
Response to Reviewer 1 
 
Thanks to the reviewer for their useful comments.  We address each of the reviewer’s points 
below: 
 
The main limitation of the manuscript in my view is the primarily heuristic nature of the 
weighting schemes, which are at best partially justified. The introduction l73-78 sets out 
"two fundamental characteristics" of the scheme which are probably uncontroversial but 
which are not sufficient to narrow down the nature of the weighting scheme very much.  
 
We agree that our weighting scheme is heuristic, but we also think that it could be potentially 
useful.  Clearly, one could conceive of other weighting schemes which satisfy the desired 
characteristics laid out in the introduction, and we do not suggest that our proposed approach is 
the only possible or the best solution.  We simply propose it as a strategy, and would welcome 
other contributions from the community with alternative strategies which allowed for a 
simultaneous consideration of model skill and replication. Due to the lack of direct verification of 
climate projections, it is fundamentally impossible to decide what method or model is best, and 
choices in any such method are necessarily subjective to some extent. Different choices will 
also work better or worse for certain applications. We argue what is needed is not a justification 
of a method being correct or best, but traceability of what the choices were, and how they could 
impact the results.  
 
I would however suggest that "relatively poor" would be more precise than the stated 
"demonstrably poor".  
 
Changed as suggested 
 
Taking performance weighting first, there is a substantial literature on this, albeit 
perhaps with limited results. Methods based on Bayesian Model Averaging (e.g. Hoeting 
et al 1999) have perhaps the strongest theoretical justification, but other approaches 
have also been presented (such as the "reliability ensemble averaging" approach of 
Giorgi and Means 2002). Olson et al 2016(a,b) present some recent applications of BMA 
to regional projections which seem highly relevant. I would ask the authors to consider 
whether their performance weights can be considered as Bayesian likelihoods, that is to 
say, is there an underlying statistical model which would result in this weighting 
scheme? If not, would it be worth changing to a more transparently presented and 
explained model, perhaps one which has been more widely applied and tested?  
 
We have added a section discussing BMA methods, and the REA method in the introduction. 
Notably, these methods are skill weights and do not easily allow for non-independent models. 
In BMA methods, a model’s projection is weighted by its posterior model probability, which is 



largely independent of other models in the archive (apart from in the weak sense that the 
probabilities in the archive as a whole are normalized).  So - the technique doesn’t satisfy one of 
our two requirements.  This is true of REA as well - but REA also carries the rather unjustifiable 
assumption that a model which produces a projection which is an outlier from the rest of the 
ensemble should be downweighted, which would arguably increase the model interdependency 
issue rather than address it. REA also leads to overly narrow uncertainties in the presence of 
many models (Knutti et al. 2010 J. Climate).  
 
We’ve added the following on the topic of interpretation of the scheme: 
“It should be noted that although our likelihood weighting function is empirical, the functional 
form satisfies in a simple way the required parameters of the weighting scheme.  The structure 
of this functional form is not fundamental, it can simply be shown to have some desired 
features.  The technique is presented in this paper in a form which maximises clarity and 
reproducibility, but its effect can be described in Bayesian language.  The total model weight is 
the posterior likelihood of a given model representing truth.  Each model’s prior probability of 
representing truth is given by its independence weighting, and the likelihood function is defined 
for the multivariate dataset using an assumed Gaussian likelihood profile in a space defined by 
the the sum of the normalized RMSE differences over all variables between each model and the 
observations.” 
 
 
Of course any statistical method will necessarily rest on a number of assumptions and 
simplifications which may not be easily justified, but at least these could be presented 
explicitly. For example, while the distance factor Dq is considered as a tunable factor 
here, there is also the use of an exponential function which defines the weights, for 
which no explanation is given.  
Even without changing the overall structure of the weighting function, increasing the 
exponent from its value of 2 would result in a sharper cliff-edge at which weights drop 
from 1 to 0, and alternatively a lower exponent would result in a much more gradual 
change with weights more similar across the models. Is there a particular reason for the 
choices made here?  
 
 
We’ve tried to make it more clear in this version that the scheme is not intended to be *the* 
answer to weighting models.  Yes, the functional form imposes some structural limits on the 
weights one would obtain.  By using a different power exponent, one could create a more or 
less polarized distinction between ‘good’ and ‘bad’ models - we could sample this dimension as 
another sensitivity study, but as you suggest, one could propose an infinite number of potential 
weighting functions, and we simply propose one which has some desirable characteristics, and 
we sample some useful parameters to sample a range of behavior - we claim no deeper 
interpretation than that. Given that Dq is chosen such that the method produces reliable 
uncertainties in the perfect model test, it is likely that a different exponent would lead to a 
different Dq but the overall mean and uncertainty would not change substantially. 



 
However, there is precedent for using a Gaussian formulation for a likelihood function, we do 
not argue that our weighting scheme is not heuristic - our only requirement was to have a 
smooth, well behaved function which allocates maximum weight to a distance of zero, and no 
weight to a distance of infinity, without differentiating between two models which have distances 
<< Dq.  This actually leaves a rather limited set of choices for an appropriate functional form, for 
which a Gaussian structure is the simplest.  
 
Now moving on to the question of model independence, which here seems to be used to 
mean model output difference (as measured by a metric on output fields). The functional 
choice for the weighting again seems rather arbitrary. Since the goal of the parameter 
tuning seems to be to match the authors’ beliefs that various models are replicated a 
particular numbers of times, is there a reason to use a function - which can only provide 
an approximation to this prior belief - rather than just use the authors’ own judgements 
instead? For example a weight of 1/4 say could be applied to the GISS models directly, 
rather than trying to obtain a value close to this by tuning a single parameter. The choice 
of a fitted function seems to provide only a very thin veneer of objectivity to this 
subjective choice.  
 
Our argument for the representation of model interdependence is exactly that prior judgements 
of model interdependence are not required, because they are not always known - and this may 
be increasingly true in the future.  As the reviewer points out, if the only problem was to 
downweight models from the same institution which are known to be similar, the problem would 
be simple - either giving each of these models a fractional weight, or by taking only one version 
of institution’s model. 
 
However, in some cases, there are model interdependencies which cross institutions (take 
NorESM and CESM, or ACCESS and HadGEM).  Unless the researcher knows about these in 
advance - they would miss them, whereas our method is data-driven, and if inter-depedencies 
are evident from the data, they are de facto  considered.  Interdependence will also vary on the 
quantity considered, two models may show similar behaviour in sea ice if they share the sea ice 
model, but differ more in other parts where components are not shared, or where other 
uncertainties dominate. We demonstrate our selection of the independence parameter using 
known cases, because in these cases - we know approximately what the answer should be. 
The point is then that the method can be generalised to cases where we don’t know a priori  the 
degree to which two models are related.  
 
The constraints of this application are such that we were obliged to produce a single set of 
weights - but for the methodology in general, it allows for models to be assessed for 
interdependency conditional on  certain outputs of the model which are relevant to the question 
in hand.  
 



C2 Despite these comments, I have no particular beef with the framework that has been 
presented - it does not look wrong or silly in any obvious way - but I also don’t feel like I 
have been given any particular reason for using it. As outlined above, several of the 
numerous choices made don’t appear to be that well justified. The tuning parameters do 
appear to have been selected sensibly, but this is only the last step after the creation of a 
structure that doesn’t seem well supported.  
 
We hope that the above arguments help justify our approach, we propose a structure which a) 
satisfies our original requirements (downweight replication, upweight skill) in a framework which 
b) allows sufficient free parameters to tune for increased skill without risking an overly calibrated 
result which might increase the risk of the truth lying outside the weighted ensemble distribution, 
and c) produces a single sets of weights for each model to be used in climate impact 
assessments based on a method easy to understand and implement by non-statisticians.  Note 
that this paper is written to address a narrowly defined set of boundary conditions required by 
the author team of the Climate Science Special Report - specifically for a single set of weights 
which could be readily applied to a wide variety of projections.  The method is not presented as 
fundamental, rather it is presented as a model which is defensibly fit for this particular purpose 
of dealing with a multi model ensemble in a National Climate assessment..  
 
A number of typos:  
273-4 We briefly consider how the sensitivities of the method to different choices.  
Corrected, thanks. 
 
322 taylor/tailor  
Corrected. 
 
Fig 4 caption "1.5th percentile" really?  
 
Sorry -this was a version mixup.  Now reworded to be consistent with the definition of D_u in 
Figure 3. 
 



Response to reviewer 2 (Craig Bishop) 
Thanks to the reviewer for his thoughtful reading and suggestions.  We lay out below our 
thoughts in regard to his review, and how our paper relates to the author’s work on the topic. 
 

Fig. 4a shows the improvement over the sample mean as a function of their key tuning 
parameter for this historical data. This figure indicates that the optimal parameter value 
for the combined metric is between 0.3 and 0.5 (even though the text just gives it at 0.5). 
(The authors need to explain how they got 0.5 from Fig 4a rather than 0.4 or 0.3).  

 

The historical RMSE score isn’t the only consideration, and we don’t only use Fig. 4a - and the 
value chosen is 0.8 or 80% of the best-model/obs distance, not 0.5.  We did state that the 
lowest in-sample score was achieved with a value of approximately 0.5, but the next paragraph 
notes that this isn’t how we choose our metric because choosing based on in-sample data only 
would lead to an overly confident constraint.  Sorry for this confusion, we’ve reworded the first 
paragraph to make this clearer.   We agree that the curve minimum is closer to 0.4 - we’ve 
updated the text, but note this was just an observation, we never actually used this value any 
further analysis. 
 
The two other factors considered are the out of sample (2080-2100) skill in Fig. 4b  and the risk 
that our weighting would produce a distribution which increased the risk of the true model falling 
outside the weighted distribution.  Hence - if historical RMSE was the only concern, we would 
choose a value of 0.3 - which would give us a better RMSE.  The value of 0.8 is chosen such 
that the risk of overfitting is minimized, while still allowing for some moderate increase in 
weighted in-sample RMSE score. 
  

Fig. 4b shows how the tuning parameter actually affects the 2080-2100 forecast accuracy, 
not for the combined metric but just two of the variables within the metric. Comparing 
Figure 4b with 4a shows that if one had used a good value of the parameter for the 
combined metric from the historical data, 0.4, say, the weighted multi-model mean would 
actually give a similar or less accurate precipitation and temperature forecast than the 
simple sample mean. This inability of the weighting method to produce significant 
forecast improvements when tuned against historical observations suggests C2 that the 
proposed method may be of little value.  

 
As noted above - overfitting the historical RMSE would reduce the out of sample skill, but we 
specifically don’t do that for that reason.  Hence, a less aggressive weighting was used - 
informed by Figs. 4b and 4c.  Using the final value of 0.8, there is a small increase in out of 



sample skill - but we agree, it’s not a huge effect in terms of skill alone.  But, we also don’t find 
this particularly surprising - if there existed strong relationships between the mean state and the 
future temperature or precipitation changes, these would be exploitable emergent constraints in 
their own right.  The literature has demonstrated consistently that these constraints are rarely 
found in the CMIP archive. The fact that CMIP5 models on average agree better with 
observations than CMIP3 has not resulted in a more narrow projection range. 
 
Our defense of the technique is that it provides a simple way to downweight clear model 
duplication, and relatively poor models in the archive.  This may or may not result in a more 
accurate ensemble predictions, but there is no way to know whether a biased ensemble 
provides a biased projection that to see whether the weighting makes a difference.  As we note, 
the actual CMIP archive has a tendency to have more replicates of models which exhibit lower 
RMSEs, there aren’t many examples of models which exhibit huge biases both in the present, 
and there are no clear emergent constraints on future change - so the effect of the technique on 
CMIP5 is subtle because the model average happens to be almost optimal. 
 
Our argument is that our method allows an analysis futureproof (not to say that AB15 doesn’t - 
but our needs in this case were different, we were specifically asked for one set of model 
weights, and AB15 doesn’t provide that).  If a group submits 1000 versions of the same model 
to CMIP6, our method would do a defensible job of allocating an appropriate amount of weight 
without modification.  Similarly, if someone submitted a perturbed physics ensemble containing 
some model versions which were completely unlike Earth in the present, the presented method 
would downweight them appropriately. 



 

Nevertheless, there is merit in other aspects of the paper and with major revision; the 
paper could make a useful contribution to the field.  

 

Specific Comments  

The poor climate projection results obtained from the authors’ proposed method when 
tuning using pseudo historical observations are in contrast to the findings of work I have 
been involved in. Specifically, in similar tests to those of Sanderson et al, Abramowitz 
and Bishop (2015, J. Clim) (AB) obtained average reductions in the root mean square 
distance from the out-of-sample truth greater than 30% when using the climate ensemble 
member weighting method of Bishop and Abramowitz (2013, Climate Dynamics) (BA).  

The current version of the paper lacks any reference to AB. Furthermore, on lines 67-68, 
it dismisses BA’s approach as being undesirable for their North American application. 
This is incorrect. Small root mean square forecast errors is universally accepted as a 
desirable aspect of a forecasting scheme. AB showed that relative to the root mean 
square error of the uniformly weighted ensemble mean, the reduction in root mean 
square forecast errors due to the BA weighting method is profound. Furthermore, their 
method can easily be “geographically focused” for regions such as North America. As 
such, I strongly encourage the authors to revise their draft so that it acknowledges BA’s 
approach as potentially useful for North America and discusses the positive results of 
AB. Obviously, AB considered differing metrics to Sanderson et al. so no 
apples-to-apples comparison can be made between AB’s results and the results of this 
paper but AB’s work needs to be recognized and not dismissed as undesirable because 
of the BA method’s use of metamodels. Each of BA’s metamodels is a linear combination 
of the original models constructed so that the weighted mean formally minimizes error 
variance; and the BA ensemble variance is equal to this minimal value of the error 
variance. One needs to recognize that each raw climate model is itself a “meta Earth 
system” that is a crude approximation to the real Earth system.  

 
We now devote a number of paragraphs to the description of the reviewer’s 2013 and 2015 
papers.  AB15 is an interesting and novel framework for ensemble analysis, but it could never 
have been an option for this particular application because the request for the National Climate 
Assessment was specifically for one set of model weights which reflected model skill and 
independence.  The weights were then passed to the author team, who conducted individual 
analyses for the NCA.  As such, we were structurally constrained to produce a product which 
could be simply used by the author teams.  A single set of weights could be incorporated fairly 



simply into the large number of pre-defined analyses which go into such a report (which is for 
general public consumption), whereas a transformation into statistical meta-models which do 
not, in themselves, follow physical laws would have been practically impossible to implement by 
the author team. 
 
But - we do note that the comparison of 30% reduction in out of sample truth is not comparing 
like with like.  Firstly, the 30% out of sample skill increase referred to in AB15 is the absolute 
difference between the mean state of the ‘perfect’ model and the optimized ensemble 
regression prediction in a period out of the training period.  The out of sample skill in 4b in this 
paper is the skill in predicting the anomaly between present day T/P and the future.  Part of the 
skill in AB15 comes from persistence of mean state bias - which is taken out of our test. 
 
Secondly, although AB15 goes to some efforts to remove duplicates in their perfect model tests 
- they are not extensive.  For example, AB15’s “independent” test ensemble contains both 
CESM1 and NorESM1, and HadGEM2 and ACCESS - which both contain near replications of 
the atmospheric models.  In this study, we have gone to significant efforts to remove any 
duplicates from our perfect model test, which would have trivially increased our out of sample 
skill. 
 

It is true that Bishop C3 and Abramowitz’s metamodels are unrealistic in that, for 
example, they do not obey conservation laws for energy and mass. However, they are 
more realistic than the original models in the sense that their statistical relationship to 
historical observations is more like that of an ensemble of perfect models (replicate 
Earths) than the original models.  

 
AB15’s historical RMSE score is smaller by construction (there is no linear combination of 
models which could have a smaller RMSE), and the future reduction in anomaly projection error 
is not shown in AB15.  But given that it is not empirically clear that one model subtracted from 
another is a physically meaningful quantity, only future anomaly error reduction in a true perfect 
model test where no close relatives of the perfect model exist in the archive would constitute 
definitive evidence of greater skill.  It could be argued that the any average of several models is 
also not necessarily physically meaningful because any combination of models no longer 
follows conservation laws, but a weighted average of models has a simple interpretation: a 
combined measurement of a number of models, weighted by their trustworthiness.  Formulating 
the problem as a regression equation allowing negative coefficients though creates a more 
difficult product to interpret.  
 
Given more models than degrees of freedom in the CMIP5 dataset, one could produce a 
near-perfect reproduction of the observations.  Hence in order to be sure that AB15 is not 
subject to overfitting, it would be necessary to demonstrate that the degrees of freedom in CMIP 
models significantly exceed the number of fitted points.  For a simple spatial field like 



temperature - where a few spatial modes can well define the response patterns of different 
models in the archive, this may not necessarily be the case. 
 

Having found rather poor forecasting results when using weights derived from 
pseudohistorical data, Sanderson et al. then consider weights that are tuned for model 
forecast data so that, on average, they deliver a weighted mean that is as close as 
possible to the 2080-2100 state of a climate model excluded from the set of ensemble 
members used for the forecast (Fig 4b). In statistics, such “in-sample” statistical tests 
are viewed with suspicion because of the possibility of overfitting.  

 
In our study (in contrast to AB15), we have only one parameter - so we don’t have the ability to 
overfit in the regression sense of the word.  We are not fitting to the future data directly, we are 
just reducing the degree to which the present day values can constrain the data if in the perfect 
model weighted average prediction of future anomalies can be demonstrated to be 
overconfident.   Fig 4b is thus a diagnostic to show that if we had chosen an optimal value of the 
skill radius to maximise in-sample skill, then this would be non-optimal for out of sample skill. 
But the metric itself used to determine the parameters only considers historical data. 
 

An additional concern about this approach is that it would be impossible to apply it to 
real observations (unless one waited until 2100 when the data would be available). One is 
left having to justify the approach on the assumption that the climate models are 
producing realistic future climate data. In contrast, if as in AB and BA, one demonstrated 
improved forecasts using historical observations, there would be much less room for 
argument about the realism of the data available for tuning.  

 
We do apply the approach to observations - the constraints are entirely based on historical 
observations.  We only use the future data in the models to assess how strong the costraints on 
past performance should be in general .  A regression-based approach such as AB2015 has the 
capacity for overfitting, if the number of degrees of freedom exceed the number of models.  Our 
technique calibrates a single parameter - which represents the degree to which historical data 
should weight a given model’s future projection.  The 2100 skill is a diagnostic, not a component 
of the weight and the method cannot ‘fit’ the combined model result to the 2100 data.  Figure 4b 
simply says “if we over-constrain the models to their present day performance, then our 
prediction of future anomalies becomes less accurate”.  Therefore, we don’t need the 2100 data 
from the real world to be able to use our method - we only use historical data - but 4b tells us 
that we should weaken that constraint from what we would have inferred from past performance 
alone.  So 4b is the opposite of overfitting, it explicitly weakens our constraint to to ensure 
against overfitting. 
 



The revised paper needs to clearly address these concerns. In addition to the 
aforementioned issue, the point by point comments below highlight other major and 
minor issues that, if addressed, would improve the paper.  

 

Point by point and technical comments  

 

1.Line 67-68. See above comments.  

 
We have significantly expanded this discussion in the light of the reviewer’s comments. 
 

2. Sentence from line 74-76. Suppose that one had two simulations from a perfect model 
and that each was started with a different initial condition. In this case, the model for 
each of the simulations is the same even though, because of the chaotic nature of the 
Earth-system, the state estimates obtained will have differences. It can be shown that the 
mean of these two random perfectly realistic states would have considerably less 
distance from another perfectly realistic state (Bishop and Abramowitz, 2015). Hence, not 
including the second ensemble member simply because the model that produced it was 
identical to the model used for the first model would reduce the utility of the ensemble. 
Thus, this idea and its incorporation into the weighting scheme does not seem to be well 
justified. Perhaps the authors assumed that over a long enough averaging period the 
time-means of the two simulations would be identical. Long range modelling studies of 
low-frequency variability such as that of James and James (1989, Nature 342, 53 – 55) do 
not support this assumption. The revised paper should comment on this issue.  

 
This point is well taken, but it does not address the key aspect of the CMIP5 ensemble which 
we are trying to address - that all of the models are not perfect, and that some of them are near 
replicates of each other.  Our technique does not throw out any models - but it allocates 
approximately equal fractional weights to near-identical models. 
 
The relevant thought experiment is the following.  Let’s assume we have 3 models, 2 of these 
are structurally identical to each other, and the third has a different structure.  Both of the 
structurally identical models have some underlying bias in their climate attractor, and the third 
model has a different bias - but the bulk errors are comparable.  
 
In this case, knowing the above information - we would argue that the correct distribution of 
weight is ¼ for each of the structurally identical models and ½ for the unique model, and this is 



the solution solved for in this paper.  This conclusion has nothing to do with averaging periods 
(although clearly, the shorter the time series, the noisier the result will be). 
 
Our previous work (Sanderson et al (2015b)) shows that the inter-model distances due to 
internal variability are an order of magnitude smaller than the differences between structurally 
dissimilar models in the CMIP archive, when evaluated using a similar metric to that used in this 
paper using 30 year climatological means.   As such, the effect of bias due to model replication 
is well resolved in the context of noise generated by internal variability. 
 

 

3. Section 3. Please add more details about the length and temporal filtering of the data 
set used to create the distance matrix. 

 

We added the following paragraph: “ Data from each model is taken from the first available 
initial condition member of each model's historical contribution to CMIP5.  Data from years 
1976-2005 are used from each model, averaging all years to form a monthly climatology.  Data 
from the observations are monthly climatologies averaged from all available years within the 
1976-2005 window.” 

 

 4. Line 91-92 and Table 1. Extreme values such as “coldest day” are highly prone to 
large variations that are simply due to random sampling rather than any error in the 
distribution being sampled. One can easily prove this to oneself by sampling a normal 
distribution of 20x365 random normal numbers and seeing how much the minimum value 
changes. I did 12 such trials and found values ranging from -3.29 to -4.25. In contrast, if I 
look at the variation of standard deviations for 12 such trials I get values with the very 
small range of 0.98 to 1.01 – only 2% variation. By rewarding with high weights ensemble 
members that happen, by pure chance, to get extrema correct, you may be compromising 
the potential performance of your ensemble weighting technique. Why not use a 
standard deviation metric instead?  

 
Using a standard deviation assumes a normal distribution which is inappropriate for assessing 
the properties of the tail of the distribution.  It also assumes that the distribution is bounded - 
and climate variables are not.  The CSSR/NCA requires an assessment of extreme model 
behavior, and we use metrics from a well-established community to form the statistics (we use 
the methodology laid out in http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50188/full , which 
shows such statistics are well sampled for a 20 year climatology - and we use 30). Note also 

http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50188/full


that data at high temporal resolution is not always publicly available, whereas the standardized 
extreme indices are readily available for models and observations. 
 

5. Caption of Fig 3. What does NCA4 stand for? 

 
Expanded to the full name of the report. 

 

 6. Subsection 3.5. It seemed that you held the independence weights constant for 
section 3.5. Please be clearer about how these were combined with the skill weights for 
the experiments reported on in Subsection 3.5.  

 
Text added to the paragraph: 
“In  Figure  4(a),  we  use the uniqueness parameter Du determined in section 3.4 and sample a 
range of Dq.” 

 

 

7. Legend of Figure 4a. Are the “ta” and “tas” mentioned in this legend respectively the 
same as the “T” and “TS” mentioned in Table 1?  

The revised paper needs to ensure that Table 1 is consistent with this legend and 
vice-versa.  

Table 1 is now consistent in abbreviations. 

 

Also, on my copy of the paper, C5 in Fig 4a it was extremely difficult to tell which line 
corresponded to which variable. It would be clearer if, in addition to color, you used 
shapes (triangles, boxes, diamonds, asterisks, etc) to help distinguish which line belongs 
to which variable.  

The figure has been reformatted for clarity as the reviewer suggests. 
 



8. Line 165. Here you state that Figure 4a suggests to you that 50% (0.5) minimizes 
forecast error. To my eye it looks like 0.4 or 0.3 minimizes forecast error. Please give 
more details about how you came up with the 50% value.  

 
We agree - we’ve changed the text.  As explained above - this value was just an observation 
from the graph, it was not used in any part of the further analysis. 
 

9. Line 191. Change “averages” to “averaged”  

 
Done 

 

10. Line 198. Please provide more information about how you “skill weighted the 
ensemble”. Does this create a new ensemble? How do you assess whether the truth lies 
within or outside of this skill weighted ensemble? I am unable to comment on any aspect 
pertaining to Fig 4c because of my uncertainty about what you actually did.  

 
We have considerably increased the length of this discussion. 
 

11. Weight normalization. The text is somewhat unclear about where and when the 
weights are normalized so that they sum to 1. Please be clearer about this. An equation 
stating exactly what you did would be helpful.  

 
Added equation 7. 
 

12. Figure 5. I like the idea of excluding similar models for the “model as truth” 
experiments. This option was not investigated by AB. Do your results change much if 
you don’t exclude any models?  

 
Quite a lot, depending on the model and variable - not excluding clear replicates like 
NorESM/CESM tends to produce out-of-sample anomaly projection skill which is artificially high 
in the model as truth experiments.   Keeping all members for the perfect model case therefore 
reduces the apparent out-of-sample skill a lot.  Below is figure 4b, without prefiltering for near 
neighbours.  The method would suggest a “model-as-truth” best average score of about 30 
percent below the simple multi-model mean for precip, and 15 percent for temperature.  I.e. It 
would give too much confidence in the out of sample skill.  



 

13. Line 216 – 218. State quantitatively what values are used. The previous sections used 
a whole range of values so it is unclear what precise values were finally chosen.  

 

Done. 
 

14. Line 430: Change “not trivial matter” to “not a trivial matter”  

 
Done 
 
 



Summary of changes to document: 
 

1. Added section on interpretation of the weighting technique in the context of existing 
weighting literature, and Bayesian formulism. 

2. Expanded discussion of the 2013 and 2015 papers from Abromowitz and Bishop, and 
the relative advantages of the two techniques. 

3. Expanded description of CMIP5 data preparation. 
4. Clarified justification for the choice of D_u (the uniqueness parameter) in the paper 
5. Replotted Figure 4 for clarity 
6. Expanded clarified the discussion for Figure 4c 
7. Conducted case study for comparative skill when near-neighbors are not removed from 

the analysis 
8. Expanded discussion and defended use of extreme metrics, 
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confidence in future patterns of change for a given projection.26
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2 Introduction27

The CMIP5 archive [1] is the most comprehensive collection of climate simu-28

lations produced to date. The archive contains simulations from over 25 insti-29

tutions, some of which submit multiple models - bringing the total number of30

models in the archive to potentially more than 100 (although many of these are31

minor variants or initial condition members, and not all models conduct all ex-32

periments). Using this dataset to produce assessments of future climate change33

involves a number of conceptual challenges. Previous assessments of both the34

IPCC [2] and the National Climate Assessment in the United States [3] have35

considered the archive to represent model democracy [4], in that simulations of36

the future from each model are considered to be equally likely, without account-37

ing for any variation in model skill or for the fact that some models are very38

similar to other models in the archive, bringing into question the assumption39

that their simulations can be considered to be independent samples of future40

behavior.41

These underlying assumptions have been challenged by a number of studies42

over recent years. Various studies [5, 6, 7, 8], have pointed out that the ensem-43

ble contains demonstrable inter-dependence, where similarities in the spatial44

biases in model simulations correspond well to expected relationships which one45

might expect from models from the same institution, or those sharing signifi-46

cant amounts of code. As such, the number of e↵ective models in the archive47

is likely to be significantly smaller than the number of simulations [9, 10, 7].48

The weights should also be representative of the question at hand: skill is not a49

property of the model per se, but indicative of the ability of a model to project50

a certain change [11].51

In addition, the models that are present in the archive are not equally skill-52

ful in representing the present day or past climate [12, 5]. A number of studies53

have attempted to weight models in a way which represents their skill alone;54

Bayesian Model Averaging [13] describes a set of approaches which collectively55

produce model weights which correspond to a posterior model probability rep-56

resenting truth given some data constraints. Giorgi and Mearns (2002) [14]57

proposed an ensemble averaging scheme which increased the weight of models58

which exhibited low observational biases but the method potentially discounts59

outlier projections [15]. However, these methods do not provide a mechanism60

for reducing the e↵ect of model replication. An identical model submitted twice61

to the ensemble would still produce a di↵erent result - an issue which we ad-62

dress below. Furthermore, it is notably di�cult to produce an overall ranking of63

model performance, given that the conclusion is conditional on both the region64

and metrics considered [16].65

Some studies have suggested methodologies which might be able to address66

some of these complexities: Bishop and Abramowitz (2013) [17] proposed a67

method which produced a set of statistically independent meta models from the68

original archive, and applied this method to CMIP5 projections in Abramowitz69

and Bishop (2015) [18]. The technique calculates the optimal combination of70

models, such that a linear combination of models minimizes the error of a par-71

2



ticular field against an observed target. While the bias of the combined product72

is by definition optimal, the coe�cients of each model can be positive or nega-73

tive. With the view that negative weights are unphysical, the authors transform74

the original model output such that all weights are positive, and such that the75

variance of the ensemble is rescaled to equal the natural variability of the obser-76

vations themselves, with a solution that preserves the optimal combined model77

result from their initial regression.78

While this ‘replicate Earth’ produces a product which significantly reduces79

the mean bias of the combined model product (a 30 percent reduction in RMSE80

compared to a simple multi-model mean [18]), there remain some issues of in-81

terpretation for the transformed ensemble members, which can no longer be82

directly interpreted as physical entities which conserve mass or energy. It is83

also not fully understood how the issue of independence of models in the orig-84

inal archive influences the results. And though the technique reduces errors in85

out-of-sample perfect model tests, the out-of-sample test presented in Bishop86

and Abramowitz (2013) [17] does not remove the e↵ect of persistence of present87

day bias, which is directly solved-for in the regression - therefore not definitively88

demonstrating that prediction of future anomalies would be improved beyond89

the simple multi-model means for out-of-sample projections, which were not90

bias corrected.91

In this study, we present a weighting scheme for use in the Climate Science92

Special Report (CSSR), which informs the 4th National Climate Assessment for93

the United States (NCA4). The requirements for this application are somewhat94

unique - in that a method from the literature cannot be simply taken ‘out of the95

box’ from an existing study. Traceability and simplicity are paramount for this96

application, where the derived weights are defined in this paper, but then form97

the basis of a number of varied analyses performed by the author team for the98

CSSR. Hence, the use of statistical meta-models as in Bishop and Abramowitz99

(2013) [17] would not be manageable because each individual application would100

have to be reconsidered in terms of the paradigm, where the details of statistical101

significance, model independence and individual model interpretation are not102

fully understood, and would be di�cult to convey to the public audience for103

NCA4. As such, the request for the CSSR was to produce a single set of weights104

which reflected to some degree both model skill and model independence in the105

CMIP5 archive, which could be simply integrated into the existing workflow of106

the report.107

Our methodology is based on the concepts outlined by Sanderson et al (2015)108

[7], a comparatively simple method for sub-sampling models the original archive,109

keeping models which were maximally independent and skillful in reproducing110

past climate. Another recent study [19] outlined an adaption of this approach for111

constraining a specific future change (future sea ice area, in that case). However,112

in this study, instead of deriving a subset or studying a single aspect of future113

change, the objective is to produce a single set of model weights which can114

be used to combine projections for a range of quantities into a weighted mean115

result, with significance estimates which also treat the weighting appropriately.116

Ideally, the method would seek to have two fundamental characteristics.117
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Table 1: Observational Datasets used as observations.
Field Description Source Reference
tas Surface Temperature (seasonal) Livneh, Hutchinson [22, 22]
pr Mean Precipitation (seasonal) Livneh, Hutchinson [22, 22]
rsut TOA Shortwave Flux (seasonal) CERES-EBAF [23]
rlut TOA Longwave Flux (seasonal) CERES-EBAF [23]
ta Vertical Temperature Profile (seasonal) AIRS* [24]
hur Vertical Humidity Profile (seasonal) AIRS [24]
psl Surface Pressure (seasonal) ERA-40 [25]
tnn Coldest Night Livneh, Hutchinson [22, 22]
txn Coldest Day Livneh, Hutchinson [22, 22]
tnx Warmest Night Livneh, Hutchinson [22, 22]
txx Warmest day Livneh, Hutchinson [22, 22]
rx5day seasonal max. 5-day total precip. Livneh, Hutchinson [22, 22]

First, if a duplicate of one ensemble member is added to the archive, the resulting118

mean and significance estimate for future change computed from the ensemble119

should change as little as possible. Secondly, if a relatively poor (for the metrics120

considered) model is added to the archive, the resulting mean and significance121

estimates should also change as little as possible.122

3 Method123

3.1 Data pre-processing124

Our analysis di↵ers in a number of ways from that originally proposed by [7]125

• The analysis region contains on the counterterminous United States (CONUS)126

and most of Canada, constrained by available high resolution observations127

of daily surface air temperature and precipitation.128

• Inter-model distances are computed as simple root mean square di↵erences129

here, in contrast to the multi-variate PCA used by [7].130

• The weights for skill and independence are the final product in this anal-131

ysis, whereas they only inform the subset choice in the study by [7].132

We utilize data for a number of mean state fields, and a number of fields which133

represent extreme behaviour - these are listed in Table 1. All fields are masked to134

only include information from the combined CONUS/Canada region. Extreme135

indices are calculated using the ETCCDI protocols [20, 21]. We also consider a136

selection of models from the CMIP5 archive, listed in Table 2.137

3.2 Inter-model distance matrix138

For each variable, a distance matrix �
v

is computed between each pair of N total139

models and between each model and the observed field (such that the observa-140
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tions are treated as an N +1th model). Data from each model is taken from the141

first available initial condition member of each model’s historical contribution142

to CMIP5. Data from years 1976-2005 are used from each model, averaging all143

years to form a monthly climatology. Data from the observations are monthly144

climatologies averaged from all available years within the 1976-2005 window.145

Distances are evaluated as the area-weighted root mean square di↵erence146

over the domain. The matrix is then normalized by the mean inter-model dis-147

tance, such that for each field in Table 1, there is a (n
model

+ 1) by(n
model

+ 1)148

matrix representing the pairwise distance between each model (and the obser-149

vations).150

These normalized matrices are then linearly combined, with each line in151

Table 1 taking equal weight,152

� =
X

v

�
v

, (1)

to produce the multi-variate distance matrix � illustrated in Figure 1.153

3.3 Model Skill154

The RMSE between observations and each model can be used to produce an155

overall ranking for model simulations of the CONUS/Canada climate (which156

is illustrated by the overall model-observation distance in Figure 1). Figure 2157

shows how this metric is influenced by di↵erent component variables.158

3.4 Independence weights159

The inter-model distance matrix is also computed from the inter-model distance160

matrix �. For a pair of models i and j, we first compute a similarity score S(�
ij

)161

from their pairwise distance �
ij

:162

S(�
ij

) = e
�
⇣

�

ij

D

u

⌘2

, (2)

where D
u

is the radius of similarity [7], which is a free parameter which163

determines the distance scale over which models should be considered similar164

(and thus down-weighted for co-dependence). We show below how an appro-165

priate value can be chosen given prior knowledge about models with known166

dependencies in the archive.167

In limits, two identical models will produce a value of S(�
ij

) of 1, and168

S(�
ij

) ! 0 as �
ij

! 1. A given model i’s e↵ective repetition R
u

(i) can be169

calculated by summing the models close by:170

R
u

(i) = 1 +
nX

j 6=i

S(�
ij

), (3)
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Figure 1: A graphical representation of the inter-model distance matrix for
CMIP5 and a set of observed values. Each row and column represents a single
climate model (or observation). All scores are aggregated over seasons (indi-
vidual seasons are not shown). Each box represents a pair-wise distance, where
warm colors indicate a greater distance. Distances are measured as a fraction of
the mean inter-model distance in the CMIP5 ensemble. Smaller distances mean
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Figure 2: A graphical representation of the model-observation distance matrix
for a number of variables, illustrating how di↵erent biases combine to produce
the overall model-observation distance in Figure 1. Each column represents a
single climate model, and rows represent the di↵erent observation types in Table
1. Distances along each row are normalized, such that the mean model has a
distance of 1 to the observations. CMIP5 Models are sorted by their combined
skill as shown in the bottom row.

where n is the total number of models. Finally, we calculate the indepen-171

dence weight for model i as the inverse of its repetition:172

w
u

(i) = (R
u

(i))�1 . (4)

Figure 3 shows the dependence of the independence weights on D
u

for a173

number of di↵erent models. D
u

is sampled by considering the distribution of174

inter-model distances �, and sampling by percentiles �
u

the smallest inter-model175

distances in the archive.176

As points of reference, we consider some models from the archive known to177

have no obvious duplicates (HadCM3 and INMCM), which should not be sig-178

nificantly down-weighted by the method. We also consider some models where179

there are numerous known closely related variants submitted from MIROC, MPI180

and GISS. It is desirable to choose a value of D
u

which produces a weight of181

approximately 1/n where n is the number of variants submitted.182

Hence, by inspection of Figure 3, we take D
u

as 0.48 times the distance183

between the best performing model and observations in the CMIP5 archive,184

which produces approximately the desired weighting characteristics in these185

cases where we have a reasonable expectation of what the true model replication186

is in the archive.187

The methodology described above assumes each model has submitted only188
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Figure 3: Model independence weights (w
u

) as a function of the radius of in-
terdependence D

u

, plotted for a number of models and groups of models in the
CMIP5 archive. The vertical line shows the value used in the Climate Science
Special Report.

one simulation to the archive, but the method is robust to the inclusion of189

multiple initial condition members from each model. If D
u

is chosen such that190

structurally similar ensemble members are treated as duplicates, then w
u

will191

appropriately allocate a fractional weight to each initial condition ensemble192

member. In the case of NCA4, extreme value statistics were only available193

for a single instance of each model, hence initial condition ensembles were not194

considered.195

3.5 Skill weights196

The RMSE distances between each model and the observations are used to197

calculate skill weights for the ensemble. The skill weights represent the clima-198

tological skill of each model in simulating the CONUS/Canada climate, both in199

terms of mean climatology and extreme statistics. The skill weighting w
q

(i) for200

model i is calculated as in [7]:201

w
q

(i) = e
�
 

�

20c
i(obs)
D

q

!2

, (5)

where �20c
i(obs) is the sum of the normalized RMSE di↵erences over all variables,202

between each model and the observations, and D
q

is the radius of model quality203

[7] which determines the degree to which models with a poor climatological204

simulation should be downweighted. As such, a very small value of D
q

will205

allocate a large fraction of weight to the single best performing model in the206

9



archive (as assessed by the climatological skill). Equally, as D
q

! 1, the207

multi-model average will tend to the non skill-weighted solution.208

An overall weight is then computed as the product of the skill weight and209

the independence weight.210

w(i) = Aw
u

(i)w
q

(i), (6)

where A is a normalization constant such that w(i) satisfies:211

nX

1

w(i) = 1, (7)

where n is the total number of models. We determine an appropriate value212

for D
q

by considering both the skill of the weighted average in reproducing213

observations, and also by conducting perfect model simulations with the CMIP5214

ensemble. In Figure 4(a), we use the uniqueness parameter D
u

determined215

in Section 3.4 and sample a range of D
q

. The figure shows that the use of216

relatively strong weighting (where the D
q

is approximately 40 percent of the217

distance between the best performing model and the observations) produces218

the weighted climatological average with the lowest in-sample error. However,219

in-sample score is not the only consideration.220

A more skillful representation of the present-day state does not necessarily221

translate to a more skillful projection in the future. In order to assess whether222

our metrics improve the skill of future projections at all, we consider a perfect223

model test where a single model is withheld from the ensemble and then treated224

as truth.225

However, such a test can be over-confident because when some models are226

treated as truth, there remain close relatives of that model in the archive which227

would be given a high skill weight and would inflate the apparent skill of the228

metric in predicting future climate evolution. To partly address this, we conduct229

our perfect model study with a subset of the CMIP5 archive which excludes230

obvious near relatives of the chosen ‘truth’ model. We achieve this by excluding231

any model which lies closer to the ‘truth’ model than the distance between the232

best performing model and the observations in the inter-model distance matrix233

�. The excluded model pairs for the perfect model test are illustrated in Figure234

5.235

Once the obvious duplicates have been removed for a given ‘perfect’ model236

i, we can test the ability of the chosen multivariate climatological metrics to237

increase skill in the simulation of the out of sample model’s future. We do this238

in two ways: in the first case, we consider the RMSE of the weighted multi-model239

mean projection of each out of sample model’s projection of annual mean gridded240

temperature and precipitation change at the end of the 21st century under241

RCP8.5. This is expressed as a fraction of the RMSE one would obtain with a242

simple mean of the remaining models (again, excluding the obvious duplicates).243

This process is repeated for each model in the archive, after which the results244

10
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Figure 4: Subplots are functions of D
q

, the radius of model quality (all figures
take a value of D

u

0.48 times the distance between the best performing model
and observations in the CMIP5 archive, as selected in Figure 3). Subplot (a)
shows the RMSE of the weighted multi-model mean compared with observations,
relative to the non skill-weighted multi-model mean. The vertical dashed grey
line indicates the value chosen for the Climate Science Special Report. Colored
lines show RMSE values for individual variables, thick black line is the combined
multivariate RMSE. Subplot (b) shows the average RMSE of future annual
mean gridded temperature change projections in 2080-2100 (relative to 1980-
2000) under RCP8.5 for an out-of sample model taken to represent truth (with
obvious replicates removed from the ensemble). Subplot (c) shows the average
fraction of grid-cells for which the out-of sample ‘perfect model’ projections lie
below the 10th or above the 90th percentile of the inferred weighted distribution.
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Figure 5: A graphical representation of models which are excluded from the
remaining ensemble in the perfect model test when each model in turn is treated
as truth. Cells in black represent models which are closer to each other than
the best performing model in the archive is to observations.
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are averaged and plotted in Figure 4(b), where the optimum value of D
q

for the245

reproduction of future temperature and precipitation change is approximately246

70 percent of the distance between the best performing model and observations,247

for which there is a 9-10 percent reduction in RMSE compared the unweighted248

case. This suggests that in the perfect model study, some skill weighting based249

on climatological performance can improve the mean projection of future change.250

Finally, we test whether skill-weighting the ensemble increases the chances251

of the truth lying outside of the distribution of projections suggested by the252

archive. For Figure 4(c), we consider the ensemble projected values for future253

temperature and precipitation at each gridcell, where D
q

is allowed to vary and254

D
u

is kept at the value determined in Section 3.4. As in Figure 4(b), we consider255

each model in the CMIP5 archive as truth, each time removing near-neighbors256

from the remaining set (determined from Figure 5).257

We allow the weighted model projected changes in 2080-2100 temperature258

or precipitation at each grid-cell to define a likelihood distribution for expected259

future change in the removed model. We then calculate the fraction of grid-260

cells where the chosen perfect model’s actual projected value for temperature261

or precipitation change lies above the 90th or below the 10th percentile of the262

inferred likelihood distribution. If the likelihood distribution is representative263

of expected change for the removed ‘perfect’ model, one would expect a 20264

percent chance that the perfect model lies outside this range. However, if this265

value increases, it indicates that the weighting is too strong and the weighting266

is producing an under-dispersive distribution.267

Figure 4(c) shows the average fraction of gridcells where the actual missing268

model projection is above the 90th, or below the 10th percentile of the inferred269

likelihood distribution, for a given value of D
q

, where the average is taken over270

the entire CMIP5 ensemble. The figure shows that for values of D
q

of less than271

80 percent of the distance between the best performing model and observations,272

there is some increased risk of the ensemble being under-dispersive. As such,273

Figures 4(a-c) together imply that D
q

= 0.8 is a justifiable, conservative value274

to use in the further analysis - there is still a demonstrable increase in the out-of-275

sample skill of the future projection in the perfect model tests, with a minimal276

risk of an under-dispersive distribution.277

Using the values of D
q

= 0.8 and D
u

= 0.48 defended in this section, we278

illustrate skill, independence and combined weights for the CMIP5 archive in279

Figure 6 and in Table 3.280

4 Gridded application281

Once derived, the skill and independence weights can be used to produce weighted282

mean estimates of future change, as well as confidence estimates for those pro-283

jections. To illustrate this, we modify the significance methodology from the284

5th Assessment Report of the IPCC [2], such that:285

• Stippling - large changes where the weighted multimodel average change is286

greater than double the standard deviation of the 20 year mean from con-287
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Figure 6: Model skill and independence weights for the CMIP-5 archive evalu-
ated over the CONUS/Canada domain. Contours show the overall weighting,
which is the product of the two individual weights.
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Uniqueness weight Skill Weight Combined
ACCESS1-0 0.60 1.69 1.02
ACCESS1-3 0.78 1.40 1.09
BNU-ESM 0.88 0.77 0.68
CCSM4 0.43 1.57 0.68
CESM1-BGC 0.44 1.46 0.64
CESM1-CAM5 0.72 1.80 1.30
CESM1-FASTCHEM 0.76 0.50 0.38
CMCC-CESM 0.98 0.36 0.35
CMCC-CM 0.89 1.21 1.07
CMCC-CMS 0.59 1.23 0.73
CNRM-CM5 0.94 1.08 1.01
CSIRO-Mk3-6-0 0.95 0.77 0.74
CanESM2 0.97 0.65 0.63
FGOALS-g2 0.97 0.39 0.38
GFDL-CM3 0.81 1.18 0.95
GFDL-ESM2G 0.74 0.59 0.44
GFDL-ESM2M 0.72 0.60 0.43
GISS-E2-H-p1 0.38 0.74 0.28
GISS-E2-H-p2 0.38 0.69 0.26
GISS-E2-R-p1 0.38 0.97 0.37
GISS-E2-R-p2 0.37 0.89 0.33
HadCM3 0.98 0.89 0.87
HadGEM2-AO 0.52 1.19 0.62
HadGEM2-CC 0.50 1.21 0.60
HadGEM2-ES 0.43 1.40 0.61
IPSL-CM5A-LR 0.79 0.92 0.72
IPSL-CM5A-MR 0.83 0.99 0.82
IPSL-CM5B-LR 0.92 0.63 0.58
MIROC-ESM 0.54 0.28 0.15
MIROC-ESM-CHEM 0.54 0.32 0.17
MIROC4h 0.97 0.73 0.71
MIROC5 0.89 1.24 1.11
MPI-ESM-LR 0.35 1.38 0.49
MPI-ESM-MR 0.38 1.37 0.52
MPI-ESM-P 0.36 1.54 0.56
MRI-CGCM3 0.51 1.35 0.68
MRI-ESM1 0.51 1.31 0.67
NorESM1-M 0.83 1.06 0.88
bcc-csm1-1 0.88 0.62 0.55
bcc-csm1-1-m 0.90 0.89 0.80
inmcm4 0.95 1.13 1.08

Table 3: Uniqueness, Skill and Combined weights for CMIP5 for the
CONUS/Canada domain
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trol simulations runs and 90 percent of the weight corresponds to changes288

of the same sign.289

• Hatching - No significant change where the weighted multimodel average290

change is less than the standard deviation of the 20 year means from291

control simulations runs.292

• Blanked out - Inconclusive where the weighted multimodel average change293

is greater than double the standard deviation of the 20 year mean from294

control runs and less than 90 percent of the weight corresponds to changes295

of the same sign.296

The standard deviation of the 20 year mean from control simulations is de-297

rived using the ‘picontrol’ simulations in CMIP5. We consider all simulations298

with a length of 500 years or longer, and discard the first 100 years. The re-299

maining time period is broken into consecutive 20 year periods, and the estimate300

of control variability for each model is taken as the standard deviation of the301

20 year periods. This process is repeated for all models with an appropriate302

simulation. Finally, the standard deviations are averaged over all models to303

produce the final estimate for the standard deviation of the 20 year mean from304

the control simulations (note this di↵ers slightly from [2], where the standard305

deviation for significance plots is taken as the square root of 2, multiplied by306

the control standard deviation).307

In order to adapt this methodology to a weighted ensemble, we need to apply308

the weights both to the mean estimate and the significance estimates.309

To calculate the weighted average, each model is associated with a weight310

(e.g. from table 3). The weights must be normalized, and the weighted average311

p at each gridcell is:312

p =
nX

1

w(i)p(i) (8)

where w(i) is the weight of model i and p(i) is the projected value from model313

i.314

Therefore, the significance test is very similar to the IPCC case: if the315

weighted average exceeds double the control standard deviation, it is a signifi-316

cant change and if it is less than the standard deviation it is not significant.317

Sign agreement is slightly modified from the IPCC case - rather than as-318

sessing the number of models exhibiting the same sign of change, we consider319

the fraction of the weight exhibiting the same sign of change, f . This can be320

expressed as:321

f = |1/n
nX

1

w(i)sign(p(i))|, (9)

for any given set of projections p.322

We illustrate the application of this method to future projections of temper-323

ature and precipitation change under RCP8.5 in Figures 7 and 8 which show324
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the mean projected quantities as well as the 10th and 90th percentiles of the325

weighted distribution of change at the gridcell level. In both cases, the weighting326

has only a subtle e↵ect on the mean projection, but serves to slightly constrain327

the range of response at a given gridcell. In Section 5, we discuss how more328

aggressive or targeted weighting can have a greater potential e↵ect.329

5 Sensitivity Studies330

The parameter choices for D
q

and D
u

utilized in Section 3, as well as the331

choice of metrics and the domain were considered appropriate for the specific332

application of the US National Assessment, where it was desirable to have a333

single set of weights used for a number of applications. However, in a more334

general sense, we consider here how di↵erent choices may impact the results of335

weighted analyses, and how the researcher should consider weighting in more336

targeted (or more global) applications. We briefly consider the sensitivities of337

the method to di↵erent choices.338

5.1 Spatial Domain339

In the case of NCA4, the strategy was to produce multi-variate metrics which340

were specific to CONUS/Canada. However, there is an argument that there are341

aspects of non-local climatology which would ultimately impact the domain of342

interest (through their influence on global climate sensitivity, for example).343

In Figure 9(a-e), we consider the RMSE metrics for both the US and the344

entire global domain. In this comparison, it is shown that there is a rela-345

tively poor correlation between model skill evaluated over CONUS/Canada and346

globally for any individual metric, however, when individual metrics are com-347

bined into a multivariate climate (the approach used in Section 3), there is a348

correlation of 0.89 between the regional and local metrics. As such, the final349

weighting for NCA4 would not be highly sensitive to using global rather than350

CONUS/Canada metrics, but a study using a more restrictive set of variables351

to assess model quality could potentially be sensitive to domain choice.352

5.2 Skill weighting strength353

The strength of the skill weighting corresponds to the parameter D
s

in Section354

3. For the purpose of NCA4, a conservative value was chosen to minimize the355

potential for overconfidence in future projections from the weighted ensemble.356

This resulted in only very subtle changes in gridded temperature and precipita-357

tion projections for the future (although there are some noticeable di↵erences358

in the uncertainty range, see Figures 7 and 8).359

However, here we consider the impact on temperature projections if a more360

aggressive weighting strategy were used. In Figure 10(a), we show the sensitivity361

of global mean temperature change under RCP8.5 as a function of the skill362

radius. The default value of D
s

= 0.8 produces a small decrease in projected363
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Figure 7: Projections of mean temperature change over CONUS/Canada in
2080-2100, relative to 1980-2000 under RCP8.5. (a-c) show the simple un-
weighted CMIP5 multi-model average, 90th percentile of warming and 10th
percentile of warming using the significance methodology from [2], (d-f) show
the weighted results as outlined in section 4 for models weighted by uniqueness
only and (g-i) show weighted results for models weighted by both uniqueness
and skill.
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Figure 8: As for Figure 7, but for future mean precipitation change under
RCP8.5.
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Figure 9: A series of plots showing Root Mean Square Errors evaluated over
the CONUS/Canada domain as a function of errors assessed over the global
domain. Each point corresponds to a single model in the CMIP5 archive. Plots
are shown for some individual fields (a-e) and (f) RMSE averaged over all 12
available fields listed in Figure 2.
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2080-2100 global mean temperature increase (a warming of 3.7K above 1980-364

2000 levels, compared to the non-skill weighted case of 3.9K, Figure 10(d)).365

As D
s

! 0, the fraction of the percent of the models associated with 90366

percent of the weight decreases, and more weight is placed upon the models367

with higher combined skill scores in Figure 2. If a value of D
s

= 0.4 is used, 90368

percent of the model weight is allocated to just 40 percent of models, and the369

projected warming is decreased further to 3.45K (Figure 10(c)). However, if D
s

370

is reduced further to 0.1, such that 90 percent of weight is placed on only the371

top 5 percent of models (which corresponds to only 2 models: CESM1-CAM5372

and ACCESS1.0), the weighted warming estimate is higher than the unweighted373

case at 4.1K (Figure 10(b)).374

Hence, we find that although a the skill weighting as used in NCA4 has only375

a subtle e↵ect on projected temperatures compared to the unweighted case,376

there is a demonstrable e↵ect when stronger weights are utilized, but there377

is an increased risk of the weighted ensemble being underdispersive (Figure378

4(c)). For very aggressive weighting, projections di↵er significantly from the379

unweighted case but the resulting projection is e↵ectively governed by only the380

best performing few models. Such agressive weighting in the perfect model test381

was found to result in a less skillful projection (Figure 4(b)).382

5.3 Univariate weighting383

The requirements for NCA4 were such that a single set of weights should be384

used for the entire report. However, for some application it might be desirable385

to tailer a set of weights to optimally represent a particular process or projec-386

tion. Here, we consider how using weights assessed on precipitation climatology387

alone could change the result of the projection. The precipitation weighted case388

is formulated identically to the multivariate case but distances are computed us-389

ing RMS di↵erences over the mean precipitation field (over the CONUS/Canada390

domain) only; the selection of D
s

is set to 0.8 times the distance of the best per-391

forming model, and D
u

is taken the 1.5th percentile of the inter-model distance392

distribution as in the multivariate case.393

Figure 11(a) shows the distribution of changes in annual mean grid-level394

precipitation for the late 21st century under RCP8.5. It is notable that there is395

negligible di↵erence between the mean precipitation changes in the unweighted396

case and the multi-variate weighted case, but in the precipitation only case there397

is an increase in regions exhibiting a large drying trend. This implies that a398

multivariate metric has little constraint on precipitation change, but a more399

targeted metric could potentially identify regions which might exhibit extreme400

drying in the future (just as each individual model exhibits some regions of401

extreme drying, but the lack of agreement amongst models on where those402

regions are causes the multi-model mean to lack any such behavior, as noted in403

Knutti et al (2010) [26]).404

We can illustrate this behavior by considering the spatial pattern of precip-405

itation change in the three cases, using unweighted(Figure 11(b)), multivariate406

weighted (Figure 11(c) as in Figure 8) or weighted using only the climatolog-407
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Figure 10: A plot showing the e↵ect of skill weighting strength on global tem-
perature projections. Subplot (a) shows global mean temperature increase for
2080-2100 under RCP8.5 as a function of the skill radius D

s

(blue curve), as well
as the fraction of models with 90 percent of the allocated weight (red curve).
Subplots (b-d) show projected mean temperature maps for 3 cases of D

s

=0.1
(b), 0.4 (c) and 0.8 (d).
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Figure 11: Distribution of changes in annual mean grid-level precipitation pre-
cipitation for the late 21st century under RCP8.5. (a) shows the distribution for
the mean (black) or weighted by all variables (red solid) and weighted by precip-
itation only (red dotted) projection of annual precipitation under RCP8.5. (b-d)
show maps of precipitation change in the style of Figure 8 for each weighting
case.
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ical precipitation only (Figure 11(d)). In the unweighted case, large fractions408

of the continental US show disagreement in the sign of precipitation change.409

Much of the midwest, northwest and southwest Canada for example are colored410

white indicating that models disagree on the sign of change, and drying in the411

southwest is not significant. A multivariate weighting makes little di↵erence to412

annual mean precipitation projections in North America. However, the seasonal413

mean precipitation projections presented in the CCSR (not shown here) di↵er414

substantially from those presented in the Third US National Climate Assess-415

ment during the winter and spring [27]. In those seasons, the stippled regions416

of decreased precipitation deemed confident to be large in the Southwest US417

are decreased in area by weighting. Furthermore, the southern edge of the418

region stippled increases is moved Northward. Summer and fall precipitation419

changes are largely deemed to be small compared to natural variability in both420

assessments and are hatched as described above.421

A precipitation-based metric, however, seems to make a noticeable di↵erence422

to the confidence associated with the weighted projection. There is now clear423

and significant increases in precipitation in the northern part of the US, and424

significant increases in the northeast. There is also more clearly defined drying425

along the west coast and significant drying over the northern Amazon which426

was not evident in the unweighted or multivariate case.427

Hence, it seems that there is potential to constrain the spatial patterns of428

fields which show significant spatial heterogeneity across the multi-model archive429

by considering targeted metrics which might be more directly informative to rel-430

evant processes for that particular projection. One must be cautious as noted in431

Section 5.1, because individual metrics are more susceptible to domain choices432

than the multivariate case, and so such a targeted constraint must be thor-433

oughly investigated before application in a general assessment. However, this is434

a potential line of investigation which would be worthy of future study.435

6 Summary and Discussion436

This study has discussed a potential framework for weighting models in a struc-437

turally diverse ensemble of climate model projections, accounting for both model438

skill and independence. The parameters of the weighting in this case were op-439

timized for using the CMIP5 ensemble for the Climate Science Special Report440

(CSSR) to inform the fourth National Climate Assessment for the United States441

(NCA4); an application which required a weighting strategy targeted towards442

a particular region (CONUS/Canada), with a single set of weights which could443

be applied to a diverse range of projections.444

The solution proposed in this study adapted the idea first discussed in the445

context of model sub-selection in Sanderson et al (2015) [7], and applied it446

to a continuous general weighting scheme (in contrast to the sea-ice specific447

weighting scheme outlined in [19]). Weights were formulated on the basis of448

skill and uniqueness, where skill was assessed by considering the climatological449

bias averaged over a diverse set of variables, and uniqueness was assessed by450
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constructing an inter-model distance matrix from the same set of variables and451

down-weighting models which lie in each others’ immediate vicinity.452

It should be noted that although our likelihood weighting function is empir-453

ical, the functional form satisfies in a simple way the required parameters of the454

weighting scheme. Though the structure of this functional form is not funda-455

mental, it can simply be shown to have some useful features. The technique is456

presented in this paper in a form which maximises clarity and reproducibility,457

but its e↵ect can be described in Bayesian language. The total model weight458

is the posterior likelihood of a given model representing truth. Each model’s459

prior probability of representing truth is given by its independence weighting,460

and the likelihood function is defined for the multivariate dataset using an as-461

sumed Gaussian likelihood profile in a space defined by the the sum of the462

normalized RMSE di↵erences over all variables between each model and the463

observations. However, the application in this paper is for a simple weighting464

scheme only and it is left to further study to formally implement such concepts465

in a Bayesian framework.466

The method provides a single set of weights constructed for NCA4, using467

a multi-variate climatological skill metric and a limited domain size. Two pa-468

rameters must be determined for the weighting algorithm; a radius of model469

skill and one of similarity. The former was calibrated by considering a perfect470

model test where a single model is treated as truth and its historical simulation471

output is treated as observations, immediate neighbors of the test model are472

removed from the archive and the remaining models are used to conduct tests473

which assess skill in reconstructing past and future model performance, as well474

as assessing the risk of producing an underdispersive ensemble which fails to475

encompass the perfect future projection at a given grid point. Using these three476

tests, we take a conservative choice for model weighting which minimizes the477

risk of under-dispersion (i.e. the risk that the real world might lie outside the478

entire weighted distribution of projections at a given gridpoint).479

The similarity parameter is calculated in a qualitative fashion by considering480

cases where models are known to be relatively unique, or where there is a known481

set of closely related models. The parameter is adjusted such that the known482

unique models are given a weight of near unity, and the models with n near-483

identical versions are each given a weight of approximately 1/n.484

The requirements of a large assessment places constraints on the choice of485

parameters for this analysis. Logistical considerations imply that only one set486

of weights can be constructed, and the broad readership and high stakes of the487

assessment mean that any risk of under-dispersion of projected future climate is488

unacceptable for this application. These constraints dictate that only a moder-489

ate weighting of model skill is used, where 90 percent of the weight is allocated490

to 80 percent of models. This, unsurprisingly, creates only a modest change in491

mean projected results and only a small reduction in uncertainty. A stronger492

skill weighting is shown to have a more significant e↵ect on projected changes,493

but with the risk of increased under-dispersion.494

In addition, there exists a weak trade-o↵ between model skill and model495

uniqueness in the CMIP5 ensemble; models which are demonstrably high per-496
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forming also tend to be the ones with the most near replicates in the archive. As497

such, there is a compensating e↵ect of the skill and uniqueness components of498

the weighting algorithm, which tends to mute the e↵ect of the overall weighting499

when compared to the unweighted case. In other words, the unweighted CMIP5500

ensemble is in fact already a skill weighted ensemble to some degree.501

However, although this tradeo↵ is evident in the CMIP5 archive, there is502

no guarantee that such a tradeo↵ is a justification for using an unweighted503

average in future versions of the CMIP archive. A single, highly replicated504

but climatologically poor model present in a future version of the archive could505

significantly bias the simple multi-model mean of a climatological projection. As506

such, it is desirable to have a known and tested weighting algorithm in place to507

produce robust projections in the case of highly replicated, or very poor models.508

Beyond the single set of weights produced for NCA4, the basic structure509

outlined in this study can be used to produce a more targeted weighting for510

a particular projection (as was conducted for sea ice projections in [19]). Our511

provisional results suggest that targeted weights could potentially yield more512

confidence in projections if only a limited set of relevant projections are included,513

especially in fields where projections exhibit high degrees of structural diversity514

within the archive. This tailored weighting approach, however, presents risks515

which necessitate further study - our sensitivity studies suggest that multi-516

variate metrics are more robust to changes in spatial domain than targeted517

metrics, and the exact choice of metrics which should be used to best constrain518

a particular projection is not a trivial matter.519

With this in mind, we propose that future studies should further investi-520

gate how selection of physically relevant variables and domains should be used521

to optimally weight projections of future climate change, and that individual522

projections will need careful consideration of relevant processes in order to for-523

mulate such metrics. Confidence in such weighting approaches is highest if there524

are well understood underlying processes that explain why the chosen metric525

constrains the projection. Until then, we have presented a provisional and con-526

servative framework which allows for a comprehensive assessment of model skill527

and uniqueness from the output of a multimodel archive when constructing528

combined projections from that archive. In so doing, we come to the reassur-529

ing conclusion that for this particular application (i.e., domain and variables)530

the results which would be inferred from treating each member of the CMIP5531

as an independent realization of a possible future are not significantly altered532

by our weighting approach although the localized details of confidence in the533

magnitude of precipitation changes may be a↵ected. However, by establishing534

a framework, we make the first tentative steps away from simple model democ-535

racy in a climate projection assessment, leaving behind a strategy which is not536

robust to highly unphysical or highly replicated models of our future climate.537
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7 Code availability538

Complete MATLAB code for the analysis conducted in this manuscript is pro-539

vided. All CMIP5 data used in this analysis is downloadable from the Earth540

System Grid (https://pcmdi.llnl.gov/projects/esgf-llnl/).541
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