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Abstract. This paper describes the development and implementation of an extendable aqueous phase chemistry option 15 

(AQCHEM-KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1.  Here the Kinetic 

PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ODEs that 

describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ’s standard cloud chemistry 

module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability 

to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of 20 

microphysical parameters on cloud chemistry. 

 

Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the 

implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted 

concentrations for a range of scenarios.  Month-long CMAQ simulations for winter and summer periods over the U.S. reveal 25 

the changes in model predictions due to these cloud module updates within the full chemical transport model.  While monthly 

average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM-KMT, hourly concentration 

differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from biogenic epoxides 

(AQCHEM-KMTI), normalized mean error and bias statistics are slightly improved for 2-methyltetrols and 2-methylglyceric 

acid at the Research Triangle Park measurement site in North Carolina during the Southern Oxidant and Aerosol Study (SOAS) 30 

field campaign period. The added in-cloud chemistry leads to a monthly-average increase of 11-18% in “cloud” SOA at the 

surface in the eastern U.S. for June 2013.   
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1 Introduction 

Clouds and fogs impact the amount, composition, and spatial distribution of trace atmospheric species through a complex 

interplay of chemistry and physics.  Pollutants are transported via convection and wet deposition (Barth et al., 2001; 

Wonaschuetz et al., 2012; Yin et al., 2001) and altered through condensed phase chemistry (Graedel and Weschler, 1981; 

Lelieveld and Crutzen, 1991). Water droplets offer a medium for soluble gases to dissolve, dissociate, and undergo aqueous 5 

phase chemical reactions. This is well established for the conversion of gas phase SO2 to particle phase sulfate (SO4
2-) (Martin, 

1984; Martin and Good, 1991). Atmospheric SO4
2- is an important component of fine aerosol mass and is a known contributor 

to adverse effects on human health and ecosystems. In an environment where clouds or fogs are present, aqueous phase 

production of SO4
2- in cloud and fog droplets dominates over production in the gas phase (Seigneur and Saxena, 1988; Ervens, 

2015), and decades of research have been devoted to studying the impacts of aqueous in-cloud production of acidic species, 10 

like SO4
2-, on acid deposition, including effectively representing that aqueous in-cloud production in models (Chang et al., 

1987; Walcek and Taylor, 1986; Pandis and Seinfeld, 1989; Fahey and Pandis, 2001; Gong et al., 2011; Giulianelli et al., 2014; 

Herckes et al., 2015).  More recent studies have focused on the potentially significant role that aqueous pathways (in cloud 

droplets and wet aerosols) may have on the formation of secondary organic aerosol (SOA) (McNeill et al., 2012; Ervens et al., 

2014; Ervens et al., 2011; Lim et al., 2005; Liu et al., 2012; Carlton et al.,2008).  It has been proposed that cloud water provides 15 

a medium for the production of highly oxidized organic compounds that remain in the aerosol phase after cloud droplet 

evaporation, contributing to secondary organic aerosol mass (Ervens et al., 2011; McNeill, 2015; Ervens, 2015). Sulfate and 

organic components can contribute more than half of the total fine particulate matter (PM2.5) concentration in many regions 

across the globe (Philip et al., 2014; Jimenez et al., 2009; Hansen et al., 2003; Brewer and Adlhoch, 2005).   

 20 

The degree to which species enter the aqueous phase and participate in cloud processing is dependent upon species’ intrinsic 

chemical properties, such as solubility and reactivity, and also upon microphysical characteristics of the droplet spectrum 

(Schwartz, 1986; Schwartz and Frieberg, 1981; Sander, 1999; Pandis et al., 1990; Fahey et al., 2005).  The processes of droplet 

activation, scavenging, and chemical production lead to shifts in the aerosol size/composition distribution after droplet 

evaporation.  These changes to the aerosol distribution then further impact aerosol transport and microphysics along with the 25 

direct and indirect radiative effects associated with that aerosol (Kreidenweis et al., 2003). The chemistry and (micro)physics 

of clouds and fogs must therefore be well represented in models in order to effectively assess the impacts of emissions changes 

on future air quality and climate.  

 

The Community Multiscale Air Quality (CMAQ) modeling system (Byun and Schere, 2006) is a widely-used state-of-the-30 

science chemical transport model, applied on a range of scales for research, regulatory, and forecasting purposes.  In the United 

States, it is among the most commonly used air quality models in attainment demonstrations for National Ambient Air Quality 

Standards for ozone and PM2.5 (US EPA, 2007).  In such frameworks, air quality simulations may be required for many 
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emissions scenarios, large domains, and/or long time periods.  It is important therefore that the selected modeling system be 

as efficient as possible while also being able to faithfully capture the most important chemical and physical processes affecting 

the pollutants of interest and their response to emissions changes.   

 

Due in part to computational constraints, historically only a simple description of aqueous phase chemistry has been 5 

implemented in many regional air quality models.  Cloud chemistry in CMAQ (AQCHEM), for example, is based on the cloud 

module of the Regional Acid Deposition Model (RADM) (Walcek and Taylor, 1986) with minimal updates to the mechanism 

in recent years (Carlton et al., 2008).  When the cloud chemistry module is called, species are distributed between gas, 

interstitial aerosol, and aqueous phases instantaneously depending upon the initial modal aerosol distribution and solubility.  

At each time step, a bisection method is used to solve for the bulk droplet pH and the associated phase/ionic distribution of 10 

model species based on known total concentrations and assuming electroneutrality and thermodynamic equilibrium.  Activity 

coefficients, estimated with the Davies equation, are applied to ionic species in solution.  A forward Euler method is used to 

solve a set of seven oxidation reactions, with time stepping based on the reaction rates and precursor/oxidant concentrations 

for sulfate S(VI) production alone.  The seven reactions represented are the oxidation of aqueous SO2 by hydrogen peroxide, 

ozone, oxygen (catalyzed by iron and manganese), methylhydroxyperoxide, and peroxyacetic acid as well as two reactions 15 

that parameterize SOA formation from glyoxal and methylglyoxal.  Scavenging of interstitial aerosol and wet deposition is 

calculated alongside the chemical kinetics and mass transfer (Binkowski and Roselle, 2003).  Because the mechanism is hard-

coded into the solver, as well as the solver’s potential stability issues when applied to stiff systems of ordinary differential 

equations (ODEs), it is difficult to expand CMAQ’s current cloud chemistry treatment to additional complex chemistry for 

other species.  It has long been understood, however, that the aqueous phase chemistry of clouds and aerosols affects a myriad 20 

of species, and we may be insufficiently representing cloud chemistry with our simple mechanism geared mainly towards 

sulfur oxidation. While computational efficiency remains important, it is also crucial for models to represent important new 

scientific discoveries and newly understood physicochemical processes faithfully.  As computational capabilities expand and 

field and laboratory studies continue to elucidate additional potentially important atmospheric aqueous chemistry pathways, it 

is increasingly important to maintain a modeling framework that allows for ready expansion to and investigation of that 25 

chemistry.  

 

With these motivations, the Kinetic PreProcessor (KPP) version 2.2.3 (Damian et al., 2002) has been applied to generate a 

Rosenbrock solver for the CMAQ cloud chemistry mechanism (AQCHEM-KMT) as well as an expanded mechanism that 

includes additional aqueous secondary organic aerosol formation from biogenic-derived epoxides (Pye et al., 2013) in cloud 30 

(AQCHEM-KMTI).  The KPP implementation includes kinetic mass transfer between the gas phase and cloud droplets and 

aqueous phases, dissociation/association, chemical kinetics, interstitial aerosol scavenging, and wet deposition and is readily 

expandable to larger chemical mechanisms.  In the following sections, the details of the development and implementation of 

these additional in-cloud aqueous-phase chemistry options are presented. In section 2, the AQCHEM-KMT/AQCHEM-KMTI 
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structure is detailed alongside a description of the box model testing used in choosing solver parameters and examining the 

direct impacts of kinetic mass transfer and alternate solvers on predicted concentrations.  In section 3, the impacts of the 

updated aqueous cloud chemistry options are examined for winter- and summer- month regional CMAQ simulations. Some of 

the benefits and drawbacks of these newly implemented cloud chemistry options are discussed in section 4, along with some 

directions for future development work and applications.  5 

2 Aqueous-phase chemistry model description and box model testing 

Table 1 contrasts the main features of the three cloud chemistry options examined here.  Building upon the approach outlined 

by Baek et al. (2011), we used the Kinetic PreProcessor version 2.2.3 (KPP) to automatically generate Fortran90 code for the 

numerical integration of the CMAQ in-cloud aqueous phase chemical mechanism (Damian et al., 2002; Sandu and Sander, 

2006).  KPP is a free software tool that translates chemical mechanism information (e.g., species, reactions, rate coefficients) 10 

into Fortran90, Fortran77, Matlab, or C code to efficiently integrate chemical kinetics.  KPP includes multiple stiff numerical 

integrators and has a modularity that allows rapid and straightforward testing of alternative solvers and mechanisms. It may 

also be used to generate the tangent linear or adjoint models for a given system, but this capability is not investigated here.  

Minor changes were made to the generated code to account for our system and I/O requirements. The model driver (for 0D 

box model and CMAQ implementation) was developed outside of KPP.    15 

 

AQCHEM-KMT solves the processes of phase transfer, chemical kinetics, ionic dissociation/association, scavenging of 

interstitial aerosol, and wet deposition.  Here AQCHEM-KMT maintains the same initialization and post-cloud redistribution 

assumptions as in AQCHEM, including (1) at the start of cloud processing, accumulation and coarse mode aerosols are 

instantaneously activated to droplets, all N2O5(g) is converted to HNO3(g), and all H2SO4(g) is transferred to aqueous phase 20 

S(VI)SO4
2-; (2) at the end of cloud processing, HNO3(g) and accumulation mode aerosol NO3

-, as well as NH3(g) and 

accumulation mode aerosol NH4
+, are redistributed to retain their initial (i.e., pre-cloud) gas/aerosol phase distributions; and 

(3) all non-volatile aqueous phase mass production is added to the accumulation mode  (Binkowski and Roselle, 2003). Initial 

gas and aqueous concentrations (in units of molecules/cm3 air) are calculated based on their initial phase distribution, 

temperature/pressure, and any additional simplifying assumptions that may apply (e.g., H2SO4 mentioned above). As in 25 

AQCHEM, the hydroxyl radical (OH) concentration is kept constant, with droplet concentrations estimated from the initial 

gas phase OH using Henry’s Law. Initial [H+] is estimated from an ion balance on the instantaneously activated ionic species, 

OH-, and completely dissolved gaseous species (i.e., H2SO4(g)) at t = 0 seconds.  H+ and other gas, aqueous, and aerosol 

species’ concentrations then evolve dynamically for the duration of cloud processing.  

   30 

After initialization, AQCHEM-KMT solves the following system of ODEs: 
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𝑑𝑑𝐶𝐶𝑔𝑔,𝑖𝑖

𝑑𝑑𝑑𝑑
= −𝑘𝑘𝑚𝑚𝑚𝑚,𝑖𝑖𝑤𝑤𝐿𝐿𝐶𝐶𝑔𝑔,𝑖𝑖 + 𝑘𝑘𝑚𝑚𝑚𝑚,𝑖𝑖

𝐻𝐻𝑖𝑖𝑅𝑅𝑅𝑅
𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖          (1) 

𝑑𝑑𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑚𝑚𝑚𝑚,𝑖𝑖𝑤𝑤𝐿𝐿𝐶𝐶𝑔𝑔,𝑖𝑖 −

𝑘𝑘𝑚𝑚𝑚𝑚,𝑖𝑖
𝐻𝐻𝑖𝑖𝑅𝑅𝑅𝑅

𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖 + 𝑃𝑃𝑎𝑎𝑎𝑎,𝑖𝑖 − 𝐿𝐿𝑎𝑎𝑎𝑎,𝑖𝑖𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖        (2) 

𝑑𝑑𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖          (3) 

where 

Cg,i = gas phase concentration of species i (molecules/cm3 air) 5 

Caq,i = aqueous phase concentration of species i (molecules/cm3 air) 

Caaero,i = interstitial (Aitken) aerosol concentration of species i (molecules/cm3 air) 

kmt,i = mass transfer coefficent of species i 

wL = liquid water content fraction (cm3 H2O / cm3 air) 

Hi = Henry’s Law coefficient of species i 10 

R = gas constant 

T = temperature (K) 

Paq,i = rate of production of species i in the aqueous phase.  This includes contributions from chemical reactions (Raq), 

scavenging of interstitial aerosol (Ascav), and dissociation/association of ionic species (Xion,f/b) 

Laq,i = loss term for aqueous species i.  This includes loss due to chemical reactions (Raq), dissociation/association of ionic 15 

species (Xion,f/b), and wet deposition (Wdep) 

Laaero,i = loss term for interstitial (Aitken) aerosol species i due to scavenging by cloud droplets (Ascav) 

 

The rate expressions for these processes are further detailed in Table 2.  The first two terms in equations 1 and 2 represent the 

concentration changes due to mass transfer between the gas and aqueous phases.  While in AQCHEM, While instantaneous 20 

Henry’s Law equilibrium is assumed to be instantaneously reached for all species in AQCHEM, in actuality, the distribution 

of a species distributions between the gas and aqueous phases may deviate significantly from equilibrium (Audiffren et al., 

1998; Sander, 1999; Gong et al., 2011).  As in Schwartz (1986), the combined impacts of gas-phase diffusion and interfacial 

mass transport limitations are incorporated into a single mass transfer coefficient (kmt), the expression for which is given in 

Table 2. Table S1 lists the mass transfer “reactions” considered here, as well as the constants used in the mass transfer 25 

coefficient calculation.   
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Once in the droplet, species are allowed to dissociate into ions, represented here as forward and reverse reactions, as well as 

participate in irreversible chemical reactions.  The hydrogen ion, [H+], crucial in determining species’ phase and ionic 

distributions and reaction rates, is allowed to evolve dynamically from its initial value.  Ionization and chemical kinetic 

reactions and associated rate coefficients are listed in tables S2 and S3 respectively.  Concentration gradients may develop 

within the droplet for some species that participate in rapid aqueous phase reactions (e.g., O3 (Jacob, 1986; Walcek and Taylor, 5 

1986)).  In such cases a correction factor Q may be applied to account for aqueous phase diffusion limitations on the overall 

reaction rate (Table 2) (Schwartz and Freiberg, 1981) This factor is also applied to other species to maintain consistent 

treatment between aqueous aerosol and cloud droplet chemistry (i.e., IEPOX/MAEisoprene epoxydiol/methacrylic acid 

epoxide chemistry (Pye et al., 2013)).  Box model tests indicate, however, that aqueous diffusion impacts on the evolution of 

the chemical system are minimal. As the chemical mechanism evolves, aqueous diffusion limitations may become more 10 

important and will be revisited.  Wet deposition (of all aqueous species) and interstitial aerosol scavenging (for Aitken mode 

aerosol species) are represented as first-order loss processes.  Additional information on their rate coefficients can also be 

found in Table 2.  A list of CMAQ and “local” AQCHEM-KMT(I) species is given in Table S4. 

2.1 Solver selection and tolerance settings 

A previous comparison of several stiff ODE solvers applied for different types of atmospheric chemical systems indicated that 15 

Rosenbrock solvers are some of the most efficient at solving computationally-intensive multiphase chemistry problems for 

modest accuracies (Sandu et al., 1997 a,b).  KPP offers several Rosenbrock integrator options.  In an effort to determine the 

optimal solver for our mechanism, we applied each KPP Rosenbrock solver with a positive definite adjustment (Sander et al., 

2011) to over 20000 scenarios (Table S5) representing a range of atmospheric conditions and then compared the results to a 

reference solution generated with the Variable-coefficient Ordinary Differential Equation solver (VODE).  VODE is an initial-20 

value ODE solver that uses variable-coefficient Backward Differentiation Formula (BDF) methods for stiff systems and may 

be viewed as a successor to the Livermore Solver for Ordinary Differential Equations (LSODE) (Hindmarsh, 1983), which 

historically has been commonly applied to generate reference solutions for atmospheric chemistry problems (Brown et al., 

1989; Sandu et al., 1997b).  DVODE (VODE with double precision) was downloaded from the netlib repository 

(http://www.netlib.org) and applied to the rate equations and Jacobian for the system of AQCHEM-KMT reactions to generate 25 

a reference solution as well as provide an independent check on the codes generated with KPP.    The reference solution for 

each scenario was generated using relative and absolute tolerance settings of 10-8. For a subset of the scenarios, the reference 

was compared with results using the order five Runge Kutta solver, RADAU5 (relative and absolute tolerances set at 10-8 and 

10-4 molecules/cm3 respectively).  RADAU5 is a robust solver used to provide reference solutions in the previous solver 

intercomparison studies for atmospheric chemical systems (Sandu et al., 1997a; Sandu et al., 1997b). Available Rosenbrock 30 

solver versions, ROS2, ROS3, ROS4, Rodas3, and Rodas4, were applied to the test scenarios for a range of absolute and 

relative tolerances (absolute tolerance = 10-4 – 104 molecules/cm3 air, relative tolerances = 10-4 – 10-1).  As in Sandu et al. 



7 
 

(1997a,b), we use significant digits of accuracy (SDA) as a metric to describe the relative accuracy of a solver for a given 

tolerance set.  SDA can be defined as follows:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑙𝑙𝑙𝑙𝑙𝑙10�𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸𝑘𝑘)�           (4) 

where k represents the CMAQ species involved in aqueous chemistry and 

𝐸𝐸𝐸𝐸𝑘𝑘 = �1
𝑁𝑁
∑ �

𝐶𝐶𝑖𝑖,𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟−𝐶𝐶𝑖𝑖,𝑘𝑘
𝐶𝐶𝑖𝑖,𝑘𝑘,𝑟𝑟𝑟𝑟𝑟𝑟

�
2
           (5) 5 

for N total i scenarios.  Ci,k,ref is the reference solution from DVODE (or RADAU5) for species k and scenario i, and Ci,k is the 

concentration generated with a Rosenbrock solver for a particular tolerance set. This calculation is limited to concentrations 

exceeding 107 molecules/cm3 to avoid the influence of large relative errors for very small concentrations.  

 

Figure 1a gives the SDAmin for each of the solver/tolerance combinations versus the total CPU time required for all scenarios.  10 

This is the value for the single species that deviates furthest from the reference solution. The reference solution here is given 

by DVODE.  Most of the Rosenbrock solvers perform similarly (ROS2 is the exception), with Rodas3 and ROS3 the most 

efficient at lower accuracies.  If an SDA of 2 corresponds to an “accuracy” of 1%, the dashed horizontal line in Figure 1a 

represents an accuracy of ~5%.  Plots here are shown only for DVODE.  For the subset of scenarios tested, DVODE and 

RADAU5 produce results that are within 0.002% of each other for all scenarios (SDAmin = 5.6, with no minimum concentration 15 

setting).   

 

Rodas3 was implemented as the default integrator in AQCHEM-KMT due to favorable performance compared to the other 

Rosenbrock solvers for the scenarios considered here; however, any KPP Rosenbrock solver may be invoked with a change to 

a single argument in the call to the integrator.  Rodas3 “tolerance contours” are given in Figure 1b.  While choice of relative 20 

tolerance has a significant influence on the accuracy of the results, the solution is comparatively unaffected by the choice of 

absolute tolerance in the tested range, with degradation in the solution only beginning to occur at absolute tolerances exceeding 

102 molecules/cm3 for the relative tolerances tested here.  In an effort to be efficient while still maintaining an accuracy well 

within 5% of the reference solution, we selected a default absolute tolerance of 102 molecules/cm3 air, a relative tolerance of 

10-2 for most species, and a relative tolerance of 10-3 for hydrogen peroxide and glyoxal/methylglyoxal.  The SDAmin for this 25 

set of tolerance settings for Rodas3 is represented by the red gridded square in Figure 1.  These tolerance settings lead to ~ 2% 

or better accuracy for all species for the tested scenarios, with most species well under 1%.  This selection strikes a balance 

between accuracy and efficiency for this mechanism. For other applications or in the case of a chemical mechanism expansion, 

these values can and should be reevaluated and adjusted as necessary to maintain that balance. 
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2.2 Impacts of mass transfer assumptions and solver on box model predictions 

While assuming instantaneous Henry’s law equilibrium to describe partitioning between gas and aqueous phases can reduce 

the often significant computational burden associated with simulating heterogeneous chemistry, past studies have indicated 

that there are species and conditions for which equilibrium conditions are not met during the lifetime of typical cloud droplets. 

In such cases a kinetic mass transfer treatment may be necessary to accurately describe the phase distribution between gas and 5 

cloud or fog droplets and subsequent chemistry (Djouad et al., 2003; Audiffren et al., 1998; Audiffren et al., 1996; Chaumerliac 

et al., 2000; Ervens et al., 2003).  Here we treat mass transfer kinetically as a default in AQCHEM-KMT in an effort to assess 

how deviations from instantaneous Henry’s law equilibrium impact predicted concentrations for short- and long-term 

averaging periods which may be of interest in different applications. 

 10 

Box model versions of AQCHEM and AQCHEM-KMT were compared for the Table S5 scenarios to better understand the 

potential impacts of differing solver and mass transfer treatment on aqueous phase chemistry predictions, isolated from other 

processes in CMAQ that might complicate the analysis.  Here we focus mainly on the predictions for the two species chemically 

produced in the standard AQCHEM mechanism, SO4
2- and SOA from cloud processing of α-dicarbonyls (ORGC).  Figures 

2a and 2c show SO4
2- and ORGC predictions for AQCHEM-KMT (assuming a default droplet diameter of 16 µm) versus 15 

standard AQCHEM.  For many scenarios it appears that the equilibrium assumption is a good one, particularly for SO4
2-, with 

many points falling along or not far from the 1:1 line.  There are also significant deviations for several scenarios, especially so 

for cloud SOA.  Figures 2 b and 2d show the impact of changing the default droplet diameter (to 5 and 30 µm) for SO4
2- and 

ORGC, respectively.  As the droplet diameter increases, deviation between AQCHEM-KMT and AQCHEM predictions for 

both SO4
2- and ORGC increases as well.  In the case of ORGC, even at small droplet diameters, there can be a large discrepancy 20 

between the models.  The difference in predicted ORGC concentrations at small droplet diameters is, in part, attributable to 

the difference between the time-stepping technique of AQCHEM and the Rosenbrock solver in AQCHEM-KMT.  AQCHEM 

steps forward in time based on the rate of SO4
2- production and the lifetime of the cloud. These constraints can produce large 

time steps that can lead to higher SOA predictions.  In AQCHEM-KMT, the solver determines forward time steps based on a 

convergence test dependent on all species and their tolerance settings.  Different predictions of ORGC also occur for larger 25 

cloud droplets when the deviation from equilibrium due to mass transfer limitations may become significant (Figure S1). 

 

 

Additional box modeling investigations with a slightly expanded mechanism indicate that when one ignores aqueous diffusion 

limitations (for the default droplet diameter of 16 µm), assumes instantaneous equilibrium for ionic dissociation, and calculates 30 

pH assuming electroneutrality (but maintains the kinetic mass transfer treatment for transfer between the phases) that the 
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predicted concentrations of SO4
2-, ORGC, and other major species are comparable to those predicted with the fully dynamic 

approach of AQCHEM-KMT.  This indicates that the largest differences between AQCHEM-KMT and AQCHEM for the test 

scenarios are a result of using kinetic mass transfer coefficients to describe the transfer of species between the phases (i.e., not 

assuming instantaneous Henry’s law equilibrium) and to a lesser extent the change in solvers. 

 5 

 

The differences in predicted SO4
2- and ORGC with different droplet size (Figures 2 and S1) and SO4

2- with different values 

for initial pH (Figure S2) (which represents the impact of the activated aerosol fraction) point to the potential importance of 

microphysical parameters on predicted concentrations and supports the development of better linkages between aqueous 

chemistry and cloud microphysics codes.  Other species typically show smaller differences for different droplet sizes/pH 10 

differences, but that may change with the addition of new chemistry. 

 

It should be noted that by introducing the new solver and relaxing equilibrium assumptions that the computational requirements 

of AQCHEM-KMT significantly exceed those of AQCHEM, even before adding new chemical species or reactions.  On 

average AQCHEM can simulate the scenarios of Table S5 with a runtime on the order of ~1 second, while AQCHEM-KMT 15 

requires ~65 seconds to model the scenario set.  While cloud chemistry only accounts for a fraction of the computational time 

required by a three-dimensional chemical transport model like CMAQ, implementation of AQCHEM-KMT in a chemical 

transport model (CTM) will lead to an overall increase in CTM run time that will vary depending, in part, on the cloudiness of 

a modeled period.  These requirements will likely increase as the chemical mechanism expands, and future efforts should be 

dedicated to investigating how to make the model more efficient, including revisiting equilibrium assumptions for certain 20 

processes or species. 

2.3 Aqueous SOA from biogenic epoxides  

Using KPP to generate the code for the updated cloud chemistry module allows for straightforward extension to additional 

aqueous chemistry.  Here we investigated the expansion of the cloud chemistry mechanism to include the in-cloud formation 

of SOA from biogenic epoxides (AQCHEM-KMTI).  The process is based on reactions in aerosol water incorporated into 25 

CMAQv5.1 (Pye et al., 2013).  While acid-catalyzed aqueous SOA formation from species like isoprene epoxydiols (IEPOX) 

is expected to be more important in highly concentrated aerosol water than comparatively dilute cloud droplets (where 

oxidation of soluble organic compounds by the hydroxyl radical is expected to be the dominant contributor to SOA mass), 

some SOA may still be formed in cloud droplets from IEPOX (McNeill, 2015 – Figure 2). Overall the aqueous phase reaction 

mechanism in aerosol and cloud water is expected to be similar, but dominant reaction pathways may change between 30 

concentrated and dilute conditions (McNeill, 2015). We include these reactions here to improve consistency between CMAQ’s 
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cloud and aerosol aqueous chemistry mechanisms and to quantify the potential impacts of adding these cloud water reactions.  

The additional species and reactions are given in the shaded sections of tables S1, S3, and S4 in the Supplemental Information. 

3 CMAQ simulations and measurements 

The impacts of the updated solver and kinetic mass transfer treatment of AQCHEM-KMT and the additional aqueous chemistry 

of AQCHEM-KMTI were investigated using multiple CMAQ simulations.  Simulation periods and domains were selected 5 

based on the availability of model inputs and/or specialized observations for comparison. Winter and summer periods were 

run to illustrate any seasonal differences in sensitivity to the different cloud chemistry modules. Simulations were conducted 

for winter and summer 2011 over the contiguous US (CONUS) with inputs developed to evaluate CMAQv5.1 (Appel et al., 

2016), as well as for a summer period over the eastern U.S. coinciding with a 2013 measurement campaign that focused on 

SOA formation.  The CONUS simulations were used to assess the impacts of kinetic mass transfer and solver (AQCHEM vs. 10 

AQCHEM-KMT); while the summer simulation over the eastern U.S. was geared towards investigating the impact of 

additional in-cloud SOA formation from biogenic epoxides (AQCHEM-KMT vs. AQCHEM-KMTI).  These CMAQ 

simulations are further detailed below.  Note that in all CMAQ cases, cloud chemistry and gas phase chemistry are not solved 

simultaneously but are instead solved in separate operators.  Following advection and diffusion, cloud processes (including 

cloud chemistry) are treated for resolved and sub-grid clouds. This is followed by gas phase chemistry (including 15 

heterogeneous chemistry on aerosols) and aerosol dynamics.  Inevitably there are errors that can result from estimating the 

impacts of chemistry of different phases separately, and in the future, the feasibility of simultaneously solving chemistry across 

all phases will be investigated.   

 

Test 1: CMAQv5.1 was applied with both standard AQCHEM and AQCHEM-KMT cloud chemistry for January and July 20 

2011 over CONUS at 12-km horizontal resolution and 35 vertical layers extending up to 50 mb.  Meteorological fields were 

generated with the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008), version 3.7, and emissions were 

based on the 2011 National Emissions Inventory (NEI), version 2 (https://www.epa.gov/air-emissions-inventories/2011-

national-emissions-inventory-nei-documentation). Aerosol treatment and gas-phase chemistry were described by the AERO6 

aerosol module and CB05e51 carbon bond chemical mechanism respectively 25 

(http://www.airqualitymodeling.org/index.php/CMAQ_v5.1_CB05_updateshttp://www.airqualitymodeling.org/cmaqwiki/in

dex.php?title=CMAQ_v5.1_CB05_updates). Additional simulation configuration options included in-line biogenic emissions, 

in-line plume rise, windblown dust, lightning NOx emissions, bidirectional ammonia exchange, and in-line calculation of 

photolysis rates including absorption and scattering from predicted gas and aerosol concentrations.  More detailed information 

about these CMAQ options can be found in the CMAQ operational guidance and technical documentation available at 30 

www.cmascenter.org.  Results are examined after 10 days of spin-up from clean default initial conditions.  Hourly lateral 

boundary conditions were taken from a global GEOS-Chem simulation from the same period (Henderson et al. 2014).   
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Test 2: The impact of adding cloud water SOA formation from IEPOX and methacryloylperoxynitrate (MPAN) products, 

methacrylic acid epoxide (MAE) and hydroxymethylmethyl-α-lactone (HMML), was examined for a summer period 

coinciding with the Southern Oxidant and Aerosol Study (SOAS) (http://soas2013.rutgers.edu/).  Two simulations were 

performed with AQCHEM-KMT and AQCHEM-KMTI for June 1 – July 15, 2013, with 11 days of spin-up.  The base model 5 

was CMAQv5.0.2+, an interim version of CMAQ between the 5.0.2 and 5.1 official releases.  Gas-phase and aerosol chemistry 

was simulated with the SAPRC07TIC chemical mechanism (Xie et al., 2013, Lin et al., 2013) and AERO6i aerosol module 

respectively (http://www.airqualitymodeling.org/index.php/CMAQ_v5.1_SAPRC07tic_AE6i 

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_v5.1_SAPRC07tic_AE6i). The model was applied at a 

12-km horizontal resolution over the eastern United States with 35 vertical layers up to 100 mb.  Emissions were generated 10 

using the 2011 NEI with 2013-specific electric generating unit (EGU) continuous emission monitoring system (CEMS) data 

and an offline application of the Biogenic Emission Inventory System (BEIS) version 3.6.1 with Biogenic Emissions Land 

Use Database (BELD4) land cover and vegetation.  Wildfire and prescribed fire emissions are based on the Satellite Mapping 

Automated Reanalysis Tool for Fire Incident Reconciliation (SMARTFIRE) system (http://www.airfire.org/smartfire/) using 

2013 day-specific satellite detection of fires.  Windblown dust and lightning NOx emissions were not included, nor was 15 

bidirectional ammonia surface exchange.  Meteorological inputs were generated with WRFv3.6.1.  Lateral boundary conditions 

and initial conditions were taken from a 36-km resolution CMAQ simulation performed over CONUS, southern Canada, and 

northern Mexico for the same period.  The boundary conditions for that coarser resolution CMAQ simulation were derived 

from a GEOS-Chem simulation performed at 2°×2.5° lateral resolution.  Additional details on the modeling platform can be 

found in Pye et al. (2015).  Simulated concentrations for 2-methyltetrols and 2-methylglyceric acid (2-MG) (i.e., two SOA 20 

products from IEPOX and MAE/HMML) were compared to measurements collected at a site in Research Triangle Park (RTP), 

NC, June 1 through July 15, 2013.  The observed 2-methyltetrol and 2-MG concentrations were obtained via GC-MS analysis 

of aerosol mass from daily filter measurements using a similar methodology to that described in Lewandowski et al. (2013), 

Kleindienst et al. (2013), and Edney et al. (2005).   

3.1 Impact of kinetic mass transfer and Rodas3 solver 25 

Figures 3 and 4 show the average baseline (AQCHEM) concentrations and difference in predictions between AQCHEM (base) 

and AQCHEM-KMT ([KMT] – [Base]) for fine SO4
2- and ORGC respectively.  In addition to a map of the average baseline 

concentrations (a,d), tThe figures include a map of monthly average (a,cb,e) and maximum hourly (bc,df) differences for 

January (top) and July (bottom) 2011.  In both winter and summer months, the monthly average difference in SO4
2- 

concentration is low and does not exceed 0.2 µg/m3 for the model periods investigated here.  Any impacts of kinetic mass 30 

transfer or solver changes on predicted SO4
2- concentrations for our standard (and relatively simple) cloud chemistry 

mechanism are diluted when moving from aqueous chemistry box modeling to a regional modeling framework where species 

are impacted by additional processes and averaging periods are longer. Similarly, there are minimal differences in the winter 



12 
 

and summer average ORGC concentrations as well. Hourly concentrations can show more significant differences for both 

species, however, with hourly concentration differences as high as 14.7 µg/m3 for SO4
2- and 0.4 µg/m3 for ORGC.  Similar to 

clouds themselves, these impacts are rather spatially and temporally variable.  To illustrate the potential short-term differences 

between the base and “KMT” aqueous chemistry modules, Figures 5 a and 5b show the time series of the SO4
2- concentration 

differences at the grid cell with the highest hourly concentration difference for all hours of the January (cell (264,54)) and July 5 

(cell (183, 213)) 2011 simulations, respectively.  The figures also include modeled total liquid water content values.  While 

monthly average SO4
2- predicted with AQCHEM-KMT is only 5.2% and 6.5% lower than the base in the cell selected for 

January and July respectively, when the maximum hourly difference is observed, AQCHEM-KMT predicts 35% less SO4
2- at 

cell (264,54) and 15% less SO4
2- at cell (183,213) compared to AQCHEM.  For most hours, the SO4

2- concentrations are very 

similar for the two runs.  However, when the liquid water content values become significant and the cloud chemistry module 10 

is called, the hourly differences between predicted SO4
2- concentrations canoften exceed 2 be at least a couple micrograms per 

cubic meter in magnitude, with kinetic mass transfer leading nearly always here to lower predicted SO4
2- concentrations due 

to the incorporation of gas and interfacial mass transfer limitations.  During the rare times when AQCHEM-KMT predicted 

higher SO4
2- than the base in these cells, the hourly increase in SO4

2- was less than 0.26 µg/m3. It should be noted that since 

CMAQ already tends to have a slightly low bias with respect to SO4
2- concentrations in the winter and summer for most regions 15 

in the U.S. (Appel et al., 2016), without additional updates to chemistry or improved cloud parameter predictions, AQCHEM-

KMT will lead to a small increase in absolute bias for SO4
2- at most surface sites in our domain compared to AQCHEM. 

 

Absolute ORGC mass predictions are less impacted than SO4
2-, but these tend to be low on average in the base case and may 

have limited sensitivity to changes in mass transfer treatment is may be due in part to CMAQ’s implementation of cloud SOA 20 

formation.  In AQCHEM-KMT (as in AQCHEM), ORGC is formed from the reaction of glyoxal and/or methylglyoxal with 

the hydroxyl radical. The hydroxyl radical concentration is estimated at the start of cloud processing based on the initial gas 

phase concentration (Henry’s law) and held constant for the duration of the “master” cloud time step (i.e., mass transfer 

limitations are not considered for OH).  This was done in part to compensate for the lack of a more complete treatment of 

radical/organic chemistry in the aqueous phase, along with a relatively loose coupling between gas and aqueous chemistry in 25 

CMAQ.  A constant oxidant concentration may cause an artificially high rate of consumption of the precursor species and 

insensitivity of the reaction to droplet size and associated mass transfer limitations. In fact, it has been suggested that in-cloud 

oxidation of organic species by OH may be oxidant limited due in part to the effects of mass transfer limitations on aqueous 

OH concentrations (Ervens et al., 2014).  If a more explicit cloud SOA mechanism was included where OH concentrations 

were allowed to vary, mass transfer limitations would likely have a greater influence on in-cloud SOA production. 30 

3.2 Impact of cloud SOA formation pathway from biogenic epoxides 

More than half of fine particulate mass (PM2.5) can be made up of organic compounds, with a significant secondary fraction, 

depending on location and season.  While it is an inherently difficult system to fully characterize due to the number of 
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compounds involved, progress has been made in identifying precursor compounds and important pathways leading to SOA 

formation.  Recently SOA formation from isoprene epoxydiols (IEPOX) and MPAN products via reactive uptake to aerosol 

water was implemented in CMAQ (Pye et al., 2013).  The aqueous chemical mechanism does not necessarily differ between 

aerosol and cloud water, but certain reactions may be more important in the different regimes (i.e., concentrated versus dilute) 

(McNeill 2015; Hermann et al., 2015).  Here we explore the impacts of including the aqueous IEPOX/MPAN SOA reaction 5 

pathway in cloud water and apply the model to an eastern US domain coinciding with SOAS.  The platform/period is well-

suited for the task due to the availability of frequent 2-methyltetrol and 2-MG measurements, products of the aforementioned 

reaction pathways (Table S3), at multiple sites.  

 

Figure 6 shows the modeled June 2013 average SOA increases due to including IEPOX/MPAN chemistry in cloud droplets.  10 

Each panel gives an absolute or percentage concentration difference of impacted SOA species between the extended chemistry 

(AQCHEM-KMTI) and standard chemistry (AQCHEM-KMT) simulations.  In the areas of highest baseline concentrations of 

IEPOX/MPAN SOA, cloud chemistry contributes an additional ~5-13% to the June average concentration, with a maximum 

increase in average IEPOX/MPAN SOA of ~20 ng/m3 (Figure 6a). Total SOA from IEPOX/MPAN here is a sum of 2-

methyltetrols, 2-MG, organosulfates, organonitrates, and dimers. There is a more significant relative impact (i.e., percentage 15 

increase as opposed to absolute mass change) on 2-MG (Figure 6d) than 2-methyltetrols (Figure 6c).  Note, however, that 2-

MG concentrations are an order of magnitude lower than those of methyltetrols.  The impact on organosulfate (OS), 

organonitrate (ON), and dimer concentrations with the additional cloud chemistry is negligible, supporting previous work 

suggesting that OS formation would be minimal at the dilute conditions characteristic of cloud droplets (McNeill et al., 2012).  

The additional cloud SOA chemistry leads to an average increase of ~10-20% in surface level “cloud SOA” (i.e., SOA formed 20 

within CMAQ cloud water) in the eastern United States (Figure 6b).  The largest relative increases in cloud SOA occur, as 

expected, in areas with periods of persistent cloud cover and high liquid water content during the modeling period (e.g., Lake 

Michigan). 

 

For the area inside the blue rectangle in Figure 6a, the average vertical concentration differences due to the additional 25 

IEPOX/MPAN cloud chemistry are shown in Figures 7 and 8.  There is a 14-16% increase in average cloud SOA concentrations 

from the surface to 3 km, with a peak percentage increase just above 2 km. This translates to a spatially/temporally averaged 

IEPOX/MPAN SOA concentration increase of 8 ng/m3 in the layers closest to the surface (Figure 8).  Larger impacts can be 

seen during shorter timescales at locations that are characterized by the availability of both adequate precursor levels and cloud 

liquid water content (Figure 11). 30 

 

PM filters were analyzed for the tracer compounds, 2-methyltetrols and 2-MG, at select sites during the SOAS field campaign 

(Budisulistiorini et al., 2015).  A comparison of modeled and measured concentrations of these species at the RTP site in NC 

(where some of the largest modeled differences occur of the available measurement sites) are given in Figure 9.  While the 
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impacts of the additional cloud chemistry at RTP during this period are not very large, there are small increases in 2-

methyltetrol and 2-MG predictions.  This leads to slightly better error statistics due to the fact that the base model tends to 

underpredict the concentrations of these compounds at the RTP site (Table 3).  While the additional cloud chemistry does not 

drastically increase concentrations at RTP, there are areas where modeled concentration impacts can be significant (Figure 

10).  To investigate under what conditions the largest contributions from cloud-water production of IEPOX/MPAN SOA might 5 

be observed, we extracted the time-series of products and precursors at the cell with the largest hourly impact during the June 

2013 simulation in Figure 11. Figure 11 shows the hourly change in total SOA from the IEPOX/MPAN pathways 

(∆SOAIEPOX/MPAN), change in 2-MG (∆SOA2-MG), liquid water content, and precursor species IEPOX and MAE for the max 

difference cell.  The additional chemistry included here does not lead to a temporally-uniform change in concentrations, with 

impacts from additional cloud SOA only discernible for sporadic spikes during the latter part of the month.  The large SOA 10 

impacts coincide with periods of simultaneously high liquid water content and high precursor concentrations. A large fraction 

of the total increase in SOAIEPOX/MPAN (red line) is due to increases in 2-MG production (grey line) even though 2-methyltetrols 

dominate the concentration of total SOAIEPOX/MPAN in most of the domain. If the Henry’s law coefficient for IEPOX is much 

higher than used here (for example, 1.7 x 108, Gaston et al. (2014)) then aqueous processing of IEPOX would lead to even 

higher methyltetrol concentrations than predicted here. 15 

 

One of the more uncertain aspects of this chemistry may be the production of SOA from the MPAN products.  In the current 

model formulation, 2-MG production is mainly based on the physical constants/chemical reaction rates for MAE.  However, 

other studies have indicated that HMML may be a more dominant precursor to 2-MG (Nguyen et al., 2015).  Additionally, we 

assume that the products of these aerosol and cloud aqueous pathways are non-volatile, while monomeric species like 2-20 

methyltetrols and 2-MG may be better represented as semi-volatile (Isaacman-VanWertz et al., 2016).  These are areas that 

may be worthwhile to further refine in future development efforts, as more laboratory/field research becomes available, in an 

effort to better quantify the relative impacts of cloud versus aerosol water production pathways on SOA mass. 

4 Summary and future directions 

We have developed a framework for extending CMAQ cloud chemistry and have implemented two additional cloud chemistry 25 

options, AQCHEM-KMT and AQCHEM-KMTI, in CMAQv5.1. While CMAQ’s standard cloud chemistry module 

(AQCHEM) is structurally limited to a simple chemical mechanism, this work advances our ability to implement and 

investigate additional aqueous chemical pathways and the impacts of microphysical parameters on cloud chemistry in CMAQ. 

 

KPP was used to generate a Rosenbrock solver to integrate the stiff system of ODEs that describe the mass transfer, chemical 30 

kinetics, and scavenging processes of CMAQ clouds. Box model tests were performed to choose efficient solver and tolerance 

settings, validate the code generated with KPP, and examine the potential impacts of the new solver and mass transfer 
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limitations on model concentrations of SO4
2- and SOA.  Month-long winter and summer CMAQ simulations over CONUS 

reveal that while the new solver and mass transfer considerations do not cause large changes in regional or long-term average 

concentrations for the standard aqueous mechanism, more significant impacts are observed on shorter timescales.  The addition 

of in-cloud SOA production from IEPOX/MPAN species led to an average increase in cloud SOA concentrations of around 

15% for June 2013 and slightly improved error and bias statistics for IEPOX/MPAN SOA at the RTP measurement site during 5 

the SOAS field campaign period.   

 

While the new solver and kinetic mass transfer treatment produced sporadic and small differences on average for the standard 

cloud chemistry mechanism, a significant value in AQCHEM-KMT is that with the automatic code generation of KPP, the 

modeling framework provides a straightforward way to implement and test new chemical pathways and determine the 10 

sensitivity of model concentrations to uncertain parameters and representations.  Including kinetic mass transfer treatment 

allows cloud chemistry, wet deposition, and the distribution of species between phases to be more directly affected by 

microphysical parameters like droplet size.  Adding linkages between cloud chemistry and microphysical parameters (e.g., 

cloud droplet radius or activated aerosol fraction) allows for a better representation of feedback between clouds, aerosols, and 

radiation, increasing our ability to determine what linkages are most influential on the model species or processes of greatest 15 

interest. 

 

While incremental improvements in the computational efficiency occurred throughout the development process of AQCHEM-

KMT, it can contribute to longer CMAQ run times compared to AQCHEM (6-35% for the scenarios investigated here).  

Chemical transport models like CMAQ require a balance between accuracy and efficiency, and that balance often depends on 20 

the goal of a particular model application.  For applications geared towards estimating PM2.5 over monthly or seasonal 

averaging times, for example, equilibrium assumptions likely will not lead to significant errors for the standard AQCHEM 

mechanism.  If the focus is on individual aerosol species over shorter time scales or currently unrepresented or parameterized 

chemistry, however, those assumptions in AQCHEM might lead to an undesired loss in accuracy, and AQCHEM-KMT might 

be the preferred choice. Future implementations of extended cloud chemistry in CMAQ should continue to strive towards 25 

greater computational efficiency.  Alongside efforts to expand the cloud chemical mechanism to include the most 

relevant/impactful chemical pathways, special efforts should also be made to improve the module efficiency, including the 

application of simplifying equilibrium assumptions for individual species or conditions as appropriate. 

 

Code availability 30 

CMAQ model documentation and CMAQ version 5.1 source code, including AQCHEM, AQCHEM-KMT, and AQCHEM-

KMTI cloud chemistry options, are available at www.cmaq-model.org.   

 

Disclaimer 

http://www.cmaq-model.org/
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Although this paper has been subjected to US EPA review and approved for publication, the views and interpretations in this 

publication are those of the authors and not necessarily reflective of their organizations’ policies or views. 
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Table 1: Comparison of cloud chemistry models included in CMAQv5.1. 

Process AQCHEM standard AQCHEM-KMT AQCHEM-KMTI 
Solver Forward Euler Rodas3 (Rosenbrock) Rodas3 (Rosenbrock) 
Gas-aqueous mass 
transfer 

Henry’s Law Equilibrium Kinetic mass transfer with 
gas diffusion/interfacial 
limitation 

Kinetic mass transfer with 
gas diffusion/interfacial 
limitation 

Ionic dissociation Equilibrium Forward/reverse reactions Forward/reverse reactions 
Chemistry 5 S(IV) to S(VI)SO2 to 

SO4
2- oxidation reactions 

+ 2 SOA forming 
reactions from glyoxal 
and methylglyoxal 

Same mechanism as 
AQCHEM. Includes 
aqueous diffusion 
correction for O3 

AQCHEM mechanism + 
IEPOX/MPAN chemistry. 
Includes aqueous 
diffusion correction for 
O3, and IEPOX/MPAN 

pH [H+] estimated at each 
time step using a 
bisection method while 
maintaining 
electroneutrality.   

Dynamic [H+].  Initial 
value is based on 
activated aerosol ions at 
t=0 assuming 
electroneutrality 

Dynamic [H+].  Initial 
value is based on 
activated aerosol ions at 
t=0 assuming 
electroneutrality 

Other Instantaneous activation 
of all accumulation and 
coarse mode species.   
 

Instantaneous activation 
of all accumulation and 
coarse mode species.   

Instantaneous activation 
of all accumulation and 
coarse mode species.   

 

Table 2: Modeled processes and associated rate coefficients and equations.  

Process Equations Rate 
coefficients 

Other information* 

Gas-Liquid 
phase transfer 𝐶𝐶𝑔𝑔,𝑖𝑖

𝑘𝑘𝑓𝑓
→ 𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖 

𝑘𝑘𝑓𝑓 = 𝑘𝑘𝑚𝑚𝑚𝑚,𝑖𝑖𝑤𝑤𝐿𝐿 
𝑘𝑘𝑚𝑚𝑚𝑚,𝑖𝑖 �𝑠𝑠−1

𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
𝑣𝑣𝑣𝑣𝑣𝑣𝐻𝐻2𝑂𝑂

� = �
𝑟𝑟2

3𝐷𝐷𝑔𝑔,𝑖𝑖
+

4𝑟𝑟
3𝑣̅𝑣𝑖𝑖𝛼𝛼𝑖𝑖

�
−1

 

 

𝑣𝑣𝚤𝚤� = �
8𝑅𝑅𝑅𝑅
𝑀𝑀𝑀𝑀𝑖𝑖𝜋𝜋

 

Liquid-Gas 
phase transfer 

𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖
𝑘𝑘𝑏𝑏�� 𝐶𝐶𝑔𝑔,𝑖𝑖 𝑘𝑘𝑏𝑏 =

𝑘𝑘𝑚𝑚𝑚𝑚,𝑖𝑖

𝐻𝐻𝑇𝑇,𝑖𝑖𝑅𝑅𝑅𝑅
 

Xion,f: 
Dissociation 𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖

𝑘𝑘𝑓𝑓
→ 𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖

−1 + 𝐻𝐻+ kb = literature 
value, T 
independent  
𝑘𝑘𝑓𝑓 = 𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖,𝑇𝑇𝑘𝑘𝑏𝑏 

𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖,𝑇𝑇 = 𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �
−∆𝐻𝐻𝑎𝑎
𝑅𝑅

��
1
𝑇𝑇
� − �

1
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

��� 

Activity coefficients are rolled into the forward 
and backward rates as appropriate 

Xion,b: 
Association 

𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖
−1 + 𝐻𝐻+ 𝑘𝑘𝑏𝑏�� 𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖 

Ascav: Droplet 
scavenging of 
interstitial 
aerosol 

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎
𝛼𝛼
→ 𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖 α α is the attachment rate for interstitial aerosols, 

calculated external to the aqueous chemistry 
module according to Binkowski and Roselle 
(2003) 

Wdep: Wet 
deposition 𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑
�⎯⎯� 𝐶𝐶𝑊𝑊𝑊𝑊,𝑖𝑖 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑 =

1
𝜏𝜏𝑤𝑤𝑤𝑤𝑤𝑤ℎ

 𝜏𝜏𝑤𝑤𝑤𝑤𝑤𝑤ℎ(𝑠𝑠)(𝑠𝑠) =
𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 3600

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
, 0 

where WTAVG = total liquid water content, 
CTHK = cloud thickness, PRATE = 
precipitation rate 

Raq: Chemical 
kinetics 

𝐶𝐶𝑎𝑎𝑎𝑎,1 + 𝐶𝐶𝑎𝑎𝑎𝑎,2
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟�⎯� 𝐶𝐶𝑎𝑎𝑎𝑎,3 krxn Complex rate coefficients are set according to 

the CMAQ base mechanism (Sarwar et al., 
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2013; Carlton et al., 2010).  While most droplet 
species are assumed to be well-mixed, a 
correction factor may be applied to account for 
aqueous diffusion limitations (Table S3). This 
correction factor, Qi, relates surface and bulk 
droplet concentrations. 
 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑄𝑄𝑖𝑖 
 

𝑄𝑄𝑖𝑖 = 3�
𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑞𝑞𝑖𝑖)

𝑞𝑞𝑖𝑖
−

1
𝑞𝑞𝑖𝑖2

�  ,𝑄𝑄𝑖𝑖 ≤ 1 

𝑞𝑞𝑖𝑖 = 𝑟𝑟�
𝑘𝑘𝑖𝑖
𝐷𝐷𝑎𝑎𝑎𝑎,𝑖𝑖

 

*MW is the molecular weight, Dg,i is the gas phase diffusion coefficient (m2/s), αi is the accommodation coefficient, qi is the diffuso-
reactive parameter, Daq,i is the aqueous phase diffusion coefficient (m2/s), and ki is the effective first order reaction rate of species i. r is the 
droplet radius (m). 
 

Table 3: Observation-prediction statistics for 2-methyltetrols and 2-MG at the RTP measurement site during SOAS. 5 
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Base New 
Normalized 
Mean Bias -88.2 -78.6 -58.6 -54.8 

Normalized 
Mean Error 91.1 83.0 79.2 77.5 

Correlation 0.21 0.29 0.16 0.17 
Model avg 
(ng/m3) 1.03 1.86 56.8 61.9 
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Figure 1: Significant digits of accuracy (SDA) for the CMAQ species with the maximum error for (a) different variants of 5 
Rosenbrock solvers and (b) the Rodas3 solver at different combinations of relative and absolute tolerance.  Each point in figure 1a 
represents a different relative and absolute tolerance combination.  The absolute tolerances tested were 10-4, 10-2, 100, 102, and 104   

a 

b 
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molecules/cm3 air for relative tolerances = 10-4, 10-3, 10-2, and 10-1.  Each “plateau” visible for certain solvers in Figure 1a represents 
a different relative tolerance setting, with tighter tolerances leading to higher SDAs. 

 

 

Figure 2: AQCHEM-KMT vs. standard AQCHEM predictions for (a) total SO42- (sum over all modes) and (c) SOA from cloud 5 
processing of carbonyls (ORGC) at default droplet diameter of 16 µm as well as at 5 and 30 µm for (b) total SO42- and (d) ORGC. 

 
 
 
  10 
 
 

a b 

c d 

Formatted: Superscript

Formatted: Superscript



26 
 

 

 



27 
 

 

Figure 3: Average baseline (a,d)  and average (b,e) and maximum (c,f) hourly difference (AQKMT - Base) in fine SO42- (µg/m3) for 
January and July 2011 (a) January 2011 (average), (b) January 2011 (maximum), (c) July 2011 (average) and (d) July 2011 
(maximum) using CMAQv5.1.  Note the different scales for average baseline concentration, average difference, and maximum 
difference plots. 5 
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Figure 4: Average baseline (a,d) and average (b,e) and maximum (c,f) hourly difference (AQKMT - Base) in SOA from cloud processing of 
carbonyls (ng/m3) for (a) January 2011 (average), (b) January 2011 (maximum), (c) July 2011 (average) and (d) July 2011 (maximum) using 
CMAQv5.1 
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Figure 5: Modeled hourly liquid water content (blue, g/m3) and change in fine SO42- (red, µg/m3) (KMT-Base) in the cell containing 
the maximum (absolute) hourly difference for (a) January and (b) July 2011.   
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Figure 6: (a) June 2013 average increase in SOA from IEPOX/MPAN and percentage increase in surface level (b) “cloud SOA” (> 
1 ng/m3), (c) 2-methyltetrols (> 10 ng/m3), and (d) 2-MG (> 1 ng/m3). “SOA from IEPOX+MPAN” is the sum of 2-methyltetrols, 2-
MG, and related organosulfates, organonitrates, and oligomers.   

 5 
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Figure 7: June 2013 average vertical distribution of the estimated percentage increase in “cloud SOA” with the addition of SOA 
from IEPOX/MPAN in cloud water.  These values are averaged spatially over the area indicated by the blue box in Figure 6a.   

 
 5 
 

 
Figure 8: June 2013 vertical distribution of (a) 2-methyltetrols (ng/m3) and (b) 2-MG (ng/m3), averaged spatially over the area 
indicated by the blue box in Figure 6a.  
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Figure 9: Observed and modeled (a) 2-methyltetrols (ng/m3) and (b) 2-MG (ng/m3) at Research Triangle Park, NC, during June 1-
July 15, 2013, for a base (red) simulation and a simulation with additional in-cloud formation of IEPOX/MPAN SOA (blue). 
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Figure 10: Maximum increase in hourly IEPOX/MPAN SOA ([AQCHEM-KMTI] – [AQCHEM-KMT]) (ng/m3) for June 2013. 
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Figure 11: Change in SOAIEPOX/MPAN due to in-cloud production (alongside precursor and liquid water content levels) for the cell 
containing the highest hourly difference during June 2013.  Shown from top to bottom are (top) the change in predicted hourly 
concentrations of total SOAIEPOX/MPAN (ng/m3) (red) and 2-MG (ng/m3) (grey) with the additional in-cloud SOA production, (middle) 5 
cell liquid water content (g/m3) (blue), and (bottom) IEPOX (ppb) (black) and MAE (ppb) (green) concentrations. Between 500-650 
hours, on average more than 40% of the additional SOA was 2-MG. 
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RESPONSE TO REVIEWERS: 
“A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1” by 
Kathleen M. Fahey et al. 
 
Response to reviewer #1 5 
 
The authors thank reviewer #1 for their comments and suggested revisions.  In the following, we restate the reviewer 
comments and follow with our response in “bold” font.  Note that any references to page/line number are made for 
both the “updated” manuscript (with markup) and the original discussion paper. 
 10 
Kahey et al. replace the hard-coded aqueous chemistry mechanism in CMAQ with a flexible chemical mechanism using the 
KPP solver. This allows a more general approach, with aspects such as mass transfer and H+ concentration now allowed to 
evolve dynamically. The authors demonstrate this method by first replicating the existing AQCHEM mechanism (AQCHEM-
KMT), and then extending it with a more complete representation of organic chemistry (AQCHEM-KMTI). This 
demonstration shows little impact on the model representation of sulfur chemistry, but secondary organic aerosol is 15 
significantly affected. Their approach sidesteps some issues of the previous sulfur- focused implementation, such as the 
application of inappropriately long timesteps to the calculation of rapidly-evolving SOA concentrations, and delivers a useful 
tool for other groups to explore other aspects of aqueous phase chemistry. 
 
This paper represents an incremental development in the representation of aqueous phase chemistry in a regional-scale model. 20 
However, such a development, especially in a model as widely used as CMAQ, is both overdue and welcome. The reapplication 
of KPP to solve aqueous phase chemistry seems natural and well implemented, and I am pleased to recommend this paper for 
publication in GMD, pending some minor revisions. I have outlined two general criticisms below, followed by a list of minor 
recommendations. 
 25 
My first and most significant issue relates to the question of computational efficiency. The final paragraph of the conclusions 
is informative, evenly discussing the computational trade-offs associated with the new, more complete aqueous chemistry 
mechanism. However, it references timing data which has not been given previously. Section 2.1 or 2.2 would benefit 
significantly from a dedicated discussion of the execution time of AQCHEM in each of the scenarios in comparison to 
AQCHEM-KMT.  30 
 
We have added the following text to section 2.2, p 9, line 13 (p 8, line 28 in original document):   
 
It should be noted that by introducing the new solver and relaxing equilibrium assumptions that the computational 
requirements of AQCHEM-KMT significantly exceed those of AQCHEM, even before adding new chemical species or 35 
reactions.  On average AQCHEM can simulate the scenarios of Table S5 with a runtime on the order of ~1 second, 
while AQCHEM-KMT requires ~65 seconds to model the scenario set.  While cloud chemistry only accounts for a 
fraction of the computational time required by a three-dimensional chemical transport model like CMAQ, 
implementation of AQCHEM-KMT in a chemical transport model (CTM) will lead to an overall increase in CTM run 
time that will vary depending, in part, on the cloudiness of a modeled period.  These requirements will likely increase 40 
as the chemical mechanism expands, and future efforts should be dedicated to investigating how to make the model 
more efficient, including revisiting equilibrium assumptions for certain processes or species. 
 
It would also be useful to know the degree to which some of the assumptions previously used by AQCHEM were found to be 
inaccurate. For example, with AQCHEM-KMT, the authors can diagnose the (in)accuracy of the electroneutrality assumption 45 
previously forced on the aerosol. 
 
We have added the following text to section 2.2, p 8, line 29 (p 8, line 23 in original document): 
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Additional box modeling investigations with a slightly expanded mechanism indicate that when one ignores aqueous 
diffusion limitations (for the default droplet diameter of 16 µm), assumes instantaneous equilibrium for ionic 
dissociation, and calculates pH assuming electroneutrality (but maintains the kinetic mass transfer treatment for 
transfer between the phases) that the predicted concentrations of SO42-, ORGC, and other major species are 
comparable to those predicted with the fully dynamic approach of AQCHEM-KMT.  This indicates that the largest 5 
differences between AQCHEM-KMT and AQCHEM for the test scenarios are a result of using kinetic mass transfer 
coefficients to describe the transfer of species between the phases (i.e., not assuming instantaneous Henry’s law 
equilibrium) and to a lesser extent the change in solvers. 
 
My second issue regards operator splitting. Previous work has shown that splitting gas and aerosol-phase chemistry into two 10 
separate operations inevitably introduces errors, and that these errors can be quite large (Djouad and Michelangeli, 2004). This 
is especially pertinent now that mass transfer limitations are being explicitly considered. 
Unfortunately Kahey et al. do not state how their aqueous chemistry operator fits into CMAQ as a whole. My assumption is 
that it remains a separate operation from gas-phase chemistry, but without a clear explanation the reproducibility of the work 
is compromised. The paper would benefit from a description of the order of operation of 15 
AQCHEM-KMT with respect to the rest of the model operators. 
 
The following text has been added to page 10, line 13 (p 9, line 19 in original document): “Note that in all CMAQ 
cases, cloud chemistry and gas phase chemistry are not solved simultaneously but are instead solved in separate 
operators.  Following advection and diffusion, cloud processes (including cloud chemistry) are treated for resolved 20 
and sub-grid clouds. This is followed by gas phase chemistry (including heterogeneous chemistry on aerosols) and 
aerosol dynamics.  Inevitably there are errors that can result from estimating the impacts of chemistry of different 
phases separately, and in the future, the feasibility of simultaneously solving chemistry across all phases will be 
investigated.”   
 25 
Specific comments and technical corrections 
The following minor issues should be addressed: 
• Page 5, line 18: The sentence beginning “While in AQCHEM...” is confusing and would benefit from a rewrite. 
 
The sentence now reads as follows: “While instantaneous Henry’s Law equilibrium is assumed for all species in 30 
AQCHEM, in actuality, the distribution of a species between the gas and aqueous phases may deviate significantly from 
equilibrium” 
 
• Page 8, line 13: Suggest that “Figures 2 b and d” is changed to “Figures 2b and 2d” 
 35 
 “Figures 2 b and d” has been changed to “Figures 2b and 2d” 
 
• Page 11, line 7: The phrasing “At least a couple micrograms per meter” is rather vague. 
 
Changed “concentrations can be at least a couple micrograms per cubic meter in magnitude” to “concentrations often 40 
exceed 2 micrograms per cubic meter in magnitude” 
 
• Page 11, first paragraph: Some sense should be given of the relative impact of implementing AQCHEM-KMT. With only 
absolute differences given, it is difficult to tell if the changes are ever significant. Suggest the authors state what the maximum 
and average percentage change in the given grid cell is. Similarly, Figures 3 and 4 would benefit from an additional panel 45 
showing the “baseline” (AQCHEM) concentrations in January and July. Without this, it is difficult to tell the significance of 
AQCHEM-KMT’s changes. 
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Figures 3 and 4 have been updated to include the average “baseline” AQCHEM concentrations of SO42- and ORGC for 
January and July. Figure captions have been updated to reflect the additional AQCHEM concentration plots. Section 
3.1 has been updated due to the change to the figures as follows (additions/updates are underlined): 
 
Page 11, line 26 (p 10, line 26 in original document) is now “Figures 3 and 4 show the average baseline (AQCHEM) 5 
concentrations and difference in predictions between AQCHEM (base)…” 
 
Page 11, lines 27-28 (p 10, line 27 in original document): “In addition to a map of the average baseline concentrations 
(a,d), the figures include a map of monthly average (b,e) and maximum hourly (c,f) differences for January (top) and 
July (bottom) 2011” 10 
 
The following text has also been added on page 12 lines 6-9 (p 11, line 5 in original document) (new text underlined) 
“The figures also include modeled total liquid water content values.  While monthly average SO42- predicted with 
AQCHEM-KMT is only 5.2% and 6.5% lower than the base in the cell selected for January and July respectively, 
when the maximum hourly difference is observed, AQCHEM-KMT predicts 35% less SO42- at cell (264,54) and 15% 15 
less SO42- at cell (183,213) compared to AQCHEM.  For most hours,…” 
 
• Figure 1a: The caption is unclear. Specifically, it should be stated exactly what is varying between different points for the 
same solver (ie that different tolerances are being tested, and over what range). It would also be helpful to point out explicitly 
what is changing between the different plateaus - it appears that SDA is more sensitive to relative tolerance than to absolute 20 
tolerance, based on the clustering behavior. 
 
The Figure 1 caption has been changed to read as follows:  “Figure 1: Significant digits of accuracy (SDA) for the 
CMAQ species with the maximum error for (a) different variants of Rosenbrock solvers and (b) the Rodas3 solver at 
different combinations of relative and absolute tolerance.  Each point in figure 1a represents a different relative and 25 
absolute tolerance combination.  The absolute tolerances tested were 10-4, 10-2, 100, 102, and 104 molecules/cm3 air for 
relative tolerances = 10-4, 10-3, 10-2, and 10-1.  Each “plateau” visible for certain solvers in Figure 1a represents a 
different relative tolerance setting, with tighter tolerances leading to higher SDAs.”  
 
• All of the figures showing land area should have axis markers (latitutde and longitude, if possible, or at least the X and Y 30 
dimension indices). Once these are in place, the grid index given on page 11, line 5 should be changed to match the dimensions 
used for the figures, so that the reader can identify which point on the grid is being discussed. 
 
Grid cell coordinates have been added to figures 3, 4, 6, and 10.  Cell coordinates for plots in figure 5 are now referenced 
on page 12, lines 5-6 (p 11, line 4 in original document) 35 
 
• Table 2: There are some typesetting issues here, particularly where a subscript should or should not have been used. Note, 
for example, the “Other information” entry for wet deposition. 
 
In Table 2, under Wet deposition “Other information” the unit “(s)” is no longer a subscript 40 
 
References 
Djouad, R. and Michelangeli, D. V.: Investigation of splitting gas and aqueous operators in atmospheric multiphase box 
models, Atmos. Res., 71(4), 253–263, 2004. 
 45 
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Response to reviewer #2 
 
The authors thank reviewer #2 for their comments and suggested revisions.  In the following, we restate the reviewer 
comments and follow with our response in “bold” font.  Note that any references to page/line number are made for 5 
both the “updated” manuscript (with markup) and the original discussion paper. 
 
Fahey et al. developed a new cloud chemistry mechanism (AQCHEM-KMT) for use in large-scale models and implemented 
it into CMAQ. AQCHEM-KMT allows for the investigation of aqueous-phase chemical reactions that could not be 
implemented into the aqueous-phase chemistry mechanism that is currently implemented in CMAQ (AQCHEM) because of 10 
its explicit consideration of processes such as mass transfer limitations. As most large-scale models use an aqueous-phase 
chemical mechanism similar to AQCHEM, this development represents a significant step forward in examining the influence 
of aqueous-phase chemical reactions on the chemical composition of the atmosphere in large-scale models. The paper is well 
written, and I recommend publication in GMD after some very minor issues are addressed. 
 15 
The authors find much larger differences between AQCHEM-KMT and AQCHEM for sulfate than for SOA, but the reasons 
for this difference could be more explicitly discussed than they currently are. What other aqueous-phase reactions or types of 
reactions can now be implemented in AQCHEM-KMT that was not possible with AQCHEM? 
 
AQCHEM-KMT would be well-suited to represent additional S(IV) oxidation chemistry as well as other species’ 20 
chemistry (like oxidant or nitrogen chemistry) not currently represented in CMAQ cloud chemistry at all.  A future 
application for AQCHEM-KMT will likely be to replace the “parameterized” in-cloud SOA production from glyoxal 
and methylglyoxal with an explicit/mechanistic representation of that chemistry. While in-cloud production of organic 
acids that remain in the aerosol phase after cloud droplet evaporation has been widely studied in laboratory and 
modeling experiments (e.g., Lim et al., 2010), implementation of an explicit representation of such a chemical 25 
mechanism is something that could not easily be done with AQCHEM and its forward Euler solver, in part due to the 
increased stiffness of the system (and thus the implementation of the simple parameterization of in-cloud SOA 
chemistry in AQCHEM in CMAQv4.7).   
 
This parameterization typically predicts only low surface level concentrations of in-cloud SOA on average and may be 30 
more “episodic” in nature than SO42-.  While SO42- production in-cloud is a major production pathway for atmospheric 
SO42- (potentially dominating over gas phase production) and contributes significantly to predicted average surface 
SO42- concentrations, in-cloud SOA will likely only be a small fraction of total SOA production on average, in part 
because of the “transient” nature of clouds as well as the fact that the only chemical pathways represented in the model 
for in-cloud SOA production are photochemically driven (and thus may only be important during only a fraction of 35 
the day or only certain seasons (e.g., summer)).  As mentioned in section 3.1, in the parameterization for in-cloud SOA 
formation, aqueous phase OH concentrations are held constant during cloud processing, so there is a reduced sensitivity 
to mass transfer limitations for those reactions, because they do not consider mass transfer limitations for OH. 
 
We have added some additional text to section 3.1 (new text is underlined) 40 
 
Pate 12, line 19: “Absolute ORGC mass predictions are less impacted than SO42-, but these tend to be low on average 
in the base case and may have limited sensitivity to changes in mass transfer treatment due in part to CMAQ’s 
implementation of cloud SOA formation…” 
 45 
Page 12, lines 22-29 (p 11, line 18 in original document): “The hydroxyl radical concentration is estimated at the start 
of cloud processing based on the initial gas phase concentration (Henry’s law) and held constant for the duration of the 
“master” cloud time step (i.e., mass transfer limitations are not considered for OH).  This was done in part to 
compensate for the lack of a more complete treatment of radical/organic chemistry in the aqueous phase, along with a 
relatively loose coupling between gas and aqueous chemistry in CMAQ.  A constant oxidant concentration may cause 50 
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an artificially high rate of consumption of the precursor species and insensitivity of the reaction to droplet size and 
associated mass transfer limitations. In fact, it has been suggested that in-cloud oxidation of organic species by OH may 
be oxidant limited due in part to the effects of mass transfer limitations on aqueous OH concentrations (Ervens et al., 
2014)...” 
 5 
Are there other sulfate production mechanisms that are better suited for AQCHEM-KMT than AQCHEM that are not currently 
included in the model, or do the authors expect sulfate to almost always be similar for AQCHEM-KMT and AQCHEM on 
monthly time scales? 
 
There are additional aqueous phase production pathways for SO42- that are not included in AQCHEM that may be an 10 
important contributor to SO42- concentrations in certain environments, such as the oxidation of SO2 by HNO4 (Leriche 
et al., 2003) or NO2 or aqueous oxidation of SO2 by OH (Seinfeld and Pandis, 2006).  These may have an impact on the 
monthly average SO42- values but would need to be implemented and investigated further to determine whether they 
either lead to a regional average increase or if they lead to more episodic changes and have limited impacts on average 
SO42- predictions. 15 
 
In the introduction, it would be good to specify that when you refer to the aqueous phase you are referring specifically to cloud 
droplets and not liquid water associated with aerosols 
 
Page 2, line 8-9: Changed “aqueous phase production of SO42- dominates” to “aqueous phase production of SO42- in 20 
cloud and fog droplets dominates”  
 
Page 2, lines 10 and 11:  Changed “aqueous” to “in-cloud” 
 
Page 2, Lines 13-14:  Changed “potentially significant role that aqueous pathways may have on the formation” to 25 
“potentially significant role that aqueous pathways (in cloud droplets and wet aerosols) may have on the formation” 
 
Page 3, line 31 (p 3, line 28 in original document): Changed “mass transfer between the gas and aqueous phases” to 
“mass transfer between the gas phase and cloud droplets” 
 30 
Page 3, line 34 (p 3, lines 30-31 in original document): Changed “these additional aqueous-phase chemistry options” to 
“these additional in-cloud aqueous-phase chemistry options” 
 
Page 4, line 3 (p 3, line 33 in original document):  Changed “updated aqueous chemistry options” to “updated cloud 
chemistry options” 35 
 
Page 4, line 9 (p 4, line 6 in original document):  Specified that we are applying KPP to the “in-cloud” aqueous phase 
chemical mechanism 
. 
Page 3 line 13: Refer to Table S3 so one can readily find the seven oxidation reactions, or list them here. 40 
 
We have added the following sentence after referring to the seven oxidation reactions on page 3: “The seven reactions 
represented are the oxidation of aqueous SO2 by hydrogen peroxide, ozone, oxygen (catalyzed by iron and manganese), 
methylhydroxyperoxide, and peroxyacetic acid as well as two reactions that parameterize SOA formation from glyoxal 
and methylglyoxal.” 45 
 
Many abbreviations/acronyms in the text and tables are not defined (e.g., MPAN). Perhaps add a table of 
abbreviations/acronyms in the SI. 
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We have attempted to find all the abbreviations/acronyms in the text and define them (at least) at their first mention.  
These include the following updates: 
 
On page 1, line 30: Changed “during the SOAS field campaign period” to “during the Southern Oxidant and Aerosol 
Study (SOAS) period” 5 
 
On page 2, line 18 (p 2, line 17 in original document): Changed “more than half of the total PM2.5 concentration” to 
“more than half of the total fine particulate matter (PM2.5) concentration” 
 
On page 3, line 14: Changed S(VI) to “sulfate” 10 
 
On page 3, line 18 (p 3, line 16 in original document):  Changed “stiff systems of ODEs” to “stiff systems of ordinary 
differential equations (ODEs)” 
 
On page 4 line 21 (p 4, line 18  in original document): Changed S(VI) to SO42- 15 
 
On page 6, line 8 (p 6, line 4 in original document): Changed “i.e., IEPOX/MAE” to “i.e., isoprene 
epoxydiol/methacrylic acid epoxide chemistry” 
 
On page 6, line 22 (p 6, line 18 in original document): Changed “as a successor to LSODE” to “as a successor to the 20 
Livermore Solver for Ordinary Differential Equations (LSODE)” 
 
On page 11, line 1 (p 10, line 4 in original document):  Changed “formation from IEPOX and MPAN products” to 
“formation from IEPOX and methacryloylperoxynitrate (MPAN) products” 
 25 
On page 11, line 11 (p 10, line 12 in original document): changed “2013-specific EGU continuous…” to “2013-specific 
electric generating unit (EGU) continuous…” 
 
On page 11, line 12 (p 10, line 13 in original document): changed “with BELD4 land cover” to “with Biogenic 
Emissions Land Use Database (BELD4) land cover” 30 
 
On page 14, lines 7-8 (p 13, line 1 in original document): changed “∆SOAIEPOX/MPAN, ∆SOA2-MG” to “change in total 
SOA from the IEPOX/MPAN pathways (∆SOAIEPOX/MPAN), change in 2-MG (∆SOA2-MG)” 
 
References:  35 
 
Leriche, M., Deguillaume, L., and N. Chaumerliac (2003) Modeling study of strong acids formation and partitioning 
in a polluted cloud during wintertime.  J. Geophys. Res., 108(D14), doi:10.1029/2002JD002950 
 
Lim, Y.B., Tan, Y., Perri, M.J., Seitzinger, S.P., and B.J. Turpin (2010) Aqueous chemistry and its role in secondary 40 
organic aerosol (SOA) formation. Atmos. Chem. Phys., 10, 10521-10539. 
 
Seinfeld, J. and S. N. Pandis (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd 
ed. John Wiley and Sons, Inc. 
 45 
 
“A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1” by 
Kathleen M. Fahey et al. 
 
Response to reviewer #3 50 
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The authors thank reviewer #3 for their comments and support for publication.  In the following, we restate the 
reviewer comments and follow with our response in “bold” font. 
 
Fahey et al. presents an implementation of two new cloud aqueous phase chemistry options (AQCHEM-KMT and AQCHEM-5 
KMTI) for the CMAQ model. The paper is well written and will be of interest to the readers of GMD, I therefore support its 
publication in GMD after issues raised Referees #1 and #2 have been addressed. 
 
We have attempted to address all of the comments/suggestions from reviewers 1 and 2.  One can find additional details 
in the posted responses to those reviewers.  10 
 
Minor issues: - Page 9, Line 29: Should "in-line calculation of photolysis rates" be "online calculations of photolysis rates"? 
 
To be consistent with descriptions of the CMAQ photolysis module published elsewhere (e.g., Appel et al., 2016), we 
refer to these as “in-line” calculations.  We have updated the other references to “inline” processes in this section to 15 
“in-line” as well. 
 
References: 
 
Appel, K.W., Napelenok, S.L., Foley, K.M., Pye, H.O.T., Hogrefe, C., Luecken, D.J., Bash, J.O., Roselle, S.J., Pleim, 20 
J.E., Foroutan, H., Hutzell, W.T., Pouliot, G.A., Sarwar, G., Fahey, K.M., Gantt, B., Gilliam, R.C., Kang, D., Mathur, 
R., Schwede, D.B., Spero, T.L., Wong, D.C., and J.O. Young (2016) Overview and evaluation of the Community 
Multiscale Air Quality (CMAQ) model version 5.1, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-226. 
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