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Abstract. Recently, several Lagrangian microphysical models have been developed which use a1

large number of (computational) particles to represent a cloud. In particular, the collision process2

leading to coalescence of cloud droplets or aggregation of ice crystals is implemented differently3

in the various models. Three existing implementations are reviewed and extended, and their perfor-4

mance is evaluated by a comparison with well established analytical and bin model solutions. In this5

first step of rigorous evaluation, box model simulations with collection/aggregation being the only6

process considered have been performed for the three well-known kernels of Golovin, Long and7

Hall.8

Besides numerical parameters like the time step and the number of simulation particles (SIPs)9

used, the details of how the initial SIP ensemble is created from a prescribed analytically defined10

size distribution is crucial for the performance of the algorithms. Using a constant weight tech-11

nique as done in previous studies greatly underestimates the quality of the algorithms. Using better12

initialisation techniques considerably reduces the number of required SIPs to obtain realistic re-13

sults. From the box model results recommendations for the collection/aggregation implementation14

in higher dimensional model setups are derived. Suitable algorithms are equally relevant to treating15

the warm-rain process and aggregation in cirrus.16

1 Introduction17

The collection of cloud droplets or the aggregation of ice crystals is an important process in liquid18

and ice clouds. By changing the size, number, and in the case of ice the shape of hydrometeors,19

collection and aggregation affect the microphysical behaviour of clouds and thereby their role in the20

climate system.21

The warm rain process (i.e. the production of precipitation in clouds in the absence of ice) de-22

pends essentially on the collision and subsequent coalescence of cloud droplets. At its initial stage,23
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however, condensational growth governs the activation of aerosols and the following growth of cloud24

droplets, which might initiate the collection process if they become sufficiently large. Then, collec-25

tion produces drizzle or raindrops, which are able to precipitate from the cloud, affecting lifetime26

and organisation of clouds (e.g. Albrecht, 1989; Xue et al., 2008).27

In ice clouds, sedimentation, deposition growth and in particular radiative properties depend on28

the ice crystals’ habits (Sölch and Kärcher, 2011, and references therein). Ice aggregates scatter29

more strongly shortwave radiation than pure ice crystals of the same mass. Recent simulation results30

suggest that contrail-cirrus and natural cirrus can be strongly interwoven. In the mixing area with31

ice crystals of both origins being present, a prominent bimodal spectrum occurs and enhances the32

probability of collisions (Unterstrasser et al., 2016).33

The temporal change of the droplet number distribution by the collision and subsequent coales-34

cence of droplets (or any other particles) is described by the stochastic collection equation (SCE),35

also known as kinetic collection equation, coagulation equation, Smoluchowksi or population bal-36

ance equation (e.g. Wang et al., 2007). It yields:37

∂fm(m,t)
∂t

=
1
2

m∫

0

K(m′,m−m′)fm(m′, t)fm(m−m′, t) dm′

−
∞∫

0

K(m,m′)fm(m,t)fm(m′, t) dm′, (1)38

where fm(m)dm is the number concentration within an infinitesimal interval around the mass m.39

The first term (gain term) accounts for the coalescence of two smaller droplets forming a new40

droplet with mass m, the second term (loss term) accounts for the coalescence of m-droplets with41

any other droplets forming a larger droplet. The collection kernel K(m,m′) describes the rate42

by which a m-droplet-m′-droplet-collection occurs. Due to the symmetry of the collection kernel43

(K(m,m′) = K(m′,m)) the first term of the right-hand side can also be written as
∫m/2

0
K(m′,m−44

m′)fm(m′, t)fm(m−m′, t) dm′.45

For several kernel functions (mostly of polynomial form) analytic solutions exist for specific initial46

distributions (Golovin, 1963; Berry, 1967; Scott, 1968). The Golovin kernel (sum of masses) is given47

by48

K(m,m′) = b (m+ m′). (2)49

Solutions for more realistic kernels (Long, 1974; Hall, 1980; Wang et al., 2006) and arbitrary initial50

distribution can be obtained with various numerical methods mainly using a bin representation of the51

droplet size distribution (Berry and Reinhardt, 1974; Tzivion et al., 1987; Bott, 1998; Simmel et al.,52

2002; Wang et al., 2007). The hydrodynamic kernel is defined as53

K(r,r′) = π(r + r′)2 |wsed(r)−wsed(r′)|Ec(r,r′), (3)54
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based on the radius r and the sedimentation velocity wsed. Parametrisations of the collection ef-55

ficiency Ec are given, e.g. by Long (1974) or Hall (1980). In the above formula, the differen-56

tial sedimentation is the driver of collections. No same-size collisions can occur, i.e. K(r,r) = 0.57

More sophisticated expressions for K(r,r′) have been derived to include turbulence enhancement58

of the collisional growth, which also allow same-size collisions (K(r,r) > 0) (e.g. Ayala et al., 2008;59

Grabowski and Wang, 2013; Chen et al., 2016).60

Solving (1) demands simplifications in the representation of the droplet spectrum for which sev-61

eral numerical models have been developed. Spectral-bin models (e.g. Khain et al., 2000) represent62

the spectrum by dividing it into several intervals, so-called bins. This approach enables the predic-63

tion of the temporal development of the droplet number concentration in each bin by using finite64

differences or more sophisticated numerical techniques (e.g. Bott, 1998). The accuracy of these65

models is primarily determined by the number of used bins (usually on the order of 100), which66

makes them computationally challenging and prohibits their use in day-to-day applications like nu-67

merical weather prediction. Less challenging but less accurate, cloud microphysical bulk models68

compute the temporal change of integral quantities of the droplet spectrum (e.g. Kessler, 1969;69

Khairoutdinov and Kogan, 2000; Seifert and Beheng, 2001). These are usually equations for the70

temporal evolution of bulk mass (so-called one-moment schemes), and additionally number con-71

centration (two-moment schemes) or radar reflectivity (three-moment schemes), which describe the72

change of the entities of cloud droplets and rain drops (in the case of warm clouds). The separation73

radius between cloud droplets and rain drops depends on the details of the bulk scheme, but generally74

cloud droplets (up to 20 to 40µm in radius) are assumed to have negligible sedimentation fall veloci-75

ties, while larger drops, frequently subsumed as rain drops, have significant sedimentation velocities76

to cause collision/coalescence. The interactions of cloud and rain drops are therefore described in77

terms of self-collection (coalescence of cloud (rain) drops resulting in cloud (rain) drops), autocon-78

version (coalescence of cloud droplets resulting in rain drops) and accretion (collection of cloud79

droplets by rain drops). A third alternative for computing cloud microphysics has been developed80

in the recent years: Lagrangian cloud models (LCMs). These models represent cloud microphysics81

on the basis of individual particles. Similar to spectral-bin models, LCMs enable the detailed rep-82

resentation of droplet spectra but inherently avoid spurious numerical diffusion in condensational83

and collisional growth usually affecting the results of spectral-bin models (Andrejczuk et al., 2010;84

Arabas and Shima, 2013).85

To our knowledge, five fully coupled LCMs for warm clouds exist, which are described in Andrejczuk et al.86

(2008); Shima et al. (2009); Riechelmann et al. (2012); Arabas et al. (2015) and Naumann and Seifert87

(2015) and have been extended or applied in various problems (e.g. Andrejczuk et al., 2010; Arabas and Shima,88

2013; Lee et al., 2014; Hoffmann et al., 2015). For ice clouds, three models exist (Paoli et al., 2004;89

Shirgaonkar and Lele, 2006; Sölch and Kärcher, 2010) which have been applied to natural cirrus90

(Sölch and Kärcher, 2011) and, in particular, to contrails (e. g. Paoli et al., 2013; Unterstrasser, 2014;91
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Unterstrasser and Görsch, 2014). In the context of ice clouds and warm clouds, different names92

are used for processes that are similar, in particular in terms of their numerical treatment (depo-93

sition/sublimation vs. condensation/evaporation, collection vs. aggregation). Conceptually similar94

are particle based approaches in aerosol physics (Riemer et al., 2009; Maisels et al., 2004) which95

account for coagulation of aerosols (DeVille et al., 2011; Kolodko and Sabelfeld, 2003).96

So far, no consistent terminology has been used in the latter publications. Various names have97

been used for the same things by various authors. We point out that super droplet, computational98

droplet and simulation particle (SIP) all have the same meaning and refer to a bunch of identical99

real cloud droplets (or ice crystals). The number of real droplets represented in a SIP is denoted100

as weighting factor or multiplicity. Moreover, Lagrangian approaches in cloud physics have been101

named Lagrangian Cloud Model (LCM), super droplet method (SDM) or particle based method. In102

this paper, we use the terms SIP, weighting factor νsim and LCM. Here droplet refers to either real103

droplets or ice crystals.104

Usually, only the liquid water or the ice of a cloud are described with a Lagrangian representation,105

whereas all other physical quantities (like velocity, temperature and water vapour concentration) are106

described in Eulerian space (see also discussion in Hoffmann, 2016). SIPs have discrete positions107

xp = (xp,yp, zp) within a grid box. The position is regularly updated obeying the transport equation108

∂xp/∂t = u. Microphysical processes like sedimentation and droplet growth are treated individually109

for each SIP. Interpolation methods can be used to evaluate the Eulerian fields at the specific SIP110

positions. This implicitly assumes that all νsim droplets of the SIPs are located at the same position.111

On the other hand, the droplets of a SIP are assumed to be well-mixed in the grid box in LCM112

treatment of collection and sometimes condensation. Then, the number concentration represented113

by a single SIP, e. g., is given by νsim/∆V , where ∆V is the volume of the grid box.114

Lists of used symbols and abbreviation are given in Tables 1 and 2.115

2 Description of the various collection/aggregation implementations116

We use the terminology of Berry (1967), where flnr and glnr denote the number and mass density117

function with respect to the logarithm of droplet radius lnr. The relations glnr(r) = mflnr(r) and118

flnr(r) = 3mfm(m) hold. The latter designates the number density function with respect to mass119

and obeys the transformation property of distributions: fy(y)dy = fx(x(y))dx. For consistency with120

previous studies, glnr is used for plotting purposes, whereas fm and gm are more relevant in the121

following analytical derivations.122

The moments of order k of the mass distribution fm (= number density function with respect to123

mass) are defined as:124

λk(t) =
∫

mkfm(m,t)dm. (4)125
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Table 1. List of symbols.

Symbol Value/Unit Meaning

fm, f̃m kg−1 m−3, 1 (normalised) droplet number concentration per mass interval

gm,glnr m−3, kg m−3 droplet mass concentration per mass interval/per logarithmic radius interval

m, m′ kg mass of a single real droplet

mbb kg bin boundaries of the bin grid

m̄ = λ1/λ0 =N/M kg mean mass of all droplets

nbin,l 1 droplet number in bin l

r, r′ m droplet radius

rlb m threshold radius in νrandom,lb-init

rcritmin m lower cut-off radius in singleSIP-init

wsed m s−1 sedimentation velocity

DNC = λ0 m−3 droplet number concentration

Ec 1 collection/aggregation efficiency

K m3 s−1 collection/aggregation kernel

LWC = λ1 kg m−3 droplet mass concentration, liquid water content

Mbin,l kg total droplet mass in bin l

NSIP 1 number of SIPs

NBIN 1 number of bins

αlow,αmed,αhigh 1 parameters of the νrandom-init method.

∆t s time step

∆V m3 grid box volume

η 1 parameter in RMA algorithm and singleSIP-init method

κ 1 number of bins per mass decade

λk kgk m−3 moments of the order k

µ kg single droplet mass of a SIP

νcritmax 1 maximum number of droplets represented by a SIP

νcritmin 1 minimum number of droplets represented by a SIP

ν 1 number of droplets represented by a SIP

ξ 1 splitting parameter of AON algorithm

χ = µ ν, χ̃ = χ/M kg, 1 total droplet mass of a SIP

N = λ0∆V 1 total droplet number

M= λ1∆V kg total droplet mass

Z = λ2 ∆V kg2 second moment of droplet mass distribution (radar reflectivity)
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Table 2. List of abbreviations.

AON All-Or-Nothing algorithm AIM Average Impact algorithm

DSD droplet size distribution LCM Lagrangian Cloud Model

PDF probability density function RMA Remapping algorithm

SIP simulation particle

The low order moments represent the number concentration (DNC = λ0) and the mass concentra-126

tion (LWC = λ1). The analogous extensive properties λk(t) ∆V are the total droplet number N ,127

total droplet mass M and radar reflectivity (Z = λ2 ∆V ). For a given SIP ensemble, the moments128

can be simply computed by129

λk,SIP (t) =

(
NSIP∑

i=0

νiµi
k

)
/∆V, (5)130

where µi is the single droplet mass of SIP i and NSIP is the number of SIPs inside a grid box. For131

reasons of consistency with Wang et al. (2007), we translate the SIP ensemble into a mass distribu-132

tion gm in bin representation and then compute the moments with the formula133

λk,BIN (t) =
NBIN∑

i=0

gm(mi, t)(m̃bb,l)k−1 ln10
3κ

(6)134

(cf. with their equation 48).135

The initialisation is successful for a given parameter set, if the moments of the SIP ensemble136

λk,SIP are close to the analytical values λk,anal. For an exponential distribution (as used in this137

study), the probability density function (PDF) reads as138

fm(m) =
N

∆V m̄
exp

(
−m

m̄

)
, (7)139

the moments are given analytically by140

λk,anal(t) = (k− 1)! N m̄k/∆V, (8)141

where k! is the faculty of k and m̄ =M/N the mean mass (Rade and Westergren, 2000).142

Throughout this study, the initial parameters of the droplet size distribution (DSD) are DNC0 =143

2.97× 108 m−3 and LWC0 = 10−3 kg m−3 (implying a mean radius of 9.3µm) as in Wang et al.144

(2007). The higher moments are λ2,anal = 6.74×10−15 kg2m−3 and λ3,anal = 6.81×10−26 kg3m−3.145

2.1 Initialisation146

In our test cases, all microphysical processes except collection are neglected and an exponential DSD147

is initialised. In the results section, we will demonstrate that the outcome of the various collection148

algorithms critically depends on how this initial, analytically defined, continuous DSD is translated149

into a discrete ensemble of SIPs. Hence, the SIP initialisation is described in some detail.150
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2.1.1 SingleSIP-init and MultiSIP-init151

First, the mass distribution is discretized on a logarithmic scale. The boundaries of bin l are given152

by mbb,l = mlow10l/κ and mbb,l+1, where mlow is the minimum droplet mass considered. The153

bin centre is computed using the arithmetic mean m̄bb,l = 0.5 (mbb,l+1 + mbb,l). The bin size is154

∆mbb,l = (mbb,l+1−mbb,l). The mass increases tenfold every κ bins. Several previous studies used155

the parameter s with mbb,l+1/mbb,l = 21/s to characterise the bin resolution. The parameters s and156

κ are related via s = κ log10(2)≈ 0.3κ.157

For each bin, the droplet number is approximated by νb = fm(m̄bb,l)∆mbb,l∆V and one SIP with158

weighting factor νsim = νb and droplet mass µsim = m̄bb,l is created, if νb is greater than a lower159

cut-off threshold νcritmin. No SIP is created, if νb < νcritmin. Moreover, no SIPs are created from160

bins with radius r < rcritmin. We will refer to this as deterministic singleSIP-init. In its probabilistic161

version, the mass µsim is randomly chosen within each bin l and νsim = fm(µsim) ∆mbb,l∆V is162

adapted accordingly. By default, rcritmin = 0.6µm and νcritmin = η× νmax, which is determined163

from the maximal weighting factor within the entire SIP ensemble νmax and the prescribed ratio164

of the minimal to the maximal weighting factor η = 10−9. For larger rcritmin it is advantageous to165

initialise one additional "residual" SIP that contains the sum of all neglected contributions.166

Following Unterstrasser and Sölch (2014, see their Appendix A), we introduce the multiSIP-init167

technique. It is similar to singleSIP-init technique, except that we additionally introduce an upper168

threshold νcritmax. If νb > νcritmax is fulfilled for a specific bin, then this bin is divided into κsub =169

⌈νb/νcritmax⌉ sub-bins and a SIP is created for each sub-bin. The multiSIP-init technique gives a170

good trade-off between resolving low concentrations at the DSD tails and high concentrations of the171

most abundant droplet masses.172

So far, we introduced initialisation techniques with a strict lower threshold νcritmin with no SIPs173

created in bins with νb < νcritmin. We can relax this condition by introducing—what we call—174

a weak threshold. This means, that in such low contribution bin (with νb < νcritmin) we create a175

SIP with the probability pcreate = νb/νcritmin and weighting factor νsim = νcritmin. Having many176

realisations of initial SIP ensembles, the expectation value of the droplet number represented by177

such SIPs, νcritmin · pcreate + 0 · (1− pcreate), equals the analytically prescribed value νb. Using a178

strict threshold the droplet number would be simply 0 in those low contribution bins. In a related179

problem, such a probabilistic approach has been shown to strongly leverage the sensitivity of ice180

crystal nucleation on the numerical parameter νcritmin. This led to a substantial reduction of the181

number of SIPs that are required for converging simulation results (Unterstrasser and Sölch, 2014).182

Using the probabilistic version and a weak lower threshold is particularly important if different183

realisations of SIP ensembles of the same analytic DSD should be created. The number of SIPs184

NSIP depends on κ, νcritmin,νcritmax and the parameters of the prescribed distribution.185

Moreover, the singleSIP-init is used in a hybrid version, where different κ-values are used in186

specified radius ranges.187
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2.1.2 νconst-init and νdraw-init188

The accumulated PDF F (m) is given by
∫m

0
f̃m(m′)dm′ with the normalised PDF f̃m = fm/λ0.189

First, the size NSIP of the SIP ensemble that should approximate the initial DSD is specified. For190

each SIP, its mass µi is reasonably picked by191

µi = F−1(rand()),192

where rand() generates uniformly distributed random numbers ∈ [0,1]. In case of the νconst-init,193

the weighting factors of all SIPs are equally νi = νconst =N/NSIP . This init method reproduces194

SIP ensembles similar to the ones in Shima et al. (2009) or Hoffmann et al. (2015). As a variety of195

the νconst-init method, the weighting factors νi in the νdraw-init method are simply perturbed by196

νi = 2 rand()νconst.197

For the case of an exponential distribution, the following holds for the SIPs i = 1,NSIP :198

µi =−m̄ log(rand()).199

In the literature, this approach is known as inverse transform sampling. A proof of correctness can200

be found in classical textbooks, e.g. Devroye (1986, their section II.2).201

2.1.3 νrandom-init202

The third approach allows specifing the spectrum of weighting factors that should be covered by203

the SIP ensemble. Similar to the νdraw-init method, the weighting factors are randomly determined.204

Whereas the latter method produced a SIP ensemble with weighting factors uniformly distributed205

in ν, the νrandom-init produces weighting factors uniformly distributed in log(ν) and covering the206

range [N 10αlow , N 10αhigh ]. The eventual number of SIPs depends most sensitively on the param-207

eter αhigh, which controls how big the portion of a single SIP can be.208

SIPs with weighting factors νi =N 10(αlow+(αhigh−αlow)·rand()) are created, until
∑NSIP

j=1 νj ex-209

ceeds N . The weighting factor of the last SIP is corrected such that
∑NSIP

j=1 νj =N holds. Now the210

mass µi of each SIP is determined by the following technique: The first SIP represents the smallest211

droplets and covers the mass interval [0,m1], whereas the last SIP represents the largest droplets in212

the interval [mNSIP−1,∞]. The SIPs i in between cover the adjacent mass intervals [mi−1,mi]. The213

boundaries are implicitly determined by
∫mi

0
fm(m′)dm′ ∆V =

∑i
j=1 νj . The total mass contained214

in each SIP is given by χi =
∫mi

mi−1
fm(m′)m′dm′ ∆V and the single droplet mass by µi = χi/νi.215

For the case of an exponential distribution, the following holds for the interval boundaries and the216

SIPs i = 1,NSIP :217

mi =−m̄ log


N −

i∑

j=0

νj


218
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and219

µi =
(

mi−1− m̄

exp(mi−1/m̄)
− mi− m̄

exp(mi/m̄)

)N
νi

.220

The above formulas must be carefully implemented such that numerical cancellation errors are kept221

tolerable.222

Experimenting with the SIP-init procedure, several optimisations have been incorporated. First,223

the ν-spectrum is split into two intervals [N 10αlow , N 10αmed ] and [N 10αmed , N 10αhigh ]. We224

alternately pick random values from the two intervals. Without this correction, it happened that225

several consecutive SIPs with small weights and hence nearly identical droplet masses are created,226

which increases the SIP number without any benefits.227

Going through the list of SIPs, the droplet masses increase and hence the individual SIPs contain228

gradually increasing fractions of the total grid box mass. This can lead to a rather coarse repre-229

sentation of the right tail of the DSD. Two options to improve this have been implemented. In the230

νrandom,rs-option, the νi-values are reduced by some factor, that increases, as
∑i

j=1 νj approaches231

N . In the νrandom,lb-option, ν-values are randomly picked up to a certain radius threshold rlb. Above232

this threshold, SIPs are created with the singleSIP-method used on a linear bin.233

2.1.4 Comparison234

Figure 1 shows the weighting factors and other properties of the initial SIP ensemble, which may235

affect the performance of the algorithms. Each column shows one class of initialisation techniques.236

For a certain realisation, the first row shows the weighting factors νi of all SIPs as a function of their237

represented droplet radius ri. Each dot shows the (νi, ri)-pair of one SIP. For the singleSIP-init, the238

dots are uniformly distributed along the horizontal axis, as one SIP is created from each bin (with239

exponentially increasing bin sizes). The according ν-values relate directly to the prescribed DSD.240

The higher fm∆m, the more droplets are represented in a SIP. No SIPs smaller than rcritmin =241

0.6µm are initialised and the ν-values range over nine orders of magnitude consistent with η =242

10−9. The MultiSIP-init introduces an upper bound of νcritmax = 2 · 106 for ν. This threshold is243

effective over a certain radius range where the SIPs have lower ν-values compared to the singleSIP-244

init and are also more densely distributed along the horizontal axis. For the νconst-init, all SIPs use245

ν = νconst, whereas for the νdraw-init the ν-values scatter around this value. For νconst and νdraw,246

the ν-values are chosen independently of the given DSD contrary to the latter techniques. However,247

for both techniques, the density of the dots along the r-axis is correlated to fm∆m.248

The νrandom-init technique randomly picks ν-values which are distributed over a larger range249

compared to the νdraw-init. In fact, they are uniformly distributed in log(ν). The range of possi-250

ble ν-values can be adjusted and is chosen similar to the singleSIP/multiSIP by setting αhigh =251

−2,αmed =−3 and αlow =−7. One possible advantage compared to the singleSIP-approach could252

be that the occurrence of certain ν-values is not limited to a certain radius range. In the singleSIP-253
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Figure 1. Characteristics of the various SIP initialisation methods (as given on top of each panel): Weighting

factors νi(ri) of an initial SIP ensemble, the mean weighting factors ν̄(r), the occurrence frequency of the

νi-values and the resulting mass density distributions glnrare displayed (Row 1 to 4). Row 1 displays data of

a single realisation, whereas rows 2 to 4 show averages over 50 SIP ensembles. The bottom row shows the

moments λ0, λ1, λ2 and λ2 normalised by the respective analytical value. Every symbol depicts the value of

a single realisation. The nearly horizontal line connects the mean values over all realisations. In the displayed

examples, κ = 20 in the singleSIP-init, κ = 20, νcritmax ≈ 2 · 106 in the multiSIP-init, NSIP = 80 in the

νconst, νdraw-init and (αhigh,αmed,αlow) = (10−2,10−3,10−7) in the νrandom-inits (see black bars in top

right panel). The vertical bar depicts the threshold radius rlb.

10

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-271, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 28 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



init, the smallest ν-values occur only at the left and right tail of the DSD, whereas in the νrandom-254

approach the smallest ν-values (down to N 10αlow ) can appear over the whole radius range. The255

horizontal bars in the plot indicate the values of αlow,αmed and αhigh and the vertical bar the256

threshold radius rlb.257

The second row shows average ν-value of all SIPs in a certain size bin. All init techniques are258

probabilistic and the average is taken over 50 independent realisations of SIP ensembles. Not sur-259

prisingly, the average ν of the νdraw-method is identical to νconst. Moreover, also for the νrandom-260

init the average ν-value is constant over a large radius range. Only in the right tail, the ν-values drop261

as intended. The third row shows the occurrence frequency of weighting factors.262

To display DSDs represented by a SIP ensemble, a SIP ensemble must be converted back into263

a bin representation. For this, we establish a grid with resolution κplot = 4, count each SIP in its264

respective bin, i.e. SIP i with mbb,l < µi ≤mbb,l+1 contributes to bin l via Mbin,l = Mbin,l +µi×νi265

and nbin,l = nbin,l +νi. We note that all displayed DSDs in this study will use κ = 4, irrespective of266

the κ-value chosen in the initialisation. The fourth row shows such DSDs, again as an average over267

50 SIP ensemble realisations. We find that any init technique is, in general, successful in producing268

a meaningful SIP ensemble as the "back"-translated DSD matches the originally prescribed DSD269

(black). Hence, the moments λk,SIP match the analytical values λk,anal for 0≤ k ≤ 3, as shown in270

the fifth row. Nevertheless for the νconst- and νdraw-init, the spread between individual realisations271

can be large and they deviate substantially from the analytical reference. The singleSIP/multiSIP and272

νrandom, on the other hand, guarantee that each individual realisation is close to the reference.273

2.2 Description of Hypothetical algorithm274

First, we present a hypothetical algorithm for the treatment of collection/aggregation in an LCM,275

which would probably yield excellent results. However is prohibitively expensive in terms of com-276

puting power and memory, as NSIP increases drastically over time until the state is reached where277

each SIP represents exactly one real droplet. Nevertheless, the presentation of this algorithm is useful278

for introducing several concepts which will partly occur in the subsequently described "real-world"279

algorithms.280

Whereas condensation/deposition and sedimentation may be computed using interpolated quanti-281

ties which implicitly assumes that all droplets of a SIPs are located at the same point, the numerical282

treatment of collection usually assumes that the droplets of a SIP are spatially uniformly distributed,283

i.e. well-mixed within the grid box. An approach, where the vertical SIP position is retained in the284

collection algorithm and larger droplets overtaking smaller droplets is explicitly modelled, is de-285

scribed in Sölch and Kärcher (2010), is not treated here.286

Following Gillespie (1972) and Shima et al. (2009), the probability Pij that one droplet with mass287

mi collides with one droplet with mass mj inside a small volume δV within a short time interval δt288
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is given by:289

Pij = Kij δt δV −1, (9)290

where Kij = K(mi,mj).291

For SIPs i and j containing νi and νj real droplets in a grid box with volume ∆V , on average292

νcoll = Pij νi νj collections between droplets from SIP i and SIP j occur. The average rate of such293

i− j-collections (i 6= j) to occur is:294

∂νcoll(i, j)
∂t

= νi Kij νj∆V −1 =: νioij =: Oij . (10)295

So-called self-collections, collisions of the droplets belonging to the same SIP (i = j), are described296

by:297

∂νcoll(i, i)
∂t

= 2 ·
(νi

2
Kii

νi

2
∆V −1

)
=

1
2
νi Kii νi∆V −1 =: νioii =: Oii, (11)298

assuming that the SIP is split into two portions, each containing one half of the droplets of the original299

SIP. The factor of 2 originates from the collections of each half, which have to be added to gain the300

total number of self-collections for SIP i. Accordingly, the diagonal elements of the matrices oij and301

Oij differ from the off-diagonal elements by an additional factor of 0.5. In terms of concentrations302

(represented by SIPs in a grid box with volume ∆V ), we can write303

∂ncoll(i, j)
∂t

= Kij ni nj (12)304

for collections between different SIPs and305

∂ncoll(i, i)
∂t

=
1
2

Kii n2
i (13)306

for self-collections.307

In the hypothetical algorithm, the weighting factor of SIP i is reduced due to collections with all308

other SIPs and self-collections and reads as309

∂νi

∂t
=−

NSIP∑

j=1

∂νcoll(i, j)
∂t

=−
NSIP∑

j=1

Oij . (14)310

The droplet mass µi in SIP i is unchanged.311

For each i− j-combination, a new SIP k is generated:312

∂νk

∂t
= Oij and µk = µi + µj (15)313

To avoid double counting only combinations with i ≥ j are considered.314

The rate equations for the weighting factors can be numerically solved by a simple Euler forward315

step: The weighting factor of existing SIPs is reduced by316

ν∆
i :=




NSIP∑

j=1

Oij


∆t (16)317
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Figure 2. Treatment of a collection between two SIPs in the Remapping Algorithm (RMA), Average Impact

Algorithm (AIM) and All-Or-Nothing Algorithm (AON).

leading to318

ν∗i = νi− ν∆
i , (17)319

or, equivalently,320

ν∗i = νi


1−∆t

NSIP∑

j=1

oij


 . (18)321

For new SIPs k we have322

νk = 0+ Oij ·∆t. (19)323

Per construction the algorithm is mass-conserving subject to rounding errors.324

In each time step, NSIP,add = NSIP (NSIP − 1)/2 new SIPs are produced and the new number325

of SIPs is NSIP
∗ = NSIP + NSIP,add. After nt time steps, the number of SIPs would be of order326

(NSIP,0)nt which is not feasible.327

In the following subsections, algorithms are presented that include various approaches to keep the328

number of SIPs in an acceptable range.329

In the following the various algorithms are described and pseudo-code of the implementations330

is given. For the sake of readability, the pseudo-code examples show easy-to-understand imple-331

mentations. The actual codes of the algorithms are, however, optimised in terms of computational332

efficiency.333

2.3 Description of the Remapping (RMA) algorithm334
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Algorithm 1 Pseudo-code of the Remapping algorithm

1: INIT BLOCK

2: Given: Ensemble of SIPs; Specify: κ,η,∆t

3: for l = 1 to lmax do {Create temporary bin}

4: mbin,l = mbin,low10l/κ

5: end for

6: TIME ITERATION

7: while t<Tsim do

8: LOSS BLOCK {Compute reduced bin contribution of existing SIPs}

9: for i = 1 to NSIP do

10: Calculate ν∗i according to Eq. 18

11: Select bin l with mbb,l < µi ≤mbb,l+1

12: nbin,l = nbin,l + ν∗i

13: Mbin,l = Mbin,l + ν∗i ·µi

14: end for

15: GAIN BLOCK {Compute bin contribution of coalescing droplets}

16: for all i < j ≤NSIP do

17: k++

18: Compute νk according to Eq. 19

19: µk = µi + µj

20: Select bin l with mbb,l < µk ≤mbb,l+1

21: nbin,l = nbin,l + νk

22: Mbin,l = Mbin,l + νk ·µk

23: end for

24: CREATE BLOCK {Replace SIPs}

25: Delete all SIPs

26: for all l with Mbin,l > Mcritmin = ηλ1 do {use Mcritmin as a weak threshold value}

27: i++

28: Generate SIP i with νnew
i = nbin,l and µi = Mbin,l/νbin,l

29: end for

30: NSIP = ii

31: t = t + ∆t

32: end while

33: EXTENSIONS

34: Self-collections for a kernel with K(m,m) 6= 0 can be easily incorporating in the algorithm by changing

the condition in line 16 to i≤ j ≤NSIP .

14

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-271, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 28 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



First, the remapping algorithm is described as its concept follows closely the hypothetical algo-335

rithm introduced in the latter section. The RMA algorithm is based on ideas of Andrejczuk et al.336

(2010). We call their approach ’remapping algorithm’ as NSIP is kept reasonably low by switch-337

ing between a SIP representation and a bin representation in every time step. A temporary bin grid338

with a pre-defined κ is established which stores the total number nbin,∗ and total mass Mbin,∗ of all339

contributions belonging to a specific bin. The bin boundaries are given by mbb,∗.340

Instead of creating a new SIP k (with number νk obtained by Eq. 15 and mass µk = µi + µj)341

from each i− j-combination, the according contribution is stored on a temporary bin grid. More342

explicitly, this means that the droplet number nbin,l of bin l with mbb,l < µk ≤mbb,l+1 is increased343

by νk. Similarly, the total mass Mbin,l of that bin is increased by µk νk. Similarly, the reduced344

contributions ν∗i from the existing SIPs with droplet mass µi are added to their respective bins.345

Figure 2 illustrates how a collection process between two SIPs is treated in RMA. In this example,346

νk = 2 droplets are produced by collection which have a droplet mass of µk = µi +µj = 15. Instead347

of creating a new SIP k (as in the hypothetical algorithm), the contribution k is recorded in the bin348

grid. The droplet number n in bin l3 is increased by νk = 2 and the according total mass Ml3 by349

νkµk = 30. The remaining contribution of SIP i falls into bin l1 and nl1 and Ml1 are increased by350

ν∗i = νi− νk = 2 and µiν
∗
i = 12, respectively. The operation for SIP j is analogous.351

At the end of each time step after treating all possible i− j-combinations, a SIP ensemble is352

created from the bin data with νi = nbin,l and µi = Mbin,l/nbin,l.353

Optionally, a lower threshold νmin,RMA can be introduced, such that SIP i is created only if354

nbin,l > νmin,RMA holds. However, this may destroy the property of mass conservation which can355

be remedied by the following.356

We pick up the concept of a weak threshold introduced earlier and adjust it such that on av-357

erage the total mass is conserved (instead of total number as before). We introduce the thresh-358

old Mcritmin = ηλ1. E.g. η is set to 10−10, which implies that each SIP contains at least 10−10359

of the total mass in a grid box. If Mbin,l > Mcritmin, a SIP is created representing νi = nbin,l360

drops with single mass µi = Mbin,l/nbin,l. If Mbin,l < Mcritmin, a SIP is created with probability361

pcreate = Mbin,l/Mcritmin. In this case the SIP represents νi = Mcritmin/µi droplets with single362

mass µi = Mbin,l/nbin,l. Pseudo-code of the algorithm is given in algorithm 1.363

Time steps typically used in previous collection/aggregation tests are around ∆t = 0.1 to 10s364

depending inter alia on the used kernel. From Eq. 18 follows that the time step in RMA must satisfy365

∆t <

NSIP∑

j=1

oij . (20)366

Otherwise, negative ν-values can occur which would inevitably lead to a crash of the simulation. In367

mature clouds, the Long and Hall kernel attain large values which required tiny time steps of 10−4 s368

and smaller in the first test simulations. To be of any practical relevance, RMA had to be modified369

in order to be able to run simulations with suitable time steps.370
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Hence, several extensions to RMA allowing larger time steps are discussed in the following.371

1. Default version: Use the algorithm as outlined in Algorithm 1 (i.e. do not change anything).372

Negative ν∗i -values obtained by Eq. 17 are acceptable, as long as nbin,l, from which the SIPs373

are created at the end of the time iteration, is non-negative for all l. This means that an existing374

SIP i (which falls into bin l) can lose more droplets (ν∆
i ) than it actually possesses (νi) as long375

as the gain in bin l (from all suitable SIP combinations) compensates this deficit. We will later376

see that this approach works well for the Golovin kernel, however fails for the Long and Hall377

kernel.378

2. Clipping: Simply ignore bins with negative nbin,l and do not create SIPs from those bins.379

This approach destroys the property of mass conservation and is not pursued here.380

3. Adaptive time stepping: Instead of reducing the general time step, only the treatment of SIPs381

with ν∗i < 0 is sub-cycled. For each such SIP i, Eq. 17 is iterated η̃i times with time step382

∆tSIP = ∆t/η̃i. Note that even though the computation of Eq. 17 and Oij involves the ν-383

evaluation of all SIPs, only νi is updated in the subcycling steps and not the whole system of384

fully coupled equations is solved for a smaller time step. For sufficiently large η̃i, ν∗i,subcycl is385

positive, as ν∆
i,subcycl < νi as desired. Basically, we now assume that all collections involving386

SIP i are equally reduced by a factor of ηi = ν∆
i,subcycl/ν∆

i compared to the default time step.387

In the GAIN block of the algorithm (as termed in Alg. 1), all computations use the default388

time step and no sub-cycling is applied. To be consistent with the reduction in the LOSS389

block, Eq. 19 is replaced by νk = ηi Oij ∆t.390

4. Reduction limiter The effect of an adaptively reduced time step can be reached with simpler391

and cheaper means. We introduce a threshold parameter 0 < γ̃ < 1.0 similar to the approach in392

Andrejczuk et al. (2012). Again, we focus on SIPs with ν∗i < 0 and simply set the new weight393

of SIP i to ν∗i,RedLim = γ̃νi. As above, all contributions involving SIP i have to be re-scaled,394

now with γi = (νi− ν∗i,RedLim)/ν∆
i .395

5. Update on the fly Another option to eliminate negative νi-values is to do an "update on the396

fly". In this case, the algorithm is not separated in a LOSS and GAIN block. Instead, the i−j-397

combinations are processed one after another. After each collection process, as exemplified398

in Fig. 2, the weighting factors νi and νj of the two involved SIPs are reduced by νk, i.e. the399

number of droplets that were collected. Subsequent evaluations of Eq. 19 then use updated ν-400

values. Compared to the default version, it now matters in which order the i− j-combinations401

are processed, e.g. if you deal first with combinations of the smallest SIPs or of the largest402

SIPs.403

2.4 Description of Average Impact (AIM) algorithm404
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Algorithm 2 Pseudo-code of the average impact algorithm

1: INIT BLOCK + SIP SORTING

2: Given: Ensemble of SIPs; Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Sort SIPs by droplet mass}

6: Apply (adaptive) sorting algorithm, such that µj ≥ µi for j > i

7: {Compute total mass χi of each SIP}

8: χi = νi µi

9: for i = 1 to NSIP do

10: {Compute reduction of weighting factor due to number loss to all larger SIPs}

11: νnew
i = νi

(

1−∆t
∑NSIP

j=i+1 oij

)

12: {Compute mass transfer; mass gain from all smaller SIPs and mass loss to all larger SIPs}

13: χnew
i = χi−χi∆t

∑NSIP
j=i+1 oij +

∑i−1
j=1 χjoij∆t

14: end for

15: νi = νnew
i

16: µi = χnew
i /νnew

i

17: t = t + ∆t

18: end while

19: EXTENSIONS

20: {Self-collections for a kernel with Kii 6= 0 can be incorporated simply by adding the term −0.5 ∆t oii

inside the bracket on the r.h.s. of line 11 (see also Eq. (23) in the text)}

The average impact algorithm by Riechelmann et al. (2012) and further developed in Maronga et al.405

(2015) predicts the temporal change of the weighting factor, νi, and the total mass of all droplets406

represented by each SIP, χi = νi µi. In this algorithm, two fundamental interactions of droplets are407

considered (see also Fig. 7 in Maronga et al., 2015). First, the coalescence of two SIPs of different408

size. It is assumed that the larger SIP collects a certain amount of the droplets represented by the409

smaller SIP, which is then equally distributed among the droplets of the larger SIP. As a consequence,410

the total mass and the weighting factor of the smaller SIP decrease, while the total mass of the larger411

SIP increases accordingly. Fig. 2 illustrates how a collection between two SIPs is treated. SIP j is412

assumed to represent larger droplets than SIP i, i.e. µj > µi. As in the RMA example before, we413

say that νk = 2 droplets are collected. Then SIP i loses two droplets to SIP j, i.e. νi is reduced by 2414

and a mass of µiνk is transferred to SIP j where it is distributed among the existing νj = 8 droplets.415

Unlike to RMA, where droplets with mass µj + µi = 15 are produced, AIM predicts a droplet mass416

of µj +µiνk/νi = 10.5 in SIP j. Usually, νk/νi << 1 and hence the name "average impact" for this417

algorithm.418
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Figure 3. top: (ri,νi)-evolution of selected SIPs. The black line shows the initial distribution. Each coloured

line connects the data points that depict the (ri,νi)-pair of an individual SIP every 200s.

bottom: Ratios ri(t = 3600s)/ri(t = 0s) (red curve) and νi(t = 0s)/νi(t = 3600s) (black curve) for all SIPs

as a function their initial radius ri(t = 0s).

An example simulation with Long kernel, singleSIP-init, ∆t = 10s,κ = 40 and NSIP = 197 is displayed.

Moreover, same-size collisions are considered in each SIP. This decreases the weighting factor of419

each SIP but not its total mass. Accordingly, the radius of the SIP increases.420

Both processes are represented in the following two equations which are solved for all colliding421

SIPs (assuming that µ0 ≤ µ1 ≤ . . .≤ µNSIP
):422

dνi

dt
=−Kii

1
2

νiνi

∆V
−

NSIP∑

j=i+1

Kijνiνj∆V −1 (21)423

and424

dχi

dt
=

i−1∑

j=1

µj Kijνiνj∆V −1−µi

NSIP∑

j=i+1

Kijνiνj∆V −1. (22)425

The first term on the right-hand-side of Eq. 21 describes the decrease of ν due to same-size col-426

lections, the second term the decrease of ν due to collection by larger SIPs. The first term on the427

right-hand-side of Eq. 22 describes the gain in total mass due to collections with smaller SIPs, while428

the second term describes the loss of total mass due to collection by larger SIPs.429

Using a Euler forward method for time integration the above equations read as:430

νnew
i = νi

(
1−

∑NSIP

j=i+1
oij∆t− 0.5 oii∆t

)
(23)431
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and432

χnew
i = χi

(
1−

∑NSIP

j=i+1
oij∆t

)
+
∑i−1

j=1
χjoij∆t. (24)433

Finally, the mass µi of each SIP is updated: µnew
i = χnew

i /νnew
i .434

Figure 2 illustrates how the AIM algorithm works for an example simulation with the Long kernel435

and singleSIP-init. The top panel shows the (ri,νi)-evolution of selected SIPs. The black line shows436

the initial distribution. Each coloured line connects the data points that depict the (ri,νi)-pair of an437

individual SIP every 200s. Clearly, νi of any SIP decreases over time, however the decrease is much438

smaller for the largest SIPs and becomes zero for the largest SIP. The majority of SIPs starting from439

the smallest radii show an opposite behaviour as their evolution is dominated by a strong νi-decrease440

at nearly constant ri. In contrast, the evolution of the two largest SIPs is dominated by a strong ri-441

increase for constant νi. The SIPs next to the largest SIPs undergo a transition; in the beginning, they442

primarily grow in size, towards the end the decrease of νi is dominant. The bottom panel shows the443

ratios ri(t = 3600s)/ri(t = 0s) (red curve) and νi(t = 0s)/νi(t = 3600s) (black curve) for all SIPs444

of the simulation. Both ratios are smooth functions of the initial ri which is plotted on the x-axis.445

By construction, the number of SIPs remains constant over the course of a simulation. Hence, the446

number of SIPs per radius or mass interval decreases, when the DSD broadens over time. In our447

example, the SIP resolution becomes coarser, particularly in the large droplet tail.448

Negative values of νnew
i and χnew

i may occur. However, this case never occurred in our manifold449

tests of the algorithm. The behaviour appears more benign than in RMA. Moreover, we found that450

the algorithm preserved the initial size-sortedness of the SIP ensemble. However, for an arbitrary451

kernel function and initial SIP ensemble, this is not guaranteed and we recommend to use adaptive452

sorting algorithms that benefit from partially pre-sorted data sets (Estivill-Castro and Wood, 1992).453

Adaptive sorting is also advantageous, when AIM is employed in real world applications, where454

sedimentation, advection and condensation changes the SIP ensemble in each individual grid box.455

2.5 Description of the All-Or-Nothing (AON) algorithm456

The All-Or-Nothing (AON) algorithm is based on the ideas of Sölch and Kärcher (2010) and457

Shima et al. (2009). Fig. 2 illustrates how a collection between two SIPs is treated. SIP i is assumed458

to represent fewer droplets than SIP j, i.e. νi < νj . Each real droplet in SIP i collects one real droplet459

from SIP j . Hence, SIP i contains νi = 4 droplets, now with mass µi +µj = 15. SIP j now contains460

νj−νi = 8−4 = 4 droplets with mass µj = 9. Following Eq. 19, only νk = 2 pairs of droplets would,461

however, merge in reality. The idea behind this probabilistic AON algorithm is that such a collection462

event is realised only under certain circumstances in the model, namely such that the expectation463

values of collection events in the model and in the real world are the same. This is achieved if a464

collection event occurs with probability pcrit = νk/νi in the model. Then, the average number of465

19

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-271, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 28 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



Algorithm 3 Pseudo-code of the all-or-nothing algorithm; rand() generates uniformly distributed

random numbers ∈ [0,1].

1: INIT BLOCK

2: Given: Ensemble of SIPs; Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Check each i− j-combination for a possible collection event}

6: for all i < j ≤NSIP do

7: Compute νk according to Eq. 15

8: νnew = min(νi,νj)

9: pcrit = νk/νnew

10: {Update SIP properties on the fly}

11: if pcrit > 1 then

12: MULTIPLE COLLECTION

13: {can occur when νi and νj differ strongly and be regarded as special case; see text

for further explanation}

14: assume νi < νj , otherwise swap i and j in the following lines

15: {pcrit > 1 is equivalent to νk > νi}

16: {transfer νk droplets with µj from SIP j to SIP i, allow multiple collections in SIP i,

i.e. one droplet of SIP i collects more than one droplet of SIP j.}

17: SIP i collects νk droplets from SIP j and distributes them on νi droplets: µi =

(νi µi + νk µj)/νi

18: SIP j loses νk droplets to SIP i: νj = νj − νk

19: else if pcrit >rand() then

20: RANDOM SINGLE COLLECTION

21: assume νi < νj , otherwise swap i and j in the following lines

22: {transfer νi droplets with µj from SIP j to SIP i}

23: SIP i collects νi droplets from SIP j: µi = µi + µj

24: SIP j loses νi droplets to SIP i: νj = νj − νi

25: end if

26: end for

27: t = t + ∆t

28: end while

29: EXTENSIONS

30: {Self-collections for a kernel with K(m,m) 6= 0 can be treated in the following way: }

31: {Insert the following loop before line 6 or after line 26.}

32: for i = 1 to NSIP do

33: pcrit = νk/νi

34: if 2 pcrit >rand() then

35: {every two (identical) droplets coalesce}

36: νi = νi/2

37: µi = 2 µi

38: end if

39: end for
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Figure 4. As in Fig. 3, for the AON algorithm.

collections in the model,466

ν̄k = pcritνi = (νk/νi)νi,467

is equal to νk as in the real world. A collection event between two SIPs occurs, if pcrit >rand(). The468

function rand() provides uniformly distributed random numbers ∈ [0,1].469

Noticeably, no operation on the SIPs is performed if pcrit <rand().470

The treatment of the special case νk/νi > 1 needs some clarification. This case is regularly en-471

countered when the singleSIP-init is used, where SIPs with large droplets and small νi collect small472

droplets from a SIP with large νj . The large difference in droplet masses µ lead to large kernel473

values and high νk with νi < νk < νj . By the way, the case of νk being even larger than νj is not474

considered, as it occurs only with unrealistically large time steps. If pcrit > 1, we allow multiple475

collections, as each droplet in SIP i is allowed to collect more than one droplet from SIP j. In total,476

SIP i collects νk droplets from SIP j and distributes them on νi droplets. A total mass of νkµj is477

transferred from SIP j to SIP i and the droplet mass in SIPs i becomes µnew
i = (νi µi + νk µj)/νi.478

The number of droplets in SIP j is reduced by νk and νnew
j = νj − νk. Sticking to the example in479

Fig. 2 and assuming νk = 5, each of the νi = 4 droplets would collect νk/νi = 1.25 droplets. The480

properties of SIP i and SIP j are then: νi = 4, µi = 17.25, νj = 3 and µj = 9.481

Another special case appears if both SIPs have the same weighting factor which regularly occurs482

when the νconst-init is used. After a collection event, SIP j would carry νj−νi = 0 droplets, whereas483

SIP i would still represent νi droplets. In this case, half of the droplets from SIP i are moved to484

SIP j and both SIPs carry νnew
j = νnew

i = 0.5νi droplets with mass µi+µj . Without this correction,485
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zero-ν SIPs would accumulate over time and reduce the effective number of SIPs causing a poorer486

sampling. Instead of this equal splitting, one can also assign unequal shares ξ νi and (1− ξ)νi to the487

two SIPs (with ξ being some random number).488

Moreover, self-collections can be considered for kernels with Kii > 0. If 2 pcrit >rand(), self-489

collections occur between the droplets in a SIP (note the factor 2 due to symmetry reasons). Then490

every two droplets within a SIP coalesce, implying νi = νi/2 and µi = 2 µi.491

So far, we explained how a single i−j-combination is treated in AON. In every time step, the full492

algorithm simply checks each i− j-combination for a possible collection event. To avoid double-493

counting only combinations with i < j and self-collections with i = j are considered. Pseudo-code494

of the algorithm is given in Algorithm 3. The SIP properties are updated on the fly. If a certain SIP is495

involved in a collection event in the model and changes its properties, all subsequent combinations496

with this SIP take into account the updated SIP properties. Similar to the update on the fly version497

of RMA, results may depend on the order in which the i− j-combinations are processed.498

For most i−j-combinations, pcrit is small and usually only a limited number of collection events499

occurs in the model and AON may suffer from an insufficient sampling of the droplet space. Ac-500

tual collections are a rare event in this algorithm. In our standard setup, < 1% of all possible col-501

lections occur in the model until rain is initiated by very few lucky SIPs (similar to lucky drops,502

e.g. Kostinski and Shaw (2005)). Indeed, Shima et al. (2009) reported convergence of AON only503

for tremendously many SIPs (on the order of 105 to 106 in a box). We will later see that conver-504

gence is possible with as few as O(102) SIPs, if the SIPs are suitably initialised. Hence, it will505

be demonstrated that AON is a viable option in 2D/3D cloud simulations, as already implied in506

Arabas and Shima (2013).507

As for AIM in Fig. 3, Fig. 4 (top) shows the (ri,νi)-evolution of selected SIPs for AON. The508

picture looks more chaotic than for AIM, as each individual SIP has its own independent history due509

to the probabilistic nature of AON. For the initially smallest SIP, only νi changes for most of the510

time, as only collections occur where the partner SIPs have smaller weighting factors ν. Towards511

the end, the still very small SIP is at least once involved in a collection with a very large SIP that512

has a larger ν. Hence, ri of this SIP increases substantially. In contrast to the smallest SIP, other513

initially small SIPs i with similar properties are never part of a collection with νi < νj . Hence, their514

radii ri remain small over the total period and νi is the only property that changes. The bottom panel515

summarises the overall changes in νi (black) and ri (red) for all SIPs of the simulation. Unlike to516

AIM, where only the initially largest SIPs grow, SIPs from both ends of the spectrum grow in AON.517

Those SIPs have small ν-values in common and in each collection their mass is updated to mi +mj .518

The SIPs with initially large ν-values lie in the radius range [2µm,15µm] and keep their initial radii519

(at least in the singleSIP-init used here). The reductions in νi scatter around∼ 103 for most SIPs and520

fall off to 1 for the largest SIPs.521
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For the generation of the random numbers, the well-proven (L’Ecuyer and Simard, 2007) Mersenne522

Twister algorithm by Matsumoto and Nishimura (1998) is used. AON simulations may be accel-523

erated if random numbers are computed once a priori. However, this requires saving millions of524

random numbers for every realisation. An AON simulation with 1000 time steps and 200 SIPs im-525

plying 200×100 combinations, e.g. processes 2 ·107 random numbers. Using random numbers with526

a smaller cycle length deteriorated the simulation results in several tests and is not recommended.527

The current implementation differs slightly from the version in Shima et al. (2009). Due to an528

unfavourable SIP initialisation similar to the νconst-technique, Shima et al. (2009) deal with large529

NSIP -values in their simulations, where it becomes prohibitive to evaluate all NSIP (NSIP − 1)530

SIP-combinations. Hence, they resort to ⌊NSIP /2⌋ randomly picked i−j-combinations, where each531

SIP appears exactly in one pair (if NSIP is odd, one SIP is ignored). As only a subset of all possible532

combinations are numerically evaluated, the extent of collisions is underestimated. To compensate533

for this, the probability pcrit is up-scaled with a scaling factor NSIP (NSIP − 1)/(2 ⌊NSIP /2⌋) to534

guarantee an expectation value as desired.535

Moreover, in Shima’s formulation the weighting factors are considered to be integer numbers. In536

contrast, we use real numbers ν which can even attain values below 1.0. This has several computa-537

tional advantages: 1. better sampling of the DSD, in particular at the tails, 2. simpler AON imple-538

mentation with fewer arithmetic and rounding operations, and 3. more flexibility, e.g. SIP splitting539

with real-valued ξ in the case of identical weighting factors.540

Sölch and Kärcher (2010) makes use of the vertical position of the SIPs and explicitly calculates541

whether or not a larger droplet overtakes a smaller droplet within a time step. This approach will be542

thoroughly analysed in a follow-up study.543

In RMA and AIM SIPs with negative weights may be generated depending, e.g. on the condition544

∆t
∑NSIP

j=1 oij > 1 in RMA. In AON, the latter condition implies that
∑

j=1 pcrit,ij of SIP i is greater545

than unity. Hence, this SIP is likely to be involved in several collections (for j with pcrit,ij < 1) or546

is involved in one or several multiple collections (for j with pcrit,ij > 1).547

3 Box model results548

In this section, box model simulations of the three algorithms introduced in the latter section are549

presented, starting with the results of the Remapping (RMA) Algorithm, then those of the Average550

Impact (AIM) and finally the All-or-Nothing (AON) algorithm. The results of each algorithm are551

tested for three different collection kernels (Golovin, Long and Hall). Simulations with the Golovin552

kernel are compared against the analytical solution given by Golovin (1963). Consistent with many553

previous studies we choose b = 1.5 m3 kg−1 s−1.554

Simulations with the Long and Hall kernel are compared against high-resolution benchmark sim-555

ulations obtained by the spectral-bin model approaches of Wang et al. (2007) and Bott (1998). In all556
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Figure 5. Mass density distributions obtained by the RMA algorithm for the Golovin kernel from t = 0 to

60min every 10min (from black to cyan). The solid curves show the reference solution, the dotted curves

the simulation result of the RMA algorithm. The parameter settings are probabilistic singleSIP-init with weak

threshold, κ = 60, η = 10−8 and ∆t = 1s. The following versions of the RMA algorithm are depicted (from

left to right): regular version, version with reduction limiter, version with update on the fly (start with combina-

tions of smallest/largest droplets).

simulations, collision/coalescence is the only process considered in order to enable a rigorous evalu-557

ation of the algorithms. The evaluation is based on the comparison of mass density distributions, and558

the temporal development of 0th, 2nd, and 3rd moment of the droplet distributions. The 1st moment559

is not shown since the mass is conserved in all algorithms per construction.As default, probabilistic560

SIP initialisation methods are used. For each parameter setting, simulations are performed for 50561

different realisations.562

3.1 Performance of Remapping (RMA) Algorithm563

Figure 5 compares DSDs of the RMA algorithm and the analytical reference solution for the Golovin564

kernel. Each panel displays DSDs from t = 0 to 60min every 10min. The left panel shows an ex-565

cellent agreement of RMA with the reference solution and proves at least a correct implementation.566

Figure 6 compares the temporal evolution of the moments. Moreover, the first row shows the number567

of SIPs used in RMA. Except for the case with a very coarse grid (κ = 5) with fewer than 40 SIPs568

in the end, the RMA results agree perfectly with the reference solution irrespective of the chosen κ569

(≥ 10) and minimum weak threshold η ranging from 10−5 to 10−8. The number of non-zero bins570

increases as the DSD broadens over time. In the last step of the time iteration, SIPs are created from571

such bins. Hence, their number increases over time. Using a strict threshold, the total mass is not572

conserved (not shown); The larger η is, the more mass is lost. Hence, using a weak threshold or some573

other measure (e.g. creation of a residual SIP containing contributions of all neglected bins) to avoid574

this is highly recommended.575

Next, RMA simulations with the Long kernel are discussed. As already mentioned, the default576

RMA version would require tiny time steps which would rule out RMA from any practical appli-577

cation. Both approaches introduced before, "Update on the fly" and "Reduction Limiter", succeed578
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Figure 6. SIP number and moments λ0,λ2 and λ3 as a function of time obtained by the RMA algorithm for the

Golovin kernel. The black curves show the moments of the reference solution. All other curves depict the RMA

results. The default settings are: Probabilistic singleSIP-init with weak threshold and ∆t = 1s. Left column:

regular version with κ = 60, 20, 10, 5 (brown, blue, green, red) and threshold η = 10−5, 10−6, 10−7, 10−8

(solid, dashed, dash-dotted, dotted). Middle column: as in left column, but version with reduction limiter. Right

column: version with update on the fly, solid/dotted lines: start with combinations of smallest/largest droplets,

colours as before.
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Figure 7. Mass density distributions obtained by the RMA algorithm for the Long kernel from t = 0 to 60min

every 10min (from black to cyan). The solid curves show the reference solution, the dotted curves the simu-

lation result of the RMA algorithm with Reduction Limiter (γ̃ = 0.1). The parameter settings are probabilistic

singleSIP-init with weak threshold, η = 10−8, ∆t = 0.1s and κ = 4 or 20 (as indicated on top).

in eliminating negative νi-values and in finishing the simulation within a reasonable time. However,579

the results are not as desired. Fig. 7 shows the DSDs for a simulation with Reduction Limiter, weak580

threshold η = 10−8 and parameters κ = 60, ∆t = 0.1s and γ̃ = 0.1. Whereas the algorithm is ca-581

pable of realistically reducing the number of the smaller droplets, it fails to predict the formation582

of the rain mode and strong oscillations appear in the intermediate radius range [100µm,200µm].583

We tested the algorithm with many parameter settings varying all of the aforementioned parameters,584

∆t ∈ [0.1s,1s],κ ∈ [10,60], γ̃ ∈ [0,1] and η ∈ [10−10,10−5] . Unfortunately, spurious oscillations585

occur in most cases. Integrating over the whole mass spectrum, those oscillations do not average out586

and, not surprisingly, the moments do not come close to the reference solution (not shown). Non-587

oscillating results are obtained only if an unreasonably low resolution is used and very few bins exist588

in the problematic radius range. However, in this case, the large droplet mode does not emerge and589

the moments are again far from the reference. Hence, our RMA implementation is not capable of590

producing reasonable results for the Long kernel.591

It is not clear whether the oscillations are inherent to the original RMA algorithm or caused by the592

introduction of the reduction limiter. The latter might introduce discontinuities where instabilities593

could be triggered. The first option seems more probable, as the Golovin RMA simulations with594

Reduction limiter do not show any instability and gives a perfect agreement with the reference (see595

column 2 in Figs. 5 and 6). Similarly, Golovin RMA simulations with update on the fly are stable596

and close to the reference, however the results depend on the order in which the SIP combinations597

are processed (see column 3 (and 4) in Figs. 5 and 6). Again, Long simulations with an update on598

the fly version of RMA are unstable (not shown).599

Andrejczuk et al. (2010) introduced and evaluated the RMA algorithm and applied it in a simula-600

tion of boundary layer stratocumulus. Our findings are seemingly in conflict with the conclusions of601

their evaluation exercises. What both studies have in common is a similar trend for a κ-variation. In602
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Figure 8. Mass density distributions obtained by the AIM algorithm for the Golovin kernel from t = 0 to

60min every 10min (from black to cyan). The solid curves show the reference solution, the dotted curves the

simulation result of the AIM algorithm (ensemble average over 50 realisations). The parameter settings are:

probabilistic singleSIP-init, νcritmin = 10−9 max(νi), ∆t = 1s and κ = 40 (left) or κ = 200 (right).

their Fig. 13, simulations for κ ranging roughly from 4 to 30 are depicted. The simulations with many603

bins show oscillations, whereas the coarsest simulation has no oscillations, but is clearly far from604

the real solution (largest droplets around 40µm compared to 500µm in the reference simulation).605

In their Fig. 14, they presented a detailed sensitivity test only for a κ = 4 simulation, which down-606

plays the severity of the oscillation issue. Moreover, their simulations ran up to 2000s compared to607

3600s in this study and many other studies (e.g. Bott, 1998; Wang et al., 2007). Hence, they missed608

the regime where the effect of the oscillations is strongest. Despite our extensive tests we cannot609

exclude that in Andrejczuk et al. (2010) an RMA implementation was used where oscillations are610

less cumbersome; however, the study missed to demonstrate this for a conclusive test case and we611

come to the conclusion that the evaluation exercises were incomplete and not suited to reveal the612

deficiencies faced here.613

RMA simulations with the Hall kernel are similarly corrupted by oscillations and do not produce614

useful simulations either (not shown).615

3.2 Performance of Average Impact (AIM) Algorithm616

Fig. 8 displays DSDs obtained by AIM for the Golovin kernel. Compared to the reference, the617

droplets pile up at too small radii and the algorithm is not capable of reproducing the continuous618

shift to larger sizes, even if a fine grid with κ = 200 (right) instead of κ = 40 (left) is used. For both619

κ-values, the increase of the higher moments proceeds at a too low rate (see Fig. 9), whereas the620

decrease in droplet number matches the analytical evolution. AIM is a very robust algorithm in the621

sense that the results are fairly insensitive to most numerical parameters as demonstrated for κ and622

∆t in the left column of Fig. 9. Most simulations converge to—what we call—the best AIM solution,623

which is, however, not the same as the correct solution. The results deteriorate slightly if the initial624
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Figure 9. SIP number and moments λ0,λ2 and λ3 as a function of time obtained by the AIM algorithm for

the Golovin kernel. The black curves show the moments of the reference solution. All other curves depict

the AIM results (average over 50 realisations). The default settings are: Probabilistic singleSIP-init, κ = 40,

νcritmin = 10−9 max(νi) and ∆t = 1s. Left column: default simulation (red), larger time step (∆t = 10s,

blue) and more SIPs (κ = 200, brown). Right column: νconst-init (red) and νdraw-init (blue) with NSIP = 160.

SIP ensemble is generated with the νconst-init or νdraw-init instead of with the singleSIP-init (right625

column of Fig. 9).626

The algorithm performs, in general, better for the Long and Hall kernel as is detailed in the follow-627

ing. Fig. 10 displays DSDs obtained by AIM for the Long kernel. Generally, the results are in good628

agreement with the reference solution, as long as the SIP ensemble is initialised with the singleSIP-629

init method (left and middle column). Towards the end of the simulated period (magenta and cyan630

lines), the removal of small droplets is a bit underestimated and too many small droplets are present.631

For t = 30 and 40min, the large droplet mode is too weak as not enough large droplets have formed.632

At that stage, the droplets grow rapidly by collection and the AIM results lag behind. Although the633

offset is less than five minutes, it might become crucial in simulations of short-lived clouds. Also634
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Figure 10. Mass density distributions obtained by the AIM algorithm for the Long kernel from t = 0 to 60min

every 10min (from black to cyan). The solid curves show the reference solution, the dotted curves the sim-

ulation result of the AIM algorithm as an average over 50 realisations. The default settings are: Probabilis-

tic singleSIP-init, κ = 40, νcritmin = 10−9 max(νi), ∆t = 1s (column 1); ∆t increased to 20s (column 2);

νconst-init technique with NSIP = 160 (column 3).

the evolution of the moments (see Fig. 11) confirms this, as the onset of the rapid changes at around635

t = 30min is only slightly retarded if parameters are suitably chosen. Towards the end, the AIM re-636

sults get again very close to the reference solution. The left column of Fig. 11 shows the dependence637

on the time step. For time steps ∆t≤ 20s all results are similar to the best AIM solution which is638

close to the reference. Time steps of 50s and more do not produce good enough results. Moreover,639

AIM is fairly insensitive to the choice of κ, rcritmin and νcritmin (see middle column). Simulations640

with κ ranging from 10 to 100 yield similar results. Only, for a very coarse resolution (κ = 5) with641

25 SIPs, the decrease in droplet number is too small. Increasing the lower cutoff radius rcritmin642

from 0.6µm to 5µm, the r < 5µm-part of the DSD is represented by a single SIP and NSIP is re-643

duced by 60%. The predicted moments are unaffected by this variation. Those small-ri SIPs are not644

relevant for the AIM performance. They simply carry too small fractions of the total grid box mass645

to be important. Their status will not change over time as already illustrated in Fig. 3. Similarly, a646

variation of νcritmin or the switch to a strict threshold νcritmin has no effect.647

Now we draw the attention to the importance of the SIP-init method. The right panel of Fig. 10648

shows the DSDs when the SIPs are initialised with the νconst-init method. The algorithm completely649

fails and no droplets larger than 70µm occur after 60 minutes. Consequently, the moments are far off650

from the reference solution (solid lines in the right column of Fig. 11). Switching to the νdraw-init651

method (dotted lines) or using many more SIPs (up to 1600) improves the results, yet they are still652

useless. This clearly demonstrates how crucial the initial characteristics of the SIP ensemble are.653

Initialising the SIPs with an appropriate technique like the singleSIP-init, useful results are obtained654

with as few as 50 SIPs. Using the νconst-init or νdraw-init, on the other hand, solutions are still655

useless, even though the number of SIPs and the computation time are factor 30 and 900 higher.656
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Figure 11. SIP number and moments λ0,λ2 and λ3 as a function of time obtained by the AIM algorithm for

the Long kernel. The black curves show the moments of the reference solution. All other curves depict the AIM

results (average over 50 realisations). The left column shows a variation of ∆t = 1, 5, 10, 20, 50, 100, 200s

for κ = 40. The middle column a variation of κ = 5, 10, 20, 40, 60, 100 for ∆t = 10s. Either, the default

singleSIP-init (solid) or the singleSIP-init with rcritmin = 5µm (dotted) is used. The right column displays

simulations with different initialisation techniques and ∆t = 10s: the νconst-init (solid) and νdraw-init (dotted)

with NSIP = 1600, 400, 80 as well as the νrandom,rs-init (dashed) and νrandom,lb-init (dash-dotted) with

(αhigh,αmed,αlow) = (10−2, 10−3, 10−13) and threshold radius rlb = 16µm.
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Figure 12. Mass density distributions obtained by the AIM algorithm for the Hall kernel from t = 0 to 60min

every 10min (from black to cyan). The solid curves show the reference solution, the dotted curves the sim-

ulation result of the AIM algorithm as an average over 50 realisations. The default settings are: Probabilistic

singleSIP-init, κ = 40, νcritmin = 10−9 max(νi), ∆t = 1s (column 1); ∆t increased to 20s (column 2).

The νrandom-simulations give another example of the importance of the init method. Even though657

both techniques, νrandom,rs (dashed line) and νrandom,lb (dash-dotted line), are similar in design658

and differ only in the creation of the largest SIPs (see Fig. 1), the outcome of the simulations is quite659

different. For the νrandom,lb-init, the solution matches the best AIM solution, whereas for νrandom,rs660

the moments λ2 and λ3 stagnate at too low levels. The latter test pinpoints the main weakness of the661

AIM which is also reflected in its name (average impact). The initial weighting factors of those SIPs662

(in relation to ν of the remaining SIPs) controls how strong this growth is and how the large droplet663

mode emerges.664

All quantities shown in Fig. 9 and 11 are averages over 50 realisations of the initial SIP ensem-665

ble. All individual realisations yield basically identical simulation results and it would have been666

sufficient to carry out and display simulations of a single realisation.667

Figure 12 shows DSDs of simulations with the Hall kernel. Compared to the Long simulations,668

small droplets are much more abundant (see reference solution), as the collection of small droplets669

proceeds at a lower rate. This makes the simulation less challenging from a numerical point of view670

and AIM DSDs come closer to the reference than in the Long simulations. Consequently, the AIM671

moments agree very well with the reference as shown in Fig. 13. For ∆t≤ 20s and κ≥ 20, all672

solutions are similar to the best AIM solution.673

3.3 Performance of All-Or-Nothing (AON) Algorithm674

Fig. 14 shows the AON results for the Golovin kernel. An excellent agreement with the reference675

solution is found which proves at least the correct implementation of AON. Switching to a version676

without multiple collections (i.e. SIP i collects at most νi droplets in every time step) does not affect677

the solution as cases with pcrit > 1⇔ νk > νi occur rarely. The AON moments closely follow the678

reference solution, even when the time step is increased from 1s to 10s or fewer SIPs are used when679

κ is decreased from 40 to 10 (left column of Fig. 15). Unlike to AIM, AON is successful, even when680
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Figure 13. SIP number and moments λ0,λ2 and λ3 as a function of time obtained by the AIM algorithm for

the Hall kernel. The black curves show the moments of the reference solution. All other curves depict the AIM

results (average over 50 realisations). The left column shows a variation of ∆t = 1, 5, 10, 20, 50, 100, 200s

for κ = 40 and the right column a variation of κ = 5, 10, 20, 40, 60, 100 for ∆t = 10s

Figure 14. Mass density distributions obtained by the AON algorithm for the Golovin kernel from t = 0 to

60min every 10min (from black to cyan). The solid curves show the reference solution, the dotted curves

the simulation result of the AON algorithm (ensemble average over 50 realisations). The parameter settings

are: probabilistic singleSIP-init, κ = 40, νcritmin = 10−9 max(νi), ∆t = 1s. The columns show various vari-

ants of the algorithm: default version, version disregarding multiple collections and version disregarding self-

collections (from left to right).
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Figure 15. SIP number and moments λ0,λ2 and λ3 as a function of time obtained by the AON algorithm for the

Golovin kernel. The black curves show the moments of the reference solution. All other curves depict the AON

results (average over 50 realisations). The default settings are: Probabilistic singleSIP-init, κ = 40,νcritmin =

10−9 max(νi) and ∆t = 1s. Left column: default simulation (red), larger time step (∆t = 20s, blue) and fewer

SIPs (κ = 10, brown). Right column: νconst-init (brown) , νdraw-init (blue) and singleSIP-init with rcritmin =

1.6µm (red).
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Figure 16. Mass density distributions obtained by the AON algorithm for the Long kernel from t = 0 to 60min

every 10min (from black to cyan). The solid curves show the reference solution, the dotted curves the sim-

ulation result of the AON algorithm. Columns 1 and 2 show individual realisations (each ∗-symbol depict a

non-zero g-value). Columns 3 and 4 show averages over 50 and 500 realisations. For each bin, the interquartile

range is determined and depicted by +-symbols with a dashed bar (only for t = 60min). If there is only one

+-symbol, the 25th percentile is too small to be visible. The settings are: Probabilistic singleSIP-init, κ = 40,

νcritmin = 10−9 max(νi), ∆t = 20s.

the initial SIP ensemble is created with the νconst-init or νdraw-init (right column of Fig. 15). The681

moments are averages over 50 realisations. For the νdraw-init method, the deviation in λ3 towards682

the end of the simulated period is due to a single outlier realisation where the initial values of the683

moments λ2 and λ3 were already much higher than λ2 and λ3 of the reference solution. Column 2684

of Fig. 1 already illustrated the large uncertainty of the initial values, which becomes increasingly685

larger for higher order moments. Hence, this outlier behaviour is associated with a deficiency of the686

init technique rather than being an algorithm-intrinsic feature.687

Nevertheless, the simulations reveal large differences between individual realisations which de-688

serves a closer inspection. Fig. 16 displays DSDs of AON for the Long kernel. The two left panels689

show DSDs of single realisations. The ∗-symbol depicts the g-value for each bin. Those symbols690

are connected by default. An interruption of the connecting line indicates one or more empty bins691

(g = 0) where no SIPs exist in this specific radius interval. This occurs frequently and the solutions692

are full of spikes and irregularly over- and undershoot the reference solution, particularly in the large693

droplet mode. The small droplet mode is underestimated in the first realisation and overestimated in694

the second realisation. The advantages of AON become apparent when the DSDs are averaged over695

many realisations as shown in columns 3 and 4. Then the DSDs come close to the reference solution696

and the interquartile range indicates the broad envelope the individual realisations span around the697

reference solution. Whereas the average over 50 realisations still has some fluctuations, the average698

over 500 realisations produces a smooth solution. There are two sources that are potentially respon-699

sible for the large ensemble spread: the probabilistic SIP initialisation and the probabilistic AON700

approach. In a sensitivity test, 50 realisations are computed, all using the same SIP initialisation ob-701

tained by a deterministic singleSIPinit. Figure 17 compares those simulations to regular simulations702

34

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-271, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 28 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 17. Moments λ0,λ2 and λ3 as a function of time obtained by the AON algorithm for the Long kernel.

Each realisation was initialised with a different SIP ensemble (probabilistic singleSIP, red) or all realisations

started with the same SIP ensemble (deterministic singleSIP, green). In both cases, the curves show an average

over 50 realisations with the vertical bars indicating the interquartile range. The crosses show the minimum

and maximum values and the circle the median value. The black symbols depict the reference solution. The

parameter settings are ∆t = 20 and κ = 40.
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Figure 18. Mass density distributions obtained by the AON algorithm for the Long kernel from t = 0 to 60min

every 10min (from black to cyan). The solid curves show the reference solution, the dotted curves the sim-

ulation result of the AON algorithm as an average over 50 realisations. The default settings are: Probabilistic

singleSIP-init, κ = 40, νcritmin = 10−9 max(νi), ∆t = 1s (column 1); version disregarding multiple collec-

tions at ∆t = 10s (column 2); νconst-init technique with NSIP = 160 (column 3).

with differing SIP initialisations. In both cases, we find a substantial ensemble spread. Starting with703

identical SIP initialisations the spread is, however, smaller suggesting that both sources contribute704

to the ensemble spread.705

Fig. 18 shows AON results with 50 realisations and probabilistic initialisation which gives a good706

trade-off between computational cost and representativeness. Clearly, AON DSDs are less smooth707

than those of AIM. Column 1 shows a default simulation with singleSIP init and shows very good708

agreement with the reference solution. Disenabling multiple collections (column 2), far too few small709

droplets become collected and their abundance is substantially overestimated. As a consequence, the710

mass transfer from small to large droplets is slowed down and the large droplet mode is underesti-711

mated. Using the νconst-init, the large droplet mode is not well matched and results are again useless.712

Fig. 19 shows the temporal evolution of moments λ0,λ2 and λ3 for a large variety of sensitivity tests.713

Column 1 shows a variation of ∆t for the singleSIP-init. The larger ∆t is chosen, the more often714

combinations with pcrit > 1 occur and the more crucial it becomes to consider multiple collections.715

Even for the smallest time step considered, the version without multiple collections does not col-716

lect enough small droplets and hence overestimates droplet number. With the regular AON version717

considering multiple collections, reasonable results are obtained for time steps ∆t≤ 20s. Column 2718

shows a variation of κ for singleSIP-init. Whereas the higher moments perfectly match the reference,719

the droplet number shows a non-negligible dependence on κ. For κ < 100, droplet number decrease720

is faster, the finer the resolution is. For κ > 100, a variation of κ has no effect, hence convergence is721

reached. However, those simulations underestimate the droplet number. Best results are obtained for722

an intermediate resolution of κ = 40. Using the MultiSIP-init, the simulations show the same unde-723

sired behaviour. Hence, increasing the SIP concentration in the middle part of the initial DSD has no724

positive effect despite using around 160% more SIPs. In another experiment, the hybrid singleSIP-725
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Figure 19. SIP number and moments λ0,λ2 and λ3 as a function of time obtained by the AON algo-

rithm for the Long kernel. The black symbols depict the moments of the reference solution. All coloured

curves show the AON results (average over 50 realisations). The left column shows a variation of ∆t =

1, 5, 10, 20, 50, 100, 200s for κ = 40 for the regular AON version (solid) and for a version disregarding

multiple collections (dotted, only cases with ∆t≤ 20s are displayed). The middle column shows a variation of

κ = 5, 10, 20, 40, 60, 100, 200, 300, 400 for singleSIP-init (solid), singleSIP-init with rcritmin = 1.6µm

(dashed, only for κ = 60 and 100) and MultiSIP-init (dotted, only for 20≤ κ≤ 100). The right column shows

simulations with the νconst-init (solid) and νdraw-init (dotted) with NSIP = 1600, 400, 80. The gray dashed

and dotted line show simulations with νrandom,lb-init and νrandom,rs-init, respectively. All simulations shown

in the middle and right panel use ∆t = 10s.
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Figure 20. Droplet number as a function of time obtained by the AON algorithm for the Long kernel. The

black symbols show the moments of the reference solution. The solid/dotted curves show simulations with

hybrid/regular singleSIP-init for various κ-values (5 to 60, see legend). The hybrid version uses κ = 100 for

radii above 15µm and κ as labeled for radii below 15µm. The hybrid version uses more SIPs than the regular

version (see NSIP -values listed in the plot). The dotted lines are identical to solid lines in col 2 of 19

init was used. Below r = 16µm SIPs are initialised as usually. Above this radius, a high resolution726

with κ = 100 is always used irrespective of the chosen κ. Clearly, more SIPs are initialised with this727

hybrid version relative to the original version (see NSIP -values listed in the figure legend). Figure 20728

shows the droplet number evolution for the original singleSIP-init and the new hybrid version. The729

sensitivity to κ is basically suppressed when the hybrid version is used. This implies that the AON730

algorithm is more or less insensitive to the resolution in radius range r < 16µm, however, it is sensi-731

tive to the SIP resolution in the right tail. For example, the κ = 5-simulation with the hybrid version732

and 87 SIPs performs better than the κ = 20-simulation with the regular init and 98 SIPs.733

In the conventional version, SIPs are initialised down to a radius of 0.6µm (as can be seen in734

the top left panel of Fig. 1). Another variation of the singleSIP-init is shown in column 2 of Fig. 19735

(dashed curves) where this lower cut-off radius is raised to 1.6µm and around 25% fewer SIPs736

are used to describe the DSD. The simulation results are basically identical to the conventional init737

version and suggest that those initially small-ri, small-νi SIPs are not relevant for the performance738

of AON.739

Further tests with the singleSIP-init include a variation of the threshold parameter η and a switch740

from weak thresholds to strict thresholds. Moreover, we investigated the implications of update-on-741

the-fly of the SIP properties. The singleSIP-init produces an initially radius-sorted SIP ensemble and742

looping over the i-j combinations in the algorithm starts with combinations of the smallest droplets,743

which may introduce a bias. We reversed the order (i.e. started with largest droplet combinations) or744

randomly rearranged the order of the SIP combinations. None of those variations had a significant745

effect on the results (not shown).746

Finally, the AON performance for other SIP initialisations is discussed (right column of Fig. 19).747

As already demonstrated in Fig. 18, AON is not able to produce a realistic large droplet mode, if748

a moderate number of SIPs is initialised with the νconst-technique. Hence, the higher moments are749
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underestimated and droplet number is overestimated. Increasing the number of SIPs up to 1600,750

the solutions get closer to the reference, yet the agreement is still not satisfactory. The performance751

for the νdraw-init is similar. Keeping in mind the previous sensitivity studies (hybrid singleSIP-init,752

MultiSIP-init), it is apparent that the νconst-init and νdraw-init suffer from an undersampling of753

the initially largest droplets. Due to its simplicity, using constant weights for initialisation has been754

a common approach in previous 3D-LCM cloud simulations (Shima et al., 2009; Hoffmann et al.,755

2015). Hence, we tested AON extensions aiming at a better performance for equal weights ini-756

tialisations. Let us consider the possible weighting factors the SIPs can attain in the course of a757

simulation. In the beginning, all SIPs have ν = νinit. After a collection event, for both involved SIPs758

ν = νinit/2. If such a ν = νinit/2-SIP collects a ν = νinit-SIP, both SIPs carry νinit/2 droplets.759

Subsequent collections can generate SIPs with weighting factors νinit/4, 3νinit/4 and so on. It may760

be advantageous, if AON generates a broader spectrum of possible ν-values and produces SIPs with761

smaller weights more efficiently. So far, the equal splitting approach with ξ = 0.5 in a collection762

event of two equal-ν SIPs has been used. In sensitivity tests, a random number for ξ is drawn in763

each collection event, either from a uniform distribution ξ ∈ [0,1] or from a log-uniform distribution764

ξ ∈ [10−10,100]. Enhancing the spread of ν-values, more collection events occur in the algorithm,765

as pcrit is smaller when small-ν SIPs are involved. Once most SIPs were part of a collection event,766

the first option with ξ ∈ [0,1] produces a distribution of ν-values that is similar to the initial ν-767

distribution of the νdraw-init technique. Hence, the new version does not improve the simulation768

results, as the outcome for the νdraw-init and the standard νconst-init are similar (not shown). Other769

variations produce smaller weights with ξ = 10−10 rand() or ξ = 10−10 rand()2 , yet without any no-770

ticeable improvement in the simulation results (not shown).771

To complete the analysis for the Long kernel, the right column of Fig. 19 shows simulation results772

for νrandom,lb and νrandom,rs. In short, AON can cope with those initialisations and produces useful773

results.774

As already noted in the AIM section, Hall simulations are not as challenging as Long simulations775

from a numerical point of view. As the collection of small droplets proceeds at a lower rate for the776

Hall kernel, disenabling multiple collections in the AON simulations does not deteriorate the results777

as much as in the Long simulations (not shown). Besides this, simulations with the Hall kernel lead778

to similar conclusions as for the Long simulations and are therefore not discussed in more detail.779

4 Discussion780

The presented box model simulations can be regarded as a first evaluation step of collection/aggregation781

algorithms in LCMs. The final goal is the evaluation in (multi-dimensional) applications of LCMs782

with full microphysics. In order to isolate the effect of collection, other microphysical processes like783

droplet formation and diffusional droplet growth have been switched off and all box model simula-784
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tions started with a prescribed SIP ensemble following a specific exponential distribution. The eval-785

uation of different initialisation methods showed that the performance of the collection/aggregation786

approaches depends essentially on the way the SIPs are initialised, a problem which is inherently787

absent in spectral-bin models. Their initialisation resembles the singleSIP technique used here, i.e.788

the number concentration (the weighting factor) within a bin (for a certain mass range represented789

by one SIP) is directly prescribed. However, LCMs exhibit a larger variety of how an initial droplet790

spectrum can be translated into the SIP space. The study showed that the singleSIP is advantageous791

for the correct representation of the collisional growth, since they initialise large SIPs with small792

weighting factors, which are responsible for the strongest radius growth. On the other hand, the793

νconst initialisation technique, in which all SIPs have the same weighting factor initially as it is794

done in many current (multi-dimensional) applications of LCMs, impedes significantly the correct795

representation of collisional growth.796

In this idealised study, we were able to control (to a certain extent) the representation of droplet797

spectra by various initialisation methods. In more-dimensional simulations with full microphysics,798

however, this is not straightforward nor has it been intended. So far, convergence tests in "real-799

world" LCM applications simply included variations of the SIP number and have not focused on800

more detailed characteristics of the SIP ensemble (i.e. the properties that have been discussed in801

Fig. 1). Droplet formation and diffusional droplet growth, which usually create the spectrum from802

which collisions are triggered, should be implemented such that "good" SIP ensembles are gener-803

ated or evolve before collection becomes important. Here, good refers to a SIP ensemble for which804

the collection/aggregation algorithm performs well. For instance, the basic idea of the initialisation805

technique νrandom, the initialisation of weighting factors uniformly distributed in log (ν), might also806

improve multi-dimensional simulations.807

Generally, the performance of the algorithms is better when the SIP ensemble features a broad808

range of weighting factors. One viable option to achieve this is the introduction of a SIP splitting809

technique (Unterstrasser and Sölch, 2014). Why this may improve the performance of the collec-810

tion/aggregation algorithms is outlined next. Mass fractions represented by individual SIPs, χ̃i, are811

analysed. χ̃i is defined as χi/M, i.e. the total droplet mass in a SIP χi is normalised by the total812

mass within the grid box M. Figure 21 shows the initial χ̃i-values for the singleSIP-init method813

and two resolutions κ = 20 and 100 as a function of their initial radius ri. The two rows show the814

same data, using a logarithmic (top row) or linear y-scale (bottom). The log scale version highlights815

that χ̃i-values spread over many orders of magnitudes. Mainly, the parameter νcritmin controls the816

minimum value of χi. The heaviest SIPs carry initially up to 6.5% (κ = 20) or 1.2% (κ = 100) of817

the total mass M (see bottom row). Clearly, the values of the κ = 20-simulation are larger, as the818

total mass is distributed over fewer SIPs. For each SIP, χ̃i is tracked over time and the maximum819

value, χ̃i,max(t), is recorded (red and brown curves in the graphs). Characteristically of AIM, only820

the largest SIPs grow substantially and collect mass from other SIPs. Hence, only χi of those SIPs821
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Figure 21. Normalised SIP mass χ̃i as a function of the initial SIP radius ri. χ̃i is defined as = χi/M=

(νiµi)/M, i.e. the total droplet mass in a SIP is normalised by the total mass within the grid box. χinit denotes

χ̃i of the initial SIP ensemble. χmax denotes the maximum χ̃i-value each SIP attains over the course of a

simulation. The left/right panel shows AIM/AON simulations with κ = 20 or 100 (see legend). singleSIP-init,

∆t = 10s.

increases. By the way, this also illustrates that the χi-values of the smallest SIPs are so small that822

all those SIPs can be merged into a single SIP without changing the AIM outcome (see rcritmin-823

variation before). Using the fine resolution (κ = 100), heavy SIPs carry up to 10% of the total grid824

box mass at some point in time. In the κ = 20-simulation, this ratio can be higher than 50%, meaning825

that one specific SIP accumulated more than 50% of the total grid box mass at some time. Hence, the826

grid box mass is distributed fairly unevenly over the SIP ensemble. Astonishingly, this has no effect827

on the performance of AIM as the predicted λk,SIP -values for both AIM simulations are basically828

identical (see middle column of Fig. 11). In the AON simulations, we similarly find that the grid829

box mass is unevenly distributed over the SIP ensemble. Different to AIM, also many initially small830

SIPs and a few initially medium-sized SIPs carry a relevant portion of the grid box mass at some831

time. The algorithms may converge better if those heavy SIPs are split into several SIPs during the832

simulation.833

In all simulations so far, the mean radius of the initial DSD was 9.3µm where the abundance of834

droplets larger than 10µm drops strongly, which poses a challenge to the representation in SIP space.835

In a sensitivity test, we start with "more mature" DSDs. The simulations are initialised with Wang’s836

reference solution after tinit = 10, 20 or 30 minutes (cf. red, green and blue solid curves in previous837

plots of mass density distributions) using the singleSIP-init. Fig. 22 shows the SIP number and838

various moments of the DSD for AIM and AON. The initial DSD is broader for a later initialisation839

time and hence more SIPs are initialised for a given κ. This implies in particular that the spectrum840

above 10−20µm is sampled with more SIPs. For both algorithms, the simulation results are close to841

the reference solution. Compared to the default tinit = 0-case, a much weaker κ-dependence of the842
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Figure 22. SIP number and moments λ0,λ2 and λ3 as a function of time obtained for the Long kernel by AIM

(left) and AON (right). The black symbols depict the moments of the reference solution. The simulations are

initialised with Wang solution after 10 (dotted), 20 (dashed) or 30 (dash-dotted) minutes using the singleSIP-init

with various κ-values (see legend). The default AON and AIM simulations initialised at t = 0, which have been

shown before in Figs. 11 and 19, are depicted by solid lines.
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AON predicted droplet number is apparent and the AIM results do not lag behind. Even though this843

sensitivity test cannot be repeated for other init methods (as they require an analytical description of844

the initial DSD), the singleSIP simulations already indicate that the SIP initialisation is not as crucial845

when a later initialisation time is chosen and that our default setup with a narrow DSD may overrate846

the importance of the SIP initialisation. What are the implications of this for simulations with full847

microphysics? Clearly, the tinit = 20min and 30min-case oversimplify the problem, as such DSDs848

cannot be produced by diffusional growth only. The tinit = 10min-DSD, on the other hand, is still849

close to the tinit = 0min-DSD and may be produced by diffusional growth.850

In multi-dimensional models, collection/aggregation might be further influenced by the movement851

of SIPs due to sedimentation or flow dynamics. For instance, sedimentation removes the largest SIPs852

with the smallest weighting factors, while turbulent mixing is able to add SIPs with their initial853

weighting factor into matured grid boxes, where collection has already decreased the weighting854

factors of the older SIPs. Indeed, the additional variability in more-dimensional simulations might855

compensate for the missing variability in the weighting factors usually present in simulations using856

the νconst initialisation technique.857

It is not clear which findings of our evaluation efforts are the most relevant aspects that control the858

performance of collection/aggregation algorithms in more complex LCM simulations. Nevertheless,859

the idealised box simulations are an essential prerequisite towards more comprehensive evaluations860

as they disclosed the potential importance of the SIP initialisation (an aspect that is inherently absent861

in spectral bin models). All in all, we can state that the behaviour of Lagrangian collection algorithms862

in more complex simulations demands further investigation. Nevertheless, we have already learned863

a lot from the box model simulations. A summary will be given in the concluding section.864

Besides the academic Golovin kernel, our simulations used the hydrodynamic kernel with collec-865

tion efficiencies that are usually employed for liquid clouds (Long and Hall). We found that Hall sim-866

ulations are not as challenging as Long simulations from a numerical point of view. For ice clouds,867

usually a constant aggregation efficiency Ea (the analogon to collection efficiency) is chosen, partly868

due to the lack of better estimates (Connolly et al., 2012). AON simulations with Ea = 0.2 indicated869

that using a constant efficiency makes the computational problem less challenging, e.g. we find a870

smaller sensitivity to κ compared to the Long simulations shown in Fig. 19 (not shown). Hence, the871

presented algorithms can be equally employed for aggregation. Certainly, the assumption of spheri-872

cal particles used here is overly simplistic for ice cloud, in particular, if aggregates form. However,873

including mass-area relationships (e.g. Mitchell, 1996; Schmitt and Heymsfield, 2010) in the ker-874

nel expression and using parameterisations of ice crystal fall speed (e.g. Heymsfield and Westbrook,875

2010) should not change the nature of the problem.876
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5 Conclusions877

In the recent past, Lagrangian cloud models (LCMs), which use a large number of simulation par-878

ticles (SIPs) to represent a cloud, have been developed and become more and more popular. Each879

SIP represents a certain number of real droplets, which is termed the weighting factor of a SIP. In880

particular, the collision process leading to coalescence of cloud droplets or aggregation of ice crys-881

tals is implemented differently in the various models described in the literature. The present study882

evaluates the performance of three different collection algorithms in a box model framework. All mi-883

crophysical processes except collection/aggregation are neglected and an exponential droplet mass884

distribution is used for initialisation. The box model simulation results are compared to analytical885

solutions (in the case of the Golovin kernel) and to a reference solution obtained from a spectral bin886

model approach by Wang et al. (2007) (in the case of the Long or Hall kernel).887

LCMs exhibit a large variety of how an initial droplet spectrum can be translated into the SIP space888

and various initialisation methods are thoroughly explained. The performance of the algorithms de-889

pends crucially on details of the SIP initialisation and various characteristics of the initialised SIP890

ensemble (an issue that is inherently absent in spectral bin models and has not been paid much891

attention in previous LCM studies).892

The Remapping Algorithm (based on ideas of Andrejczuk et al., 2010) showed a poor perfor-893

mance, either no realistic rain mode developed or the solutions became unstable. The evaluation894

exercises presented in Andrejczuk et al. (2010) were not suited to reveal the obvious shortcomings895

or downplayed its severity. Based on our extensive tests, the algorithm cannot be recommended for896

further LCM applications, unless the stability issue is solved.897

The Average Impact (AIM) algorithm (based on ideas of Riechelmann et al., 2012) can produce898

very good results, however, appears to be inflexible inasmuch as only the initially largest SIPs are899

allowed to grow in radius space. The performance depends on details of the SIP initialisation much900

more than, e.g. on the time step or the SIP number.901

The probabilistic All-or-Nothing (AON) algorithm (based on ideas of Shima et al., 2009; Sölch and Kärcher,902

2010) yields the best results and is the only algorithm that can cope with all tested kernels. Unlike903

to AIM, in AON it is not pre-determined which SIPs will eventually contribute to the large droplet904

mode. By design, any SIP can become significant at some point and the algorithm can cope with SIP905

initialisations that guarantee a broad spectrum of weighting factors. If an equal weights initialisation906

is used tremendously many SIPs are necessary for AON convergence as reported by (Shima et al.,907

2009). Many current (multi-dimensional) applications of LCMs use such SIP ensembles with a nar-908

row spectrum of weighting factors causing a poor performance of the collection/aggregation algo-909

rithms. This should be clearly avoided in order to have collection/aggregation algorithms to work910

properly and/or efficiently. The time step and the bin resolution κ (used in the singleSIP-init) have911

values similar to those used in traditional spectral-bin models and hence the computational efforts of912

both approaches for the collection/aggregation treatment are in the same range. The presented box913
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model simulations are a first step towards a rigourous evaluation of collection/aggregation algorithms914

in more complex LCM applications (multidimensional domain, full microphysics).915
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