the iterative deepening of Ci typically convergences

in one or two iterations. See Figure 7c for illustration. As per the edge-contraction and node-smoothing operations described

previously, edge-refinement is implemented according to a hill-climbing type philosophy, with operations successful only if

there is sufficient improvement in local grid-quality. Consistent with previous discussions, a lexicographical comparison of the

grid-quality metrics associated with elements in the initial and final states Ci and C ′i is used to determine success.10

4.6 Optimisation schedule

The full grid optimisation procedure is realised as a combination of the various geometrical and topological operations de-

scribed previously, organised into a particular iterative optimisation schedule.
:::
See

:::::::::
Algorithm

::
3
:::
for

::::
full

::::::
details.

:
Each outer

iteration consists of a fixed set of operations: four node-smoothing passes, a single pass of edge refinement/contraction opera-

tions, and, finally, iterative edge-flipping to restore the Delaunay criterion. In this study, sixteen outer iterations are employed.15

Each node-smoothing pass is a composite operation, with the spring-based technique used to adjust nodes adjacent to high-

quality elements, and the gradient-ascent method used otherwise. Specifically, spring-based smoothing is used to adjust nodes

adjacent to elements with a minimum quality score ofQf ≥ 0.9375
::::::::::
Q̄f ≥ 0.9375. Such thresholding ensures that the expensive

gradient-ascent type iteration is reserved for the worst elements in the grid. The optimisation schedule employed here is not

based on any rigorous theoretical derivation, but is simply a set of heuristic choices that have proven to be effective in practice.20

The application of multiple node-smoothing passes within an outer iteration containing subsequent topological, contraction

and refinement operations is consistent with the methodologies employed in, for instance ??.

5 Results & Discussions

The performance of the Frontal-Delaunay refinement and hill-climbing optimisation algorithms presented in Sections 3 and

4 was investigated experimentally, with the methods used to mesh a series of benchmark problems. The algorithms were25

::::::::
algorithm

::::
was implemented in C++ and compiled as a 64-bit executable. The full algorithm has been implemented as a

specialised variant of the general-purpose JIGSAW meshing package, denoted JIGSAW-GEO, and is currently available online

(?) or by request from the author. All tests were completed on a Linux platform using a single core of an Intel i7 processor.

Visualisation and post-processing was completed using MATLAB.

A uniform resolution global grid, showing (left) the underlying spheroidal Delaunay triangulation, and (right) the associated30

staggered Voronoi dual. 150km grid-spacing was specified globally. Topography is drawn using an exaggerated scale, with

elevation from the reference geoid amplified by a factor of 10 in all cases.
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Figure 8.
::::::::::
Mesh-spacing

::::::::
functions

::::
h̄(x)

:::
for

:::
the

::::::::::::::
regionally-refined

:::::
North

:::::::
Atlantic

:::
and

::::::::::::::::::
topographically-refined

:::::::
Southern

::::::
Ocean

:::::
grids.

::::::::::
Mesh-spacing

::
is

:::::
shown

::
in

:::
km.
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Mesh-quality metrics associated with the uniform resolution global grid, before (left) and after (right) the application of

hill-climbing mesh optimisation. Normalised histograms of element area-length ratio af , enclosed-angle θf and relative-length

hr are illustrated, with minimum, maximum and mean values annotated.

5.1 Preliminaries

The JIGSAW-GEO algorithm was used to mesh a set of benchmark problems, suitable for various atmospheric and oceanic5

general circulation problems. The UNIFORM-SPHERE test-case describes a uniform
::::
fixed resolution meshing problem on the

sphere, suitable for uniformly resolved atmospheric and/or oceanic studies. The REGIONAL-ATLANTIC test-case describes

a simple, regionally-refined grid for global ocean modelling, incorporating a high-resolution, eddy-permitting representation

of the North Atlantic ocean basin. Lastly, the SOUTHERN-OCEAN test-case describes a multi-resolution, regionally-refined

grid for global ocean simulation, with a very high-resolution representation of the Southern Ocean and Antarctic regions. The10

mesh-spacing function for this problem was designed using a combination of topographic gradients and regional-refinement.

The Voronoi/Delaunay grids for these test-cases are shown in Figures 9, 13, 14 and 16 with associated grid-quality statistics

presented in Figures 10, 12 and 15.
:::
The

::::::::::
underlying

:::::::::::
mesh-spacing

::::::::
functions

::::
used

:::
to

:::::
define

:::
the

:::::::::::::::::::::
REGIONAL-ATLANTIC

::::
and

::::::::::::::::::
SOUTHREN-OCEAN

::::::::
problems

:::
are

::::::
shown

::
in

::::::
Figure

::
8.

In all test cases, limiting radius-edge ratios were specified, such that ρ̄f = 1.05. These constraints ensure that the minimum15

enclosed angle in any triangle is θmin ≥ 28.4◦. For all test problems, detailed statistics on element quality are presented, in-

cluding histograms of element area-length ratios af , element-angles θf , and relative-edge-length hr. The element area-length

ratios are robust measures of element quality, where high-quality elements attain scores that approach unity. The relative

edge-length metric is defined to be the ratio of the measured edge-length ‖e‖ to the target value h̄(xe), where xe is the edge

midpoint. Relative edge-lengths close to unity indicate
::::
tight conformance to the imposed mesh-spacing function. High-quality20

surface triangles contain angles approaching 60◦. Histograms further highlight the minimum, maximum and mean values of

the relevant distributions as appropriate.

5.2 Uniform global grid

The performance of the JIGSAW-GEO algorithm was first assessed using the UNIFORM-SPHERE test-case, seeking to build a

uniformly resolved, staggered Voronoi/Delaunay-type dual grid for general circulation modelling. Spatially uniform mesh-size25

constraints were enforced, setting h̄(x) = 150km over the full sphere. The resulting grid is shown in Figure 9 and contains

83,072 Delaunay triangles and 41,538 Voronoi cells. Grid-generation time was approximately 12 seconds, including both

the initial restricted Frontal-Delaunay refinement and subsequent hill-climbing type optimisation. Grid-quality metrics are

presented in Figure 10, showing distributions before and after the application of the grid-optimisation procedure.

Overall, the high quality of the Voronoi/Delaunay grids presented in Figure 9 illustrates the effectiveness of the JIGSAW-30

GEO algorithm. Based on visual inspection, it is clear that the grids achieve very high levels of geometric quality — being

absent of distorted grid-cell configurations and/or areas of over- or under-refinement. Focusing on the distribution of triangle

shape-quality explicitly, it is noted that very high levels of mesh regularity are achieved, with the vast majority of element area-
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Figure 9.
:
A

:::::::
uniform

:::::::
resolution

::::::
global

::::
grid,

::::::
showing

:::::
(left)

:::
the

::::::::
underlying

::::::::
spheroidal

::::::::
Delaunay

::::::::::
triangulation,

:::
and

::::::
(right)

:::
the

::::::::
associated

:::::::
staggered

::::::
Voronoi

::::
dual.

::::::
150km

::::::::::
grid-spacing

:::
was

:::::::
specified

:::::::
globally.

:::::::::
Topography

::
is

:::::
drawn

::::
using

::
an

:::::::::
exaggerated

:::::
scale,

::::
with

:::::::
elevation

::::
from

::
the

:::::::
reference

:::::
geoid

:::::::
amplified

::
by

::
a

::::
factor

::
of

:::
10.

length scores tightly clustered about af = 1. Similarly, the distribution of element angles shows strong convergence around

θf = 60◦, revealing most triangles to be near equilateral. Finally, analysis of the relative-length distributions show that grids

tightly conform to
::::::::::
edge-lengths

::::::
follow the imposed mesh-spacing constraints , with a tight clustering of hr about 1

::::::
closely,

::::
with

::::
very

::::
tight

::::::::
clustering

:::::
about

::::::
hr = 1.

The effect of the grid-optimisation procedure can be assessed by comparing the mesh-quality statistics presented in Fig-5

ure 10. The application of mesh-optimisation is seen to be most pronounced at the ‘tails’
::::
tails of the distributions, showing

that, as expected, the hill-climbing type procedure is effective at improving the worst elements in the grid. Specifically, the

minimum area-length metric is improved from af = 0.67 to af = 0.94, and the distribution of element-wise angles is nar-

rowed from 31◦ ≤ θf ≤ 112◦ to 44◦ ≤ θf ≤ 78◦. A slight broadening of the mean parts of the distributions is also evident,

showing that in some cases, higher-quality elements are slightly compromised to facilitate improvements to their lower-quality10

neighbours. This behaviour is consistent with the worst-first philosophy employed in this study.
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Figure 10.
::::::::::
Mesh-quality

::::::
metrics

::::::::
associated

::::
with

:::
the

::::::
uniform

::::::::
resolution

::::::
global

::::
grid,

:::::
before

:::::
(left)

:::
and

::::
after

::::::
(right)

:::
the

::::::::
application

:::
of

:::::::::
hill-climbing

:::::
mesh

::::::::::
optimisation.

:::::::::
Normalised

:::::::::
histograms

::
of

:::::::
element

::::::::
area-length

::::
ratio

::::
af ,

:::::::::::
enclosed-angle

:::
θf :::

and
:::::::::::
relative-length

:::
hr :::

are

::::::::
illustrated,

:::
with

::::::::
minimum,

::::::::
maximum

:::
and

::::
mean

:::::
values

::::::::
annotated.

Beyond improvements to standard grid-quality metrics, the impact of mesh-optimisation can be further understood by con-

sidering the so-called well-centredness of the resulting staggered Voronoi/Delaunay dual grid. Well-centred triangulations are

those for which all element circumcentres are located within their parent triangles, ensuring that the associated Voronoi cells

are nicely-staggered with respect to the underlying triangulation as a result. Such a constraint is equivalent to requiring that all

Delaunay triangles are acute, such that θf ≤ 90◦.
::::::
Further

:::::
details

:::
are

:::::::
outlined

::
in
:::
the

:::::::::
discussion

::::::::
presented

::
in
:::::::
Section

::
2.5

Well-centred grids are highly desirable from a numerical perspective, allowing, for instance, the mimetic-type C-grid dis-

cretisation scheme employed in the MPAS framework to achieve optimal rates of convergence. Specifically, when a grid is

well-centred, it is guaranteed that associated edges in the staggered Voronoi and Delaunay cells intersect, ensuring that evalua-

tion of the element-wise transport and circulation terms can be accurately computed using local
:::::::
compact

:
numerical stencils. In

the case of perfectly-centred grids, such intersections occur at edge-midpoints — allowing a numerical scheme based on local10

linear interpolants to achieve fully second-order accuracy.

The construction of well-centred grids is known to be a difficult problem, and the development of algorithms for their

generation is an ongoing area of research (??). For the uniform resolution case studied here, it is clear that the hill-climbing

type optimisation procedure is successful in generating a well-centred staggered Voronoi/Delaunay dual grid, with all enclosed

angles less than 77.9◦.15

5.3 Regionally-refined North Atlantic grid

A regionally-refined Voronoi-type grid of the North Atlantic region. Global coarse grid resolution is 150km, with a 15km

eddy-permitting grid-spacing specified over the atlantic ocean basin. Topography is drawn using an exaggerated scale, with

elevation from the reference geoid amplified by a factor of 10 in all cases.
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Figure 11.
:
A

::::::::::::::
regionally-refined

::::::::::
Voronoi-type

:::
grid

::
of
:::

the
:::::

North
:::::::
Atlantic

:::::
region.

::::::
Global

:::::
coarse

::::
grid

::::::::
resolution

::
is

::::::
150km,

::::
with

:
a
::::::

15km

::::::::::::
eddy-permitting

:::::::::
grid-spacing

:::::::
specified

::::
over

::
the

:::::::
Atlantic

::::
ocean

:::::
basin.

:::::::::
Topography

::
is

:::::
drawn

::::
using

::
an

::::::::::
exaggerated

::::
scale,

::::
with

:::::::
elevation

::::
from

::
the

:::::::
reference

:::::
geoid

:::::::
amplified

::
by

::
a

::::
factor

::
of

:::
10.

Mesh-quality metrics associated with the regionally-refined Voronoi-type grid of the North Atlantic region, before (left)

and after (right) the application of hill-climbing mesh optimisation. Normalised histograms of element area-length ratio af ,

enclosed-angle θf and relative-length hr are illustrated, with minimum, maximum and mean values annotated.

The multi-resolution capabilities of the JIGSAW-GEO algorithm were investigated in the REGIONAL-ATLANTIC test-

case, seeking to build a regionally-resolved, staggered Voronoi/Delaunay-type
::::::::::::
Delaunay-type dual grid for high-resolution5

modelling of the North Atlantic ocean basin. Non-uniform mesh-size constraints were enforced, setting h̄(x) = 150km

globally, with 15km eddy-permitting mesh-spacing specified over the north atlantic
::::
North

::::::::
Atlantic region. The resulting

grid is shown in Figure 13 and contains 358,064 Delaunay triangles and 179,081 Voronoi cells. Grid-generation time was

approximately 1 1
2 minutes, including both the initial restricted Frontal-Delaunay refinement and subsequent hill-climbing type

optimisation. Grid-quality metrics are presented in Figure 12, showing distributions before and after the application of the10

grid-optimisation procedure.

Consistent with results presented previously, a very high-quality Voronoi/Delaunay grid was generated for the REGIONAL-

ATLANTIC problem, with each grid-quality metric tightly clustered about its optimal value, such that af → 1, θf → 60◦ and

hr→ 1. The effect of the grid-optimisation procedure can be assessed by comparing the mesh-quality statistics presented in

Figure 12. As per the uniform resolution test-case, mesh-optimisation appears to be most aggressive at the ‘tails’
:::
tails of the15
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Figure 12.
::::::::::
Mesh-quality

:::::
metrics

::::::::
associated

::::
with

:::
the

:::::::::::::
regionally-refined

::::::::::
Voronoi-type

:::
grid

::
of

:::
the

::::
North

::::::
Atlantic

::::::
region,

:::::
before

::::
(left)

:::
and

::::
after

:::::
(right)

::
the

:::::::::
application

::
of

::::::::::
hill-climbing

::::
mesh

::::::::::
optimisation.

:::::::::
Normalised

:::::::::
histograms

::
of

::::::
element

:::::::::
area-length

::::
ratio

:::
af ,

:::::::::::
enclosed-angle

:::
θf :::

and

::::::::::
relative-length

:::
hr ::

are
:::::::::
illustrated,

:::
with

::::::::
minimum,

::::::::
maximum

:::
and

::::
mean

:::::
values

::::::::
annotated.

distributions, acting to improve the worst elements in the grid. The minimum area-length metric is improved from af = 0.60

to af = 0.94, and the distribution of element-wise angles is narrowed from 29◦ ≤ θf ≤ 120◦ to 44◦ ≤ θf ≤ 78◦. The resulting

optimised Voronoi/Delaunay staggered grid is also clearly well-centred, with all angles in the Delaunay trianglulation less than

78.2◦. Overall, grid-quality achieves
:::
can

::
be

::::
seen

::
to

:::::::
achieve essentially the same levels of optimality as the uniform resolution

test-case, showing that the JIGSAW-GEO algorithm can be used to generate high-quality spatially-adaptive grids without5

obvious degradation in mesh-quality.

5.4 Multi-resolution Southern Ocean grid

The JIGSAW-GEO algorithm was then used to mesh the challenging SOUTHERN-OCEAN test-case, allowing its performance

for large-scale problems involving rapidly-varying mesh-spacing constraints to be analysed in detail. This test-case seeks to

build a multi-resolution, staggered Voronoi/Delaunay-type dual grid for regionally-refined ocean-modelling, with a particular10

focus on resolution of the Antarctic Circumpolar Current (ACC), and adjacent Antarctic processes. Composite mesh-spacing

constraints were enforced, consisting of a coarse global background resolution of 150km, with an eddy-permitting 15km

grid-spacing specified south of 32.5◦S. Additional topographic adaptation is also utilised in the southern annulus region, with

grid-resolution increased in regions of large bathymetric gradient. A minimum grid-spacing of 4km was specified. Topo-

graphic gradients were computed using the high-resolution ETOPO1 Global Relief dataset (?). The resulting grid is shown in15

Figure 16
::
14, with additional detail shown in Figure 16. The grid contains 3,119,849 Delaunay triangles and 1,559,927 Voronoi

cells. Grid-generation time was approximately 10 minutes, including both the initial restricted Frontal-Delaunay refinement

and subsequent hill-climbing type optimisation stages. The grid-optimisation phase required approximately four times the

computational effort of the initial Delaunay refinement. Associated grid-quality metrics are presented in Figure 15, showing

distributions before and after the application of the grid-optimisation procedure.20
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Figure 13.
:::::
Detail

::
of

:::
the

:::::::::::::
regionally-refined

::::::::::
Voronoi-type

:::
grid

::
of
:::

the
:::::
North

::::::
Atlantic

::::::
region.

:::::
Global

:::::
coarse

::::
grid

:::::::
resolution

::
is
:::::::
150km,

:::
with

::
a

:::::
15km

::::::::::::
eddy-permitting

:::::::::
grid-spacing

:::::::
specified

:::
over

:::
the

::::::
Atlantic

:::::
ocean

:::::
basin.

:::::::::
Topography

:
is
:::::
drawn

::::
using

:::
an

:::::::::
exaggerated

::::
scale,

::::
with

:::::::
elevation

:::
from

:::
the

:::::::
reference

:::::
geoid

:::::::
amplified

::
by

:
a
:::::

factor
::
of

:::
10.

Consistent with the uniform resolution test-case presented previously, visual inspection of Figures 14 and 16 confirm that

the JIGSAW-GEO algorithm is capable of generating very high quality multi-resolution grids, containing a majority of near-

perfect Delaunay triangles and Voronoi cells. Additionally, it can be seen that grid resolution varies smoothly, even in regions of

rapidly-fluctuating mesh-spacing constraints, as per the topographically induced refinement patterns shown in Figure 16. Anal-

ysis of the grid-quality metrics shown in Figure 15 shows that very high levels of mesh regularity are achieved, with element5

area-length scores tightly clustered about af = 1 and element-angles showing strong convergence around θf = 60◦. Interest-

ingly, despite the complexity of the imposed mesh-spacing function, analysis of the relative-length distribution still shows

relatively tight conformance, with a sharp clustering about hr = 1. Overall, mean grid-quality is slightly reduced compared

to the uniform resolution case, illustrated by a slight broadening of the grid-quality distributions. Note that such behaviour is

expected in the multi-resolution case, with slightly imperfect triangle geometries required to satisfy the non-uniform mesh-10

spacing constraints. The minimum enclosed-angle in the un-optimised grid can also be seen to lie exactly at the lower
:::::
angle

bound of 28.4◦.

The effect of the grid-optimisation procedure can be assessed by comparing the mesh-quality statistics presented in Fig-

ure 15. As per the uniform resolution test-case, mesh-optimisation appears to be most aggressive at the ‘tails’
:::
tails of the

distributions, acting to improve the worst elements in the grid. The minimum area-length metric is improved from af = 0.59 to15

af = 0.90, and the distribution of element-wise angles is narrowed from 28◦ ≤ θf ≤ 121◦ to 40◦ ≤ θf ≤ 80◦. Consistent with
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Figure 14. A multi-resolution Voronoi-type grid of the Southern Ocean. Global coarse grid resolution is 150km, with a 15km eddy-

permitting grid-spacing specified south of 32.5◦ S. Additional topographic adaptation is also utilised in the southern annulus region, with

grid-resolution increased in areas of large bathymetric gradient. Minimum grid-spacing is 4km. Topography is drawn using an exaggerated

scale, with elevation from the reference geoid amplified by a factor of 10 in all cases.
::
10.
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Figure 15. Mesh-quality metrics associated with the multi-resolution Voronoi-type grid of the Southern Ocean, before (left) and after (right)

the application of hill-climbing mesh optimisation. Normalised histograms of element area-length ratio af , enclosed-angle θf and relative-

length hr are illustrated, with minimum, maximum and mean values annotated.
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Figure 16. A
::::
Detail

::
of
:::

the
:

multi-resolution Voronoi-type grid of the Southern Ocean. Global coarse grid resolution is 150km, with a

15km eddy-permitting grid-spacing specified south of 32.5◦ S. Additional topographic adaptation is also utilised in the southern annulus

region, with grid-resolution increased in areas of large bathymetric gradient. Minimum grid-spacing is 4km. Topography is drawn using an

exaggerated scale, with elevation from the reference geoid amplified by a factor of 10 in all cases.
:::
10.
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previous results, a slight
::::::::
moderate broadening of the mean components of the distributions can be observed, especially in the

enclosed-angle and relative-length metrics. This behaviour shows that, in this case, improvements to worst-case grid-quality are

achieved through slight compromises to mean-quality and mesh-spacing conformance
:
,
::::
with

::::
very

::::::::::
high-quality

::::::::
elements

:::::
being

::::::
slightly

::::::::
degraded

::
to

:::::::
improve

::::
their

:::::
lower

::::::
quality

:::::::::
neighbours. Note that the resulting optimised Voronoi/Delaunay staggered grid

is also well-centred, with all angles in the Delaunay trianglulation less than 80◦. This result shows only a marginal degradation5

compared to the uniform resolution example presented previously — despite the complexity of the imposed grid-spacing func-

tion. This result demonstrates the effectiveness of the optimisation strategies presented here, and shows that very high-quality,

well-centred grids can be generated even for general multi-resolution cases. Nonetheless, the construction of well-centred grids

remains a challenging task, and it is expected that it may be possible to design a test-case that defeats
::::::::
test-cases

:::
that

::::::
defeat

the current strategy. As such, the pursuit of alternative mesh optimisation strategies, designed to target grid well-centredness10

directly, is an interesting avenue for future research.

5.5
::::::::::::

Computational
::::::::::::
performance

::
In

:::::::
addition

:::
to

:::
the

::::::::::
generation

:::
of

::::
very

:::::::::::
high-quality

::::::
grids,

:::
the

:::::
new

::::::::::::
JIGSAW-GEO

:::::::::
algorithm

:::::
also

:::::::
imposes

::
a
:::::::::

relatively

:::::::
moderate

:::::::::::::
computational

:::::::
burden,

:::::::::
producing

:::::::::::
large-scale,

::::::::::::::
multi-resolution

:::::
grids

:::
in

::
a
::::::
matter

:::
of

:::::::
minutes

::::::
using

::::::::
standard

:::::::::::
desktop-based

::::::::::
computing

:::::::::::
infrastructure.

:::::::::::
Specifically,

::::::::::::
grid-generation

:::
for

:::
the

:::::::::::::::::::
UNIFORM-SPHERE,

:::::::::::::::::::::
REGIONAL-ATLANTIC15

:::
and

:::::::::::::::::::
SOUTHERN-OCEAN

::::::::
test-cases

::::::::
required

:::
12

:::::::
seconds,

:::
1 1

2:::::::
minutes

::::
and

:::
10

:::::::
minutes

::
of

:::::::::::
computation

:::::
time,

:::::::::::
respectively,

::::::
running

:::
on

:
a
::::::
single

::::
core

::
of

::
an

:::::
Intel

::
i7

::::::::
processor.

:::
In

::
all

::::::
cases,

::::::::::::::
grid-optimisation

::::
was

:::::
found

::
to

:::
be

::::::::::::
approximately

::::
four

::::
times

:::
as

::::::::
expensive

::
as

:::
the

:::::
initial

:::::::::::::::
Frontal-Delaunay

:::::::::
refinement.

:::::::::
Compared

::
to
:::
the

:::::::
existing

:::::::
iterative

::::::::::
MPI-SCVT

::::::::
algorithm

::::
(?),

:::::::::
commonly

::::
used

::
to

::::::::
generate

:::::
grids

:::
for

:::
the

::::::
MPAS

:::::::::::
framework,

:::::
these

::::::
results

::::::::
represent

::
a
:::::::::
significant

:::::::
increase

:::
in

:::::::::::
productivity,

::::
with

::::
the

:::::::::
MPI-SCVT

:::::::::
algorithm

::::
often

::::::::
requiring

:::::
days,

::
or

::::
even

::::::
weeks

::
of

:::::::::
distributed

:::::::::
computing

::::
time.

:
20

::::::::::
Additionally,

::::::::
practical

:::::::::
experience

::::
with

:::
the

::::::::::
MPI-SCVT

::::::::
algorithm

:::
has

::::::
shown

:::
that

::
it

::::::
cannot

::::::
always

::
be

:::::
relied

::::
upon

::
to
::::::::
generate

::
an

::::::::::
appropriate

::::
grid,

::::::::::
irrespective

::
of

:::
the

:::::::
amount

::
of

::::::::::::
computational

::::
time

:::::::
allowed

:::
for

:::::::::::
convergence

::
to

:::
be

:::::::
reached.

::::::
While

::::::
always

::::::::
generating

::
a
:::::::::::::::
locally-orthogonal

::
and

:::::::::
centroidal

:::::::
Voronoi

:::::::::
tessellation

::::
with

::::
very

::::
high

:::::
mean

::::::::::
grid-quality,

:::
the

::::::::::
MPI-SCVT

::::::::
algorithm

::::
does

:::
not

:::::::
provide

:::::::
bounds

:::
on

:::::::::
worst-case

:::::::::::
grid-quality.

:::
In

:::::::
practice,

::::::::::::::
multi-resolution

:::::
grids

:::::::::
generated

:::::
using

:::
the

:::::::::::
MPI-SCVT

::::::::
algorithm

:::
are

:::::
often

::::::::
observed

::
to

:::::::
contain

:
a
::::::::
minority

::
of

::::::
obtuse

::::::::
triangles

::::
that

::::::
violate

:::
the

:::::::::::
well-centred

:::::::::
constraint,

::::
and,

:::
due

:::
to25

::
the

::::::
nature

:::
of

:::
the

:::::::::
numerical

::::::::::
formulation,

:::::
such

::::
grids

::::
are

:::::::::::
inappropriate

:::
for

:::
use

:::
in

::
an

:::::::::::
unstructured

::::::
C-grid

::::::
model

::::
such

:::
as

:::
the

:::::
MPAS

::::::::::
framework.

::::
Grid

:::::::::
generation

:::
for

::::
such

:::::::
models

::::
often

:::::::
requires

::
a
::::::
degree

::
of

::::::::::
user-driven

::::::::::::
trial-and-error

:
as

::
a

:::::
result,

:::::::
making

::::::::::::
grid-generation

::
a
:::::::::
somewhat

::::::
arduous

::::
task

:::
for

:::::::::::
model-users.

::::::
Initial

::::::::::
experiments

:::::::::
conducted

:::::
using

:::
the

::::::::::::
JIGSAW-GEO

:::::::::
algorithm

::::
have

:::::
shown

::
it
::
to

:::
be

:
a
:::::
useful

::::::::::
alternative,

::::::
reliably

:::::::::
generating

:::::
valid

::::::::::
well-centred

::::::::::::::
multi-resolution

::::
grids

:::
for

:::
the

::::::
MPAS

:::::
ocean

::::
and

::::::
land-ice

::::::::::
frameworks

:::::
given

::
a

::::
wide

:::::
range

::
of

:::::::::::
user-defined

:::::::::
constraints

:::
and

:::::::::::
configuration

:::::::
settings.

:
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6 Conclusions & Future Work

A new algorithm for the generation of non-uniform, locally-orthogonal
:::::::::::::
multi-resolution staggered unstructured grids for large-

scale general circulation modelling
::
on

:::
the

::::::
sphere has been described. Using a combination of Frontal-Delaunay refinement and

hill-climbing type optimisation
::::::::
techniques, it has been shown that very high-quality Voronoi/Delaunay type staggered grids

:::::::::::::::
locally-orthogonal,

:::::::::
centroidal

:::
and

::::::::::
well-centred

::::::::
spheroidal

:::::
grids

::::::::::
appropriate

:::
for

::::::::::
unstructured

::::::
C-grid

::::
type

:::::::
general

:::::::::
circulation5

::::::
models

:
can be generatedfor geophysical applications on the sphere, with a focus on global atmospheric and oceanic type

modelling. These new algorithms are
:
.
:::
The

:::::::::::
performance

::
of

::::
this

:::
new

::::::::
approach

:::
has

:::::
been

::::::
verified

:::::
using

::
a

::::::
number

::
of

::::::::::
multi-scale

:::::
global

::::::::::::
benchmarks,

::::::::
including

:::::::
difficult

:::::::
problems

::::::::::::
incorporating

:::::
highly

:::::::::::
non-uniform

:::::::::::
mesh-spacing

::::::::::
constraints.

:

::::
This

::::
new

::::::::
algorithm

::
is
:

available as part of the JIGSAW meshing package, providing a simple and easy-to-use tool for

the oceanic and atmospheric modelling communities. A number of global-scale benchmark problems have been analysed,10

verifying
::::::::
examining

:
the performance of the new approach, and demonstrating that very high-quality meshes can be generated

for large-scale global problems, including those incorporating highly non-uniform mesh-spacing constraints. The Frontal-

Delaunay refinement algorithm has been shown to generate guaranteed-quality spheroidal Delaunay triangulations — satisfy-

ing worst-case bounds on element-wise angles and exhibiting smooth grading characteristics.
:::
This

::::::::
algorithm

::::
has

::::
been

::::::
shown

::
to

:::::::
produce

::::
very

::::::::::
high-quality

:::::::::::::
multi-resolution

::::::::::::
triangulations,

::::
with

::
a
:::::::
majority

::
of

::::::::
elements

:::::::::
exhibiting

::::::::::
near-perfect

:::::::::::
conformance15

::
to

::::::::::::
element-shape

:::
and

::::::::::
grid-spacing

::::::
based

:::::::::
constraints.

:

The use of a coupled geometrical and topological hill-climbing type optimisation procedure was shown to further improve

mesh-quality
::::::::::
grid-quality statistics, especially for the lowest quality elements in each mesh. It was demonstrated that these

optimisation techniques allow grid-quality to be improved to the extent that fully well-centred mesh configurations are
:::
can

::
be

:
achieved, with all angles in the surface triangulation bounded below 90◦. For the three global test-cases presented here,20

enclosed-angles in the range 40◦ ≤ θf ≤ 80◦ were achieved
::::
were

:::::::
bounded

:::::
above

::::::::
θf ≥ 40◦

::::
and

:::::
below

::::::::
θf ≤ 80◦.

The construction of locally-orthogonal staggered polygonal grids , appropriate for a range of contemporary unstructured

:::::
C-grid

::::
type

:
general circulation models , has been

:::
was discussed in detail

:
,
::::
with

:
a
:::::
focus

:::
on

:::
the

:::::::::
generation

::
of

::::::::::::::
multi-resolution

::::
grids

:::
for

:::
the

::::::
MPAS

::::::::::
framework.

:::
The

::::::::::
availability

::
of

:::
this

::::
new

:::::::::
algorithm

::
is

:::::::
expected

::
to
:::::::::::
significantly

::::::
reduce

:::
the

:::::::::::::
grid-generation

::::::
burden

::
for

::::::
MPAS

::::::::::
model-users. Future work will focus on a generalisation of the algorithm and improvements to its efficiency,25

including: (i) support for inscribed geometrical constraints, such as coastlines, (ii) the use of multi-threaded programming

patterns to improve computational performance, and (iii) further enhancements to the mesh optimisation procedure
:::::::::
procedures,

with a focus on improving the well-centredness of the resulting staggered grids. The investigation of solution-adaptive multi-

scale representations, in which grid-resolution is adapted to spatial variability in model state (?), is also an obvious direction

for future investigation.30
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7 Code availability

The JIGSAW-GEO grid-generator can be found online at github.com/dengwirda/jigsaw-geo-matlab5

Appendix A: Spheroidal Predicates

Recalling the methodology described in Section 3, computation of the restricted Delaunay surface tessellation Del |Σ(X)

requires the evaluation of a single geometric predicate. Given a spheroidal surface Σ, the task is to compute intersections

between edges in the Voronoi tessellation Vor(X) and the input features Σ.

A1 Restricted surface triangles10

Restricted surface triangles fi ∈Del |Σ(X) are defined as those associated with an intersecting Voronoi edge ve ∈Vor(X),

where ve ∩Σ 6= ∅. These triangles provide a good piecewise linear approximation to the surface Σ. For a given triangle fi, the

associated Voronoi edge ve is defined as the line-segment joining the two circumcentres ci and cj associated with the pair of

tetrahedrons that share the face fi. The task then is to find intersections between the line-segments ve and the surface Σ.

Let p be a point on a given Voronoi edge-segment ve15

p = c̄+ t∆ , −1≤ t≤+1 ,where: where:
::::::

c̄ = 1
2 (ci + cj) , ∆ = 1

2 (cj − ci) . (A1)

Substituting (A1) into the expression for the spheroidal surface (4), the existence of real, bounded solutions, such that −1≤
t≤+1, indicates a non-trival intersection ve ∩Σ 6= ∅. Specifically, expanding and rearranging after substitution

3∑
i=1

(
c̄i + t∆i

ri

)2

= 1 ,

3∑
i=1

c̄2
i + 2tc̄i∆i + t2∆2

i

r2
i

= 1 ,

3∑
i=1

(
∆2
i

r2
i

)
t2 +

(
2c̄i∆i

r2
i

)
t+

(
c̄2
i

r2
i

− 1

)
= 0 , (A2)

which is simply a quadratic expression for the parameter t and can be solved using the standard approach. Given a real solution20

−1≤ tΣ ≤+1 the corresponding point of intersection pΣ can be found using (A1).
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Reviewer comments are presented in italics, my responses are included in plain-text.

The current paper deals with high quality surface triangulation applied to general cir-
culation modelling. The paper bypasses a parametric representation of an arbitrary
surface by limiting the surface definition to an ellipsoid representing the earth. The
main algorithm relies on a coupled Frontal-Delaunay approach. Various examples are
provided to illustrate the method.

Overall, the paper is clear and there is obviously a lot of work in it. However, my main
critic is that there is not much new brought by the paper, as opposed to what is claimed
in the conclusion, except for the fact of applying it to a general circulation modelling.
The curvature of the Earth is almost constant so technically it is not difficult to surface
mesh it. The paper introduces a lot of concepts such as restricted Delaunay, Frontal
Delaunay, Hill-climbing, Gradient based smoothing, etc, which are very classic and well
established unstructured mesh techniques. At least, it should be clearly stated what is
new.

1. The claim that Voronoi edges are always perpendicular to mesh edges is wrong. It
is only valid for an acute triangulation, which is not true in general, particularly because
of the boundaries. This is a property that has been pursued by the electromagnetic
solvers for a long time for the same reason but only partially reached. This is only
briefly mentioned in Section 4.

With respect, I don’t believe the reviewer to be correct here. Voronoi edges are indeed
(always) perpendicular to their associated Delaunay edges, even when the triangu-
lation is non-acute. This local orthogonality is a fundamental aspect of the Voronoi-
Delaunay geometric duality, and lies at the heart of many unstructured numerical for-
mulations that are based on a Voronoi-Delaunay grid staggering, including the discreti-
sation scheme employed in the MPAS framework referenced in the current paper.
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What the reviewer may be referring to is the notion of ‘well-centred’ Voronoi-Delaunay
grid staggering, which is a property only realised for ‘acute’ triangulations (all angles
less than 90 degrees). The properties and benefits of ‘well-centred’ Voronoi-Delaunay
staggered grids are discussed in the present paper in Section 4.

Voronoi vertices (the circumcentres of Delaunay triangles) only lie ‘within’ their asso-
ciated Delaunay triangles when the triangulation is acute. As a result, Delaunay trian-
gles containing obtuse angles induce an undesirable grid-staggering, with the Voronoi
edges associated with these large angles failing to intersect their paired Delaunay
edges.

In the context of unstructured general circulation models (i.e. the MPAS model) building
such ‘well-centred’ Voronoi-Delaunay grids is (a) important (the MPAS framework, for
instance, requires such constraints to be satisfied to ensure a correct evaluation of
the vertex-centred vorticity distribution), and (b) non-trivial (a majority of conventional
unstructured meshing algorithms do not produce such grids).

As such, the development of algorithms designed to produce high-quality well-centred
grids is, in my view, a new and useful result. I am not aware of other publicly avail-
able software for the oceanic/atmospheric modelling communities that offers similar
functionality.

In the current work, it’s shown that a combination of Frontal-Delaunay refinement and
hill-climbing optimisation is an effective strategy — able to produce very high-quality
well-centred Voronoi-Delaunay grids even when complex, highly non-uniform grid siz-
ing constraints are imposed. I believe this to be a new result of benefit to the unstruc-
tured oceanic/atmospheric modelling communities. Public availability of the associated
JIGSAW-GEO grid-generator is also thought to be a further benefit to the community.

Noting the reviewers concerns, and subsequent comments below, I propose to re-work
the paper to make the arguments above more clearly, and earlier in the manuscript. I
propose explicitly defining the notion of ‘well-centred’ grids in Section 2, and to amend
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the abstract/introductory sections accordingly. I propose to include a new figure illus-
trating the distinction between ‘well-centred’ and ‘non-well-centred’ Voronoi-Delaunay
grids.

2. Line 28 (page 4). It is not clear at all in general that maximisation of the minimum
angle is beneficial. Add references.

Agreed. I will include additional references/explanation in the revised manuscript.

3. The pictures do not clearly show the mesh transitions for size variations in details.

Agreed. I will include better images of transitional mesh regions.

4. The abstract mentions a-priori guaranteed quality bounds while nothing is proved.
Empirical studies show good results but no bounds are provided.

Such bounds are rigorously established in the companion paper (Engwirda and Ivers,
2016) that describes the Frontal-Delaunay refinement algorithm in full, with this point
mentioned in Section 2.5 (pages 7-8) where references to the companion paper are
given and results of the proofs summarised.

The present paper aims to address the question of grid-generation for
oceanic/atmospheric modelling from a pragmatic, rather than theory-laden perspec-
tive. As such, it was not felt that a reproduction of existing proofs would necessarily aid
the reader in this regard.

I propose to amend Section 2.5 (around line 3, page 8) to more explicitly refer interested
readers to the companion paper (Engwirda and Ivers, 2016), and offer a more formal
summary of theoretical results/proofs.

5. The abstract is misleading. The code may be recently developped but the techniques
used in it are not recent.

I do not believe that the methods presented in the present work are preexisting.
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The hybrid Frontal-Delaunay surface meshing techniques described here, able to guar-
antee worst-case bounds on element quality and sizing conformance are, in my view,
new. I am not aware of another algorithm with the same properties — able to produce
smoothly varying Voronoi-Delaunay grids with very high mean element quality (simi-
lar to advancing front type schemes), while also guaranteeing worst-case bounds on
element angles and conformance (a’la standard Delaunay-refinement techniques).

Existing methods for unstructured oceanic/atmospheric modelling appear to either lack
provable worst-case bounds [Jacobsen et al., 2013], or generally produce grids with
somewhat lower overall quality [Lambrechts et al., 2008].

The combination of the Frontal-Delaunay scheme with a coupled hill-climbing optimi-
sation strategy to generate ‘well-centred’ grids is also, in my view, new. A number of
additional remarks regarding the generation and benefits associated with ‘well-centred’
grids are already included in response to the reviewers first comment above. As per
my response to this earlier comment, I believe that by making these arguments more
clearly and earlier in the revised submission, the impact and novelty of the approaches
pursued in the present work will be more strongly articulated.

6. There is not detail about the initialization on the sphere of the algorithm. You mention
that the algorithm scans the triangles that do not verify given criteria, but how are these
initial triangles created?

Agreed. I propose amending Section 2.5 in the revised manuscript to contain the fol-
lowing information:

12 points describing a coarse regular icosahedron are initially projected onto the
spheroidal surface at the beginning of the refinement process. Refinement then pro-
ceeds according to the Frontal-Delaunay scheme outlined in Section 2.5 (i.e. until all
constraints — element shape, size — are satisfied).

Please let me know if you have further suggestions or comments regarding the sub-
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mission or my responses to your review.

Kind regards,

Darren Engwirda

Interactive comment on Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-296, 2016.
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Dear reviewer,

Thank you for your comments and recommendations regarding the draft manuscript.
I propose to incorporate the majority of your suggested changes ‘as-is’ in the revised
submission. In all cases I have tried to respond in detail to your comments, including
one or two instances where I have attempted to clarify the intent of the current draft.

I have found all of your suggestions to be helpful, and look forward to amending the
manuscript in response to your review.

Overall, I agree with your suggestion that additional algorithmic detail should be pro-
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vided, and will include such material in the revised submission. I intend to include
additional details on the Frontal-Delaunay algorithm, in addition to brief pseudo-code
descriptions of the full grid-generation process.

To better emphasise the novelty of the proposed approach, I additionally suggest a
slight reorganisation of the paper. I suggest to move the discussion currently contained
in Sections 2.6 (Figure 3 — staggered unstructured C-grid formulations) and pages 16–
17 (benefits of ‘well-centred’ staggered orthogonal grids) to the beginning of Section 2.
Such a change will better motivate the remaining discussions — explaining that such
numerical schemes (i.e. the MPAS framework) require grids that are locally-orthogonal,
centroidal and well-centred — a set of constraints that are, in the general case, difficult
to satisfy and are not reliably achieved by conventional grid-generation techniques.

Reviewer comments are presented in italics, my responses are included in plain-text.

There is a sufficiently detailed description of the techniques used to improve the mesh
quality, but the frontal-Delaunay technique is just mentioned. It would be helpful if it
is described in some detail, for the intention of this paper is to help the potential user
to learn about the technical details of the algorithm, and it is still a bit difficult to do. It
would be very helpful to present a schematic of the algorithm at the very beginning,
followed by the description of separate steps. This is partly done for the iterative mesh
quality improvement, but I think that the entire algorithm has to be included. Also I
would advice to be more clear with what is new in the algorithm.

Fig 1. The coloring used is non-informative. I was struggling to see some familiar
topographic features but I could not. I would recommend to omit the topographic height,
it does not have any sense here, only distracts you reader. Same concerns other mesh
figures.

Agreed. I suggest to adopt a simple flat yellow colour-scheme for the ocean grid-cells,
with the existing white-fill adopted for the land-cells. This combination appears to offer
good visual contrast.
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Page 2, line 6 ’A majority of ...’ âĂŤ I do not think this statement is correct. Many of
practically used ocean circulation models use so-called tripolar meshes with Mercator-
type stretching. Cubed sphere is used less frequently (the internal Rossby radius of
deformation in the ocean is decreasing toward high latitudes, and meshes refined in
high latitudes are more natural)

I agree that both cubed-sphere and tri-polar type grids are currently in wide use. I will
update this sentence accordingly.

Line 10 ’leading to significant...’ If lon-lat mesh is used for ocean modeling, it is of
course rotated, so that poles are on the land and there is no singularity. What is
discussed has relevance to the atmosphere, but not to the ocean. Since your mesh
examples are related to the ocean, the discussion creates misunderstanding.

I agree that this is true for Earth-centric ocean-modelling based on current continental
configurations. Our requirements are somewhat more expansive than this though, also
seeking to encompass Paleo-Earth studies, aqua-planets, exo-planets, and etc. In
such cases, the polar singularities of lat-lon grids lead to numerical issues as per the
current discussion.

I will amend this paragraph to better explain context and requirements here.

Page 3, line 5 The discussion here misses the point that FESOM, FVCOM, SLIM,
Fluidity may work on general triangular meshes. SUNTANS (and its numerous pre-
decessors) need orthogonal (well-centered) meshes (with the circumcenters inside re-
spective triangles).

I agree. I will update the text accordingly to note that such models offer more flexibility
in terms of grid requirements.

Line 29 I think the main point of Lambrecht et al. is that a care is taken of the shape of
coastlines, resolution of passages etc. This question is not reflected in the manuscript
(except for conclusions), although it presents the main challenge. It is quality of trian-
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gles close to coastlines that is problematic in many practical cases.

I would also recommend to mention Admesh (DOI 10.1007/s10236-012-0574-0) which
relies on the Persson’s approach.

Agreed. I will add a reference and brief description of Admesh and amend that of
Lambretch et al.

The focus of the current work though is on multi-resolution global simulations, in which
coastal constraints are typically neglected. The main challenge here is the generation
of locally-orthogonal, centroidal and well-centred grids appropriate for unstructured C-
grid schemes such as MPAS.

I look forward to incorporating coastal constraints in a future version of the algorithm.

Page 4. Section 2. I would start here with brief description of the entire algorithm. Your
reader keeps wondering what is the algorithm before the end of section 3. Present
details of the Frontal -Delaunay algorithm and explain that in reality it is a 3D procedure
with the central point of the sphere used to form the tetrahedra, and the restriction is just
surface triangulation. Otherwise your preliminaries and Fig.2 are a bit embarrassing for
a general reader (who would keep asking about ve and its relation to the surface).

Page 5 Line 13 Restricted Delaunay tessellation âĂŤ try to explain this better, by using
illustrations. I do not see your Fig. 2 to be of much help.

Page 6. It is not clear how mesh spacing functions are used in the mesh construction.
Are they taken in account in the frontal procedure? It is not mentioned. Help you reader
to clearly see the steps of the algorithm.

I agree. I suggest updating Figure 2 — adding additional detail illustrating the underly-
ing tetrahedral grid emanating from the sphere centre. I will also update the description
of the ‘restricted’ Delaunay structure accordingly.

I will expand the description of the Frontal-Delaunay algorithm as suggested, explicitly
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describing the ‘off-centre’ point-placement scheme and the way in which the mesh-
spacing function is utilised. This material is already available in Engwirda and Ivers
(2016), but I will include a summary of the algorithmic detail here.

A full and general description of the Frontal-Delaunay algorithm and it’s underlying
theory is provided in Engwirda and Ivers (2016), and I am conscious not to dwell on
excessive detail here, but to instead focus on a practical application of the techniques
to general-circulation modelling. I fully agree though that the reader may benefit from
a little more detail, and I will update the manuscript accordingly.

Page 7. Line 10 .. fully inverted elements? Please define what do you mean.

In some cases, unconstrained updates to vertex coordinates and/or grid topology could
‘invert’ triangles, reversing their orientation. Such cases would represent a local ‘tan-
gling’ of the grid, which is obviously invalid. I will include the explanation "reversing its
orientation".

Fig. 3. Is not it generally known?

Various unstructured general circulation models stagger variables according to a vari-
ety of different strategies. The staggered unstructured C-grid scheme described here
has proven to be particularly successful (as per the MPAS framework) and I feel it’s
description is useful to the reader. This particular arrangement of variables also helps
explain the necessity of the constraints on the grids themselves — that grids are re-
quired to be locally-orthogonal, centroidal and well-centred.

As per my initial remarks, I propose to move this discussion to the beginning of Sec-
tion 2, better contextualising and motivating the subsequent description of the grid-
generation algorithm.

Page 8 Line 16 Fluid velocity and vorticity are commonly at different locations.

Agreed. I will change this line to: "...and the fluid velocity field and vorticity distribution
represented at other spatially distinct grid-points."
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Page 9, Line 4 ... Mention that you mean C-grid type techniques. There are other
possibilities.

Agreed. I will change this line to: "In this study, the development of locally-orthogonal
grids appropriate for staggered unstructured C-grid schemes..."

Page9, line 7 ’described previously’? It was not really described here.

I agree. As per the responses above, I will included additional description of the Frontal-
Delaunay algorithm.

Beginning from line 9, there is discussion that is either well known or irrelevant to the
mesh generation.Why do you need it?

I believe a basic description of the generation and usefulness of Voronoi grids — es-
pecially the well-centred, centroidal variety — is of use to the general reader. There is
currently not consensus as to the optimal staggering of variables for unstructured gen-
eral circulation models — MPAS uses the locally-orthogonal C-grid scheme described
here, FESOM2 uses a type of B-grid finite-volume approach defined using a (non-
orthogonal) barycentric dual-cell. A variety of other approaches also exist, including
finite-element type formulations.

Additionally, while the use and construction of locally-orthogonal staggered unstruc-
tured grids (i.e. Voronoi diagrams) is a well-known concept in computational geometry,
it may be less so to general readers in the atmospheric/ocean-modelling communities.

As per my initial remarks, I propose to move this discussion to the beginning of Sec-
tion 2, better contextualising and motivating the subsequent description of the grid-
generation algorithm.

Page 11. Please define all quantities in (7) and better explain how computations are
implemented.

I do not fully understand this comment. All quantities in equation 7 appear to be de-
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fined, and the subsequent paragraphs describe the way that the local ‘gradient-ascent’
type optimisation step is implemented. Please let me know which variables/steps need
clarification.

Page 13, line 14 What is the grid-quality vector?

The ‘grid-quality vector’ is an array of element quality ‘scores’, one for each triangle
in the grid. An ‘area-length’ quality metric is used in this study. The paragraph at the
beginning of Section 3 (page 9, line 30) contains a description of the grid-quality vector.

Page 13, line 26 What is the lexicographical comparison?

A lexicographical comparison is a ‘worst-first’ comparison of grid-quality scores. This
term is defined on page 10, line 32, where it is first introduced in the manuscript. Use
of this terminology is consistent with it use in Klinger and Shewchuk (2008).

Page 20, Section 5. Please clearly define the novelty. What is describe is the selection
of known steps.

Page 22 , line 14 (ii)–? I think it is secondary and technical issue. Well-centeredness
and coastlines are real algorithmic questions.

Unstructured general circulation frameworks, such as MPAS, require grids that are
locally-orthogonal, centroidal and well-centred. It is not my experience that conven-
tional grid-generation algorithms are successful in satisfying this set of constraints in
the general case.

The JIGSAW-GEO algorithm introduced here has been shown to effectively produce
such grids, allowing the multi-resolution capabilities of a framework such as MPAS to be
better utilised. The use of complex grids with highly non-uniform spacing constraints,
such as those shown in Figures 9–10, can now be investigated. Fully solution-adaptive
simulations, as mentioned at page 22, line 17, can now also be explored as a result. I
look forward to reporting on these studies in the future.
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As per my initial comments, I suggest slightly rearranging the order of the paper —
moving the discussion of ‘local-orhogonality’, ‘centroidalness’ and ‘well-centredness’
to the beginning of Section 2 and better emphasising the importance and difficulty
of satisfying these characteristics in the general case. This change is intended to
better contextualise the grid-generation techniques described here — showcasing their
novelty and usefulness.

Please let me know if you have further suggestions or comments regarding the sub-
mission or my responses to your review.

Kind regards,

Darren Engwirda

Interactive comment on Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-296, 2016.
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Dear reviewer,

Thank you for your additional comments. I include my response below. Reviewer
comments are presented in italics, my responses are included in plain-text.

My main concern is still about the novelty of the method. You say:

In the current work, it’s shown that a combination of Frontal-Delaunay refinement and
hill-climbing optimisation is an effective strategy — able to produce very high-quality
well-centred Voronoi-Delaunay grids even when complex, highly non-uniform grid siz-
ing constraints are imposed. I believe this to be a new result of benefit to the unstruc-

C1

http://www.geosci-model-dev-discuss.net/
http://www.geosci-model-dev-discuss.net/gmd-2016-296/gmd-2016-296-AC4-print.pdf
http://www.geosci-model-dev-discuss.net/gmd-2016-296
http://creativecommons.org/licenses/by/3.0/


GMDD

Interactive
comment

Printer-friendly version

Discussion paper

tured oceanic/atmospheric modelling communities. Public availability of the associated
JIGSAW-GEO grid-generator is also thought to be a further benefit to the community.

I do not believe that the methods presented in the present work are preexisting. The
hybrid Frontal-Delaunay surface meshing technique described here, able to guaran-
tee worst-case bounds on element quality and sizing conformance are, in my view,
new. I am not aware of another algorithm with the same properties — able to pro-
duce smoothly varying Voronoi-Delaunay grids with very high mean element quality
(similar to advancing front type schemes), while also guaranteeing worst-case bounds
on element angles and conformance (a’la standard Delaunay-refinement techniques).
Existing methods for unstructured oceanic/atmospheric modelling appear to either lack
provable worst-case bounds [Jacobsen et al., 2013], or generally produce grids with
somewhat lower overall quality [Lambrechts et al., 2008]. The combination of the
Frontal-Delaunay scheme with a coupled hill-climbing optimisation strategy to generate
‘well-centred’ grids is also, in my view, new.

EVERY mesh generator (edge, face, volume) has a main engine (Delaunay, Frontal,
Octree, coupled) and an optimization phase that follows [1], so there is nothing new
to that. The facts that you apply it to oceanic/atmospheric communities or that it is
publicly available do not make these techniques new. I have added a list of references
on high quality surface mesh generation that present the same high quality based on
the same techniques [2,3,4,5] on top of the coupled Delaunay advancing front variants
which are not fully referenced. Feel free to include them or not.

Nevertheless, I completely agree with the fact that the application of these techniques
to the oceanic/atmospheric communities is new and interesting and therefore, the pa-
per should be published.

[1] Frey,P.J. and George,P.L., Meshing, applications to finite elements, Hermes, Paris,
1999.

[2] J. Tristano, S. Owen, S. Canann, Advancing front surface mesh generation in para-
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metric space using a Riemannian surface definition, in: IMR, 1998, pp. 429–445.

[3] D. Rypl, P. Krysl, Triangulation of 3D surfaces, Eng. Comput. 13 (1997) 87–98.

[4] C. Lee, Automatic metric advancing front triangulation over curved surfaces, Eng.
Comput. 17 (1) (2000) 48–74. 642–667.

[5] Löhner R. Regridding surface triangulations. Journal of Computational Physics
1996; 126:1–10.

I agree with much of what is stated here. After also considering the comments of other
reviews/readers, I suggest making a number of changes to address these concerns:

1. I am very happy to add reference to [1–5] as suggested. A brief discussion of these
methods will be added in Section 2, throughout the description of the Frontal-Delaunay
algorithm.

2. I will include a more detailed description of the Frontal-Delaunay algorithm, and
additional pseudo-code descriptions for the full grid-generation process. I will explicitly
describe the ‘off-centre’ point-placement strategy and the way in which it leverages the
mesh-spacing function. This material is already available in Engwirda and Ivers (2016),
but I will include a summary of the algorithmic detail here.

While the suggested references [1–5] all describe high-quality approaches for surface
grid-generation, they do, in some cases, differ in the details. I aim to better position and
contrast the methods described in the current work through this extended description.

3. To better emphasise the novelty of the proposed approach, I additionally suggest a
slight reorganisation of the paper. I suggest to move the discussion currently contained
in Sections 2.6 (i.e. Figure 3 and accompanying text — description of the staggered
unstructured C-grid formulation) and pages 16–17 (benefits of ‘well-centred’ staggered
orthogonal grids) to the beginning of Section 2.

This change will better motivate the remaining discussions — explaining that such
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numerical schemes (i.e. the MPAS framework) require grids that are locally-orthogonal,
centroidal and well-centred — a set of constraints that are, in the general case, difficult
to satisfy and are not reliably achieved by conventional grid-generation techniques.

This change will therefore better showcase the performance of the algorithms pre-
sented in the current work — demonstrating that such locally-orthongonal, centroidal
and well-centred grids can be generated for complex cases, such as the highly nonuni-
form grids shown in Figures 9–11. Such capability will allow the multi-resolution capa-
bilities of a framework such as MPAS to be better utilised.

Please let me know if you have further suggestions or comments regarding the sub-
mission.

Kind regards,

Darren Engwirda

Interactive comment on Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-296, 2016.
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