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1 Abstract9

We present a weighting strategy for use with the CMIP5 multi-model archive10

in the 4th National Climate Assessment which considers both skill in the cli-11

matological performance of models over North America as well as the inter-12

dependency of models arising from common parameterizations or tuning prac-13

tises. The method exploits information relating to the climatological mean state14

of a number of projection-relevant variables as well as metrics representing long15

term statistics of weather extremes. The weights, once computed can be used16

to simply compute weighted means and significance information from an ensem-17

ble containing multiple initial condition members from potentially co-dependent18

models of varying skill. Two parameters in the algorithm determine the degree19

to which model climatological skill and model uniqueness are rewarded; these20

parameters are explored and final values are defended for the Assessment. The21

influence of model weighting on projected temperature and precipitation changes22

is found to be moderate, partly due to a compensating effect between model skill23

and uniqueness. However, more aggressive skill weighting and weighting by tar-24

geted metrics is found to have a more significant effect on inferred ensemble25

confidence in future patterns of change for a given projection.26
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2 Introduction27

The CMIP5 archive [1] is the most comprehensive collection of climate simu-28

lations produced to date. The archive contains simulations from over 25 insti-29

tutions, some of which submit multiple models - bringing the total number of30

models in the archive to potentially more than 100 (although many of these are31

minor variants or initial condition members, and not all models conduct all ex-32

periments). Using this dataset to produce assessments of future climate change33

involves a number of conceptual challenges. Previous assessments of both the34

IPCC [2] and the National Climate Assessment in the United States [3] have35

considered the archive to represent model democracy [4], in that simulations of36

the future from each model are considered to be equally likely, without account-37

ing for any variation in model skill or for the fact that some models are very38

similar to other models in the archive, bringing into question the assumption39

that their simulations can be considered to be independent samples of future40

behavior.41

These underlying assumptions have been challenged by a number of studies42

over recent years. Various studies [5, 6, 7, 8], have pointed out that the ensem-43

ble contains demonstrable inter-dependence, where similarities in the spatial44

biases in model simulations correspond well to expected relationships which one45

might expect from models from the same institution, or those sharing signifi-46

cant amounts of code. As such, the number of effective models in the archive47

is likely to be significantly smaller than the number of simulations [9, 10, 7].48

The weights should also be representative of the question at hand: skill is not a49

property of the model per se, but indicative of the ability of a model to project50

a certain change [11]. In other words, a climate model is fit for purpose if it can51

adequately represent the response of relevant physical processes in the required52

range of boundary conditions. This assessment of adequacy might change based53

on the regions and variables in question.54

In addition, the models that are present in the archive are not equally skill-55

ful in representing the present day or past climate [12, 5]. A number of studies56

have attempted to weight models in a way which represents their skill alone;57

Bayesian Model Averaging [13] describes a set of approaches which collectively58

produce model weights which correspond to a posterior model probability rep-59

resenting truth given some data constraints. Giorgi and Mearns (2002) [14]60

proposed an ensemble averaging scheme which increased the weight of models61

which exhibited low observational biases but the method potentially discounts62

outlier projections [15]. However, these methods do not provide a mechanism63

for reducing the effect of model replication. An identical model submitted twice64

to the ensemble would still produce a different result - an issue which we ad-65

dress below. Furthermore, it is notably difficult to produce an overall ranking of66

model performance, given that the conclusion is conditional on both the region67

and metrics considered [16].68

Some studies have suggested methodologies which might be able to address69

some of these complexities: Bishop and Abramowitz (2013) [17] proposed a70

method which produced a set of statistically independent meta models from the71
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original archive, and applied this method to CMIP5 projections in Abramowitz72

and Bishop (2015) [18]. The technique calculates the optimal combination of73

models, such that a linear combination of models minimizes the error of a par-74

ticular field against an observed target. While the bias of the combined product75

is by definition optimal, the coefficients of each model can be positive or nega-76

tive. With the view that negative weights are unphysical, the authors transform77

the original model output such that all weights are positive, and such that the78

variance of the ensemble is rescaled to equal the natural variability of the obser-79

vations themselves, with a solution that preserves the optimal combined model80

result from their initial regression.81

While this ‘replicate Earth’ produces a product which significantly reduces82

the mean bias of the combined model product (a 30 percent reduction in RMSE83

compared to a simple multi-model mean [18]), there remain some issues of in-84

terpretation for the transformed ensemble members, which can no longer be85

directly interpreted as physical entities which conserve mass or energy. It is86

also not fully understood how the issue of independence of models in the orig-87

inal archive influences the results. And though the technique reduces errors in88

out-of-sample perfect model tests, the out-of-sample test presented in Bishop89

and Abramowitz (2013) [17] does not remove the effect of persistence of present90

day bias, which is directly solved-for in the regression - therefore not definitively91

demonstrating that prediction of future anomalies would be improved beyond92

the simple multi-model means for out-of-sample projections, which were not93

bias corrected.94

In this study, we present a weighting scheme for use in the Climate Science95

Special Report (CSSR), which informs the 4th National Climate Assessment for96

the United States (NCA4). The requirements for this application are somewhat97

unique - in that a method from the literature cannot be simply taken ‘out of the98

box’ from an existing study. Traceability and simplicity are paramount for this99

application, where the derived weights are defined in this paper, but then form100

the basis of a number of varied analyses performed by the author team for the101

CSSR. Hence, the use of statistical meta-models as in Bishop and Abramowitz102

(2013) [17] would not be manageable because each individual application would103

have to be reconsidered in terms of the paradigm, where the details of statistical104

significance, model independence and individual model interpretation are not105

fully understood, and would be difficult to convey to the public audience for106

NCA4. As such, the request for the CSSR was to produce a single set of weights107

which reflected to some degree both model skill and model independence in the108

CMIP5 archive, which could be simply integrated into the existing workflow of109

the report.110

Our methodology is based on the concepts outlined by Sanderson et al (2015)111

[7], a comparatively simple method for sub-sampling models the original archive,112

keeping models which were maximally independent and skillful in reproducing113

past climate. Another recent study [19] outlined an adaption of this approach for114

constraining a specific future change (future sea ice area, in that case). However,115

in this study, instead of deriving a subset or studying a single aspect of future116

change, the objective is to produce a single set of model weights which can117
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Table 1: Observational Datasets used as observations.
Field Description Source Reference
tas Surface Temperature (seasonal) Livneh, Hutchinson [22, 22]
pr Mean Precipitation (seasonal) Livneh, Hutchinson [22, 22]
rsut TOA Shortwave Flux (seasonal) CERES-EBAF [23]
rlut TOA Longwave Flux (seasonal) CERES-EBAF [23]
ta Vertical Temperature Profile (seasonal) AIRS* [24]
hur Vertical Humidity Profile (seasonal) AIRS [24]
psl Surface Pressure (seasonal) ERA-40 [25]
tnn Coldest Night Livneh, Hutchinson [22, 22]
txn Coldest Day Livneh, Hutchinson [22, 22]
tnx Warmest Night Livneh, Hutchinson [22, 22]
txx Warmest day Livneh, Hutchinson [22, 22]
rx5day seasonal max. 5-day total precip. Livneh, Hutchinson [22, 22]

be used to combine projections for a range of quantities into a weighted mean118

result, with significance estimates which also treat the weighting appropriately.119

Ideally, the method would seek to have two fundamental characteristics.120

First, if a duplicate of one ensemble member is added to the archive, the resulting121

mean and significance estimate for future change computed from the ensemble122

should change as little as possible. Secondly, if a relatively poor (for the metrics123

considered) model is added to the archive, the resulting mean and significance124

estimates should also change as little as possible.125

3 Method126

3.1 Data pre-processing127

Our analysis differs in a number of ways from that originally proposed by [7]128

• The analysis region contains the counterterminous United States (CONUS)129

and most of Canada, constrained by available high resolution observations130

of daily surface air temperature and precipitation.131

• Inter-model distances are computed as simple root mean square differences132

here, in contrast to the multi-variate PCA used by [7].133

• The weights for skill and independence are the final product in this anal-134

ysis, whereas they only inform the subset choice in the study by [7].135

We utilize data for a number of mean state fields, and a number of fields which136

represent extreme behaviour - these are listed in Table 1. All fields are masked to137

only include information from the combined CONUS/Canada region. Extreme138

indices are calculated using the ETCCDI protocols [20, 21]. We also consider a139

selection of models from the CMIP5 archive, listed in Table 2.140
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3.2 Inter-model distance matrix141

All observations and model data are first linearly interpolated to a common 1142

by 1 degree grid and 17 vertical levels. For each variable, v, a distance matrix δv143

is computed between each pair of N total models and between each model and144

the observed field (such that the observations are treated as an N + 1th model).145

Data from each model is taken from the first available initial condition member146

of each model’s historical contribution to CMIP5. Data from years 1976-2005147

are used from each model, averaging all years to form a seasonal climatology.148

Data from the observations are seasonal climatologies averaged from all available149

years within the 1976-2005 window.150

Distances are evaluated as the area-weighted root mean square difference151

over the domain. Each matrix corresponding to each variable is then normalized152

by the mean pairwise inter-model distance, such that for each field in Table 1,153

there is a (nmodel + 1) by(nmodel + 1) matrix representing the pairwise distance154

between each model (and the observations).155

These normalized matrices are then linearly combined, with each line in156

Table 1 taking equal weight,157

δ =
∑
v

δv, (1)

to produce the multi-variate distance matrix δ illustrated in Figure 1.158

3.3 Model Skill159

The RMSE between observations and each model can be used to produce an160

overall ranking for model simulations of the CONUS/Canada climate (which161

is illustrated by the overall model-observation distance in Figure 1). Figure 2162

shows how this metric is influenced by different component variables.163

3.4 Independence weights164

The independence weights can be computed from the inter-model distance ma-165

trix δ. For a pair of models i and j, we first compute a similarity score S(δij)166

from their pairwise distance δij :167

S(δij) = e
−
(
δij
Du

)2

, (2)

where Du is the radius of similarity [7], which is a free parameter which168

determines the distance scale over which models should be considered similar169

(and thus down-weighted for co-dependence). We show below how an appro-170

priate value can be chosen given prior knowledge about models with known171

dependencies in the archive.172

6



ob
s

A
C

C
E

S
S

1_
0

A
C

C
E

S
S

1_
3

B
N

U
_E

S
M

C
C

S
M

4
C

E
S

M
1_

B
G

C
C

E
S

M
1_

C
A

M
5

C
E

S
M

1_
F

A
S

T
C

H
E

M
C

M
C

C
_C

E
S

M
C

M
C

C
_C

M
C

M
C

C
_C

M
S

C
N

R
M

_C
M

5
C

S
IR

O
_M

k3
_6

_0
C

an
E

S
M

2
F

G
O

A
LS

_g
2

G
F

D
L_

C
M

3
G

F
D

L_
E

S
M

2G
G

F
D

L_
E

S
M

2M
G

IS
S

_E
2_

H
_p

1
G

IS
S

_E
2_

H
_p

2
G

IS
S

_E
2_

R
_p

1
G

IS
S

_E
2_

R
_p

2
H

ad
C

M
3

H
ad

G
E

M
2_

A
O

H
ad

G
E

M
2_

C
C

H
ad

G
E

M
2_

E
S

IP
S

L_
C

M
5A

_L
R

IP
S

L_
C

M
5A

_M
R

IP
S

L_
C

M
5B

_L
R

M
IR

O
C

_E
S

M
M

IR
O

C
_E

S
M

_C
H

E
M

M
IR

O
C

4h
M

IR
O

C
5

M
P

I_
E

S
M

_L
R

M
P

I_
E

S
M

_M
R

M
P

I_
E

S
M

_P
M

R
I_

C
G

C
M

3
M

R
I_

E
S

M
1

N
or

E
S

M
1_

M
bc

c_
cs

m
1_

1
bc

c_
cs

m
1_

1_
m

in
m

cm
4

obs
ACCESS1_0
ACCESS1_3

BNU_ESM
CCSM4

CESM1_BGC
CESM1_CAM5

CESM1_FASTCHEM
CMCC_CESM

CMCC_CM
CMCC_CMS
CNRM_CM5

CSIRO_Mk3_6_0
CanESM2

FGOALS_g2
GFDL_CM3

GFDL_ESM2G
GFDL_ESM2M

GISS_E2_H_p1
GISS_E2_H_p2
GISS_E2_R_p1
GISS_E2_R_p2

HadCM3
HadGEM2_AO
HadGEM2_CC
HadGEM2_ES

IPSL_CM5A_LR
IPSL_CM5A_MR
IPSL_CM5B_LR

MIROC_ESM
MIROC_ESM_CHEM

MIROC4h
MIROC5

MPI_ESM_LR
MPI_ESM_MR

MPI_ESM_P
MRI_CGCM3

MRI_ESM1
NorESM1_M
bcc_csm1_1

bcc_csm1_1_m
inmcm4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

E
uc

lid
ea

n 
D

is
ta

nc
e

Figure 1: A graphical representation of the inter-model distance matrix for
CMIP5 and a set of observed values. Each row and column represents a single
climate model (or observation). All scores are aggregated over seasons (indi-
vidual seasons are not shown). Each box represents a pair-wise distance, where
warm colors indicate a greater distance. Distances are measured as a fraction of
the mean inter-model distance in the CMIP5 ensemble. Smaller distances mean
the datasets are in closer agreement than larger distances
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Figure 2: A graphical representation of the model-observation distance matrix
for a number of variables, illustrating how different biases combine to produce
the overall model-observation distance in Figure 1. Each column represents a
single climate model, and rows represent the different observation types in Table
1. Distances along each row are normalized, such that the mean model has a
distance of 1 to the observations. CMIP5 Models are sorted by their combined
skill as shown in the bottom row.

In limits, two identical models will produce a value of S(δij) of 1, and173

S(δij) → 0 as δij → ∞. A given model i’s effective repetition Ru(i) can be174

calculated by summing the models close by:175

Ru(i) = 1 +

n∑
j 6=i

S(δij), (3)

where n is the total number of models. Finally, we calculate the indepen-176

dence weight for model i as the inverse of its repetition:177

wu(i) = (Ru(i))
−1
. (4)

Figure 3 shows the dependence of the independence weights on Du for a178

number of different models. Du is sampled by considering the distribution of179

inter-model distances δ, and sampling by percentiles σu the smallest inter-model180

distances in the archive.181

As points of reference, we consider some models from the archive known to182

have no obvious duplicates (HadCM3 and INMCM), which should not be sig-183

nificantly down-weighted by the method. We also consider some models where184

there are numerous known closely related variants submitted from MIROC, MPI185
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Figure 3: Model independence weights (wu) as a function of the radius of in-
terdependence Du, plotted for a number of models and groups of models in the
CMIP5 archive. The vertical line shows the value used in the Climate Science
Special Report.

and GISS. It is desirable to choose a value of Du which produces a weight of186

approximately 1/n where n is the number of variants submitted.187

Hence, by inspection of Figure 3, we take Du as 0.48 times the distance188

between the best performing model and observations in the CMIP5 archive,189

which produces approximately the desired weighting characteristics in these190

cases where we have a reasonable expectation of what the true model replication191

is in the archive.192

The methodology described above assumes each model has submitted only193

one simulation to the archive, but the method is robust to the inclusion of194

multiple initial condition members from each model. If Du is chosen such that195

structurally similar ensemble members are treated as duplicates, then wu will196

appropriately allocate a fractional weight to each initial condition ensemble197

member. In the case of NCA4, extreme value statistics were only available198

for a single instance of each model, hence initial condition ensembles were not199

considered.200

3.5 Skill weights201

The RMSE distances between each model and the observations are used to202

calculate skill weights for the ensemble. The skill weights represent the clima-203

tological skill of each model in simulating the CONUS/Canada climate, both in204

terms of mean climatology and extreme statistics. The skill weighting wq(i) for205

model i is calculated as in [7]:206

9



wq(i) = e
−
(
δi(obs)
Dq

)2

, (5)

where δi(obs) is the sum of the normalized RMSE differences over all variables,207

between each model and the observations, and Dq is the radius of model quality208

[7] which determines the degree to which models with a poor climatological209

simulation should be downweighted. As such, a very small value of Dq will210

allocate a large fraction of weight to the single best performing model in the211

archive (as assessed by the climatological skill). Equally, as Dq → ∞, the212

multi-model average will tend to the non skill-weighted solution.213

An overall weight is then computed as the product of the skill weight and214

the independence weight.215

w(i) = Awu(i)wq(i), (6)

where A is a normalization constant such that w(i) satisfies:216

n∑
1

w(i) = 1, (7)

where n is the total number of models. We determine an appropriate value217

for Dq by considering both the skill of the weighted average in reproducing218

observations, and also by conducting perfect model simulations with the CMIP5219

ensemble. In Figure 4(a), we use the uniqueness parameter Du determined220

in Section 3.4 and sample a range of Dq. The figure shows that the use of221

relatively strong weighting (where the Dq is approximately 40 percent of the222

distance between the best performing model and the observations) produces223

the weighted climatological average with the lowest in-sample error. However,224

in-sample score is not the only consideration.225

A more skillful representation of the present-day state does not necessarily226

translate to a more skillful projection in the future. In order to assess whether227

our metrics improve the skill of future projections at all, we consider a perfect228

model test where a single model is withheld from the ensemble and then treated229

as truth.230

However, such a test can be over-confident because when some models are231

treated as truth, there remain close relatives of that model in the archive which232

would be given a high skill weight and would inflate the apparent skill of the233

metric in predicting future climate evolution. To partly address this, we conduct234

our perfect model study with a subset of the CMIP5 archive which excludes235

obvious near relatives of the chosen ‘truth’ model. We achieve this by excluding236

any model which lies closer to the ‘truth’ model than the distance between the237

best performing model and the observations in the inter-model distance matrix238

δ. The excluded model pairs for the perfect model test are illustrated in Figure239

5.240
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Figure 4: Subplots are functions of Dq, the radius of model quality (all figures
take a value of Du 0.48 times the distance between the best performing model
and observations in the CMIP5 archive, as selected in Figure 3). Subplot (a)
shows the RMSE of the weighted multi-model mean compared with observations,
relative to the non skill-weighted multi-model mean. The vertical dashed grey
line indicates the value chosen for the Climate Science Special Report. Colored
lines show RMSE values for individual variables, thick black line is the combined
multivariate RMSE. Subplot (b) shows the average RMSE of future annual
mean gridded temperature change projections in 2080-2100 (relative to 1980-
2000) under RCP8.5 for an out-of sample model taken to represent truth (with
obvious replicates removed from the ensemble). Subplot (c) shows the average
fraction of grid-cells for which the out-of sample ‘perfect model’ projections lie
below the 10th or above the 90th percentile of the inferred weighted distribution.
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Figure 5: A graphical representation of models which are excluded from the
remaining ensemble in the perfect model test when each model in turn is treated
as truth. Cells in black represent models which are closer to each other than
the best performing model in the archive is to observations.
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Once the obvious duplicates have been removed for a given ‘perfect’ model241

i, we can test the ability of the chosen multivariate climatological metrics to242

increase skill in the simulation of the out of sample model’s future. We do this243

in two ways: in the first case, we consider the RMSE of the weighted multi-model244

mean projection of each out of sample model’s projection of annual mean gridded245

temperature and precipitation change at the end of the 21st century under246

RCP8.5. This is expressed as a fraction of the RMSE one would obtain with a247

simple mean of the remaining models (again, excluding the obvious duplicates).248

This process is repeated for each model in the archive, after which the results249

are averaged and plotted in Figure 4(b), where the optimum value of Dq for the250

reproduction of future temperature and precipitation change is approximately251

70 percent of the distance between the best performing model and observations,252

for which there is a 9-10 percent reduction in RMSE compared the unweighted253

case. This suggests that in the perfect model study, some skill weighting based254

on climatological performance can improve the mean projection of future change.255

Finally, we test whether skill-weighting the ensemble increases the chances256

of the truth lying outside of the distribution of projections suggested by the257

archive. For Figure 4(c), we consider the ensemble projected values for future258

temperature and precipitation at each gridcell, where Dq is allowed to vary and259

Du is kept at the value determined in Section 3.4. As in Figure 4(b), we consider260

each model in the CMIP5 archive as truth, each time removing near-neighbors261

from the remaining set (determined from Figure 5).262

We allow the weighted model projected changes in 2080-2100 temperature263

or precipitation at each grid-cell to define a likelihood distribution for expected264

future change in the removed model. We then calculate the fraction of grid-265

cells where the chosen perfect model’s actual projected value for temperature266

or precipitation change lies above the 90th or below the 10th percentile of the267

inferred likelihood distribution. If the likelihood distribution is representative268

of expected change for the removed ‘perfect’ model, one would expect a 20269

percent chance that the perfect model lies outside this range. However, if this270

value increases, it indicates that the weighting is too strong and the weighting271

is producing an under-dispersive distribution.272

Figure 4(c) shows the average fraction of gridcells where the actual missing273

model projection is above the 90th, or below the 10th percentile of the inferred274

likelihood distribution, for a given value of Dq, where the average is taken over275

the entire CMIP5 ensemble. The figure shows that for values of Dq of less than276

80 percent of the distance between the best performing model and observations,277

there is some increased risk of the ensemble being under-dispersive. As such,278

Figures 4(a-c) together imply that Dq = 0.8 is a justifiable, conservative value279

to use in the further analysis - there is still a demonstrable increase in the out-of-280

sample skill of the future projection in the perfect model tests, with a minimal281

risk of an under-dispersive distribution.282

Using the values of Dq = 0.8 and Du = 0.48 defended in this section, we283

illustrate skill, independence and combined weights for the CMIP5 archive in284

Figure 6 and in Table 3.285
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Figure 6: Model skill and independence weights for the CMIP-5 archive evalu-
ated over the CONUS/Canada domain. Contours show the overall weighting,
which is the product of the two individual weights.
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Uniqueness weight Skill Weight Combined
ACCESS1-0 0.60 1.69 1.02
ACCESS1-3 0.78 1.40 1.09
BNU-ESM 0.88 0.77 0.68
CCSM4 0.43 1.57 0.68
CESM1-BGC 0.44 1.46 0.64
CESM1-CAM5 0.72 1.80 1.30
CESM1-FASTCHEM 0.76 0.50 0.38
CMCC-CESM 0.98 0.36 0.35
CMCC-CM 0.89 1.21 1.07
CMCC-CMS 0.59 1.23 0.73
CNRM-CM5 0.94 1.08 1.01
CSIRO-Mk3-6-0 0.95 0.77 0.74
CanESM2 0.97 0.65 0.63
FGOALS-g2 0.97 0.39 0.38
GFDL-CM3 0.81 1.18 0.95
GFDL-ESM2G 0.74 0.59 0.44
GFDL-ESM2M 0.72 0.60 0.43
GISS-E2-H-p1 0.38 0.74 0.28
GISS-E2-H-p2 0.38 0.69 0.26
GISS-E2-R-p1 0.38 0.97 0.37
GISS-E2-R-p2 0.37 0.89 0.33
HadCM3 0.98 0.89 0.87
HadGEM2-AO 0.52 1.19 0.62
HadGEM2-CC 0.50 1.21 0.60
HadGEM2-ES 0.43 1.40 0.61
IPSL-CM5A-LR 0.79 0.92 0.72
IPSL-CM5A-MR 0.83 0.99 0.82
IPSL-CM5B-LR 0.92 0.63 0.58
MIROC-ESM 0.54 0.28 0.15
MIROC-ESM-CHEM 0.54 0.32 0.17
MIROC4h 0.97 0.73 0.71
MIROC5 0.89 1.24 1.11
MPI-ESM-LR 0.35 1.38 0.49
MPI-ESM-MR 0.38 1.37 0.52
MPI-ESM-P 0.36 1.54 0.56
MRI-CGCM3 0.51 1.35 0.68
MRI-ESM1 0.51 1.31 0.67
NorESM1-M 0.83 1.06 0.88
bcc-csm1-1 0.88 0.62 0.55
bcc-csm1-1-m 0.90 0.89 0.80
inmcm4 0.95 1.13 1.08

Table 3: Uniqueness, Skill and Combined weights for CMIP5 for the
CONUS/Canada domain
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4 Gridded application286

Once derived, the skill and independence weights can be used to produce weighted287

mean estimates of future change, as well as confidence estimates for those pro-288

jections. To illustrate this, we modify the significance methodology from the289

5th Assessment Report of the IPCC [2], such that:290

• Stippling - large changes where the weighted multimodel average change is291

greater than double the standard deviation of the 20 year mean from con-292

trol simulations runs and 90 percent of the weight corresponds to changes293

of the same sign.294

• Hatching - No significant change where the weighted multimodel average295

change is less than the standard deviation of the 20 year means from296

control simulations runs.297

• Blanked out - Inconclusive where the weighted multimodel average change298

is greater than double the standard deviation of the 20 year mean from299

control runs and less than 90 percent of the weight corresponds to changes300

of the same sign.301

The standard deviation of the 20 year mean from control simulations is de-302

rived using the ‘picontrol’ simulations in CMIP5. We consider all simulations303

with a length of 500 years or longer, and discard the first 100 years. The re-304

maining time period is broken into consecutive 20 year periods, and the estimate305

of control variability for each model is taken as the standard deviation of the306

20 year periods. This process is repeated for all models with an appropriate307

simulation. Finally, the standard deviations are averaged over all models to308

produce the final estimate for the standard deviation of the 20 year mean from309

the control simulations (note this differs slightly from [2], where the standard310

deviation for significance plots is taken as the square root of 2, multiplied by311

the control standard deviation).312

In order to adapt this methodology to a weighted ensemble, we need to apply313

the weights both to the mean estimate and the significance estimates.314

To calculate the weighted average, each model is associated with a weight315

(e.g. from table 3). The weights must be normalized, and the weighted average316

p at each gridcell is:317

p =

n∑
1

w(i)p(i) (8)

where w(i) is the weight of model i and p(i) is the projected value from model318

i.319

Therefore, the significance test is very similar to the IPCC case: if the320

weighted average exceeds double the control standard deviation, it is a signifi-321

cant change and if it is less than the standard deviation it is not significant.322

Sign agreement is slightly modified from the IPCC case - rather than as-323

sessing the number of models exhibiting the same sign of change, we consider324
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the fraction of the weight exhibiting the same sign of change, f . This can be325

expressed as:326

f = |1/n
n∑
1

w(i)sign(p(i))|, (9)

for any given set of projections p.327

We illustrate the application of this method to future projections of temper-328

ature and precipitation change under RCP8.5 in Figures 7 and 8 which show329

the mean projected quantities as well as the 10th and 90th percentiles of the330

weighted distribution of change at the gridcell level. In both cases, the weighting331

has only a subtle effect on the mean projection, but serves to slightly constrain332

the range of response at a given gridcell. In Section 5, we discuss how more333

aggressive or targeted weighting can have a greater potential effect.334

5 Sensitivity Studies335

The parameter choices for Dq and Du utilized in Section 3, as well as the336

choice of metrics and the domain were considered appropriate for the specific337

application of the US National Assessment, where it was desirable to have a338

single set of weights used for a number of applications. However, in a more339

general sense, we consider here how different choices may impact the results of340

weighted analyses, and how the researcher should consider weighting in more341

targeted (or more global) applications. We briefly consider the sensitivities of342

the method to different choices.343

5.1 Spatial Domain344

In the case of NCA4, the strategy was to produce multi-variate metrics which345

were specific to CONUS/Canada. However, there is an argument that there are346

aspects of non-local climatology which would ultimately impact the domain of347

interest (through their influence on global climate sensitivity, for example).348

In Figure 9(a-e), we consider the RMSE metrics for both the US and the349

entire global domain. In this comparison, it is shown that there is a rela-350

tively poor correlation between model skill evaluated over CONUS/Canada and351

globally for any individual metric, however, when individual metrics are com-352

bined into a multivariate climate (the approach used in Section 3), there is a353

correlation of 0.89 between the regional and local metrics. As such, the final354

weighting for NCA4 would not be highly sensitive to using global rather than355

CONUS/Canada metrics, but a study using a more restrictive set of variables356

to assess model quality could potentially be sensitive to domain choice.357

5.2 Skill weighting strength358

The strength of the skill weighting corresponds to the parameter Ds in Section359

3. For the purpose of NCA4, a conservative value was chosen to minimize the360

potential for overconfidence in future projections from the weighted ensemble.361
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Figure 7: Projections of mean temperature change over CONUS/Canada in
2080-2100, relative to 1980-2000 under RCP8.5. (a-c) show the simple un-
weighted CMIP5 multi-model average, 90th percentile of warming and 10th
percentile of warming using the significance methodology from [2], (d-f) show
the weighted results as outlined in section 4 for models weighted by uniqueness
only and (g-i) show weighted results for models weighted by both uniqueness
and skill.
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Figure 8: As for Figure 7, but for future mean precipitation change under
RCP8.5.
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Figure 9: A series of plots showing Root Mean Square Errors evaluated over
the CONUS/Canada domain as a function of errors assessed over the global
domain. Each point corresponds to a single model in the CMIP5 archive. Plots
are shown for some individual fields (a-e) and (f) RMSE averaged over all 12
available fields listed in Figure 2.
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This resulted in only very subtle changes in gridded temperature and precipita-362

tion projections for the future (although there are some noticeable differences363

in the uncertainty range, see Figures 7 and 8).364

However, here we consider the impact on temperature projections if a more365

aggressive weighting strategy were used. In Figure 10(a), we show the sensitivity366

of global mean temperature change under RCP8.5 as a function of the skill367

radius. The default value of Ds = 0.8 produces a small decrease in projected368

2080-2100 global mean temperature increase (a warming of 3.7K above 1980-369

2000 levels, compared to the non-skill weighted case of 3.9K, Figure 10(d)).370

As Ds → 0, the fraction of the percent of the models associated with 90371

percent of the weight decreases, and more weight is placed upon the models372

with higher combined skill scores in Figure 2. If a value of Ds = 0.4 is used, 90373

percent of the model weight is allocated to just 40 percent of models, and the374

projected warming is decreased further to 3.45K (Figure 10(c)). However, if Ds375

is reduced further to 0.1, such that 90 percent of weight is placed on only the376

top 5 percent of models (which corresponds to only 2 models: CESM1-CAM5377

and ACCESS1.0), the weighted warming estimate is higher than the unweighted378

case at 4.1K (Figure 10(b)).379

Hence, we find that although a the skill weighting as used in NCA4 has only380

a subtle effect on projected temperatures compared to the unweighted case,381

there is a demonstrable effect when stronger weights are utilized, but there382

is an increased risk of the weighted ensemble being underdispersive (Figure383

4(c)). For very aggressive weighting, projections differ significantly from the384

unweighted case but the resulting projection is effectively governed by only the385

best performing few models. Such agressive weighting in the perfect model test386

was found to result in a less skillful projection (Figure 4(b)).387

5.3 Univariate weighting388

The requirements for NCA4 were such that a single set of weights should be389

used for the entire report. However, for some application it might be desirable390

to tailor a set of weights to optimally represent a particular process or projec-391

tion. Here, we consider how using weights assessed on precipitation climatology392

alone could change the result of the projection. The precipitation weighted case393

is formulated identically to the multivariate case but distances are computed us-394

ing RMS differences over the mean precipitation field (over the CONUS/Canada395

domain) only; the selection of Ds is set to 0.8 times the distance of the best per-396

forming model, and Du is taken the 1.5th percentile of the inter-model distance397

distribution as in the multivariate case.398

Figure 11(a) shows the distribution of changes in annual mean grid-level399

precipitation for the late 21st century under RCP8.5. It is notable that there is400

negligible difference between the mean precipitation changes in the unweighted401

case and the multi-variate weighted case, but in the precipitation only case there402

is an increase in regions exhibiting a large drying trend. This implies that a403

multivariate metric has little constraint on precipitation change, but a more404

targeted metric could potentially identify regions which might exhibit extreme405
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Figure 10: A plot showing the effect of skill weighting strength on global tem-
perature projections. Subplot (a) shows global mean temperature increase for
2080-2100 under RCP8.5 as a function of the skill radius Ds (blue curve), as well
as the fraction of models with 90 percent of the allocated weight (red curve).
Subplots (b-d) show projected mean temperature maps for 3 cases of Ds=0.1
(b), 0.4 (c) and 0.8 (d).
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Figure 11: Distribution of changes in annual mean grid-level precipitation pre-
cipitation for the late 21st century under RCP8.5. (a) shows the distribution for
the mean (black) or weighted by all variables (red solid) and weighted by precip-
itation only (red dotted) projection of annual precipitation under RCP8.5. (b-d)
show maps of precipitation change in the style of Figure 8 for each weighting
case.

drying in the future (just as each individual model exhibits some regions of406

extreme drying, but the lack of agreement amongst models on where those407

regions are causes the multi-model mean to lack any such behavior, as noted in408

Knutti et al (2010) [26]).409

We can illustrate this behavior by considering the spatial pattern of precip-410

itation change in the three cases, using unweighted(Figure 11(b)), multivariate411

weighted (Figure 11(c) as in Figure 8) or weighted using only the climatolog-412

ical precipitation only (Figure 11(d)). In the unweighted case, large fractions413

of the continental US show disagreement in the sign of precipitation change.414

Much of the midwest, northwest and southwest Canada for example are colored415

white indicating that models disagree on the sign of change, and drying in the416

southwest is not significant. A multivariate weighting makes little difference to417

annual mean precipitation projections in North America. However, the seasonal418

mean precipitation projections presented in the CCSR (not shown here) differ419
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substantially from those presented in the Third US National Climate Assess-420

ment during the winter and spring [27]. In those seasons, the stippled regions421

of decreased precipitation deemed confident to be large in the Southwest US422

are decreased in area by weighting. Furthermore, the southern edge of the423

region stippled increases is moved Northward. Summer and fall precipitation424

changes are largely deemed to be small compared to natural variability in both425

assessments and are hatched as described above.426

A precipitation-based metric, however, seems to make a noticeable difference427

to the confidence associated with the weighted projection. There is now clear428

and significant increases in precipitation in the northern part of the US, and429

significant increases in the northeast. There is also more clearly defined drying430

along the west coast and significant drying over the northern Amazon which431

was not evident in the unweighted or multivariate case.432

Hence, it seems that there is potential to constrain the spatial patterns of433

fields which show significant spatial heterogeneity across the multi-model archive434

by considering targeted metrics which might be more directly informative to rel-435

evant processes for that particular projection. One must be cautious as noted in436

Section 5.1, because individual metrics are more susceptible to domain choices437

than the multivariate case, and so such a targeted constraint must be thor-438

oughly investigated before application in a general assessment. However, this is439

a potential line of investigation which would be worthy of future study.440

6 Summary and Discussion441

This study has discussed a potential framework for weighting models in a struc-442

turally diverse ensemble of climate model projections, accounting for both model443

skill and independence. The parameters of the weighting in this case were op-444

timized for using the CMIP5 ensemble for the Climate Science Special Report445

(CSSR) to inform the fourth National Climate Assessment for the United States446

(NCA4); an application which required a weighting strategy targeted towards447

a particular region (CONUS/Canada), with a single set of weights which could448

be applied to a diverse range of projections.449

The solution proposed in this study adapted the idea first discussed in the450

context of model sub-selection in Sanderson et al (2015) [7], and applied it451

to a continuous general weighting scheme (in contrast to the sea-ice specific452

weighting scheme outlined in [19]). Weights were formulated on the basis of453

skill and uniqueness, where skill was assessed by considering the climatological454

bias averaged over a diverse set of variables, and uniqueness was assessed by455

constructing an inter-model distance matrix from the same set of variables and456

down-weighting models which lie in each others’ immediate vicinity.457

It should be noted that although our likelihood weighting function is empir-458

ical, the functional form satisfies in a simple way the required parameters of the459

weighting scheme. Though the structure of this functional form is not funda-460

mental, it can simply be shown to have some useful features. The technique is461

presented in this paper in a form which maximises clarity and reproducibility,462
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but its effect can be described in Bayesian language. The total model weight463

is the posterior likelihood of a given model representing truth. Each model’s464

prior probability of representing truth is given by its independence weighting,465

and the likelihood function is defined for the multivariate dataset using an as-466

sumed Gaussian likelihood profile in a space defined by the the sum of the467

normalized RMSE differences over all variables between each model and the468

observations. However, the application in this paper is for a simple weighting469

scheme only and it is left to further study to formally implement such concepts470

in a Bayesian framework.471

The method provides a single set of weights constructed for NCA4, using472

a multi-variate climatological skill metric and a limited domain size. Two pa-473

rameters must be determined for the weighting algorithm; a radius of model474

skill and one of similarity. The former was calibrated by considering a perfect475

model test where a single model is treated as truth and its historical simulation476

output is treated as observations, immediate neighbors of the test model are477

removed from the archive and the remaining models are used to conduct tests478

which assess skill in reconstructing past and future model performance, as well479

as assessing the risk of producing an underdispersive ensemble which fails to480

encompass the perfect future projection at a given grid point. Using these three481

tests, we take a conservative choice for model weighting which minimizes the482

risk of under-dispersion (i.e. the risk that the real world might lie outside the483

entire weighted distribution of projections at a given gridpoint).484

The similarity parameter is calculated in a qualitative fashion by considering485

cases where models are known to be relatively unique, or where there is a known486

set of closely related models. The parameter is adjusted such that the known487

unique models are given a weight of near unity, and the models with n near-488

identical versions are each given a weight of approximately 1/n.489

The requirements of a large assessment places constraints on the choice of490

parameters for this analysis. Logistical considerations imply that only one set491

of weights can be constructed, and the broad readership and high stakes of the492

assessment mean that any risk of under-dispersion of projected future climate is493

unacceptable for this application. These constraints dictate that only a moder-494

ate weighting of model skill is used, where 90 percent of the weight is allocated495

to 80 percent of models. This, unsurprisingly, creates only a modest change in496

mean projected results and only a small reduction in uncertainty. A stronger497

skill weighting is shown to have a more significant effect on projected changes,498

but with the risk of increased under-dispersion.499

In addition, there exists a weak trade-off between model skill and model500

uniqueness in the CMIP5 ensemble; models which are demonstrably high per-501

forming also tend to be the ones with the most near replicates in the archive. As502

such, there is a compensating effect of the skill and uniqueness components of503

the weighting algorithm, which tends to mute the effect of the overall weighting504

when compared to the unweighted case. In other words, the unweighted CMIP5505

ensemble is in fact already a skill weighted ensemble to some degree.506

However, although this tradeoff is evident in the CMIP5 archive, there is507

no guarantee that such a tradeoff is a justification for using an unweighted508

25



average in future versions of the CMIP archive. A single, highly replicated509

but climatologically poor model present in a future version of the archive could510

significantly bias the simple multi-model mean of a climatological projection. As511

such, it is desirable to have a known and tested weighting algorithm in place to512

produce robust projections in the case of highly replicated, or very poor models.513

Beyond the single set of weights produced for NCA4, the basic structure514

outlined in this study can be used to produce a more targeted weighting for515

a particular projection (as was conducted for sea ice projections in [19]). Our516

provisional results suggest that targeted weights could potentially yield more517

confidence in projections if only a limited set of relevant projections are included,518

especially in fields where projections exhibit high degrees of structural diversity519

within the archive. This tailored weighting approach, however, presents risks520

which necessitate further study - our sensitivity studies suggest that multi-521

variate metrics are more robust to changes in spatial domain than targeted522

metrics, and the exact choice of metrics which should be used to best constrain523

a particular projection is not a trivial matter.524

With this in mind, we propose that future studies should further investi-525

gate how selection of physically relevant variables and domains should be used526

to optimally weight projections of future climate change, and that individual527

projections will need careful consideration of relevant processes in order to for-528

mulate such metrics. Confidence in such weighting approaches is highest if there529

are well understood underlying processes that explain why the chosen metric530

constrains the projection. Until then, we have presented a provisional and con-531

servative framework which allows for a comprehensive assessment of model skill532

and uniqueness from the output of a multimodel archive when constructing533

combined projections from that archive. In so doing, we come to the reassur-534

ing conclusion that for this particular application (i.e., domain and variables)535

the results which would be inferred from treating each member of the CMIP5536

as an independent realization of a possible future are not significantly altered537

by our weighting approach although the localized details of confidence in the538

magnitude of precipitation changes may be affected. However, by establishing539

a framework, we make the first tentative steps away from simple model democ-540

racy in a climate projection assessment, leaving behind a strategy which is not541

robust to highly unphysical or highly replicated models of our future climate.542

7 Code availability543

Complete MATLAB code for the analysis conducted in this manuscript is pro-544

vided. All CMIP5 data used in this analysis is downloadable from the Earth545

System Grid (https://pcmdi.llnl.gov/projects/esgf-llnl/).546
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