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Abstract. Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate

the required influence function. To provide an alternative, we developed an adjoint based four-dimensional variational (4DVar)

assimilation system, WRF-CO2 4DVar. This system is developed based on the Weather Research and Forecasting (WRF) model

system, including WRF-Chem, WRFPLUS, and WRFDA. In WRF-CO2 4DVR, CO2 is modeled as a tracer and its feedback to

meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system5

without incurring a large amount of code development. WRF-CO2 4DVar solves for the optimized CO2 emission scaling

factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the

L-BFGS-B and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. We modified WRFPLUS

forward, tangent linear, and adjoint models to include CO2 related processes. The system is tested by simulations over a domain

covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models10

are assessed by comparing against finite difference sensitivity. The system’s effectiveness for CO2 inverse modeling is tested

using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of

WRF-CO2 4DVar for regional CO2 inversions.

1 Introduction

Quantification of surface-atmospheric carbon exchange is important for understanding the global carbon cycle (Peters et al.,15

2007). Both inventory based bottom-up and atmospheric inversion based top-down approaches have been widely used to inves-

tigate carbon sources and sinks. Most atmospheric CO2 inversion methods are based on Bayes theorem, in which CO2 flux is

optimized by minimizing a quadratic form cost function consisting of background cost and observation cost. The minimization

of the cost function can be achieved by analytical or variational approaches. Chevallier et al. (2005) provides a concise expla-

nation of the differences between the two approaches. Streets et al. (2013) provides a comprehensive review of atmospheric20

chemistry inversions using satellite observations, many of which have been applied to CO2 inversion.

Both analytical and variational inversions use a chemistry transport model (CTM) to relate CO2 flux to atmospheric CO2.

From the perspective of an optimization system, atmospheric CO2 forms the observation vector, and CO2 flux forms the state

vector to be optimized. Central to all CO2 inversion approaches is the Jacobian matrix which relates changes in flux to change25
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in model-simulated atmospheric CO2. For an inversion system with a n× 1 state vector and a m× 1 observation vector, its

Jacobian matrix is a m×n matrix. Analytical inversions require the explicit construction of the Jacobian matrix, which can be

carried out by either CTM (as the forward model) or its adjoint model. While a forward model calculates the Jacobian matrix

by columns, an adjoint model calculates it by rows. The size of the state vector or observation vector determines the number of

forward or adjoint model runs needed for constructing the Jacobian matrix. The practical limit imposed by the computational5

cost of the Jacobian matrix construction and the memory demand of matrix inversion often necessitate the aggregation of flux

to reduce state vector size in analytical inversions, which leads to aggregation error (Bocquet, 2009; Kaminski et al., 2001;

Turner and Jacob, 2015). In comparison, variational approaches do not require the Jacobian matrix to be explicitly constructed,

instead they propagate the overall adjoint forcing backward in time in searching for the optimized state vector. On the other

hand, analytical inversions yield an estimation of the posterior error along with the optimized flux. Variational inversions re-10

quire significant extra computation to estimate the posterior error.

A number of four dimensional variational (4DVar) assimilation systems have been developed and applied to global scale

CO2 inversions. The off-line transport model Parameterized Chemistry Tracer Model (PCTM) (Kawa et al., 2004) and its ad-

joint have been used for CO2 inversions (Baker et al., 2010, 2006; Butler et al., 2010; Gurney et al., 2005). Chevallier et al.15

(2005) developed a 4DVar system based on the LDMZ model (Hourdin et al., 2006) to assimilate CO2 observation data from

Television Infrared Observation the Satellite Operational Vertical Sounder (TOVS). This system has also been used to inverse

surface CO2 observation data (Chevallier et al., 2010). The TM5 4DVar system (Meirink et al., 2008), based on the TM5 global

two-way nested transport model (Krol et al., 2005), is used in the CarbonTracker CO2 data assimilation system (Peters et al.,

2007) and is included in the TransCom satellite intercomparison experiment (Saito et al., 2011). TM5 4DVar has also been20

used to investigate total column CO2 seasonal amplitude (Basu et al., 2011) and to assimilate the Greenhouse Gases Observing

Satellite (GOSAT) observations (Basu et al., 2013). Another widely used inversion system is the GEOS-Chem 4DVar (Henze

et al., 2007; Kopacz et al., 2009) with its CO2 module updated by Nassar et al. (2010). GEOS-Chem 4DVar has been used to

estimate CO2 fluxes from the Tropospheric Emission Spectrometer (TES) and the GOSAT CO2 observations (Nassar et al.,

2011; Deng et al., 2014).25

CO2 inversions at regional scale have become an active research front in recent years, driven by the need to resolve biosphere-

atmosphere carbon exchange at smaller scales (Gerbig et al., 2009), and by the need to address policy-relevant objectives, such

as assessing emission reduction effectiveness (Ciais et al., 2014) and the impact of regional scale sources like wildland fire

(French et al., 2011). Compared with global inversions, there are fewer model choices for regional inversions. GEOS-Chem30

4DVar’s nested simulation ability provides a means for regional inversions, such as its application for CH4 inversion over North

America (Wecht et al., 2014). The majority of regional inversions use analytical approaches and typically use a Lagrangian

particle backward trajectory model to compute the required influence function. For instance, Gerbig et al. (2003) used an an-

alytical approach to minimize for the cost function and STILT (Lin et al., 2003) model driven by assimilated meteorology

to calculate the influence function. In a later study, STILT driven by ECMWF meteorology is used to calculate the influence
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function to investigate the impacts of vertical mixing error (Gerbig et al., 2008). More recently, Lauvaux et al. (2012) also used

an analytical solution for cost function minimization and LPDM (Uliasz, 1993) to compute the influence function. In another

study, Pillai et al. (2012) used STILT driven by meteorology data from WRF to calculate the influence function for comparing

Lagrangian and Eulerian models for regional CO2 inversions. To improve accuracy, STILT has been coupled to WRF, in which5

the latter provides online meteorology to STILT to avoid interpolation error (Nehrkorn et al., 2010).

Most of these global and regional inversion systems transport CO2 using offline meteorology. An exception is the Monitor-

ing Atmospheric Composition and Climate Interim Implementation (MACC-II) greenhouse gases system based on ECMWF

Integrated Forecasting System (IFS) (Massart et al., 2016). In this system, CO2 transport is computed online using the IFS10

model. Because meteorological fields are crucial determining the quality of transport (Agusti-Panareda et al., 2016; Locatelli

et al., 2013), and model transport uncertainty is key to the inversion quality (Houweling et al., 2010), online transport based

inversion systems have the potential to investigate and mitigate the transport error.

In this paper, we developed WRF-CO2 4DVar, a regional CO2 inversion system with online meteorology. This system is15

developed by modifying the WRFDA and WRFPLUS system (v3.6) in a similar approach to that used by Guerrette and Henze

(2015, 2016) (GH15/16 afterward) for black carbon emission inversion. WRFDA is a meteorology data assimilation system,

which includes a 4DVar assimilation system and related adjoint and tangent linear models (WRFPLUS) (Barker et al., 2012;

Huang et al., 2009). Designed to improve weather forecasts, WRFDA 4DVar optimizes meteorological initial and boundary

conditions by assimilating a variety of observational data. We modified WRFPLUS to include CO2 related processes and we20

configure the cost function so that the state vector consists of CO2 flux instead of meteorological fields. In developing WRFDA-

Chem for black carbon inversion, GH15/16 excluded radiation, cumulus, and microphysics parameterization schemes from the

tangent linear model and adjoint model because developing these procedures for black carbon would incur a large amount of

new code development. In WRF-CO2 4DVar, CO2 is a tracer, meaning its impacts on meteorology are ignored. This config-

uration allows us to include full physics schemes in WRF-CO2 4DVar’s tangent linear model and adjoint model with limited25

new code development (see Section 2.4.2). As transport model error is detrimental to 4DVar inversion accuracy (Fowler and

Lawless, 2016; Gerbig et al., 2009), we deem it important to use the full physics schemes in the tangent linear and adjoint mod-

els for WRF-CO2 4DVar. In addition, while GH15/16 excluded convective transport of chemistry species in WRFDA-Chem,

we developed the tangent linear and adjoint code for this process in WRF-CO2 4DVar to reduce the vertical mixing error (see

Section 2.4.4). Like GH15/16, we implemented an incremental optimization with the Lanczos version of conjugate gradient,30

but we also implemented the L-BFGS-B based optimization and compared the performance of the two approaches (see Section

2.2 and 3.4)

The remainder of this paper is organized as follows: Section 2 details the implementation of the two variational optimization

schemes for cost function minimization, and the modification to the tangent linear and adjoint models. Section 3 examines the
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accuracy of sensitivity calculated by the tangent linear and adjoint models, and the system’s effectiveness in inverse modeling.

Finally, a summary and outlook are presented in Section 4.

2 Method5

This section describes the WRF-CO2 4DVar cost function configuration and the associated minimization schemes, followed

by a description of the forward, tangent linear, and adjoint models.

2.1 Cost function configuration

WRF-CO2 4DVar is designed to optimize CO2 flux by assimilating CO2 observational data into an atmospheric chemistry

transport model. CO2 flux is optimized through use of a linear scaling factor:10

E = kco2× Ẽ (1)

Where Ẽ is the CO2 emission read from emission files, kco2 is the emission scaling factor, and E is the effective CO2 flux. It is

the effective flux that is used in WRF-Chem’s emission driver to update CO2 mixing ratio (qco2). The emission scaling factor

kco2, its tangent linear variable g_kco2, and its adjoint variable a_kco2 are used in calculating model sensitivity and minimizing

the cost function defined in Eq. (2). The readers can find a list of the notations used in this article in Table 1.15

The cost function J(x) of WRF-CO2 4DVar follows the Bayes framework widely used in atmospheric chemistry and nu-

merical weather prediction (NWP) data assimilations:

J(x) = Jb(x) + Jo(x) (2)

Where the background cost function Jb(x) is defined as20

Jb(x) =
1
2

(xn−xb)B−1(xn−xb) (3)

and the observation cost function Jo(x) is defined as

Jo(x) =
1
2

K∑

k=1

(H(M(xn))− yk)R−1(H(M(xn))− yk) (4)

Like other data assimilation systems, WRF-CO2 4DVar is essentially an optimization scheme. Its state vector x consists of

the emission scaling factors kco2. The subscript k in Eq. (4) indicates the entire assimilation time period is evenly split into K25

observation windows during which observational data are ingested into the assimilation system.

In WRF-CO2 4DVar, we implemented two optimization schemes to minimize the cost function. The first scheme uses a

limited memory BFGS minimization algorithm (L-BFGS-B) (Byrd et al., 1995) and the second uses the Lanczos version of
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conjugate gradient (Lanczos CG) (Lanczos, 1950) minimization algorithm. Both schemes are iterative processes, and they call

on WRF-CO2 4DVar model components (the forward, tangent linear, and adjoint models) to calculate the model sensitivity

∂qco2/∂kco2 between the iterations. The two optimization schemes are described in Section 2.2 and 2.3, respectively, and the

three model components are described in Section 2.4.

2.2 L-BFGS-B optimization5

L-BFGS-B (Byrd et al., 1995) is a quasi-Newton method for nonlinear optimization with bound constraints. It utilizes the cost

function gradient to approximate the Hessian matrix, which provides an estimation of posterior error. L-BFGS-B has been

used in a number of atmospheric chemistry inverse model systems, including the GEOS-Chem adjoint model system (Henze

et al., 2007) and the TM5 4DVar system (Meirink et al., 2008). The diagram in Fig. 1 demonstrates the steps involved in the L-

BFGS-B based optimization scheme. The scheme is an iterative process which searches for the optimized kco2 by minimizing10

the cost function defined in Eq. (2-4). Between its iterations, the minimization algorithm L-BFGS-B requires the values of the

cost function and cost function gradient, which are supplied by the forward model and the adjoint model as indicated in Fig. 1.

The calculation of the cost function is carried out based on Eq. (2-4). Starting with the prior estimate of kco2, the forward

model run generates the CO2 mixing ratio qco2, which is transformed from the WRF model space to the observation space by15

the forward observation operator H . This results in the H(M(xn)) term in Eq. (4), which is then paired with the observation

vector yk to calculate the innovation vector dk = H(M(xn))−yk. Next, the innovation vector and observation error covariance

R are used to calculate the observation cost function Jo(x) as expressed in Eq. (4). Finally, the background cost function Jb(x)

is calculated according Eq. (3), and combined with the observation cost function Jo(x) to form the total cost function J(x)

according to Eq. (2).20

In addition to the cost function, L-BFGS-B also requires the cost function gradient ∇J(x) in searching for the optimized

kco2. The cost function gradient is calculated using Eq. (5).

∇J(x) =
K∑

k=1

M̃T H̃T R−1(H(M(xn)− yk) + B−1(xn−xb) (5)

The first term on the right hand side of Eq. (5) is the observation cost function gradient and the second is the background25

cost function gradient. The observation cost function gradient is calculated in two steps: (1) The innovation vector is scaled by

R−1 and transformed to the WRF model space by the adjoint observation operator, resulting in H̃T R−1(H(M(xn))− yk),

which is the adjoint forcing. (2) The adjoint forcing is ingested by the WRF-CO2 adjoint model during its backward (in time)

integration, which yields the observation cost function gradient. Supplied with the values of the cost function and cost function

gradient, the L-BFGS-B algorithm finds a new value of kco2, which is used for the next iteration. The iterative optimization30

process continues until a given convergence criterion is met.
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2.3 Incremental optimization

The second optimization scheme we implemented for WRF-CO2 4DVar is the incremental approach commonly used in NWP

data assimilation systems, including ECWMF 4DVar (Rabier et al., 2000) and WRFDA (Barker et al., 2012). A major differ-

ence between the L-BFGS-B based optimization and the incremental optimization is that the former optimizes for the state

vector while the latter optimizes for the state vector analysis increment. The incremental assimilation scheme uses a linear5

approximation to transform the observation cost function from what is defined in Eq. (4) to Eq. (6):

Jo(x) =
1
2

K∑

k=1

(H(M(xn−1))− yk + H̃(M̃(xn−xn−1)))R−1(H(M(xn−1))− yk + H̃(M̃(xn−xn−1))) (6)

Compared to Eq. (4), Eq. (6) approximates the innovation vector by a sum of two parts. The first part, H(M(xn−1))−
yk, is the innoviation vector from the previous iteration. The second part, H̃(M̃(xn−xn−1)), is the state vector analysis

increment (xn−xn−1) transformed by the tangent linear model M̃ and tangent linear observation operator H̃ . With the linear10

approximation of the cost function, the cost function gradient is calculated by Eq. (7)

∇J(x) =
K∑

k=1

M̃T H̃T R−1(H(M(xn−1)− yk)) + B−1(xn−1−xb)+

K∑

k=1

M̃T H̃T R−1(H̃(M̃(xn−xn−1))) + B−1(xn−xn−1) (7)

In WRF-CO2 4DVar, the incremental optimization is implemented as a double loop in which the outer loop calculates the

first and second items on the right hand side of Eq. (7), while the inner loop calculates the third and fourth items. The outer loop15

first calls the forward model M and adjoint model M̃T to calculate M̃T H̃T R−1(H(M(xn−1)− yk)) and B−1(xn−1−xb),

which remain unchanged during the subsequent inner loop calculation. The analysis increment (xn−xn−1) is optimized in

the inner loop, which calls the tangent linear and adjoint models to calculate the third and fourth items of Eq. (7). For the inner

loop calculation, we use the Lanczos CG (Lanczos, 1950), which requires less memory than L-BFGS-B and can be readily

adapted to distributed memory parallel computation. In addition, Lanczos CG can optionally estimate the lead eigenvalues of20

the cost function Hessian matrix (∇2J(x)).

2.4 Forward, tangent linear, and adjoint models

WRFPLUS consists of three model components: the WRF model, its tangent linear model, and its adjoint model (Barker et al.,

2012; Huang et al., 2009). The three models are used by WRFDA to optimize the initial meteorological condition in order to

improve numerical weather prediction. Unlike WRFDA, WRF-CO2 4DVar is designed to optimize CO2 flux, instead of the25

meteorological initial and boundary conditions. This difference means CO2 related processes are needed in WRF-CO2 4DVar’s

model components. To include the CO2 related processes, we first use WRF-Chem to replace WRF as the forward model. Then,

we conducted a thorough variable dependence analysis to determine how to modify the tangent linear and adjoint model in

order keep them consistent with WRF-Chem (the forward model).
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2.4.1 Forward model

We replaced WRF with WRF-Chem as the forward model component of WRF-CO2 4DVar. As an atmospheric chemistry

extension of WRF, WRF-Chem includes chemistry, deposition, photolysis, advection, diffusion, and convective transport of

chemistry species (Grell et al., 2005). These processes are included in different modules of WRF-Chem: ARW (Advanced

Research WRF) dynamical core, physics driver, and chemistry driver. We use the GHG (Greenhouse Gas) tracer option of5

WRF-Chem but have the CO and CH4 removed, leaving only CO2 related procedures. In the emission driver, we use the

CASA-GFED v4 biosphere flux (Randerson et al., 2012) to replace the online biogenic CO2 model Vegetation Photosynthesis

and Respiration Model (VPRM) (Mahadevan et al., 2008). This change is made because WRF-CO2 4DVar optimizes for CO2

flux instead of online emission model parameters.

10

2.4.2 Variable dependence analysis

The tangent linear and adjoint models of WRFPLUS need to be modified to include the CO2 related processes so that they will

be consistent with the forward model. The results of the variable dependence analysis is summarized in Table 2, which groups

WRF-Chem processes into three categories regarding CO2 tracer transport. The first category includes the chemistry processes

that do not apply to CO2. This category contains gas and aqueous phase chemistry, dry and wet deposition, and photolysis.15

Because they are not applied to CO2, these processes are simply excluded from the forward, tangent linear, and adjoint models

in WRF-CO2 4DVar.

The second category is comprised of the physical parameterizations that do not provide CO2 tendency, but provide mete-

orological tendency. This category includes radiation, surface, cumulus, and microphysics parameterizations. While the full20

physics schemes of surface, cumulus, planetary boundary layer (PBL), and microphysics are used in the forward model of

WRFPLUS, simplified versions of these schemes are used in its tangent linear and adjoint models. In addtion, WRFPLUS

uses full radiation schemes (longwave and shortwave) in its forward model, but it excludes radiation schemes from its tangent

linear model and adjoint model. The differences in the physical parameterizations between the forward model and tangent lin-

ear/adjoint models in a 4DVar system is a source of linearization error. For instance, Tremolet (2004) found linearization error25

in ECMWF 4DVar larger than expected and recommended more accurate linear physics for higher resolution 4DVar systems.

Because WRF-CO2 4DVar ignores the impacts of CO2 mixing ratio variation on the meteorological fields, no tangent linear

and adjoint variables for meteorological fields are needed in its tangent linear model and adjoint model. Since this second

category of processes are not directly involved in CO2 transport, there is no need for their tangent linear and adjoint procedures

in WRF-CO2 4DVar. In WRFPLUS’s tangent linear model, we removed the tangent linear code of the simplied versions of30

the cumulus, surface, and microphysics schemes, and replaced them with the forward code of their corresponding full schemes

as used in the forward model. An adjoint model conducts a forward sweep and a backward sweep. In WRFPLUS’s adjoint

model, the forward sweep updates the state variables and local variables just as in the forward model, but it also stores these

7
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variables’ values for the subsequent backward sweep, which updates the adjoint variables of the state variables. We removed

the simplified versions of the cumulus, surface, and microphysics schemes used in the forward sweep of WRFPLUS’s adjoint

model, and replaced them with the full schemes used in the forward model. Since these processes do not directly modify CO2

mixing ratio, we simply removed their corresponding adjoint code from the backward sweep of the adjoint model, as indicted

by the ’X’ in Table 2.

The third category includes advection, diffusion, emission, and turbulence mixing in PBL, along with convective transport5

of CO2. Because these processes directly modify CO2 mixing ratio, their tangent linear code and adjoint code are needed

for WRF-CO2 4DVar. The modifications we made for advection and diffusion are described in Section 2.4.3, and those for

emission, turbulent mixing in PBL, and convective transport of CO2 are detailed in Section 2.4.4.

2.4.3 Advection and diffusion of CO2

WRF includes the advection and diffusion of inert tracers along with other scalars in its ARW dynamical core. The tangent10

linear and adjoint code of these processes has been implemented in WRFPLUS. It should be noted that the variables for these

inner tracers are part of WRF, instead of WRF-Chem. WRF-Chem use a seperate array for its chemistry species. Since we

replaced WRF with WRF-Chem as the forward model in WRF-CO2 4DVar, CO2 mixing ratio are included in the chemistry

array. In the GHG option of WRF-Chem we use for WRF-CO2 4DVar, CO2 from different sources (anthropogenic, biogenic,

biomass burning, and oceanic) are represented by separate variables in the chemistry array. Following the treatment for the15

inner tracers in WRFPLUS, we modified subroutines solve_em_tl and solve_em_ad to add the tangent linear and adjoint code

for the advection and diffusion of the chem array. The modifications we made include adding calls to the procedures that

calculate advection and diffusion tendencies, updating the chemistry array with the tendencies and boundary conditions, and

addressing the Message Passing Interface (MPI) communications. The new upgrade to WRFPLUS described in (Zhang et al.,

2013) greatly expedited this part of development for WRF-CO2 4DVar. The ’Add’ in Table 2 for advection and diffusion20

emphasizes that their tangent linear and adjoint code are added to WRF-CO2 4DVar based on the existing WRFPLUS code

without substantial new code development.

2.4.4 Vertical mixing of CO2 in PBL and convective transport

An accurate representation of vertical mixing is important for inversion accuracy, because misrepresentation causes transport

error, which manifests itself in the innovation vector and causes error in posterior estimation (Fowler and Lawless, 2016). For25

instance, Stephens et al. (2007) pointed out that global chemistry transport model error in vertical mixing and boundary layer

thickness could cause significant overestimation of northern terrestrial carbon uptake. A comparison of four global models

found that model transport uncertainty exceeds the target requirement for A-SCOPE mission of 0.02 Pg C yr-1 per 106 km2

(Houweling et al., 2010). In addition, Jiang et al. (2008) reported that convective flux is likely underestimated in boreal winter

and spring based on simulated upper tropospheric CO2 from 2000 to 2004 using three chemistry transport models.30

8
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In WRF-Chem, chemistry vertical mixing is treated in three separate parts: in the vertical diffusion (subgrid scale filter) in

dynamical core, in the PBL scheme in the physics driver, and within convective transport in the chemistry driver. The subgrid

scale filter in dynamical core treats both horizontal and vertical diffusions, but vertical diffusion is turned off if a PBL scheme is

used. While all PBL schemes implemented in WRF-Chem treat the vertical turbulent mixing of temperature and moisture, only

the ACM2 PBL scheme also treats chemistry species (Pleim, 2007). We choose to use the ACM2 scheme in WRF-CO2 4DVar

so that CO2 vertical mixing is treated by the PBL parameterization. Convective transport of chemistry species in WRF-Chem is5

not treated by the cumulus scheme in the physics driver, but by a separate convective transport module (module_ctrans_grell)

in the chemistry driver (Grell et al., 2004).

Because the ACM2 PBL and chemistry convective transport are not included in WRFPLUS, we developed their tangent

linear and adjoint code for WRF-CO2 4DVar. We first used the automatic differentiation tool TAPENADE (Hascoet and Pas-10

cual, 2013) to generate the tangent linear and adjoint code based on the forward code: module_bl_acm for the ACM2 PBL

and module_ctrans_grell for the chemistry convective transport. We then manually modified the TAPENADE generated code

to remove redundancy and unnecessary loops. It should be pointed out that these code developments are made significantly

simpler because the meteorological state variables are merely passive variables in the tangent linear and adjoint code. For

instance, to calculate the moist static energy and environmental values on cloud levels, the chemistry convective transport15

code (module_ctrans_grell) in the chemistry driver calls a number of subroutines in the cumulus parameterization code in the

physics driver. Because these subroutines in cumulus parameterization only involve meteorology state variables and not the

chemistry array, no tangent linear or adjoint code is needed for them in WRF-CO2 4DVar.

3 Results20

This section presents an accuracy assessment of the newly developed WRF-CO2 4DVar system. We first describe the simulation

model setup, then the sensitivity tests and inverse modeling experiments.

3.1 Model setup

WRF-CO2 4DVar is set up with a domain covering the continental United States with 48 km × 48 km grid spacing and 50

vertical levels. Model configuration includes: Rapid Radiative Transfer Model (RRTM) longwave radiation (Mlawer et al.,25

1997), Goddard shortwave radiation (Chou and Suarez, 1999), Pleim surface layer (Pleim, 2006), Pleim-Xiu land surface

model (Pleim and Xiu, 2003), ACM2 PBL (Pleim, 2007), Grell-Freitas cumulus (Grell and Freitas, 2014), and Thompson

microphysics (Thompson et al., 2008). Positive-definite transport is applied to the transport of scalars and CO2. Emissions

inventories used for the simulations include: anthropogenic flux from the Emission Database for Global Atmospheric Research

(EDGAR; http://edgar.jrc.ec.europa.eu/index.php) version 4.2, biosphere flux from CASA-GFED v4 (Randerson et al., 2012),30

and ocean flux from Estimating the Circulation and Climate of the Ocean Phase II (ECCO2)-Darwin(Menemenlis et al., 2008).
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A common emission scaling factor is applied to the combined EDGAR and CASA-GFED CO2 flux, both of which are dis-

aggregated to daily values before being ingested by WRF-CO2 4DVar. ECCO2-Darwin ocean flux is used in the simulations,

but not included as the assimilation system’s control variables. The model configuration and emission inventories used are

summarized in Table 3.

Model simulation spans 24 hours from 00 UTC 02 June to 00 UTC 03 June, 2011. Meteorological initial and lateral boundary5

conditions are prepared using NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly products (Saha et al., 2014). CO2

initial condition and lateral boundary conditions are generated by running a WRF-Chem global domain simulation for the 120

hours prior to and during the WRF-CO2 4DVar simulations period. Figure 3 shows the model domain (bold outline) with its

terrestrial region colored by the CASA-GFED biosphere CO2 flux. The red triangles in the figure mark the locations of 20

tower sites at which model sensitivities are assessed in Section 3.3.10

3.2 Spatial patterns of sensitivities

First, the forward model (WRF-Chem) was run for 24 hours with the CO2 emission as described in the last section. Trajectory

files that contain model state variables including both meteorology and CO2 mixing ratio are saved at model dynamical time

step intervals (120 seconds). These files are required for the subsequent tangent linear and adjoint model runs. Figure 4 shows

the instantaneous values of Sea Level Pressure (SLP) and horizontal wind at the model’s lowest vertical level at 06 UTC, 1215

UTC, 18 UTC, and 23 UTC of 2 June 2011. The figure shows that a high pressure system was located off the west coast, causing

a northerly surface wind off southern California, and a westerly wind for most of the Pacific Northwest. A low pressure sys-

tem intensified over Montana and North Dakota during the 24 hours, causing a strong southerly wind over the Midwest. In the

northeast, as a low pressure system moved eastward out of the domain, the surface wind shifted from southwesterly to westerly.

20

A tangent linear model run for a grid cell will calculate the tangent linear sensitivity ∂qco2/∂kco2, which approximates a

column vector of the forward model’s Jacobian matrix and quantifies the influence of the cell’s emission change on CO2 mix-

ing ratio of its receptor cells downwind. In comparison, an adjoint model run for a grid cell will calculate adjoint sensitivity

∂qco2/∂kco2, which approximates a row vector of the forward model’s Jacobian matrix and quantifies the influence on the

cell’s CO2 mixing ratio by its source cells upwind. Because kco2 multiplies emission in Eq. (1), the magnitude of the sensitivity25

is determined by both the magnitude of emission and meteorological transport.

We first examined the influence of the meteorological transport on sensitivity by excluding the influence of emission mag-

nitude. This is done by setting emission at all grid cells to unity (1 mol km-2 h-1) for a given tangent linear or adjoint model

run. To calculate tangent linear sensitivity at a grid cell, g_kco2 is set to unity at the cell and zero at all other cells at the start30

of a tangent linear model run. Upon completion, the values of g_qco2 are the tangent linear sensitivities ∂qco2/∂kco2. Because

emissions are set to unity at all model cells, the unit of such obtained sensitivity is ppm/(mol km-2 h-1). To calculate adjoint

sensitivity at a cell, an adjoint model run starts with a_qco2 set to unity at the cell and zero at all others, and the values of

10
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a_kco2 at the end of the simulation are the adjoint sensitivities. The adjoint model running in this mode is analogous to using a

Lagrangian particle transport model in backward trajectory mode to compute the footprint at a receptor, such as shown in Fig

4. of (Gerbig et al., 2003).

Table 4 lists the locations of tower sites marked on Fig 3. We calculated tangent linear and adjoint sensitivities at each

of the grid cells where these tower sites are located. Figure 5 shows the results for Ozarks, Missouri (top row) and WLEF,5

Wisconsin (bottom row). Tangent linear sensitivity at Ozarks shows that the areas where surface level CO2 are most influenced

by Ozarks are located north and northwest of it. In comparison, adjoint sensitivity at Ozarks shows its surface level CO2 was

most influenced by the emission of areas located to the south of it. The spatial patterns of both the tangent linear and adjoint

sensitivities at Ozarks indicate the influence of meteorological transport of CO2 (Fig. 3), as surface wind in this area was largely

southerly and southeasterly during the simulation period. In comparison, the tangent linear and adjoint sensitivities at WLEF10

(lower row of Fig. 4) show that its receptor cells are largely located to its west and its source cells located to its southeast.

Surface wind over Wisconsin and Minnesota was easterly and southeasterly during the simulation period (Fig. 3), confirming

the sensitivities’ spatial patterns. The results from Sutro, California (top row) and Hidden Peak, Utah (bottom row) are shown

in Fig 6. While the adjoint sensitivities (right column) in Fig. 6 show that both sites are mostly influenced by areas west of

them owing to the steady westerly wind (Fig. 3), the tangent linear sensitivities (left column) show marked differences in their15

influence downwind: The northerly wind along the Californian coast advects Sutro’s emission southward, the southwesterly

wind over Utah, Colorado, and Wyoming advects Hidden Peak’s emission toward northeast. The tangent linear and adjoint

sensitivities patterns correlate similarly with the meteorology at the other 16 sites (no shown).

3.3 Accuracy of tangent linear and adjoint sensitivities

We next examined the accuracy of the tangent linear and adjoint models by comparing their sensitivity calculations against the20

finite difference sensitivity calculated using the two-sided formula (Eq. (8)).

∂f

∂x
=

f(x + ∆x)− f(x−∆x)
2∆x

(8)

All results described in this section are obtained by model simulations with full emissions as described in Section 3.1. The

resulting sensitivities ∂qco2/∂kco2 include the influence of both meteorological transport and the magnitude of emission, and

their units are ppm. This is different from the results represented in Section 3.2, where the sensitivities do not include the25

influence of the magnitude of emission.

Using Eq. (8), two forward model runs were used to calculate the finite sensitivity at a given grid cell, which forms a col-

umn vector of the model’s Jacobian matrix. Because both finite difference and tangent linear sensitivities form columns of the

Jacobian matrix, their values can be compared cell by cell for all receptor cells for a given site. Figure 7 shows the comparison30

between the finite difference and tangent linear sensitivities at nine sites. The dark straight lines in the figures are the 1:1

line. At two of the sites, WLEF and Cannan Valley, the sensitivity ∂qco2/∂kco2 shows negative values, due to the fact that the
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combined EDGAR and CASA-GFED emission is negative (carbon sink). The slope and R2 of the linear fit show that the tan-

gent linear sensitivity agrees very well with the finite difference sensitivity. Results at the other 11 sites are similar (not shown).

We next examined the accuracy of the adjoint model. Because finite difference sensitivities form columns of the Jacobian

matrix while adjoint sensitivities form rows of the Jacobian matrix, they can only be compared at the intersections of the rows5

and columns for the 20 sites. For the 24-hour simulation, sensitivity at most of these intersections are zero except for those

where a cell is both a receptor and source. We compared adjoint and finite difference sensitivities at the 20 sites and the result

is shown in Fig. 8. The result from Sutro, California is shown in an inset due to its much larger magnitude as the site is close to

the large anthropogenic emission from San Francisco. The two sets of sensitivities compare well, with the linear fit slope equal

to 0.9994 and R2 equal to 0.9997.10

3.4 Inverse modeling test

After confirming the validity of the tangent linear and adjoint models, we tested the effectiveness of WRF-CO2 4DVAR in in-

verse modeling experiments. Pseudo-observation data generated by the forward model run are used in these inverse modeling

experiments, which start with prescribed prior values of the emission scaling factors and seek to recover their true values. To

generate pseudo-observation data, the forward model ran for 24 hours with EDGAR and CASA-GFED emission (disaggre-15

gated to daily values), saving CO2 mixing ratio (qco2) every 4 hours. This generated a set of six pseudo-observation files, each

of which include the instantaneous qco2 at the model’s lowest layer at all grid cells.

We conducted inverse modeling experiments for two cases of prior kco2. In the first case, the prior emission scaling factor

underestimates the true values by 50% (kco2 = 0.5 at all cells). In the second case, the prior emission scaling factor overesti-20

mates the true values by 50% (kco2 = 1.5 at all cells). Both L-BFGS-B and incremental optimization (Lanczos CG) are applied

to the two cases, giving four inverse modeling experiments in total. In all four experiments, background error covariance is

set to infinity (B−1 = 0 ) and equal weights are assigned to all observations (R set to identify matrix). Because the pseudo-

observation data are of qco2 from the forward model’s lowest layer, the mapping between model space and observation space is

trivial: the observation operator, tangent linear observation operator, and adjoint observation operator are all set to the identity25

matrix.

The results from inverse modeling experiments with prior emission scaling facotr kco2=0.5 are shown in Fig 9 and 10. Figure

9 shows the iterative reduction of the cost function J(x) (top) and cost function gradient norm ‖∇J(x)‖ (bottom). By the 30th

iteration, the cost function is reduced to 0.42× 10−5 and 1.54× 10−5 of its starting value by the Lanczos-CG and L-BFGS-B30

and Lanczos-CG optimization, respectively. The figure shows that Lanczos-CG reduces the cost function faster than L-BFGS-

B in the first 10 iterations, but its reduction rate slows down and stagnates at round the 15th iteration, caused by the gradual

loss of conjugacy. Lanczos-CG exits from its inner loop at end of 16th iteration and starts a second outer loop in which the

forward model is called to run with the last optimized kco2, and the adjoint model is called to update the adjoint forcing. This
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results in a renewed conjugacy and increased cost function reduction rate. In comparison, L-BFGS-B has a more consistent

cost function reduction rate through the iterations. The lower panel of Fig. 9 shows that by the 30th iteration cost function

gradient norm ‖∇J(x)‖ is reduced to 0.6× 10−3 and 1.35× 10−3 of its starting value by the L-BFGS-B and Lanczos-CG

optimization, respectively. Whereas the Lanczos-CG results in a largely monotonic decreasing ‖∇J(x)‖, L-BFGS-B features

oscillations but results in a overall downward trend.5

Figure 10 shows the progress of the optimized CO2 emission, obtained by multiplying the combined EDGAR/CASA-GFED

emission with the optimized kco2. The figure shows the comparison between the true emission value and optimized values after

the 1st, 5th, 10th, 20th, and 30th iterations by both optimization approaches. The straight line in each figure is the 1:1 line,

and Root Mean Squared Error (RMSE) is given in each figure. The figures show that after the first iteration, the L-BFGS-B10

optimized emission barely departed from the prior value, reflecting the very small reduction in cost function by L-BFGS-B in

its first several iterations as shown in Fig. 9. In comparison, the first iteration by Lanczos-CG substantially moved the optimized

emission toward the true values. The figure also shows that both optimization schemes sometimes push underestimated values

to overestimates. After the 5th iteration, the patterns are very similar between the two optimization schemes, although RMSE

still indicates substantial differences. The L-BFGS-B optimization achieves a smaller RMSE than Lanczos-CG by the 20th15

iteration, mirroring the cost function and cost function gradient norm reduction trend shown in Fig. 9. Starting at 2336.5 mol

km-2 h-1, RMSE is reduced to 17.0 and 42.6 mol km-2 h-1 after 30 iterations by the L-BFGS-B and Lanczos-CG, respectively.

The results of inverse modeling experiments with prior emission scaling factor kco2 = 1.5 are shown in Fig. 11 and 12.

The reductions of J(x) and ‖∇J(x)‖ are similar to the first case. Figure 11 shows that in 29 iterations, L-BFGS-B reduces20

cost function to 0.38× 10−5 of its starting value, out-performing Lanczos CG (0.87× 10−5). The cost function gradient norm

‖∇J(x)‖ is reduced to 0.45× 10−3 and 0.91× 10−3 of its starting value by L-BFGS-B and Lanczos-CG, respectively. Figure

12 shows the iterative optimization of CO2 emission by the two optimization approaches. Similar to the first case, L-BFGS-B

results in a slower reduction of RMSE in about the first 10 iterations, but catches up with the Lanczos-CG afterward. After

29 iterations, the RMSE has been reduced from 2336.5 mol km-2 h-1 to 20.2 and 22.19 mol km-2 h-1by the L-BFGS-B and25

Lanczos-CG, respectively. Table 5 summarizes the results from the all four inverse modeling experiments described above.

4 Summary and outlook

While the rising atmospheric CO2 has been well documented by observational data, major uncertainties still exist in attributing

it to specific processes. For instance, the two sets of terrestrial biosphere CO2 flux databases in NASA’s carbon monitoring

system flux pilot project differ substantially (Ott et al., 2015). In order to better resolve the terrestrial biosphere’s response to30

the rising CO2, inverse modeling at the regional scale is a high research priority (Gerbig et al., 2009).
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Toward this end, we developed the WRF-CO2 4DVar, a data assimilation system designed to constrain surface CO2 flux by

combining an online atmospheric chemistry transport model and observation data in a Bayesian framework. We implemented

two optimization schemes for cost function minimization. The first is based on L-BFGS-B and the second is an incremental

optimization using Lanczos-CG. The cost function and its gradient required by the optimization schemes are calculated by

WRF-CO2 4DVar’s three component models: forward, tangent linear, and adjoint model, all developed on top of the WRF-5

PLUS system. While WRFPLUS’s forward model is WRF, we use WRF-Chem as WRF-CO2 4DVar’s forward model to include

CO2 in the system, and we modified the tangent linear and adjoint models to keep their consistency with the forward model.

Like most other CO2 inverse modeling system, WRF-4DVar ignores the possible impacts of atmospheric CO2 variation on

the meteorology. This simplification enables us to use the same full physical parameterizations in the forward, tangent linear,

and adjoint model. Such configuration reduces linearization error while allowing the WRF system’s large number of physical10

parameterizations to be used in WRF-CO2 4DVar without incurring a large amount of new code development.

We tested WRF-CO2 4DVar’s tangent linear and adjoint models by comparing their sensitivities’ spatial patterns with the

dominant wind patterns. The results make physical sense given the meteorological transport. We evaluated the accuracy of

tangent linear and adjoint models by comparing their sensitivity against finite difference sensitivity calculated by the forward15

model. The results show that both tangent linear and adjoint sensitivities agree well with finite difference sensitivity. At last,

we tested the system in inverse modeling with pseudo-observation data, and the results show that both optimization schemes

successfully recovered the true values with reasonable accuracy and computation cost.

The two optimization schemes have their respective advantages and disadvantages. Lanczos CG based incremental opti-20

mization requires less memory and is more amenable to parallel programming, both of which are desirable for large dimension

optimization problems typical in atmospheric chemistry inverse modeling. As a quasi-Newton approach, L-BFGS-B may con-

verge faster than Lanczos CG, and it can be extended to provide an approximation of the cost function’s inverse Hessian, which

is also the posterior error covariance. However, L-BFGS-B requires much more memory, especially if one chooses to update

the inverse Hessian.25

A potential application for WRF-CO2 4DVar will be using satellite CO2 data to estimate surface flux. Technological ad-

vancement in satellite remote sensing has led to increasingly refined footprint size of CO2 sensors. While the smaller footprint

has the advantage of allowing CO2 measurement during scattered cloud conditions, the mismatch between the satellite retrieval

footprint size and the larger atmospheric chemistry transport model grid causes representation error (Pillai et al., 2010). Be-30

cause scale mismatch caused representation errors will lead to systematic bias in CO2 flux estimates, it is desirable to use a

transport model with finer grid spacing. In this regard, the WRF-CO2 4DVar system provides the flexibility of using any model

grid spacing.
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Although using a high resolution transport model could reduce scale mismatch and the related representation error, its ac-35

tual application needs to address the balance of aggregation and smoothing error (Turner and Jacob, 2015). For instance, if

WRF-CO2 4DVar’s model grid spacing decreases from 48 km × 48 km to 12 km × 12 km to better match the footprint size

of GOSAT measurement, its state vector dimension will increase 16 times. The much larger state vector is not likely to be

sufficiently constrained by observations, leading to smoothing error (Kaminski et al., 2001; Wecht et al., 2014). On the other

hand, decreasing model resolution means a smaller state vector and less smoothing error, but the spatial patterns of emission in5

the large grids are imposed by prior knowledge and not allowed to be optimized, leading to aggregation error (Kaminski et al.,

2001; Schuh et al., 2009). A solution toward an optimal balance of the representation, aggregation, and smoothing errors is to

use a high resolution transport model but aggregate the transport model’s native grid to reduce the state vector dimension. A

number of studies have been conducted to search for the optimal aggregation approaches (Wu et al., 2011; Turner and Jacob,

2015; Bocquet, 2009; Bocquet et al., 2011). A mapping mechanism between WRF-4DVar’s native grid and state vector can be10

easily implemented to test such aggregation approaches.

Another potential application of WRF-CO2 4DVar is to investigate transport model uncertainty. For instance, Ott et al. (2009)

analyzed atmospheric tracer sensitivity to convective transport parameterization, and Gerbig et al. (2009) investigated CO2 in-

version uncertainty caused by the transport model, including advection, PBL mixing, convection, and mesoscale processes.15

With its online meteorology and flexibility in configuring physical parameterizations and dynamical processes, WRF-CO2

4DVar provides a versatile platform for investigating transport model related error in CO2 inversions.

Regarding its applications in the above discussed areas, we will address the following issues in the future development of

WRF-CO2 4DVar: (1) developing observation operators for satellite retrieved column-averaged dry air mole fraction of CO2

(XCO2); (2) implementing the option to include the initial and lateral boundary conditions of atmospheric CO2 in the state

vector.5

5 Code availability

The source code and compilation instruction of the WRF-CO2 4DVar assimilation system can be obtained by contacting the

lead author: T. Zheng (zheng1t@cmich.edu). A full release of the source code for the public use is being prepared. The system

is under continuous development and major updates in the future will be released too.

Acknowledgements. The authors express their appreciation for the WRF/WRF-Chem/WRFDA/WRFPLUS development teams for making10

their code available in the public domain. Discussion with Joel BeLanc of Michigan Technological Research Institute (MTRI) improved the
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Figure 1. Diagram of L-BFGS-B based optimization implemented for WRF-CO2 4DVar.
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Figure 2. Diagram of Lanczos conjugate gradient (CG) based incremental optimization implemented for WRF-CO2 4DVar
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Figure 3. WRF-4DVar simulation domain covering the continental United State with 48 km×48 km grid spacing. The domain is marked

by the bold dark outline. Land area is colored by CASA-GFED v4 biosphere CO2 flux (mol km-2 h-1). Locations of 20 CO2 tower sites are

marked by red triangles
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Figure 4. Sea Level Pressure (Pa) and horizontal wind (m s-1) at model’s lowest vertical level at 00 UTC, 06 UTC, 12 UTC, and 23 UTC of

2 June 20111.
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Figure 5. Tangent linear (left) and adjoint sensitivity (right) at Ozarks, Missouri (top) and WLEF, Wisconsin (bottom). These sensitivity

values are of unit ppm/(mol km-2 h-1) since they are calculated with CO2 emission set to unity in the tangent linear and adjoint models to

exclude the influence of emission magnitude.
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Figure 6. Same as Figure 5 but for Sutro, California (top) and Hidden Peak, Utah (bottom).
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Figure 12. Comparison between the true and optimized CO2 flux by L-BFGS-B (left column) and Lanczos CG (right column) in inverse

modeling case 2 (prior kco2 overestimates the true value by 50%). Optimized flux after the 1st, 5th, 10th, 20th, and 29th iterations are shown

in the figure.
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Table 1. A list of symbols used in this article

J(x) Cost function

Jb(x) Background cost function

Jo(x) Observation cost function

∇J(x) Cost function gradient

‖∇J(x)‖ Cost function gradient norm

∇2J(x) Cost function Hessian

B Background error covariance

R Observation error covariance

M WRF-CO2 forward model
fM WRF-CO2 tangent linear model
fMT WRF-CO2 adjoint model

H Observation operator
eH Tangent linear observation operator
eHT Adjoint observation operator

kco2 CO2 emission scaling factor

qco2 CO2 mixing ratio (dry air)

g_kco2 Tangent linear variable for CO2 emission scaling factor

a_kco2 Adjoint variable for CO2 emission scaling factor

g_qco2 Tangent linear variable for CO2 mixing ratio (dry air)

a_qco2 Adjoint variable for CO2 mixing ratio (dry air)

xb Prior estimate of CO2 emission scaling factor

xn Analysis of CO2 emission scaling factor

x̂ Analysis increment of CO2 emission scaling factor

yk Observation at the kth assimilation window

dk Innovation vector at the kth assimilation window
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Table 2. Summary of variable dependence analysis for developing WRF-CO2 4DVar component models on top of WRFPLUS. In the table,

an ’F’ means a full physics scheme is used in the forward model, tangent linear model, or the forward sweep of the adjoint model. An

’X’ means a process is not needed for CO2 treatment. A ’Dev’ means a process does not exist in WRFPLUS and has been developed for

WRF-CO2 4DVar. An ’Add’ means a process for CO2 is simply added using the existing WRFPLUS code for other tracers.

Tangent linear Adjoint model Adjoint model

Process Forward model model forward sweep backward sweep

Radiation F F F X

Surface F F F X

Cumulus F F F X

Microphysics F F F X

Advection F Add F Add

Diffusion F Add F Add

Emission F Dev F Dev

PBL F Dev F Dev

Convective transport F Dev F Dev

Chemistry X X X X

Photolysis X X X X

Dry deposition X X X X

Wet deposition X X X X
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Table 3. WRF-CO2 4DVar model configuration and emission inventories used in sensitivity and inverse modeling tests.

Longwave radiation Rapid Radiative Transfer Model (RRTM)

Shortwave radiation Goddard shortwave

Microphysics Thompson

Surface layer Pleim-Xiu

Land surface Pleim-Xiu

Planetary boundary layer ACM2 PBL

Cumulus Grell-Freitas

CO2 advection Positive-definite advection

Biosphere CO2 flux CASA-GFED v4

Anthropogenic CO2 emission EDGAR v4.2

Ocean CO2 exchange ECCO2-Darwin
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Table 4. Summary of CO2 tower sites. Sensitivity ∂qco2/∂kco2 as calculated by WRF-CO2 4DVar’s tangent linear and adjoint models is

compared against finite difference sensitivity at these sites.

Site Name Symbol Latitude Longitude

Kewanee RKW 41.28oN 89.77oW

Centerville RCE 40.79oN 92.88oW

Mead RMM 41.14oN 96.46oW

Round Lake RRL 43.53oN 95.41oW

Galesville RGV 44.09oN 91.34oW

Ozarks AMO 38.75oN 92.2oW

WLEF LEF 45.95oN 9.27oW

West Branch WBI 41.73oN 91.35oW

Canaan Valley ACV 39.06oN 72.94oW

Chestnut Ridge ACR 35.93oN 84.33oW

Fort Peck AFP 48.31oN 105.10oW

Roof Butte AFC_RBA 36.46oN 109.09oW

Storm Peak Lab SPL 40.45oN 106.73oW

Argle AMT 45.03oN 68.68oW

Harvard Forest HFM 42.54oN 72.17oW

Southern Great Plains SGP 36.80oN 97.50oW

Sutro STR 37.75oN 122.45oW

Hidden Peak HDP 40.56oN 111.64oW

Mary’s Peak ARC_MPK 44.50oN 123.55oW

KWKT KWT 31.31oN 97.32oW
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Table 5. Summary of inverse modeling experiment results. The reductions of cost function J(x), cost function gradient norm ‖∇J(x)‖, and

RMSE are givne as the ratio to their respective starting values.

Case 1: prior with 50% underestimation (30 iterations)

Reduction in L-BFGS-B Lanczos-CG

J(x) 0.42× 10−5 1.54× 10−5

‖∇J(x)‖ 0.6× 10−3 1.35× 10−3

RMSE 0.72× 10−2 1.8× 10−2

Case 2: prior with 50% overestimation (29 iterations)

Reduction in L-BFGS-B Lanczos-CG

J(x) 0.38× 10−5 0.87× 10−5

‖∇J(x)‖ 0.45× 10−3 0.91× 10−3

RMSE 0.86× 10−2 0.98× 10−2
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