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Abstract. Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project 50 
(PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for 

simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 

127,000 years before present) are described here. These equilibrium simulations are designed to examine the impact 

of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the 

preindustrial period and the continental configurations were almost identical to modern. These simulations test our 55 
understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among 

large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude 

amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an 

opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, 

ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of 60 
freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments 

naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient 

experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and 

tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to 

multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate 65 
reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic 

evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks 

(e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically. 

Keywords: paleoclimate simulations, transient climate evolution, climate-system feedbacks, interglacial, model 

evaluation 70 

1 Introduction 

The modeling of paleoclimate, using physically based tools, has long been used to understand and explain past 

environmental and climate changes (Kutzbach and Street-Perrott, 1985), and is increasingly seen as a strong out-of-

sample test of the models that are used for the projection of future climate changes (Braconnot et al., 2012; Harrison 

et al., 2014; Harrison et al., 2015; Schmidt et al., 2014). The Paleoclimate Modelling Intercomparison Project 75 
(PMIP) has served to coordinate paleoclimate experiments and data-model comparisons for several decades 

(Braconnot et al., 2012; Braconnot et al., 2007a; Braconnot et al., 2007b; Joussaume and Taylor, 1995; Joussaume et 

al., 1999), and now spearheads the paleoclimate contribution to the current phase of the Coupled Model 

Intercomparison Project (CMIP6, Eyring et al., 2016).  

 80 
This paper is part of a suite of five manuscripts documenting the PMIP4 contributions to CMIP6. Kageyama et al. 

(2016) provide an overview on the five selected time periods and the experiments. More specific information is 

given in the contributions for the last millennium (past1000) by Jungclaus et al. (2016), for the last glacial maximum 

(lgm) by Kageyama et al. (2017), for the mid-Pliocene warm period (midPliocene-eoi400) by Haywood et al. 
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(2016), and the present manuscript mid-Holocene (midHolocene) and the previous interglacial (lig127k). PMIP4 has 85 
adopted the CMIP6 categorization where the highest-priority experiments are classified as Tier 1, whereas additional 

sensitivity experiments or dedicated studies are Tier 2 or Tier 3. The standard experiments for the five periods are all 

ranked Tier 1. Tier 2 and 3 experiments absolutely require the corresponding Tier 1 experiment for their analysis, so 

the groups must perform the Tier 1 experiment first. Modelling groups are not obliged to run all PMIP4-CMIP6 

experiments. It is mandatory, however, for all participating groups to run at least one of the experiments that were 90 
run in previous phases of PMIP (i.e., midHolocene or lgm).  

 
The two experiments described here focus on comparing the most recent interglacial epochs and specifically the 

current interglacial (the Holocene) and the previous interglacial (the Last Interglacial, LIG) periods (Fig. 1). These 

two experiments are of interest because they examine the response of the climate system to relatively simple 95 
changes in forcing compared to the present. The main difference in forcing from present was in the latitudinal and 

seasonal distribution of incoming solar radiation (insolation) caused by known changes in the Earth’s orbit; 

greenhouse gas (GHG) concentrations were similar to those of the preindustrial period and the continental 

configurations were also very similar to modern. Differences in orbital configuration between the two interglacial 

periods (Berger, 1978) mean that the insolation changes are stronger in the LIG than in the Holocene, but the 100 
observational basis for evaluating model simulations is more extensive in the Holocene than the LIG because of 

preservation issues. Taken together, these two interglacial periods are good test cases of our mechanistic 

understanding of the interplay between radiative forcing and atmospheric circulation, and opportunities to examine 

connections among large-scale and regional climate changes which give rise to phenomena such as land-sea contrast 

and high-latitude amplification of temperature changes, the regulation of atmospheric CO2 and biogeochemical 105 
cycles, and the waxing and waning of the monsoons.  

 

The Tier 1 interglacial experiments for CMIP6 are time-slice (or equilibrium) experiments at 6000 and 127,000 

years before present (where present is defined as 1950), hereafter referred to as 6 ka (midHolocene) and 127 ka 

(lig127k). The mid-Holocene interval has been the focus for model simulations, model-model comparisons, 110 
paleodata synthesis, and model-data comparison since the beginning of PMIP, and this work has contributed to 

model evaluation and understanding of climate change in the last three major assessments of the Intergovernmental 

Panel on Climate Change (Flato et al., 2013; Folland et al., 2001; Hegerl et al., 2007; Jansen et al., 2007; Masson-

Delmotte et al., 2013). The changes in insolation are characterized by enhanced seasonal contrast in the northern 

hemisphere (NH) (and reduced seasonal contrast in the southern hemisphere, SH), giving rise to warmer NH 115 
summers and a significant enhancement of the NH monsoons (COHMAP Members, 1988; Hely et al., 2014; Lezine 

et al., 2011; Saraswat et al., 2013; Tierney et al., 2017). Systematic benchmarking against pollen-based 

reconstructions of climate variables and lake-level-based water-balance reconstructions (Braconnot et al., 2012; 

Braconnot et al., 2007b; Coe and Harrison, 2002; Harrison et al., 2014; Harrison et al., 2015; Harrison et al., 1998) 

have highlighted that climate models persistently underestimate changes in the monsoon precipitation and produce 120 
too much continental drying (Harrison et al., 2015).  
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Given the long history of coordinated model experiments for 6 ka, this period allows us to assess whether there is an 

improvement in the ability of models to reproduce a climate state different from the modern one. For this reason, the 

Tier 1 midHolocene experiment is one of two possible ‘entry cards’ for PMIP simulations in CMIP6 (Table 1): all 125 
modeling groups contributing to PMIP4-CMIP6 must perform either the midHolocene experiment or a simulation of 

the Last Glacial Maximum (Kageyama et al., 2016). 

 

Although the LIG (129 ka to 116 ka) was discussed in the First Assessment Report of the IPCC (Folland et al., 

1990), it gained more prominence in the IPCC Fourth and Fifth Assessment (AR4 and AR5) because of 130 
reconstructions highlighting that global mean sea level was at least 5 m higher (but probably no more than 10 m 

higher) than present for several thousand years (Dutton et al., 2015a; Jansen et al., 2007; Masson-Delmotte et al., 

2013). Thus the LIG is recognized as an important period for testing our knowledge of climate-ice sheet interactions 

in warm climate states. However, the ensemble of LIG simulations examined in the AR5 (Masson-Delmotte et al., 

2013) was not wholly consistent: the orbital forcing and GHG concentrations varied between the simulations. While 135 
it has been suggested that differences in regional temperatures between models might reflect differences in 

cryosphere feedback strength (Yin and Berger, 2012; Otto-Bliesner et al., 2013) or differences in the simulation of 

the Atlantic Meridional Overturning Circulation (AMOC) (Bakker et al., 2013; Masson-Delmotte et al., 2013), 

differences between models could also have arisen because of differences in the experimental protocols. 

Furthermore, the LIG simulations were mostly made with older and/or lower-resolution versions of the models than 140 
were used for future projections, making it more difficult to use the results to assess model reliability (Lunt et al., 

2013). The Tier 1 lig127k experiment (Table 1) is designed to address the climate responses to stronger orbital 

forcing than the midHolocene experiment using the same state-of-the-art models and following a common 

experimental protocol. It will provide a basis to address the linkages between ice sheets and climate change in 

collaboration with the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) (Nowicki et al., 2016). 145 
 

The midHolocene and lig127k experiments are starting points for examining interglacial climates. A number of other 

experiments are proposed in the current phase of PMIP (PMIP4) to facilitate diagnosis of these Tier 1 experiments 

The Tier 2 simulations will include sensitivity experiments to examine the impact of uncertainties in boundary 

conditions and the role of feedbacks in modulating the response to orbital forcing. Ocean, vegetation, and dust 150 
feedbacks, and the synergies between them, have been a focus in previous phases of PMIP (Braconnot et al., 1999; 

Dallmeyer et al., 2010; Otto et al., 2009; Wohlfahrt et al., 2004) and this allows us to design simple experimental 

protocols to compare the strength of these feedbacks in different climate models. Simulations with prescribed but 

adjusted vegetation cover will be a major focus for both the Holocene and LIG in PMIP4, and comparison of these 

simulations with ESM simulations that include dynamic vegetation will allow exploration of the magnitude of land-155 
surface biases in these latter models. Changes in vegetation and land-surface hydrology are an important control on 

dust emissions (Tegen et al., 2002; Engelstädter et al., 2003), which can affect the strength of the West African 

Monsoon (Konare et al. 2008, Pausata et al. 2016). The examination of the dust feedback will be a new focus in 

PMIP4. In addition, the LIG provides an ideal opportunity to examine the role of cryosphere feedbacks through 
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sensitivity experiments, which will be a focus of additional experiments associated with both the Holocene and the 160 
LIG. One such feedback is the release of freshwater into the ocean and the role of such freshwater forcing in 

generating more abrupt climate changes than would be expected for the smoothly varying changes in insolation 

forcing during an interglacial (Goelzer et al., 2016a; Luan et al., 2015; Stone et al., 2016). Understanding the role of 

feedbacks in general on the generation of abrupt climate changes, and the need to understand the relationship 

between mean climate changes and short-term (annual to multi-decadal) climate variability, leads naturally to a 165 
desire to simulate the transient behavior of the climate system – and such transient experiments are proposed for 

both the Holocene and LIG time periods. New results have highlighted the possibility to use reconstruction of past 

interannual variability from corals and mollusc shells to assess the Holocene simulated changes in variability at the 

scale of the tropical Pacific Ocean (Emile-Geay et al. 2016). Groups are also encouraged to run their models with an 

active land and ocean carbon cycle to assess terrestrial and ocean carbon storage and differences between the two 170 
interglacial periods. 

 

The aim of this paper is to present and explain the experimental designs both for the PMIP4-CMIP6 Tier 1 

interglacial experiments, and for associated Tier 2 and Tier 3 sensitivity and transient experiments. Section 2 

describes and discusses the PMIP4-CMIP6 midHolocene Tier 1/entry card and lig127k Tier 1 simulations. Section 3 175 
describes Tier 2 and Tier 3 PMIP4 sensitivity studies that can be carried out to diagnose these Tier 1 simulations. 

Section 4 briefly describes the paleodata resources, which can be used to evaluate the simulations. 

2 Experimental design for the Tier 1 PMIP4-CMIP6 midHolocene and lig127k simulations  

The core or Tier 1 experiments for the Holocene and the LIG are the midHolocene and lig127k simulations. The 

CMIP DECK (Diagnostic, E v a l u a t i o n  a n d  Characterization of Klima) piControl for 1850 C.E and the 180 
CMIP6 historical experiment (see Eyring et al. 2016 for description of these experiments) are the reference 

simulations to which the paleo-experiments will be compared. Thus, the paleo-experiments must use the same model 

components and follow the same protocols for implementing external forcings as are used in the piControl and 

historical simulations. The midHolocene simulation is one of the PMIP entry cards in the PMIP4-CMIP6 

experiments, which means that groups who run the lig127k simulation must also run either the midHolocene or the 185 
lgm (Last Glacial Maximum) experiment (Kageyama et al., 2016). The boundary conditions for the midHolocene, 

lig127k, and piControl experiments are given in Table 1, and more detailed information is given below. 

2.1 Orbital configuration, solar constant, and insolation anomalies 

Earth’s orbital parameters (eccentricity, longitude of perihelion, and obliquity) should be prescribed following 

Berger and Loutre (1991). These parameters affect the seasonal and latitudinal distribution and magnitude of solar 190 
energy received at the top of the atmosphere and, in the case of obliquity, the annual mean insolation at any given 

latitude (Berger and Loutre, 1991). The DECK piControl simulations are to use the orbital parameters appropriate 

for 1850 C.E (Table 1) (Eyring et al., 2016), when perihelion occurs close to the boreal winter solstice. The exact 

date slightly varies depending on the internal model calendar and the number of days used to define a year. Because 
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of this and the fact that the length of the seasons varies as a function of precession and eccentricity (Joussaume and 195 
Braconnot, 1997), the vernal equinox must be set to noon on March 21th in all the simulations (piControl, 

midHolocene, and lig127k). The orbit at 6 ka was characterized by an eccentricity of 0.018682, similar to 1850 C.E. 

(Table 1). Obliquity was larger (24.105°) and perihelion at 6 ka occurred near the boreal autumn equinox. The orbit 

at 127 ka was characterized by larger eccentricity than at 1850 C.E., with perihelion occurring close to the boreal 

summer solstice (Fig. 2). The tilt of the Earth’s axis was maximal at 131 ka and remained higher than in 1850 C.E. 200 
through 125 ka; obliquity at 127 ka was 24.04° (Table 1). The different orbital configurations for the midHolocene 

and lig127k result in different seasonal and latitudinal distribution of top-of-atmosphere insolation compared to the 

DECK piControl (Fig. 3). Both time periods show large positive insolation anomalies during boreal summer. July-

August anomalies between 40 and 50°N reach about 55-60 W m-2 at 127 ka and 25 W m-2 at 6 ka. The higher 

obliquity at 127 ka and 6 ka contributes to a small but positive annual insolation anomaly compared to preindustrial 205 
at high latitudes in both hemispheres and a slight insolation reduction in the tropics in the annual mean. The global 

difference in insolation forcing between the interglacial experiments and the preindustrial is negligible. 

 

The solar constant prescribed for the midHolocene and lig127k simulations is the same as in the DECK piControl 

simulation, which is fixed at the mean value for the first two solar cycles of the historical simulation (i.e. 1850-210 
1871) (Eyring et al., 2016). This value (1360.7 W m-2) is lower than the value for the solar constant used by some 

models in PMIP3 (1365 W m-2) and this leads to a global reduction of incoming solar radiation compared to the 

PMIP3 experiments (Fig. 4). The slight differences in orbital parameters between the 1850 C.E. reference periods to 

be used for PMIP4-CMIP6 and the 1950 C.E. reference used for PMIP3 leads to seasonal differences in forcing with 

a slight decrease in boreal spring and increase in boreal autumn. The combination of the two factors leads to an 215 
overall reduction: the largest reduction occurs in boreal spring and is about 1.6 W m-2 between 10°S and 40°N.  

2.2 Greenhouse gases 

Ice-core records from Antarctica and Greenland provide measurements of the well-mixed GHGs: CO2, CH4, and 

N2O (Fig. 1). These measurements are given as mole fractions in dry air and are noted as parts per million (ppm) or 

parts per billion (ppb) respectively. For simplicity, we use the term ‘concentration’ for these GHG-levels. By 6 ka 220 
and 127 ka, the concentrations of atmospheric CO2 and CH4 had increased from their respective levels during the 

previous glacial periods, the Last Glacial Maximum and the penultimate glaciation, to values comparable to 

preindustrial levels. 

 

midHolocene. In PMIP4-CMIP6, we use a revised version of an earlier trace gas reconstruction (Joos and Spahni, 225 
2008). The CO2 concentration for the mid-Holocene is derived from ice-core measurements from Dome C (Monnin 

et al., 2001; Monnin et al., 2004) and dated using the AICC2012 age scale (Veres et al., 2013). A smoothing spline 

(Bruno and Joos, 1997; Enting, 1987) with a nominal cut-off period of 3000 years was used to produce a continuous 

CO2 record. This yields a CO2 concentration of 264.4 ppm at 6 ka. Methane has been measured in ice from Antarctic 

ice cores EPICA Dome C (Flückiger et al., 2002), EPICA Dronning Maud Land (EPICA Community Members, 230 
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2006) and Talos Dome (Buiron et al., 2011). For Greenland, methane data are from GRIP (Blunier et al., 1995; 

Chappellaz et al., 1997; Spahni et al., 2003), GISP2 (Brook, 2009), and GISP2D (Mitchell et al., 2013). Both are 

splined with a nominal cut-off period of 200 years. This results in a concentration of 574 ppb for the Antarctic ice 

cores, representative for high latitude Southern Hemisphere air, and of 620 ppb for the Greenland ice cores, 

representative for the high latitude Northern Hemisphere air, and an estimated global mean value of 597 ppb. The 235 
N2O data around 6 ka are from a compilation of published data from EPICA Dome C (Flückiger et al., 2002; Spahni 

et al., 2005) and new, unpublished data measured at University of Bern using ice from Greenland (NGRIP) and 

Talos Dome (TALDICE). The data are splined with a nominal cut-off period of 700 yr and the resulting N2O 

concentration at 6 ka is 262 ppb. 

 240 
The realistic GHG concentrations used for the midHolocene PMIP4-CMIP6 experiment are different from those 

used in the PMIP3 experiments (Braconnot et al. 2012). The PMIP3 experiments were designed simply to examine 

the effects of changes in orbital forcing, and the CO2 concentrations were therefore kept the same as the value 

typically used in pre-industrial experiments (280 ppm) although other GHGs were prescribed from ice-core 

measurements. The use of realistic values for all the GHGs in the PMIP4-CMIP6 midHolocene experiment may 245 
improve comparisons with paleoclimate reconstructions and will ensure that the midHolocene experiment is 

consistent with planned transient Holocene simulations (see Section 3). However, the reduction in CO2 

concentration from 280 to 264.4 ppm will reduce GHG forcing by about 0.3 W m-2 (Myhre et al., 1998), which 

translates to a difference in global mean surface air temperature of -0.24°C when applying an equilibrium climate 

sensitivity of 3°C for a nominal doubling of CO2. Simulations with the IPSL model (Dufresne and co-authors, 2013) 250 
show that this change in the experimental protocol between PMIP3 and PMIP4-CMIP6 yields a global mean cooling 

of 0.24 ± 0.04°C, as expected, with regional differences of up to 0.5°C in parts of Eurasia and in South Africa (Fig. 

5). Although these differences are small overall, they will need to be accounted for in comparisons between the 

PMIP4-CMIP6 midHolocene simulations and previous generations of PMIP 6 ka simulations. 

 255 
lig127k. The LIG GHG concentrations are available solely from Antarctic ice cores. CO2 concentrations can only be 

derived from Antarctic ice, because of potential in-situ CO2 production in the Greenland ice sheet (Tschumi and 

Stauffer, 2000). We also do not have any reliable CH4 and N2O concentrations from Greenland in the LIG due to 

melt layers in the ice, as Greenland temperatures were significantly warmer at that time compared to modern (Fig. 1) 

(NEEM Community Members 2013). For the lig127k simulation (Table 1), we adopt mean values for 127.5-126.5 260 
ka on the AICC2012 age scale (Bazin et al., 2013) from EPICA Dome C (Bereiter et al., 2015; Schneider et al., 

2013) for CO2, from EPICA Dome C and EPICA Dronning Maud Land (Loulergue et al., 2008; Schilt et al., 2010a) 

for CH4, as well as from EPICA Dome C and Talos Dome (Schilt et al., 2010a; Schilt et al., 2010b) for N2O. The 

atmospheric CO2 and N2O concentrations of 275 ppm and 255 ppb, respectively, can be regarded as globally 

representative, while the mean ice core CH4 concentration (662 ppb) is representative for high-latitude Southern 265 
Hemisphere air. A global mean atmospheric CH4 concentration of 685 ppb is adopted for 127 ka, thereby assuming 
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the same difference (23 ppb) between the global mean atmospheric CH4 and Antarctic ice core CH4 values as for the 

mid-Holocene. 

2.3 Paleogeography and ice sheets 

midHolocene. Several lines of evidence indicate that the ice sheets had their modern characteristics by the mid-270 
Holocene, except in a few places such as the Baffin Islands (Carlson et al., 2008b; Clark et al., 2000). While the 

presence of a relic of the Laurentide ice sheet may be the origin of model-data mismatches in the climate of eastern 

North America (Wohlfahrt et al., 2004), the effect is local and small. Cosmogenic surface exposure ages and 

threshold lake records (Carlson et al., 2014; Larsen et al., 2015; Sinclair et al., 2016) also suggest that by 6 ka, the 

Greenland ice sheet was similar in extent to the present. The ice sheet distribution and elevations, land-sea mask, 275 
continental topography and oceanic bathymetry should all be prescribed as the same as in piControl in the 

midHolocene simulation (Table 1).  

 

lig127k. Evidence for the evolution of the ice sheets during the LIG comes mainly from proximal marine records 

(Carlson and Winsor, 2012). The deposition of a detrital carbonate layer in the Labrador Sea, dated to around 128 ka 280 
based on geomagnetic secular variation (Winsor et al., 2012), suggests that ice had retreated from Hudson Bay and 

is taken to indicate the final demise of the Laurentide ice sheet (Carlson, 2008; Nicholl et al., 2012). The 

disappearance of the Eurasian ice sheet is more difficult to constrain because either the proximal marine records lack 

benthic δ18O data, or the benthic δ18O data show trends that are different from those of open ocean records during 

the LIG (Bauch, 2013). The cessation of deposition of ice-rafted debris (IRD) from the Eurasian ice sheet has been 285 
dated to between 128-126 ka using δ18O (Risebrobakken et al., 2006). However, sea-level data (Dutton et al., 2015b) 

suggests that this ice sheet disappeared earlier and was likely gone by ~127 ka. Proximal marine records of the 

Greenland ice sheet document a gradual retreat during the LIG, with minimum extent around 120 ka (Carlson et al., 

2008a; Colville et al., 2011; Stoner et al., 1995; Winsor et al., 2012). However, Greenland-sourced IRD reached a 

minimum similar to the Holocene before ~127 ka (Colville et al., 2011; Winsor et al., 2012).  290 
 

The extent of the Antarctic ice sheet is not directly constrained by data proximal to the ice sheet at 127 ka. Given 

higher-than-present sea levels, the gradual retreat of the Greenland ice sheet, and the lack of other NH ice sheets, it 

seems likely that the Antarctic ice sheet was smaller than present by ~127 ka (Colville et al., 2011; Dutton et al., 

2015a; Dutton et al., 2015b; Mercer, 1978). The existence of ~250 ka Mt. Erebus ash in the ANDRILL site in Ross 295 
Sea could indicate a smaller-than-present West Antarctic ice sheet (WAIS) sometime after ~250 ka (McKay et al., 

2012). The ice-core record from Mount Moulton, West Antarctica could be consistent with deglaciation of much of 

West Antarctica during the LIG, and likely at 130-126 ka (Steig et al., 2015). Standalone ice sheet model 

simulations forced by ocean warming suggest the West Antarctic ice sheet to be a major contributor to LIG global 

mean sea level rise, with contributions also coming from the marine-based portions of the East Antarctic ice sheet 300 
(DeConto and Pollard, 2016). Contributions are 6.0-7.5 m of equivalent sea-level rise, which would explain global 

mean sea level being at least +6 m by ~127 ka (Dutton et al., 2015b). However, because of the difficulty in 
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implementing ice-to-ocean changes for the WAIS and the uncertainties associated with dating the changes in the 

other ice sheets, the paleogeography of the lig127k simulation will be prescribed the same as in the DECK piControl 

simulation (Table 1). In view of the greater uncertainty associated with the prescription of ice sheets in the lig127k 305 
experiment, this aspect of the boundary conditions will be a major focus of sensitivity experiments (see Section 3).  

2.4 Vegetation 

There is abundant evidence for changes in vegetation distribution during the mid-Holocene and the LIG (Goni et al., 

2005; Harrison and Bartlein, 2012; Hely et al., 2014; LIGA Members, 1991; Prentice et al., 2000). However, there is 

insufficient data coverage for many regions to be able to produce reliable global vegetation maps. Furthermore, 310 
given the very different levels of complexity in the treatment of vegetation properties, phenology and dynamics in 

the current generation of climate models, paleo-observations do not provide sufficient information to constrain their 

behavior in a comparable way. The treatment of natural vegetation in the midHolocene and lig127k simulations 

should therefore be the same as in the DECK piControl simulation. That is, depending on what is done in the DECK 

piControl simulation, vegetation should either be prescribed to be the same as in that simulation, or prescribed but 315 
with interactive phenology, or predicted dynamically (Table 1). Uncertainties related to the treatment of vegetation 

in the different simulations will be analyzed through sensitivity experiments (see section 3).  

2.5 Aerosols: tropospheric dust and stratospheric volcanic 

Natural aerosols show large variations on glacial-interglacial time scales, with low aerosol loadings during 

interglacials compared to glacials, and during the peak of the interglacials compared to present day (Albani et al., 320 
2015; deMenocal et al., 2000; Kohfeld and Harrison, 2000; McGee et al., 2013). Atmospheric dust affects radiative 

forcing at a regional scale and can therefore affect precipitation and surface hydrology (Miller et al., 2004; Yoshioka 

et al., 2007) including the monsoons (Konare et al., 2008; Pausata et al., 2016; Vinoj et al., 2014) as well as 

moderating snow albedo feedbacks when sufficient dust is deposited (Krinner et al., 2006). While model simulations 

that are observationally constrained by a global compilation of dust records suggest that the global dust budget was 325 
dominated by NH dynamics during the midHolocene as it is today, the total loading as well as regional patterns of 

dust loading were different (Albani et al., 2015). This motivates the inclusion of changes in dust loading in the 

midHolocene and lig127k simulations (Table 1, Figure 6). 

 

As in the case of vegetation, the implementation of changes in atmospheric aerosol in the midHolocene and lig127k 330 
simulations should follow the treatment used for the DECK piControl and historical simulations. Models with an 

interactive representation of dust should prescribe changes in soil erodibility or dust emissions to account for the 

changes in dust sources during the interglacials.  Although the maps provided by PMIP for this purpose are for mid-

Holocene conditions and from the only model simulation available (Albani et al., 2015), they should be used for 

both the midHolocene and lig127k simulations. For each model configuration, if atmospheric dust loading is 335 
prescribed in the DECK piControl and historical simulations, the midHolocene and lig127k simulations should use 

the three-dimensional monthly climatology of atmospheric dust mass concentrations or aerosol optical depths 
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available from the same data-constrained simulations as the soil erodibility maps. Also available are datasets of the 

dust shortwave and longwave direct radiative forcing. If atmospheric dust loading is not represented in the DECK 

piControl and historical simulations, it should not be included in the midHolocene and lig127k simulations. The 340 
impact of dust on the radiation balance is sensitive to the optical properties prescribed (Perlwitz et al., 2001); it is 

uncertain how optical properties might change during interglacials (Potenza et al., 2016; Royer et al., 1983). 

Uncertainties in the protocol and in the interplay between dust and vegetation will be a focus of the analyses.  

 

There is no observationally-constrained estimate of the volcanic stratospheric aerosol for either the mid-Holocene or 345 
the LIG. The background volcanic stratospheric aerosol used in the CMIP6 DECK piControl should be used for the 

midHolocene and lig127k simulations. Other aerosols included in the DECK piControl should similarly be included 

in the midHolocene and lig127k simulations.  

2.6 Setup and documentation of simulations 

To provide initial conditions for the simulations, it is recommended that a spin-up simulation is performed departing 350 
from the CMIP6 piControl experiment. The length of this spin-up simulation will be model- and resource- 

dependent. However, it should be long enough to minimize at least surface climate trends.  

 
The modelling groups are responsible for a comprehensive documentation of the model system and the experiments. 

Documentation should be provided via the ESDOC website and tools provided by CMIP6 (http://es-doc.org/) to 355 
facilitate communication with other CMIP6 projects. A PMIP4 special issue in GMD and Climate of the Past has 

been opened where the groups are encouraged to publish these documentations. 

 

The documentation should include: 

§ The model version and specifications, like interactive vegetation or interactive aerosol modules etc. 360 
§ A link to the DECK experiments performed with this model version. 

§ Specification of the forcing data sets used and their implementation in the model. The provision of figures 

and tables giving monthly-latitude insolation anomalies and daily incoming solar radiation at the top of the 

atmosphere (TOA) for one year should be provided because this allows the implementation of the most 

critical forcing to be checked. 365 
§ Information about the initial conditions and spin-up technique used.  

§ We request providing information on drift in key variables for a few hundred years at the end of the spin-up 

and the beginning of the actual experiment. These variables are: 

- globally and annually averaged SSTs 

- deep ocean temperatures (global and annual average over depths below 2500m) 370 
              - deep ocean salinity (global and annual average over depths below 2500m) 

- top of atmosphere energy budget (global and annual average) 

- surface energy budget (global and annual average) 

- northern sea-ice (annual average over northern hemisphere) 
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- southern sea-ice (annual average over southern hemisphere) 375 
- northern surface air temperature (annual average over northern hemisphere) 

- southern surface air temperature (annual average over southern hemisphere) 

- Atlantic Meridional Overturning Circulation (maximum overturning stream function in the North Atlantic 

basin between 0 and 80°N below 500m depth) 
- carbon budget (if relevant). 380 

3 PMIP4-CMIP6 Tier 2 and Tier 3 Simulations 

The selection of only two intervals, midHolocene and lig127k, for PMIP4-CMIP6 interglacial experiments is 

designed to maximize both the multi-model ensemble size and opportunities for model evaluation, since both 

periods have been the focus for data synthesis. However, this means that the experiments do not sample the diversity 

in the transient forcings and responses during the LIG and the Holocene. Although transient simulations for these 385 
two periods are included in the suite of PMIP4 simulations (see 3.5), there is utility in examining other interglacial 

climates using equilibrium experiments parallel to the midHolocene and lig127k simulations, particularly in order to 

provide additional samples of the response of the system to insolation forcing. Additional Tier 2 experiments – the 

end of the LIG (116 ka) and the early Holocene (9.5 ka) (see 3.1) – are proposed to address this.  

 390 
Uncertainties in the boundary and initial conditions for the mid-Holocene and LIG mean that the PMIP4-CMIP6 

midHolocene and lig127k simulations may not capture important feedbacks accurately. The major sources of 

uncertainty in the boundary conditions are the prescription of modern vegetation cover by some models, and the 

prescription of modern ice sheets in the lig127k simulation. Both sources of uncertainty can be addressed through 

Tier 2 sensitivity experiments (see 3.2, 3.3). The equilibrium experiments also do not address climate changes 395 
forced by the non-linear behavior of ice sheet-ocean coupling, or the possibility that such feedbacks could give rise 

to abrupt changes in climate superimposed on the more slowly-varying insolation forcing during the Holocene and 

the LIG. This will be addressed through Tier 2 idealized simulations of specific freshwater-forcing events, 

specifically the Heinrich 11 event at the beginning of the LIG and the 8.2 ka event during the Holocene (see 3.4). 

Understanding the interplay among different components of the Earth system in determining the long-term evolution 400 
of LIG and Holocene climate is the major goal of the proposed Tier 3 transient experiments (Section 3.5) to be 

carried out during PMIP4. 

 

Further information and access to datasets is available on PMIP4 web site and will be updated during the course of 

the project (https://pmip4.lsce.ipsl.fr/doku.php/exp_design:index) 405 

3.1 Equilibrium response to alternative states of orbital forcing 

hol9.5k The maximum expression of Holocene orbitally-induced differences in TOA insolation forcing from present 

occurred during the early part of the Holocene, but the climate at this time was still affected by the presence of a 

relic of the Laurentide ice sheet (Carlson et al., 2008b). As a result, summer temperatures in mid- to high latitudes 



	 12	

were cooler than during the mid-Holocene (Carlson et al., 2008b; Renssen et al., 2012; Renssen et al., 2009). The 410 
presence of the ice sheet delayed the response to insolation forcing in monsoon regions (Lezine et al., 2011; Marzin 

et al., 2013). It has also been suggested that the remnant ice-sheet may have counteracted the reduction of ENSO 

variability in response to orbital forcing in the early Holocene (Carre et al., 2014; Luan et al., 2015). Protocols for 

early Holocene experiments were developed in previous phases of PMIP (PMIP2, PMIP3), and provide the basis for 

proposed PMIP4 simulation for 9.5 ka. Since the phase of precession at 9.5 ka is similar to that of 127 ka, this 415 
experiment provides a basis for examination of the similarities in seasonal changes between the two interglacials 

(Braconnot et al., 2008). Following the experimental protocol for the midHolocene simulation, orbital parameters 

should be changed following Berger and Loutre (1991). The extent and topography of the ice sheet should be 

prescribed using either ICE-6G or GLAC-1D, as proposed by the PMIP deglaciation working group (Ivanovic et al., 

2016). GHG concentrations can also be prescribed from the last deglaciation experiment (Table 2) 420 
 

lig116k Continental ice sheet growth and associated sea level lowering started at ~116 ka, marking the end of 

the LIG (Stirling et al., 1998). Simulations with climate models that include feedbacks among the atmosphere, 

ocean, land, and sea ice are able to simulate sufficient cooling to initiate ice sheet growth when forced with the 116 

ka orbital conditions reducing NH summer insolation (Herrington and Poulsen, 2012; Jochum et al., 2012). 425 
However, the result is sensitive to the atmospheric CO2 concentration used. To test the ability of the CMIP6 and 

PMIP4 models to simulate glacial inception, we propose a sensitivity experiment using orbital parameters for 116 ka 

(lig116k). The CO2 concentration should be prescribed as 273 ppm (Bereiter et al., 2015; Schneider et al., 2013). All 

other forcings and boundary conditions will remain the same as the lig127k simulation (Table 2)  

3.2 Sensitivity to Prescribed Vegetation  430 

Except in the case of models with dynamic vegetation, the midHolocene and lig127k simulations will be run with 

prescribed preindustrial vegetation cover because of the lack of a comprehensive and reliable global data set of 

vegetation for the two periods. However, pollen and macro-fossil evidence show that boreal forest extended farther 

north than today in the mid-Holocene (Bigelow and al., 2003; Prentice et al., 2000; Binney et al., 2017) and, except 

in Alaska and central Canada, extended to the Arctic coast during the LIG (Edwards et al., 2003; LIGA, 1991; 435 
Lozhkin and Anderson, 1995). Pollen and other biogeographical/geomorphological and paleohydrological evidence 

also indicate northward extension of vegetation into modern-day desert areas, particularly in northern Africa, both in 

the mid-Holocene (Drake et al., 2011; Hely et al., 2014; Larrasoana et al., 2013; Lezine et al., 2011; Prentice et al., 

2000; Tierney et al., 2017) and during the maximum phase of the LIG (Castaneda et al., 2009; Hooghiemstra et al., 

1992). Given the impact of increased woody cover on albedo and evapotranspiration, these vegetation changes 440 
should have profound impacts on the surface energy and water budgets and may help to explain mismatches 

between simulated and reconstructed high-latitude (Muschitiello et al., 2015) and monsoon climates (Braconnot et 

al., 1999; Claussen and Gayler, 1997; Pausata et al., 2016) in both time periods.  

 

We propose sensitivity experiments for the midHolocene and lig127k to explore the feedbacks between vegetation 445 
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and climate. Vegetation cover in the NH high-latitudes should be changed from tundra to boreal forest and the 

Sahara Desert replaced by evergreen shrub to 25°N and savanna/steppe poleward of 25°N. Ideally, these regional 

changes should be made separately in order to diagnose the interaction between high-latitude and low-latitude 

climates, and a third experiment could be made implementing both changes. In each experiment, all other boundary 

conditions should be implemented as in the baseline midHolocene and lig127k simulations (Table 2)   450 
 

Sensitivity experiments will also be required to characterize the uncertainties related to the prescription of dust fields 

in the mid-Holocene and LIG simulations, but it is difficult to anticipate the form of such experiments until the Tier 

1 experiments are diagnosed. A first step could be to investigate the vegetation feedback on emission in simulations 

with interactive dust exploiting the vegetation sensitivity analyses.  455 

3.3 Sensitivity to Prescribed Ice Sheets  

The midHolocene and lig127k simulations will be run with prescribed modern ice sheets and paleogeography. 

However, it is highly likely that the Antarctic ice sheet was smaller than present by ~127 ka, most probably because 

of the disappearance of the WAIS, and that the Greenland ice sheet was reduced in extent compared to present. 

Given that only about 3-4 m sea level rise are covered by contributions from ocean thermal expansion (McKay et al., 460 
2011), land based glaciers (Marzeion et al., 2012), and melting of the Greenland Ice Sheet (NEEM Community 

Members, 2013; Masson-Delmotte et al., 2013), the remaining sea level rise is most likely to be linked to a mass 

loss from the Antarctic ice sheet. We propose a sensitivity experiment lig127k-ais to test the impact of a smaller-

than-present Antarctic ice sheet, using a reduced ice-sheet configuration obtained from off-line simulations with 

their own models or the model results such as those from DeConto and Pollard (2016) or Sutter et al. (2016). These 465 
authors used a dynamic ice sheet model, forced with climate model output and calibrated to reproduce LIG sea-level 

estimates, to simulate the Antarctic ice sheet at 128 ka. All other boundary conditions should be implemented as in 

the baseline lig127k simulation. An additional sensitivity simulation lig127k-gris to complement the lig127k 

simulations is proposed in which the Greenland ice sheet is configured to its minimum LIG extent are also of 

interest, using configurations obtained from off-line simulations, for example from ISMIP6. 470 

3.4 Freshwater Forcing 

Sensitivity to the H11 meltwater event during the early LIG. Heinrich layers in the North Atlantic, containing high 

concentrations of IRD, record multiple examples of prolonged iceberg discharge during the past 500 ka (Hemming, 

2004; Marino et al., 2015; McManus et al., 1999). Heinrich event 11 (H11) is a well-documented example that 

occurred from ~135-128 ka (Marino et al., 2015). The associated freshwater flux has been estimated as peaking at 475 
~0.3 Sv at ~132.5 ka and tapering off thereafter (Marino et al., 2015), and is broadly consistent with an estimate of 

0.19 Sv at 130 ka based on coral records (Carlson, 2008). There is also evidence of a rapid sea level rise associated 

with this meltwater pulse, estimated at ~70 m or 28±8 m ka-1 (~0.32±0.09 Sv) during the deglacial transition (Grant 

et al., 2012). Model simulations have shown that the freshwater forcing of H11, including its cessation, may be 

important for explaining the evolution of climate through the early part of the LIG (Goelzer et al., 2016a, 2016b; 480 
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Holden et al., 2010; Loutre et al., 2014; Stone et al., 2016). We propose a sensitivity experiment (lig127k-H11) to 

examine the impact of the H11 event. The insolation anomalies at 130 ka are similar to those at 127 ka. Therefore 

the experiment can be made by adding a persistent flux of 0.2 Sv to the North Atlantic between 50 and 70°N for 

1000 years, with all other boundary conditions implemented as in the baseline lig127k simulation (Table 2) 

 485 
Sensitivity to the 8.2 ka freshwater event during the early Holocene. While the climate impact of the 8.2 ka event is 

well documented, the magnitude of the freshwater forcing and its duration are less well constrained. There are 

generally thought to be two components to the freshwater forcing in the early Holocene, a background flux from the 

Laurentide ice sheet (Hillaire-Marcel et al., 2007; Licciardi et al., 1999) and catastrophic flux from the drainage of 

Lake Agassiz (Barber et al., 1999; Clarke et al., 2004; Teller et al., 2002). Lake Agassiz appears to have drained in 490 
several flood events of relatively short duration, but with an estimated total discharge into the Labrador Sea of ca 

151,400 km3 (Andrews et al., 1999; Andrews et al., 1995; Clarke et al., 2009; Clarke et al., 2004; Ellison et al., 

2006; Hillaire-Marcel et al., 2007; Kerwin, 1996; Lajeunesse and St-Onge, 2008; Lewis et al., 2012; Roy et al., 

2011). The background flux is smaller (ca 0.13 Sv) but persistent for several hundred years (Carlson et al., 2009; 

Carlson et al., 2008b; Clarke et al., 2009; Hillaire-Marcel et al., 2007). The proposed sensitivity experiment 495 
(hol8.2k) can use the orbital, ice sheet, and GHG boundary conditions of the 9.5 ka experiment.  The ‘Lake + 

Ice_100 yrs’ scenario of Wagner et al (2013) is more consistent with ice dynamics and the data of Carlson et al 

(2009) than the shorter ‘1-yr flood scenarios (Morrill et al., 2013) and should be adopted for this sensitivity 

experiment. That is, modeling groups should impose a single input of 2.5 Sv for one year followed by a background 

freshwater flux of 0.13 Sv for 99 years (Table 2). This freshwater flux is added to the Labrador Sea, but modeling 500 
groups can choose whether to add it uniformly over the whole of the Labrador Sea or only over part of the area.  

 

These simulations should be run a minimum of 100 years after then end of the pulse and if possible even longer, 

preferably until the Atlantic Meridional Overturning Circulation (AMOC) has recovered to its initial state.  

3.5 Transient Holocene and LIG simulations 505 

Transient simulations provide an opportunity to examine the time-dependent evolution of climate in response to 

forcings and feedbacks. Transient simulations of the last deglaciation are a major focus in PMIP4 (Ivanovic et al., 

2016). These simulations will be run for the period 21 to 9 ka with time-varying orbital forcing, greenhouse gases, 

ice sheets and other geographical changes. The later part of this experiment is obviously of interest for comparison 

with the early Holocene experiments. However, we are also proposing transient simulations focusing on the 510 
Holocene and the LIG. 

 

Using the PMIP-CMIP6 midHolocene simulation as a starting point, we propose a transient simulation of the last 

6000 years (past6k). In this simulation, both orbital parameters and GHGs will be changed following Berger and 

Loutre (1991) and ice-core measurements (as described in Section 2.2). Changes in paleotopography over the past 6 515 
ka are small and, for simplicity and consistency with the midHolocene simulation, we propose using modern values 
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throughout. Vegetation and aerosols will also be fixed at preindustrial values, except for groups running fully 

dynamic vegetation and/or aerosol models where the initial state of these components will be derived from their 

midHolocene simulation. Alternatively, some groups may start the Holocene transient simulation from the end of the 

last deglaciation experiment at 9 ka, incorporating changes in the evolution of ice sheets and paleotopography 520 
consistent with that experiment. A proposed LIG transient simulation (lig127to121k) will be run from 127 to 121 ka, 

using appropriate changes in orbital forcing but with all other boundary conditions specified as in the lig127k 

simulation. These simulations as well as simulations planned by some modeling groups with climate-ice sheet 

models will be important as input for addressing the role of coupling between climate and the ice sheets.  

4 Paleoenvironmental data and climate reconstructions for comparison to model simulations  525 

The ability to evaluate the realism of the Tier 1 PMIP4-CMIP6 simulations and the various sensitivity experiments 

is central to PMIP. Some paleoenvironmental observations can be used for direct comparison with model outputs, 

including e.g. simulated water balance against lake-level reconstructions (e.g., Coe and Harrison, 2002) or simulated 

vegetation patterns against pollen-based vegetation reconstructions (e.g., Perez Sanz et al., 2014). Such qualitative 

comparisons are often adequate to evaluate simulations when, as is the case with regional climate changes in the 530 
mid-Holocene and LIG, the changes are large and regionally coherent (Harrison and Bartlein, 2012). There are also 

quantitative reconstructions of climate variables from a wide variety of archives. There are uncertainties associated 

with such reconstructions (Harrison et al., 2016), both statistical and resulting from an incomplete understanding of 

the climate controls on specific types of records, and these uncertainties need to be taken into account in 

comparisons with simulations. However, an increasing number of process-based models can be used to translate 535 
climate model outputs into explicit simulations of specific paleo-records (Emile-Geay and Tingley, 2016; Li et al., 

2014; Thompson et al., 2011), allowing uncertainties in process understanding to be made explicit. Drawing on 

ongoing work for the LGM and the use of ocean biochemistry, tracer and isotopic modeling, efforts will be made to 

isolate key features of the ocean reconstructions that should be reproduced by climate models. 

  540 
The major analytical focus for the Holocene experiments is on systematic benchmarking (Harrison et al., 2015) of 

the midHolocene simulation, analysis of feedbacks, and elucidation of the relationship between mean climate state 

and interannual to centennial variability. Analysis of the midHolocene simulation and associated sensitivity 

experiments benefits from the fact that there has been a major focus on data synthesis for this time period (Bartlein 

et al., 2011; Bigelow and al., 2003; Daniau et al., 2012; Emile-Geay et al., 2016; Hessler et al., 2014; Kohfeld and 545 
Harrison, 2000; Leduc et al., 2010; Marchant et al., 2009; Marlon et al., 2013; Pickett et al., 2004; Prentice et al., 

2000). Thus the number of records and spatial coverage of quantitative reconstructions are relatively extensive 

(Bartlein et al., 2011; Hessler et al., 2014). There are gaps in coverage from continental regions, particularly in the 

SH, but this situation is likely to improve in the near future (Flantua et al., 2015; Herbert and Harrison, 2016). 

Knowledge of ocean conditions during the mid-Holocene is poor and likely to remain so, in part because of 550 
incomplete understanding of the causes of differences between sea-surface temperature reconstructions based on 

different biological groups and in part because the signal-to-noise ratio in the reconstructions is small due to other 
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methodological uncertainties (Hessler et al., 2014; Jonkers and Kucera, 2015; Rosell-Mele and Prahl, 2013). There 

are several sources of information about short-term climate variability during the Holocene, including tree-ring 

records, speleothems, corals and molluscs. However, there are major gaps in data coverage from the tropical oceans 555 
that challenge our understanding of ENSO variability; the distribution of speleothem records is limited to karst 

areas; and few tropical trees show clear-cut seasonality in growth. More comprehensive syntheses of these data are 

needed, and there are major challenges in combining the different data sources to yield large-scale reconstructions of 

climate variability. It will also be necessary to develop appropriate methods to use these data for comparison with 

simulations, focusing on temporal statistics and teleconnection patterns (Emile-Geay et al., 2016; Emile-Geay and 560 
Tingley, 2016). 

 

There are many individual records documenting the evolution of climate through the Holocene, including 

quantitative climate reconstructions (Wanner et al., 2008). Synthetic products have either focused on reconstructions 

of global temperature changes (Clark et al., 2012; Marcott et al., 2013; Shakun et al., 2012), or are available as 565 
geographically explicit data sets only for a limited number of climate variables in a few regions such as North 

America or Europe (Davis et al., 2003; Gajewski, 2015; Mauri et al., 2014; Viau and Gajewski, 2009; Viau et al., 

2006). The only exception to this is the Global Lake Status Data Base (Kohfeld and Harrison, 2000), which provides 

qualitative estimates of the change in lake water balance through time globally. The reliability of global temperature 

estimates depends on the representativeness of the data included; this point has been made abundantly clear from 570 
comparisons of records of hemispheric temperature changes during the last millennium (Fernandez-Donado et al., 

2013; Moberg, 2013). Currently available reconstructions of global temperature changes during the Holocene are 

heavily biased towards marine records, making it imperative that the reliability of these records is assessed using 

continental reconstructions (Davis et al., 2015; Liu et al., 2014). The lack of geographically explicit reconstructions 

for tropical regions and the SH would limit analysis of the Holocene transient simulations, but efforts are underway 575 
to improve this situation.  

  

The LIG is the most suitable of the pre-Holocene interglacial periods as a focus in PMIP4-CMIP6 because of the 

relative wealth of data compared to earlier interglacial periods. However, there is an order of magnitude less 

information than for the Holocene, and there are larger uncertainties in dating of specific events. This means that the 580 
LIG data-model comparisons will focus on large-scale features, such as the strength of the high-latitude 

amplification of warming and the role of snow and sea-ice feedbacks in this warming. There will also be a major 

focus on the tropical water cycle. These analyses will exploit available datasets for the LIG which mostly document 

surface sea and air temperatures across the globe (Anderson et al., 2006; Brewer et al., 2008; Capron et al., 2014; 

Hoffman et al., 2017; McKay et al., 2011; Turney and Jones, 2010) although recent efforts also synthesize 585 
reconstructions of sea ice changes (Esper and Gersonde, 2014; Sime et al., 2013), of the deep ocean circulation 

(Oliver et al., 2010), and to a lesser extent the tropical hydrological cycle (Govin et al., 2014). In addition, several 

existing maps are reporting vegetation changes in the NH high latitudes (Bennike et al., 2001) and changes in lake 

area in the Sahara (Petit-Maire, 1999).  
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 590 
There are also syntheses of quantitative climate reconstructions for the LIG (Turney and Jones, 2010; McKay et al., 

2011; Capron et al., 2014; Hoffman et al., 2017), which have been used for model evaluation (e.g. Lunt et al., 2013; 

Otto-Bliesner et al., 2013). A critical evaluation of these LIG data syntheses is available in Capron et al. (2017), and 

we summarize here key aspects of the comparison. The major limitation in using the data syntheses by Turney and 

Jones (2010) and McKay et al. (2011) for analysis of the lig127k simulations and associated sensitivity experiments 595 
is that they are compilations of information about the maximum warmth during the LIG. Given that warming was 

not synchronous globally (Bauch and Erlenkeuser, 2008; Cortese et al., 2007; NEEM Community Members, 2013; 

Govin et al., 2012; Masson-Delmotte et al., 2010; Mor et al., 2012; Winsor et al., 2012), these syntheses do not 

represent a specific time slice. A more recent compilation by Capron et al. (2014) has used harmonized chronologies 

for ice and marine records to produce records of the change in high-latitude temperature compared to present for 600 
four 2000-year long time slabs, and this approach has been expanded to include the fifth time slab (128-126 ka) for 

comparison with the lig127k simulation (Capron et al., 2017). Following a similar strategy, Hoffman et al. (2017) 

propose the first global marine compilation with harmonized chronologies for the LIG, with time slabs available at 

129 and 125 ka, but not 127 ka (note that a high-latitude subset of the Hoffman et al. (2017) compilation at 127 ka is 

available in Capron et al., 2017). However, even though these compilations are based on harmonized chronologies, 605 
dating uncertainties during the LIG can still be several thousand years depending on the type of archive and the 

dating methods (Govin et al., 2015). Furthermore, the different response scales of different components of the 

climate system means that records from the 128-126 ka time slab may still bear the imprint of the previous 

deglaciation (Fig. 1) (Capron et al., 2017). In any case, and as with the early Holocene experiments, the lig127k 

simulation will not solely reflect the insolation forcing. It is therefore recommended that data-model comparisons 610 
focus on using the temporal evolution of climate, as captured in the available Capron et al. (2014) and the Hoffman 

et al. (2017) time-series, to assess the plausibility of the lig127k simulation. 

 

The public-access reconstruction data sets currently available for the mid-Holocene and LIG serve different 

functions and address different aspects of the climate system. Modeling groups running mid-Holocene and LIG 615 
simulations, or sensitivity experiments, are encouraged to use multiple reconstruction data sets for a full diagnosis of 

the simulations. Many of these data sets provide measures of the uncertainty of the reconstructions and data-model 

comparisons should be designed to take these uncertainties into account. 

5 Conclusions  

The PMIP4-CMIP6 midHolocene and lig127k simulations provide an opportunity to examine the impact of two 620 
different changes in radiative forcing on climate at times when other forcings were relatively similar to present. 

Together with planned sensitivity experiments, this focus on the two interglacials will allow us to explore the role of 

feedbacks in the climate system and to quantify their contribution to large-scale phenomena relevant to future 

projections such as land-sea contrast and high-latitude amplification of temperature changes. They will also allow us 

to address the implications of changes in forcing and feedbacks for the tropical circulation and monsoons – again an 625 
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issue that is relevant to interpreting future projections. Given that both periods have been foci for model-model and 

data-model comparisons during previous phases of PMIP, a major focus during CMIP6 will be on evaluating the 

realism of the midHolocene and lig127k simulations using a wide range of paleoenvironmental data and 

paleoclimate reconstructions. This evaluation will be a direct out-of-sample test of the reliability of state-of-the-art 

models to simulate climate changes, and particularly the climate warming.  630 
 

Neither one of these interglacial simulations is a perfect analogue for the future, and each interglacial has distinct 

differences in forcings and in the initial state of the climate system. In a sense this is advantageous because it allows 

us to investigate the response of the system under different conditions. Sensitivity studies allow us to assess which 

results may be directly transferrable to future climate projections. In the case of the midHolocene simulations, we 635 
have the advantageous ability to assess Earth’s response to elevated boreal summer insolation alone with which we 

can compare model results against a plethora of observations. Estimated boreal summer warming this period is 

roughly equivalent to the summer warming simulated for the mid to late 21st century. In the case of the lig127k 

simulations, we have another advantageous end member where boreal summer insolation was even greater than the 

middle Holocene and that forced eventually higher-than present sea levels. Higher temperatures in the polar 640 
regions, particularly during the summer months, directly influence sea ice and the ice sheets. The data 

evidence provides a means of evaluating if we are capturing this sensitivity correctly in models being used 

for projections of future climate change. Consequently, this provides a potential imperfect analogue for the end 

of this century and beyond. For example, Blaschek et al. (2015) found that the influence of freshwater forcing due to 

Greenland ice sheet melting is the same, regardless of the background climate. In other cases, the response may be 645 
more strongly dependent upon the initial state, such as the response of polar amplification in Greenland, which was 

found to be sensitive to the prescribed ice-sheet elevation (Masson-Delmotte et al., 2006). 

 

PMIP4 will collaborate with other CMIP6 projects (Kagayema et al., 2016, Table 3). The output from the lig127k 

simulation, for example, will be used to force standalone ice sheet experiments (ism-lig127k-std) in ISMIP6. This 650 
will complement the suite of standalone ISMIP6 ice sheet experiments (Nowicki et al., 2016; http://www.climate-

cryosphere.org/activities/targeted/ismip6) for the recent past and future and will add to increase our understanding of 

the ice-sheet sensitivity to climate changes. The PMIP4-CMIP6 midHolocene and lig127k simulations, and 

associated sensitivity experiments, are also relevant to analyses of sea-ice feedbacks to climate in SIMIP (Notz et 

al., 2016) and to assessments of the role of dust forcing by AerChemMIP (Collins et al., 2017). Beyond CMIP6, the 655 
planned PMIP4-CMIP6 interglacial simulations are relevant to the Grand Challenges set by the World Climate 

Research Programme (WCRP). Both the midHolocene and the lig127k simulations are relevant to the Grand 

Challenge “Clouds, Circulation and Climate Sensitivity”, which has a major focus on the controls on the monsoon 

circulation. Also, the lig127k simulation is particularly relevant to the Grand Challenge “Melting Ice and Global 

Consequences”, which addresses the stability of the ice sheets. Those simulations carried out with biogeochemical 660 
cycles enabled are relevant to the Grand Challenge “Carbon Feedbacks in the Climate System”. 

6 Data availability and distribution 
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The forcing and boundary condition data sets described in this paper are available in the PMIP4 repository 

https://pmip4.lsce.ipsl.fr/doku.php/exp_design:index. After final acceptance of this manuscript, they will be made 

available also through Input4MIPs (https://esgf-node.llnl.gov/projects/input4mips/, see the living document 665 
“Input4MIPs summary” there on the progress of this process).  

 

The Tier 1 midHolocene and lig127k simulations are part of the CMIP6 experiment family and data will be 

distributed through the official CMIP6 channels via the Earth System Grid Federation (ESGF, 

https://earthsystemcog.org/projects/wip/CMIP6DataRequest). A minimum of 100 years of output is required to be 670 
uploaded for each simulation (usually the final 100 years of the simulation). However, given the increasing interest 

in analyzing multi-decadal variability (e.g. Wittenberg, 2009) and the availability of reconstructions of ENSO (El 

Niño-Southern Oscillation) and other modes of variability (see Section 3), modeling groups are encouraged to 

provide outputs for at least 500 years if possible. 

 675 
In addition, the difference in orbital configuration between 127 ka, 6 ka and preindustrial means that there are 

differences in month and season length that should be accounted for in calculating seasonal changes (Kutzbach and 

Gallimore, 1988). To be able to account for this effect when comparing the simulations to the paleoclimate 

reconstructions, daily outputs of at least surface 2-meter temperature (tas), precipitation (pr) and 10-meter winds 

(uas) should be archived. If not possible, a less accurate but probably adequate approach, would be to use a program 680 
that provides an approximate estimate of monthly means on the fixed-angular celestial calendar from fixed-day 

calendar. 

 

Data from PMIP4-only Tier 2 and 3 simulations must be processed following the same standards as Tier 1 for data 

processing (e.g. CMOR standards) and should be distributed via the PMIP4 ESGF or the CMIP6 ESGF Tier 2 and 685 
Tier 3 databases. Modeling groups producing these simulations are responsible to secure suitable space on ESGF 

nodes. These experiments will follow the same naming, variable convention and format, and documentation requests 

as Tier 1 PMIP4-CMIP6 experiment so as to be compliant with ESGF database requirements. 

 

The list of variables requested for the PMIP4-CMIP6 paleoclimate experiments can be found here: http://clipc-690 
services.ceda.ac.uk/dreq/u/PMIP.html. This request is presently processed by the CMIP6 Working Group for 

Coupled Modeling Infrastructure Panel (WIP) into tables, which define the variables included in the data request to 

the modelling groups for data to be contributed to the archive. The most up-to-date list including all variables 

requested for CMIP6 can be found at the WIP site:  

 695 
proj.badc.rl.ac.uk/svn/exarch/CMIP6dreq/tags/latest/dreqPy/docs/CMIP6_MIP_tables.xlsx 

 
The last two columns in each row list MIPs associated with each variable. The first column in this pair lists the 

MIPs, which are requesting the variable in one or more experiments. The second column lists the MIPs proposing 

experiments in which this variable is requested. 700 
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As supplementary to this manuscript we provide version 1.00.05 (April 2017) of the table in Appendix A. We note, 

however, that this document is still in development and inconsistencies may still exist.  

 

The only variables defined specifically in PMIP are those describing oxygen isotopes for model systems that 705 
calculate these data interactively (Kageyama et al., 2016). 
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Table 1. Forcings and boundary conditions. More details can be found in the Section numbers indicated in 
parentheses. 1290 

 1850 C.E. (DECK 

piControl)1 

6ka (midHolocene)2 127ka (lig127k)2 

Orbital parameters (2.1) CMIP DECK piControl   

   Eccentricity 0.016764 0.018682 0.039378 

   Obliquity (degrees) 23.459 24.105 24.040 

   Perihelion - 180 100.33 0.87 275.41 

   Vernal equinox Fixed to noon on March 21 Fixed to noon on March 21 Fixed to noon on March 21 

Greenhouse gases (2.2)    

   Carbon dioxide (ppm) 284.3  264.4 275 

   Methane (ppb) 808.2  597 685 

   Nitrous oxide (ppb) 273.0  262 255 

   Other GHG gases CMIP DECK piControl 0 0 

Solar constant (Wm-2) (2.1) TSI: 1360.747 Same as piControl Same as piControl 

Paleogeography (2.3) Modern Same as piControl Same as piControl 

Ice sheets (2.3) Modern Same as piControl Same as piControl 

Vegetation (2.4) CMIP DECK piControl Prescribed or interactive as 
in piControl 

Prescribed or interactive as 
in piControl 

Aerosols (2.5) 
Dust, Volcanic, etc. 

CMIP DECK piControl Prescribed or interactive as 
in piControl 

Prescribed or interactive as 
in piControl 

 
1 More information on the CMIP DECK piControl and CMIP6 historical protocols can be found in the Geoscientific 
Model Development Special Issue on the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental 
Design and Organization and at  http://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 
2 Datasets for midHolocene and lig127k are available on the PMIP4 web page: 1295 
https://pmip4.lsce.ipsl.fr/doku.php/exp_design:index  
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Table 2. Summary of PMIP4 Tier 2 and Tier3 sensitivity simulations complementing PMIP4/CMIP6  
Tier 1 interglacial experiments. More details can be found in the Section numbers indicated in parentheses. 
PMIP4-CMIP6 sensitivity experiments: Tier 2 simulations  

Experiments Holocene Last Interglacial  

Orbital forcing and trace gases 

(3.1) 

hol9.5k: Early Holocene  
• Orbital: 9.5 ka1 
• Ice sheet: ICE-6G or GLAC-1D 

reconstruction3  
• GHG: same as for the 

deglaciation experiment3 

lig116k: Glacial inception 
• Orbital: 116 ka2 
• CO2: 273 ppm 
• Other forcings and boundary 

conditions:  as for lig127k 

Sensitivity to vegetation (3.2) midHolocene-veg 
• prescribed boreal forests in 

Arctic and shrub/savanna over 
Sahara (together and in turn)  

lig127k-veg  
• prescribed boreal forests in 

Arctic and shrub/savanna over 
Sahara (together and in turn) 

Sensitivity to Ice-Sheet (3.3)  lig127k-ais and lig127k-gris 
• Antarctic ice sheet at its 

minimum LIG extent 
• Greenland ice sheet at its 

minimum LIG extent 
Test to freshwater flux (3.4) hol8.2k: 8.2 ka event  

• Meltwater flux of 2.5 Sv for one 
year added to the Labrador Sea 
followed	by	0.13	Sv	for	99	
years 

• Other forcings and boundary 
conditions: as for hol9.5k 

• Initial state: hol9.5k simulation 

lig127k-H11: Heinrich 11 
meltwater event  
• Meltwater flux of 0.2 Sv to the 

North Atlantic between 50 and 
70°N for 1000 years 

• Other forcings and boundary 
conditions: as for lig127k 

• Initial state: lig127k simulation 

PMIP4-CMIP6 sensitivity experiments: Tier 3 simulations 	
Transient simulations (3.5) 

(Note : Exploratory and flexible set 
up) 

past6k: transient Holocene 
• Transient evolution in Earth’s 

orbit and trace gases 
• Other boundary conditions (land 

use, solar, volcanism) may be 
considered by some groups 

• Initial state: midHolocene 

lig127to121k: transient LIG 
• Transient evolution in Earth’s 

orbit and trace gases 
• Other boundary conditions (ice 

sheets) may be considered by 
some groups 

• Initial state: lig127k 
 
1Orbital parameters for 9.5 ka: eccentricity = 0.0193, obliquity = 24.23, perihelion-180 = 303 1300 
2Orbital parameters for 116 ka: eccentricity = 0.0414, obliquity = 22.49, perihelion-180 = 94.17 
3Ivanovic et al., 2016; available on the PMIP4 web page 
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Figure 1: Forcing and climatic records across the Last Interglacial (LIG, left) and the Holocene (right). 
Records are displayed in panels A) to J) as anomalies relative to their average value of the last 1000 years. A and B) 1305 
21st June insolation across latitudes; C and D) Atmospheric CO2 concentration (Siegenthaler et al., 2005; Schneider 
et al., 2013; Monnin et al., 2001 Monnin et al., 2004); E and F) Atmospheric CH4 concentration Loulergue et al., 
2008); G and H) Antarctic surface air temperature reconstruction (Jouzel et al., 2007); I and J) Greenland ice δ18O: 
from NEEM ice core (NEEM-community-members, 2013) in dark grey and from NGRIP ice core NorthGRIP-
community-members, 2004) in black. Note that NEEM ice δ18O is shifted by +2‰. K) LIG maximum global mean 1310 
sea level (GMSL) relative to present-day, uncertainties in the amplitude are indicated by the shading (see Dutton et 
al., 2015a for a review). Time of maximum varies between reconstructions. No significant sea level variations are 
reported throughout the Holocene compared to present-day. NGRIP ice δ18O is displayed on the GICC05 annual 
layer-counted timescale (Svensson et al., 2008) over the last 20 ka and on the AICC2012 chronology (Bazin et al. 
2013, Veres et al. 2013)d across the 119-110 ka time interval. All other ice core records are displayed on the 1315 
AICC2012 chronology, which is coherent, by construction with the GICC05 time scale over the last 60 ka (Bazin et 
al., 2013, Veres et al., 2013, ). Vertical yellow lines indicate 127 and 6 ka, the time intervals chosen to run the 
coordinated PMIP4-CMIP6 lig127k and midHolocene simulations.  
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Figure 2. Orbital configurations for piControl, midHolocene, and lig127k experiments. Note that aspect ratio 1320 
between the two axes of the ellipse has been magnified to better highlight the differences between the periods. 
However, the change in ratio between the different periods is proportional to the real values. In these graphs VE 
stands for vernal equinox, SS for summer solstice, AE for autumnal equinox, and WS for winter solstice. The 
numbers along the ellipse are the number of days between solstices and equinoxes. 
 1325 
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Figure 3. Latitude-month insolation anomalies (6ka-1850, 127ka-1850, 127ka-6ka) computed using either the 
celestial calendar (top) or the modern calendar (bottom), with vernal equinox on March 21 at noon, to compute 
monthly averages (W m-2). 1330 
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Figure 4. Difference in incoming solar radiation at the top of the atmosphere (W m-2) between PMIP4 and 
PMIP3 protocols, a) considering the changes in Earth’s orbital parameters between 1850 and 1950 and the 1335 
reduction of the solar constant from 1365 to 1360.7 between these two PMIP phases and b) only the changes in 
Earth’s orbital parameters.  
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 1340 
Figure 5. Impact of the changes in trace gases specified for 6 ka between PMIP3 and PMIP4 on surface air 
temperature (°C) and precipitation (mm d-1) as estimated with the IPSLCM5A model. Only significant values are 
plotted in colors.   
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Figure 6. Maps of dust from observationally-constrained simulations with the Community Climate System 
Model for the midHolocene (Albani et al., 2015). a. Active sources for dust emissions for the midHolocene and the 1350 
piControl (Albani et al., 2016). b. Dust deposition (g m-2 a-1) in the midHolocene. c. Ratio of midHolocene / 
piControl dust deposition.  
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Appendix A: Variable request 1355 
 
This list represents what is currently available from the official CMIP6 source 
(http://proj.badc.rl.ac.uk/svn/exarch/CMIP6dreq/tags/latest/dreqPy/docs/CMIP6_MIP_tables.xlsx).   
 
For updates, users should refer to the website with the PMIP data request 1360 
(https://pmip4.lsce.ipsl.fr/doku.php/database:pmip4request#the_pmip4_request). 
 


