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Abstract. Recently, several Lagrangian microphysical models have been developed which use a1

large number of (computational) particles to represent a cloud. In particular, the collision process2

leading to coalescence of cloud droplets or aggregation of ice crystals is implemented differently in3

various models. Three existing implementations are reviewed and extended, and their performance is4

evaluated by a comparison with well established analytical and bin model solutions. In this first step5

of rigorous evaluation, box model simulations with collection/aggregation being the only process6

considered have been performed for the three well-known kernels of Golovin, Long and Hall.7

Besides numerical parameters like the time step and the number of simulation particles (SIPs)8

used, the details of how the initial SIP ensemble is created from a prescribed analytically defined9

size distribution is crucial for the performance of the algorithms. Using a constant weight technique10

as done in previous studies greatly underestimates the quality of the algorithms. Using better initial-11

isation techniques considerably reduces the number of required SIPs to obtain realistic results. From12

the box model results recommendations for the collection/aggregation implementation in higher di-13

mensional model setups are derived. Suitable algorithms are equally relevant to treating the warm14

rain process and aggregation in cirrus.15

1 Introduction16

The collection of cloud droplets or the aggregation of ice crystals are important processes in liquid17

and ice clouds. By changing the size, number, and in the case of ice the shape of hydrometeors,18

collection and aggregation affect the microphysical behaviour of clouds and thereby their role in the19

climate system.20

The warm rain process (i.e. the production of precipitation in clouds in the absence of ice) de-21

pends essentially on the collision and subsequent coalescence of cloud droplets. At its initial stage,22

however, condensational growth governs the activation of aerosols and the following growth of cloud23
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droplets, which might initiate the collection process if they become sufficiently large. Then, collec-24

tion produces drizzle or raindrops, which are able to precipitate from the cloud, affecting lifetime25

and organisation of clouds (e.g. Albrecht, 1989; Xue et al., 2008).26

In ice clouds, sedimentation, deposition growth and in particular radiative properties depend on27

the ice crystals’ habits (Sölch and Kärcher, 2011, and references therein). Ice aggregates scatter28

more strongly shortwave radiation than pure ice crystals of the same mass. Recent simulation results29

suggest that contrail-cirrus and natural cirrus can be strongly interwoven. In the mixing area with30

ice crystals of both origins being present, a prominent bimodal spectrum occurs and enhances the31

probability of collisions (Unterstrasser et al., 2016).32

The temporal change of an infinite system of droplets by collision and subsequent coalescence33

(or any other particles) is described by the stochastic collection equation (SCE), also known as34

kinetic collection equation, coagulation equation, Smoluchowksi or population balance equation35

(e.g. Wang et al., 2007). It yields:36

∂fm(m,t)

∂t
=

1

2

m
∫

0

K(m′,m−m′)fm(m′, t)fm(m−m′, t) dm′

−

∞
∫

0

K(m,m′)fm(m,t)fm(m′, t) dm′, (1)37

where fm(m)dm is the number concentration within an infinitesimal interval around the mass m.38

The first term (gain term) accounts for the coalescence of two smaller droplets forming a new39

droplet with mass m, the second term (loss term) accounts for the coalescence of m-droplets with40

any other droplets forming a larger droplet. The collection kernel K(m,m′) describes the rate by41

which an m-droplet-m′-droplet-collection occurs. Due to the symmetry of the collection kernel42

(K(m,m′) =K(m′,m)) the first term of the right-hand side can also be written as
∫m/2

0
K(m′,m−43

m′)fm(m′, t)fm(m−m′, t) dm′.44

For several kernel functions (mostly of polynomial form) analytic solutions exist for specific initial45

distributions (Golovin, 1963; Berry, 1967; Scott, 1968). The Golovin kernel (sum of masses) is given46

by47

K(m,m′) = b (m+m′). (2)48

Solutions for more realistic kernels (Long, 1974; Hall, 1980; Wang et al., 2006) and arbitrary initial49

distribution can be obtained with various numerical methods mainly using a bin representation of the50

droplet size distribution (Berry and Reinhardt, 1974; Tzivion et al., 1987; Bott, 1998; Simmel et al.,51

2002; Wang et al., 2007). The hydrodynamic kernel is defined as52

K(r,r′) = π(r+ r′)2 |wsed(r)−wsed(r
′)|Ec(r,r

′), (3)53

based on the radius r and the sedimentation velocity wsed. Parametrisations of the collection ef-54

ficiency Ec are given, e.g. by Long (1974) or Hall (1980). In the above formula, the differen-55
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tial sedimentation is the driver of collections. No same-size collisions can occur, i.e. K(r,r) = 0.56

More sophisticated expressions for K(r,r′) have been derived to include turbulence enhancement57

of the collisional growth, which also allow same-size collisions (K(r,r)> 0) (e.g. Ayala et al., 2008;58

Grabowski and Wang, 2013; Chen et al., 2016).59

Solving (1) demands simplifications in the representation of the droplet spectrum for which sev-60

eral numerical models have been developed. Spectral-bin models (e.g. Khain et al., 2000) repre-61

sent the spectrum by dividing it into several intervals, so-called bins. This approach enables the62

prediction of the temporal development of the droplet number concentration in each bin by using63

the method of finite-differences (e.g. Bott, 1998). The accuracy of these models is primarily deter-64

mined by the number of used bins (usually on the order of 100), which makes them computationally65

challenging and prohibits their use in day-to-day applications like numerical weather prediction.66

Less challenging but less accurate, cloud microphysical bulk models compute the temporal change67

of integral quantities of the droplet spectrum (e.g. Kessler, 1969; Khairoutdinov and Kogan, 2000;68

Seifert and Beheng, 2001). These are usually equations for the temporal evolution of bulk mass69

(so-called one-moment schemes), and additionally number concentration (two-moment schemes) or70

radar reflectivity (three-moment schemes), which describe the change of the entities of cloud droplets71

and rain drops (in the case of warm clouds). The separation radius between cloud droplets and rain72

drops depends on the details of the bulk scheme, but generally cloud droplets (up to 20 to 40µm in73

radius) are assumed to have negligible sedimentation fall velocities, while larger drops, frequently74

subsumed as rain drops, have a sufficient sedimentation velocity to cause collision/coalescence. The75

interactions of cloud and rain drops are therefore described in terms of self-collection (coalescence76

of cloud (rain) drops resulting in cloud (rain) drops), autoconversion (coalescence of cloud droplets77

resulting in rain drops) and accretion (collection of cloud droplets by rain drops). A third alternative78

for computing cloud microphysics has been developed in the recent years: Lagrangian cloud mod-79

els (LCMs). These models represent cloud microphysics on the basis of individual computational80

particles (SIPs). Similar to spectral-bin models, LCMs enable the detailed representation of droplet81

spectra.82

Due to their specific construction, LCMs offer a variety of advantages in comparison to spectral-83

bin and bulk cloud models. Their representation of aerosol activation and subsequent diffusional84

growth follows closely fundamental equations and avoids therefore the possible perils of parametri-85

sations (e.g. Andrejczuk et al., 2008; Hoffmann, 2016). The same applies for the representation86

of collection or aggregation, which is based on the interaction of individual SIPs. Accordingly,87

LCMs approximate pure stochastic growth (e.g. Gillespie, 1975), which is the correct description88

of collection/aggregation within a limited system of interacting particles and results in the SCE,89

which is used as the basis for spectral-bin and bulk models, if the system becomes infinite (e.g.90

Bayewitz et al., 1974). Moreover, LCMs do not apply the finite-differences method to compute mi-91

crophysics. Accordingly, LCMs are not prone to numerical diffusion and dispersion, and do not92
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suffer from the numerical broadening of a droplet spectrum, which can affect spectral-bin cloud93

models (Khain et al., 2000). The effect of sedimentation is incorporated in a straightforward man-94

ner in the transport equation of the SIPs and avoids numerical artefacts (Wacker and Seifert, 2001).95

Finally, LCMs enable new ways of analysis by the tracking of individual SIPs. They can be used to96

reveal the origins of droplets, as well as conditions associated with their growth (e.g. Hoffmann et al.,97

2015; Naumann and Seifert, 2016). The largest disadvantage of LCMs, so far, might be their relative98

novelty due to their higher computational demand. Many aspects of this approach have not been99

validated adequately or can be improved. For the process of collection/aggregation, this study will100

offer a first rigorous evaluation of the available numerical approaches.101

To our knowledge, five fully coupled LCMs for warm clouds exist, which are described in Andrejczuk et al.102

(2008), Shima et al. (2009), Riechelmann et al. (2012), Arabas et al. (2015) and Naumann and Seifert103

(2015) and have been extended or applied in various problems (e.g. Andrejczuk et al., 2010; Arabas and Shima,104

2013; Lee et al., 2014; Hoffmann et al., 2015). For ice clouds, three models exist (Paoli et al., 2004;105

Shirgaonkar and Lele, 2006; Sölch and Kärcher, 2010) which have been applied to natural cirrus106

(Sölch and Kärcher, 2011) and, in particular, to contrails (e.g. Paoli et al., 2013; Unterstrasser, 2014;107

Unterstrasser and Görsch, 2014). In the context of ice clouds and warm clouds, different names108

are used for processes that are similar, in particular in terms of their numerical treatment (depo-109

sition/sublimation vs. condensation/evaporation, collection vs. aggregation). Conceptually similar110

are particle based approaches in aerosol physics (Riemer et al., 2009; Maisels et al., 2004) which111

account for coagulation of aerosols (DeVille et al., 2011; Kolodko and Sabelfeld, 2003).112

So far, no consistent terminology has been used in the latter publications. Various names have113

been used for the same things by various authors. We point out that super droplet, computational114

droplet and simulation particle (SIP) all have the same meaning and refer to a bunch of identical real115

cloud droplets (or ice crystals) represented by one Lagrangian particle. The number of real droplets116

represented in a SIP is denoted as weighting factor or multiplicity. Moreover, Lagrangian approaches117

in cloud physics have been named Lagrangian Cloud Model (LCM), super droplet method (SDM)118

or particle based method. In this paper, we use the terms SIP, weighting factor νsim and LCM. Here119

droplet refers to either real droplets or ice crystals. If we say in the following, that "SIP i is larger120

than SIP j", this means that the droplets represented in SIP i are larger than those in SIP j. Such a121

statement it is not related to the weighting factor of the SIPs.122

Usually, only the liquid water or the ice of a cloud are described with a Lagrangian representation,123

whereas all other physical quantities (like velocity, temperature and water vapour concentration) are124

described in Eulerian space (see also discussion in Hoffmann, 2016). SIPs have discrete positions125

xp = (xp,yp, zp) within a grid box. The position is regularly updated obeying the transport equation126

∂xp/∂t= u. Microphysical processes like sedimentation and droplet growth are treated individually127

for each SIP. Interpolation methods can be used to evaluate the Eulerian fields at the specific SIP128

positions. This implicitly assumes that all νsim droplets of the SIPs are located at the same position.129
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On the other hand, the droplets of a SIP are assumed to be well-mixed in the grid box in the LCM130

treatment of collection and sometimes condensation. Then, the number concentration represented by131

a single SIP, e. g., is given by νsim/∆V , where ∆V is the volume of the grid box.132

Lists of used symbols and abbreviation are given in Tables 1 and 2.133

2 Description of the various collection/aggregation implementations134

We use the terminology of Berry (1967), where flnr and glnr denote the number and mass density135

function with respect to the logarithm of droplet radius lnr. The relations glnr(r) =mflnr(r) and136

flnr(r) = 3mfm(m) hold. The latter designates the number density function with respect to mass137

and obeys the transformation property of distributions: fy(y)dy = fx(x(y))dx. For consistency with138

previous studies, glnr is used for plotting purposes, whereas fm and gm are more relevant in the139

following analytical derivations.140

The moments of order k of the mass distribution fm (= number density function with respect to141

mass) are defined as:142

λk(t) =

∫

mkfm(m,t)dm. (4)143

The low order moments represent the number concentration (DNC = λ0) and the mass concentra-144

tion (LWC = λ1). The analogous extensive properties λk(t)∆V are the total droplet number N ,145

total droplet mass M and radar reflectivity (Z = λ2 ∆V ). For a given SIP ensemble, the moments146

can be computed by147

λk,SIP (t) =

(

NSIP
∑

i=0

νiµi
k

)/

∆V , (5)148

where µi is the single droplet mass of SIP i and NSIP is the number of SIPs inside a grid box. For149

reasons of consistency with Wang et al. (2007), we translate the SIP ensemble into a mass distribu-150

tion gm in bin representation and then compute the moments with the formula151

λk,BIN (t) =

NBIN
∑

i=0

gm(mi, t)(m̃bb,l)
k−1 ln10

3κ
(6)152

(cf. with their equation 48).153

The initialisation is successful for a given parameter set, if the moments of the SIP ensemble154

λk,SIP are close to the analytical values λk,anal. For an exponential distribution (as used in this155

study), the probability density function (PDF) reads as156

fm(m) =
N

∆V m̄
exp

(

−
m

m̄

)

, (7)157

the moments are given analytically by158

λk,anal(t) = (k− 1)! N m̄k/∆V, (8)159
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Table 1. List of symbols.

Symbol Value/Unit Meaning

fm, f̃m kg−1 m−3, 1 (normalised) droplet number concentration per mass interval

gm,glnr m−3, kg m−3 droplet mass concentration per mass interval/per logarithmic radius interval

m, m′ kg mass of a single real droplet

mbb kg bin boundaries of the bin grid

m̄= λ1/λ0 =M/N kg mean mass of all droplets

nbin,l 1 droplet number in bin l

r, r′ m droplet radius

rlb m threshold radius in νrandom,lb-init

rcritmin m lower cut-off radius in singleSIP-init

wsed m s−1 sedimentation velocity

DNC = λ0 m−3 droplet number concentration

Ec 1 collection/aggregation efficiency

K m3 s−1 collection/aggregation kernel

LWC = λ1 kg m−3 droplet mass concentration, liquid water content

Mbin,l kg total droplet mass in bin l

NSIP 1 number of SIPs

NBIN 1 number of bins

αlow,αmed,αhigh 1 parameters of the νrandom-init method.

∆t s time step

∆V m3 grid box volume

η 1 parameter in RMA algorithm and singleSIP-init method

κ 1 number of bins per mass decade

λk kgk m−3 moments of the order k

µ kg single droplet mass of a SIP

νcritmax 1 maximum number of droplets represented by a SIP

νcritmin 1 minimum number of droplets represented by a SIP

ν 1 number of droplets represented by a SIP

ξ 1 splitting parameter of AON algorithm

χ= µ ν, χ̃= χ/M kg, 1 total droplet mass of a SIP

N = λ0∆V 1 total droplet number

M= λ1∆V kg total droplet mass

Z = λ2 ∆V kg2 second moment of droplet mass distribution (radar reflectivity)
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Table 2. List of abbreviations.

AON All-Or-Nothing algorithm AIM Average Impact algorithm

DSD droplet size distribution LCM Lagrangian Cloud Model

PDF probability density function RMA Remapping algorithm

OTF Update on the fly RedLim Reduction Limiter

SIP simulation particle

where k! is the factorial of k and m̄=M/N the mean mass (Rade and Westergren, 2000).160

Throughout this study, the initial parameters of the droplet size distribution (DSD) are DNC0 =161

2.97× 108 m−3 and LWC0 = 10−3 kg m−3 (implying a mean radius of 9.3µm) as in Wang et al.162

(2007). The higher moments are λ2,anal = 6.74×10−15 kg2m−3 and λ3,anal = 6.81×10−26 kg3m−3.163

2.1 Initialisation164

In our test cases, all microphysical processes except collection are neglected and an exponential DSD165

is initialised. In the results section, we will demonstrate that the outcome of the various collection166

algorithms critically depends on how this initial, analytically defined, continuous DSD is translated167

into a discrete ensemble of SIPs. Hence, the SIP initialisation is described in some detail.168

2.1.1 SingleSIP-init and MultiSIP-init169

First, the mass distribution is discretized on a logarithmic scale. The boundaries of bin l are given170

by mbb,l =mlow10
l/κ and mbb,l+1, where mlow is the minimum droplet mass considered. The171

bin centre is computed using the arithmetic mean m̄bb,l = 0.5 (mbb,l+1 +mbb,l). The bin size is172

∆mbb,l = (mbb,l+1−mbb,l). The mass increases tenfold every κ bins. Several previous studies used173

the parameter s with mbb,l+1/mbb,l = 21/s to characterise the bin resolution. The parameters s and174

κ are related via s= κ log10(2)≈ 0.3κ.175

For each bin, the droplet number is approximated by νb = fm(m̄bb,l)∆mbb,l∆V and one SIP with176

weighting factor νsim = νb and droplet mass µsim = m̄bb,l is created, if νb is greater than a lower177

cut-off threshold νcritmin. No SIP is created if νb < νcritmin. Moreover, no SIPs are created from178

bins with radius r < rcritmin. We will refer to this as deterministic singleSIP-init. In its probabilistic179

version, the mass µsim is randomly chosen within each bin l and νsim = fm(µsim)∆mbb,l∆V is180

adapted accordingly. By default, rcritmin = 0.6µm and νcritmin = η× νmax, which is determined181

from the maximal weighting factor within the entire SIP ensemble νmax and the prescribed ratio182

of the minimal to the maximal weighting factor η = 10−9. For larger rcritmin it is advantageous to183

initialise one additional "residual" SIP that contains the sum of all neglected contributions.184

Following Unterstrasser and Sölch (2014, see their Appendix A), we introduce the multiSIP-init185

technique. It is similar to the singleSIP-init technique, except that we additionally introduce an upper186
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Table 3. Number of SIPs for the probabilistic singleSIP-init method (and variants like the MultiSIP-init) as a

function of κ. The given values are averages over 50 realisations and rounded to the nearest integer. SUPP refers

to the supplement of this paper.

κ

5 10 20 40 60 100 200 400

init method NSIP Fig.

singleSIP 24 49 98 197 296 494 988 1976 10, 12, 14, 18

multiSIP 256 517 775 1295 19

singleSIP; rcritmin = 1.6µm 74 149 223 372 19

singleSIP; rcritmin = 3.0µm 58 116 173 228 SUPP

singleSIP; rcritmin = 5.0µm 45 89 113 221 SUPP

singleSIP; tinit = 10min 58 114 227 339 565 SUPP

singleSIP; tinit = 20min 72 142 284 426 709 21

singleSIP; tinit = 30min 89 176 352 527 878 SUPP

threshold νcritmax. If νb > νcritmax is fulfilled for a specific bin, then this bin is divided into κsub =187

⌈νb/νcritmax⌉ sub-bins and a SIP is created for each sub-bin. The multiSIP-init technique gives a188

good trade-off between resolving low concentrations at the DSD tails and high concentrations of the189

most abundant droplet masses. By default, νcritmax = 0.1 νmax.190

So far, we introduced initialisation techniques with a strict lower threshold νcritmin with no SIPs191

created in bins with νb < νcritmin. We can relax this condition by introducing—what we call—192

a weak threshold. This means, that in such low contribution bin (with νb < νcritmin) we create a193

SIP with the probability pcreate = νb/νcritmin and weighting factor νsim = νcritmin. Having many194

realisations of initial SIP ensembles, the expectation value of the droplet number represented by195

such SIPs, νcritmin · pcreate +0 · (1− pcreate), equals the analytically prescribed value νb. Using a196

strict threshold the droplet number would be simply 0 in those low contribution bins. In a related197

problem, such a probabilistic approach has been shown to strongly leverage the sensitivity of ice198

crystal nucleation on the numerical parameter νcritmin. This led to a substantial reduction of the199

number of SIPs that are required for converging simulation results (Unterstrasser and Sölch, 2014).200

Using the probabilistic version and a weak lower threshold is particularly important if different201

realisations of SIP ensembles of the same analytic DSD should be created. The number of SIPs202

NSIP depends on κ, νcritmin, νcritmax and the parameters of the prescribed distribution.203

Moreover, the singleSIP-init is used in a hybrid version, where different κ-values are used in204

specified radius ranges.205

Table 3 lists the resulting number of SIPs for the range of κ-values used in simulations with the206

probabilistic singleSIP-init and variants of it.207
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2.1.2 νconst-init and νdraw-init208

The accumulated PDF F (m) is given by
∫m

0
f̃m(m′)dm′ with the normalised PDF f̃m = fm/λ0.209

First, the size NSIP of the SIP ensemble that should approximate the initial DSD is specified. For210

each SIP, its mass µi is reasonably picked by211

µi = F−1(rand()), (9)212

where rand() generates uniformly distributed random numbers ∈ [0,1]. In case of the νconst-init,213

the weighting factors of all SIPs are equally νi = νconst =N/NSIP . This init method reproduces214

SIP ensembles similar to the ones in Shima et al. (2009) or Hoffmann et al. (2015). As a variety of215

the νconst-init method, the weighting factors νi in the νdraw-init method are simply perturbed by216

νi = 2 rand()νconst.217

For the case of an exponential distribution, the following holds for the SIPs i= 1,NSIP :218

µi =−m̄ log(rand()). (10)219

In the literature, this approach is known as inverse transform sampling. A proof of correctness can220

be found in classical textbooks, e.g. Devroye (1986, their section II.2).221

2.1.3 νrandom-init222

The third approach allows specifing the spectrum of weighting factors that should be covered by223

the SIP ensemble. Similar to the νdraw-init method, the weighting factors are randomly determined.224

Whereas the latter method produced a SIP ensemble with weighting factors uniformly distributed225

in ν, the νrandom-init produces weighting factors uniformly distributed in log(ν) and covering the226

range [N 10αlow , N 10αhigh ]. The eventual number of SIPs depends most sensitively on the param-227

eter αhigh, which controls how big the portion of a single SIP can be.228

SIPs with weighting factors νi =N 10(αlow+(αhigh−αlow)·rand()) are created, until
∑NSIP

j=1 νj ex-229

ceeds N . The weighting factor of the last SIP is corrected such that
∑NSIP

j=1 νj =N holds. Now the230

mass µi of each SIP is determined by the following technique: The first SIP represents the smallest231

droplets and covers the mass interval [0,m1], whereas the last SIP represents the largest droplets in232

the interval [mNSIP−1,∞]. The SIPs i in between cover the adjacent mass intervals [mi−1,mi]. The233

boundaries are implicitly determined by
∫mi

0
fm(m′)dm′ ∆V =

∑i
j=1 νj . The total mass contained234

in each SIP is given by χi =
∫mi

mi−1

fm(m′)m′dm′ ∆V and the single droplet mass by µi = χi/νi.235

For the case of an exponential distribution, the following holds for the interval boundaries and the236

SIPs i= 1,NSIP :237

mi =−m̄ log

(

N −
∑i

j=0 νj

N

)

(11)238

and239

µi =

(

mi−1 − m̄

exp(mi−1/m̄)
−

mi − m̄

exp(mi/m̄)

)

N

νi
. (12)240
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The above formulas, which involve several differences of similarly valued terms, must be carefully241

implemented such that numerical cancellation errors are kept tolerable.242

Experimenting with the SIP-init procedure, several optimisations have been incorporated. First,243

the ν-spectrum is split into two intervals [N 10αlow , N 10αmed ] and [N 10αmed , N 10αhigh ]. We244

alternately pick random values from the two intervals. Without this correction, it happened that245

several consecutive SIPs with small weights and hence nearly identical droplet masses are created,246

which increases the SIP number without any benefits.247

Going through the list of SIPs, the droplet masses increase and hence the individual SIPs contain248

gradually increasing fractions of the total grid box mass. This can lead to a rather coarse repre-249

sentation of the right tail of the DSD. Two options to improve this have been implemented. In the250

νrandom,rs-option, the νi-values are reduced by some factor, that increases, as
∑i

j=1 νj approaches251

N . In the νrandom,lb-option, ν-values are randomly picked up to a certain radius threshold rlb. Above252

this threshold, SIPs are created with the singleSIP-method with linearly spaced bins.253

2.1.4 Comparison254

Figure 1 shows the weighting factors and other properties of the initial SIP ensemble, which may255

affect the performance of the algorithms. Each column shows one class of initialisation techniques.256

For a certain realisation, the first row shows the weighting factors νi of all SIPs as a function of257

their represented droplet radius ri. Each dot shows the (νi, ri)-pair of one SIP. For the singleSIP-258

init, the dots are homogeneously distributed along the horizontal axis, as one SIP is created from259

each bin (with exponentially increasing bin sizes). The according ν-values relate directly to the260

prescribed DSD. The higher fm∆m, the more droplets are represented in a SIP. No SIPs smaller than261

rcritmin = 0.6µm are initialised and the ν-values range over nine orders of magnitude consistent262

with η = 10−9. The MultiSIP-init introduces an upper bound of νcritmax = 2.6 · 106 for ν. This263

threshold is effective over a certain radius range where the SIPs, compared to the singleSIP-init,264

have lower ν-values and are also more densely distributed along the horizontal axis. For the νconst-265

init, all SIPs use ν = νconst, whereas for the νdraw-init the ν-values scatter around this value. For266

νconst and νdraw, the ν-values are chosen independently of the given DSD contrary to the latter267

techniques. However, for both techniques, the density of the dots along the r-axis is correlated to268

fm∆m.269

The νrandom-init technique randomly picks ν-values which are distributed over a larger range270

compared to the νdraw-init. In fact, they are uniformly distributed in log(ν). The range of possi-271

ble ν-values can be adjusted and is chosen similar to the singleSIP/multiSIP by setting αhigh =272

−2,αmed =−3 and αlow =−7, which is the default in all simulations presented here. The present273

method is more flexible compared to the singleSIP-approach as the occurrence of certain ν-values274

is not limited to a certain radius range. In the singleSIP-init, the smallest ν-values occur only at275

the left and right tail of the DSD, whereas in the νrandom-approach the smallest ν-values (down to276
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Figure 1. Characteristics of the various SIP initialisation methods (as given on top of each panel): Weighting

factors νi(ri) of an initial SIP ensemble, the mean weighting factors ν̄(r), the occurrence frequency of the

νi-values and the resulting mass density distributions glnrare displayed (Row 1 to 4). Row 1 displays data of

a single realisation, whereas rows 2 to 4 show averages over 50 SIP ensembles. The bottom row shows the

moments λ0, λ1, λ2 and λ3 normalised by the respective analytical value. Every symbol depicts the value of

a single realisation. The nearly horizontal line connects the mean values over all realisations. In the displayed

examples, κ= 10 in the singleSIP-init, κ= 10, νcritmax ≈ 2.6 · 106 in the multiSIP-init, NSIP = 80 in the

νconst, νdraw-init and (αhigh,αmed,αlow) = (−2,−3,−7) in the νrandom-inits. In top right panel, the dashed

horizontal lines indicate the values of N 10αlow ,N 10αmed and N 10αhigh and the dashed vertical line the

threshold radius rlb. 11



N 10αlow ) can appear over the whole radius range. The horizontal lines in the top right panel indicate277

the values of N 10αlow ,N 10αmed and N 10αhigh and the vertical line the threshold radius rlb.278

The second row shows average ν-value of all SIPs in a certain size bin. All init techniques are279

probabilistic and the average is taken over 50 independent realisations of SIP ensembles. Not sur-280

prisingly, the average ν of the νdraw-method is identical to νconst. Moreover, also for the νrandom-281

init the average ν-value is constant over a large radius range. Only in the right tail, the ν-values drop282

as intended. The third row shows the occurrence frequency of weighting factors.283

To display DSDs represented by a SIP ensemble, a SIP ensemble must be converted back into284

a bin representation. For this, we establish a grid with resolution κplot = 4, count each SIP in its285

respective bin, i.e. SIP i with mbb,l < µi ≤mbb,l+1 contributes to bin l via Mbin,l =Mbin,l+µi×νi286

and nbin,l = nbin,l+νi. We note that all displayed DSDs in this study will use κ= 4, irrespective of287

the κ-value chosen in the initialisation. The fourth row shows such DSDs, again as an average over288

50 SIP ensemble realisations. We find that any init technique is, in general, successful in producing289

a meaningful SIP ensemble as the "back"-translated DSD matches the originally prescribed DSD290

(black). Hence, the moments λk,SIP match the analytical values λk,anal for 0≤ k ≤ 3, as shown in291

the fifth row. Nevertheless for the νconst- and νdraw-init, the spread between individual realisations292

can be large and they deviate substantially from the analytical reference. The singleSIP/multiSIP-init293

and νrandom-init, on the other hand, guarantee that each individual realisation is fairly close to the294

reference. In the results section, the presented simulations mostly use the probabilistic singleSIP-295

initialisation. Table 3 shows lists the number of SIPs for several init methods and parameter con-296

figurations. The right most column indicates in which figure the simulations using the specific init297

method are displayed.298

2.2 Description of Hypothetical algorithm299

First, we present a hypothetical algorithm for the treatment of collection/aggregation in an LCM,300

which would probably yield excellent results. However, it is prohibitively expensive in terms of301

computing power and memory, as NSIP increases drastically over time until the state is reached302

where each SIP represents exactly one real droplet. Nevertheless, the presentation of this algorithm303

is useful for introducing several concepts which will partly occur in the subsequently described304

"real-world" algorithms.305

Whereas condensation/deposition and sedimentation may be computed using interpolated quanti-306

ties which implicitly assumes that all droplets of a SIP are located at the same point, the numerical307

treatment of collection usually assumes that the droplets of a SIP are spatially uniformly distributed,308

i.e. well-mixed within the grid box. An approach, where the vertical SIP position is retained in the309

collection algorithm and larger droplets overtaking smaller droplets is explicitly modelled, is de-310

scribed in Sölch and Kärcher (2010) and not treated here.311
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Following Gillespie (1972) and Shima et al. (2009), the probability Pij that one droplet with mass312

mi collides with one droplet with mass mj inside a small volume δV within a short time interval δt313

is given by:314

Pij =Kij δt δV
−1, (13)315

where Kij =K(mi,mj).316

For SIPs i and j containing νi and νj real droplets in a grid box with volume ∆V , on average317

νcoll = Pij νi νj collections between droplets from SIP i and SIP j occur. The average rate of such318

i− j-collections (i 6= j) to occur is:319

∂νcoll(i, j)

∂t
= νi Kij νj∆V −1 =: νioij =:Oij . (14)320

So-called self-collections, collisions of the droplets belonging to the same SIP (i= j), are described321

by:322

∂νcoll(i, i)

∂t
= 2 ·

(νi
2
Kii

νi
2
∆V −1

)

=
1

2
νi Kii νi∆V −1 =: νioii =:Oii, (15)323

assuming that the SIP is split into two portions, each containing one half of the droplets of the original324

SIP. The factor of 2 originates from the collections of each half, which have to be added to gain the325

total number of self-collections for SIP i. Accordingly, the diagonal elements of the matrices oij and326

Oij differ from the off-diagonal elements by an additional factor of 0.5. In terms of concentrations327

(represented by SIPs in a grid box with volume ∆V ), we can write328

∂ncoll(i, j)

∂t
=Kij ni nj (16)329

for collections between different SIPs and330

∂ncoll(i, i)

∂t
=

1

2
Kii n

2
i (17)331

for self-collections.332

In the hypothetical algorithm, the weighting factor of SIP i is reduced due to collections with all333

other SIPs and self-collections and reads as334

∂νi
∂t

=−
NSIP
∑

j=1

∂νcoll(i, j)

∂t
=−

NSIP
∑

j=1

Oij . (18)335

The droplet mass µi in SIP i is unchanged.336

For each i− j-combination, a new SIP k is generated:337

∂νk
∂t

=Oij and µk = µi +µj (19)338

To avoid double counting only combinations with i ≥ j are considered.339
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The rate equations for the weighting factors can be numerically solved by a simple Euler forward340

step. The weighting factor of existing SIPs is reduced by341

ν∆i :=





NSIP
∑

j=1

Oij



∆t (20)342

leading to343

ν∗i = νi − ν∆i , (21)344

or, equivalently,345

ν∗i = νi



1−∆t

NSIP
∑

j=1

oij



 . (22)346

For new SIPs k we have347

νk = 0+Oij ·∆t. (23)348

Per construction the algorithm is mass-conserving subject to rounding errors.349

In each time step, NSIP,add =NSIP (NSIP − 1)/2 new SIPs are produced and the new number350

of SIPs is NSIP
∗ =NSIP +NSIP,add. After nt time steps, the number of SIPs would be of order351

(NSIP,0)
nt which is not feasible.352

In the following subsections, algorithms are presented that include various approaches to keep the353

number of SIPs in an acceptable range.354

In the following the various algorithms are described and pseudo-code of the implementations355

is given. For the sake of readability, the pseudo-code examples show easy-to-understand imple-356

mentations. The actual codes of the algorithms are, however, optimised in terms of computational357

efficiency. The style conventions for the pseudo-code examples are as follows: Commands of the358

algorithms are written in upright font with keywords in boldface. Comments appear in italic font359

(explanations are embraced by {} and headings of code blocks are in boldface).360

2.3 Description of the Remapping (RMA) algorithm361

First, the remapping algorithm is described as its concept follows closely the hypothetical algo-362

rithm introduced in the latter section. The RMA algorithm is based on ideas of Andrejczuk et al.363

(2010). We call their approach ’remapping algorithm’ as NSIP is kept reasonably low by switch-364

ing between a SIP representation and a bin representation in every time step. A temporary bin grid365

with a pre-defined κ is established which stores the total number nbin,∗ and total mass Mbin,∗ of all366

contributions belonging to a specific bin. The bin boundaries are given by mbb,∗.367

Instead of creating a new SIP k (with number νk obtained by Eq. 19 and mass µk = µi +µj)368

from each i− j-combination, the according contribution is stored on a temporary bin grid. More369
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Algorithm 1 Pseudo-code of the Remapping algorithm (RMA); style conventions are explained at

the end of Section 2.2

1: INIT BLOCK

2: Given: Ensemble of SIPs; Specify: κ,η,∆t

3: for l = 1 to lmax do {Create temporary bin}

4: mbin,l =mbin,low10
l/κ

5: end for

6: TIME ITERATION

7: while t<Tsim do

8: LOSS BLOCK {Compute reduced bin contribution of existing SIPs}

9: for i= 1 to NSIP do

10: Calculate ν∗

i according to Eq. 22

11: Select bin l with mbb,l < µi ≤mbb,l+1

12: nbin,l = nbin,l + ν∗

i

13: Mbin,l =Mbin,l + ν∗

i ·µi

14: end for

15: GAIN BLOCK {Compute bin contribution of coalescing droplets}

16: k = 0

17: for all i < j ≤NSIP do

18: k = k+1

19: Compute νk according to Eq. 23

20: µk = µi +µj

21: Select bin l with mbb,l < µk ≤mbb,l+1

22: nbin,l = nbin,l + νk

23: Mbin,l =Mbin,l + νk ·µk

24: end for

25: CREATE BLOCK {Replace SIPs}

26: Delete all SIPs

27: i= 0

28: for all l with Mbin,l >Mcritmin = ηλ1 do {use Mcritmin as a weak threshold value}

29: i= i+1

30: Generate SIP i with νnew
i = nbin,l and µi =Mbin,l/nbin,l

31: end for

32: NSIP = i

33: t= t+∆t

34: end while

35: EXTENSIONS

36: Self-collections for a kernel with K(m,m) 6= 0 can be easily incorporated in the algorithm by changing

the condition in line 17 to i≤ j ≤NSIP .
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Figure 2. Treatment of a collection between two SIPs in the Remapping Algorithm (RMA), Average Impact

Algorithm (AIM) and All-Or-Nothing Algorithm (AON).

explicitly, this means that the droplet number nbin,l of bin l with mbb,l < µk ≤mbb,l+1 is increased370

by νk. Similarly, the total mass Mbin,l of that bin is increased by µk νk. Similarly, the reduced371

contributions ν∗i from the existing SIPs with droplet mass µi are added to their respective bins.372

Figure 2 illustrates how a collection process between two SIPs is treated in RMA. In this example,373

νk = 2 droplets are produced by collection which have a droplet mass of µk = µi+µj = 15. Instead374

of creating a new SIP k (as in the hypothetical algorithm), the contribution k is recorded in the bin375

grid. The droplet number n in bin l3 is increased by νk = 2 and the according total mass Ml3 by376

νkµk = 30. The remaining contribution of SIP i falls into bin l1 and nl1 and Ml1 are increased by377

ν∗i = νi − νk = 2 and µiν
∗

i = 12, respectively. The operation for SIP j is analogous.378

At the end of each time step after treating all possible i− j-combinations, a SIP ensemble is379

created from the bin data with νi = nbin,l and µi =Mbin,l/nbin,l, which resembles a deterministic380

singleSIP-init with the resolution κ.381

Optionally, a lower threshold νmin,RMA can be introduced, such that SIP i is created only if382

nbin,l > νmin,RMA holds. However, this may destroy the property of mass conservation which can383

be remedied by the following.384

We pick up the concept of a weak threshold introduced earlier and adjust it such that on average the385

total mass is conserved (instead of total number as before). We introduce the threshold Mcritmin =386

ηλ1. The parameter η is set to 10−8, which implies that each SIP contains at least a fraction of387

10−8 of the total mass in a grid box. If Mbin,l >Mcritmin, a SIP is created representing νi = nbin,l388

drops with single mass µi =Mbin,l/nbin,l. If Mbin,l <Mcritmin, a SIP is created with probability389

pcreate =Mbin,l/Mcritmin. In this case the SIP represents νi =Mcritmin/µi droplets with single390

mass µi =Mbin,l/nbin,l. Pseudo-code of the algorithm is given in algorithm 1.391
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Time steps typically used in previous collection/aggregation tests are around ∆t= 0.1 to 10s392

depending inter alia on the used kernel. From Eq. 22 follows that the time step in RMA must satisfy393

∆t <

NSIP
∑

j=1

oij . (24)394

Otherwise, negative ν-values can occur which would inevitably lead to a crash of the simulation. In395

mature clouds, the Long and Hall kernel attain large values which required tiny time steps of 10−4 s396

and smaller in the first test simulations. To be of any practical relevance, RMA had to be modified397

in order to be able to run simulations with suitable time steps.398

Hence, several extensions to RMA allowing larger time steps are proposed in the following.399

1. Default version: Use the algorithm as outlined in Algorithm 1 (i.e. do not change anything).400

Negative ν∗i -values obtained by Eq. 21 are acceptable, as long as nbin,l, from which the SIPs401

are created at the end of the time iteration, is non-negative for all l. This means that an existing402

SIP i (which falls into bin l) can lose more droplets (ν∆i ) than it actually possesses (νi) as long403

as the gain in bin l (from all suitable SIP combinations) compensates this deficit. We will later404

see that this approach works well for the Golovin kernel, however fails for the Long and Hall405

kernel.406

2. Clipping: Simply ignore bins with negative nbin,l and do not create SIPs from those bins.407

This approach destroys the property of mass conservation and is not pursued here.408

3. Adaptive time stepping: Instead of reducing the general time step, only the treatment of SIPs409

with ν∗i < 0 is sub-cycled. For each such SIP i, Eq. 21 is iterated η̃i times with time step410

∆tSIP =∆t/η̃i. Note that even though the computation of Eq. 21 and Oij involves the ν-411

evaluation of all SIPs, only νi is updated in the subcycling steps and not the whole system of412

fully coupled equations is solved for a smaller time step. For sufficiently large η̃i, ν
∗

i,subcycl is413

positive, as ν∆i,subcycl < νi as desired. Basically, we now assume that all collections involving414

SIP i are equally reduced by a factor of ηi = ν∆i,subcycl/ν
∆
i compared to the default time step.415

In the GAIN block of the algorithm (as termed in Alg. 1), all computations use the default416

time step and no sub-cycling is applied. To be consistent with the reduction in the LOSS417

block, Eq. 23 is replaced by νk = ηiOij∆t.418

4. Reduction Limiter (abbr. as RedLim) The effect of an adaptively reduced time step can be419

reached with simpler and cheaper means. We introduce a threshold parameter 0< γ̃ < 1.0420

similar to the approach in Andrejczuk et al. (2012). Again, we focus on SIPs with ν∗i < 0 and421

simply set the new weight of SIP i to ν∗i,RedLim = γ̃νi. As above, all contributions involving422

SIP i have to be re-scaled, now with γi = (νi − ν∗i,RedLim)/ν∆i .423

5. Update on the fly (abbr. as OTF) Another option to eliminate negative νi-values is to do an424

"update on the fly". In this case, the algorithm is not separated in a LOSS and GAIN block.425
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Instead, the i− j-combinations are processed one after another. After each collection process,426

as exemplified in Fig. 2, the weighting factors νi and νj of the two involved SIPs are reduced427

by νk, i.e. the number of droplets that were collected. Subsequent evaluations of Eq. 23 then428

use updated ν-values. Compared to the default version, it now matters in which order the i−j-429

combinations are processed, e.g. if you deal first with combinations of the smallest SIPs or of430

the largest SIPs.431

2.4 Description of Average Impact (AIM) algorithm432

Algorithm 2 Pseudo-code of the average impact algorithm (AIM); style conventions are explained

at the end of Section 2.2

1: INIT BLOCK + SIP SORTING

2: Given: Ensemble of SIPs; Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Sort SIPs by droplet mass}

6: Apply (adaptive) sorting algorithm, such that µj ≥ µi for j > i

7: {Compute total mass χi of each SIP}

8: χi = νi µi

9: for i= 1 to NSIP do

10: {Compute reduction of weighting factor due to number loss to all larger SIPs}

11: νnew
i = νi

(

1−∆t
∑NSIP

j=i+1
oij

)

12: {Compute mass transfer; mass gain from all smaller SIPs and mass loss to all larger SIPs}

13: χnew
i = χi +∆t

(

∑i−1

j=1
χjoij −χi

∑NSIP
j=i+1

oij
)

14: end for

15: νi = νnew
i

16: µi = χnew
i /νnew

i

17: t= t+∆t

18: end while

19: EXTENSIONS

20: {Self-collections for a kernel with Kii 6= 0 can be incorporated simply by starting the summation in line 11

from j = i (see also Eq. (27) in the text).}

The average impact algorithm by Riechelmann et al. (2012) and further developed in Maronga et al.433

(2015) predicts the temporal change of the weighting factor, νi, and the total mass of all droplets434

represented by each SIP, χi = νiµi. In this algorithm, two fundamental interactions of droplets are435

considered (see also Fig. 7 in Maronga et al., 2015). First, the coalescence of two SIPs of different436

size. It is assumed that the larger SIP collects a certain amount of the droplets represented by the437

smaller SIP, which is then equally distributed among the droplets of the larger SIP. As a consequence,438

the total mass and the weighting factor of the smaller SIP decrease, while the total mass of the larger439
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Figure 3. top: (ri,νi)-evolution of selected SIPs for the AIM algorithm. The black line shows the initial distri-

bution. Each coloured line connects the data points that depict the (ri,νi)-pair of an individual SIP every 200s.

bottom: The ratios ϕr and ϕν are defined as ri(t= 3600s)/ri(t= 0s) and νi(t= 3600s)/νi(t= 0s). ϕr (red

curve) and (ϕν)
−1 (black curve) for all SIPs are shown as a function of their initial radius ri(t= 0s).

An example simulation with Long kernel, singleSIP-init, ∆t= 10s, κ= 40 and NSIP = 197 is displayed.

SIP increases accordingly. Fig. 2 illustrates how a collection between two SIPs is treated. SIP j is440

assumed to represent larger droplets than SIP i, i.e. µj > µi. As in the RMA example before, we441

say that νk = 2 droplets are collected. Then SIP i loses two droplets to SIP j, i.e. νi is reduced by 2442

and a mass of µiνk is transferred to SIP j where it is distributed among the existing νj = 8 droplets.443

Unlike to RMA, where droplets with mass µj +µi = 15 are produced, AIM predicts a droplet mass444

of µj+µiνk/νi = 10.5 in SIP j. Usually, νk/νi << 1 and hence the name "average impact" for this445

algorithm.446

Moreover, same-size collisions are considered in each SIP. This decreases the weighting factor of447

each SIP but not its total mass. Accordingly, the radius of the SIP increases.448

Both processes are represented in the following two equations which are solved for all colliding449

SIPs (assuming that µ0 ≤ µ1 ≤ . . .≤ µNSIP
):450

dνi
dt

=−Kii
1

2

νiνi
∆V

−
NSIP
∑

j=i+1

Kijνiνj∆V −1 (25)451
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and452

dχi

dt
=

i−1
∑

j=1

µjKijνiνj∆V −1 −µi

NSIP
∑

j=i+1

Kijνiνj∆V −1. (26)453

The first term on the right-hand-side of Eq. 25 describes the decrease of ν due to same-size col-454

lections, the second term the decrease of ν due to collection by larger SIPs. The first term on the455

right-hand-side of Eq. 26 describes the gain in total mass due to collections with smaller SIPs, while456

the second term describes the loss of total mass due to collection by larger SIPs.457

Using a Euler forward method for time integration the above equations read as:458

νnewi = νi

(

1−
∑NSIP

j=i
oij∆t

)

(27)459

and460

χnew
i = χi

(

1−
∑NSIP

j=i+1
oij∆t

)

+
∑i−1

j=1
χjoij∆t. (28)461

Finally, the single droplet mass µi of each SIP is updated: µnew
i = χnew

i /νnewi . Pseudo-code of the462

algorithm is given in algorithm 2.463

Figure 3 illustrates how the AIM algorithm works for an example simulation with the Long kernel464

and singleSIP-init. The top panel shows the (ri,νi)-evolution of selected SIPs. The black line shows465

the initial distribution. Each coloured line connects the data points that depict the (ri,νi)-pair of an466

individual SIP every 200s. Clearly, νi of any SIP decreases over time, however the decrease is much467

smaller for the largest SIPs and becomes zero for the largest SIP. The majority of SIPs starting from468

the smallest radii show an opposite behaviour as their evolution is dominated by a strong νi-decrease469

at nearly constant ri. In contrast, the evolution of the two largest SIPs is dominated by a strong ri-470

increase for constant νi. The SIPs next to the largest SIPs undergo a transition; in the beginning, they471

primarily grow in size, towards the end the decrease of νi is dominant.472

The ratio ϕr is defined as ri(t= 3600s)/ri(t= 0s) and, analogously, ϕν = νi(t= 3600s)/νi(t=473

0s). We find ϕr ≥ 1 and ϕν ≤ 1. The bottom panel of Figure 3 shows the ratios ϕr (red curve) and474

(ϕν)
−1 (black curve) for all SIPs of the simulation. Both ratios are smooth functions of the initial475

ri, which is plotted on the x-axis. By construction, the number of SIPs remains constant over the476

course of a simulation. Hence, the number of SIPs per radius or mass interval decreases, when the477

DSD broadens over time. In our example, the SIP resolution becomes coarser, particularly in the478

large droplet tail.479

Negative values of νnewi and χnew
i may occur. However, this case never occurred in our manifold480

tests of the algorithm. The behaviour appears more benign than in RMA. Moreover, we found that481

the algorithm preserved the initial size-sortedness of the SIP ensemble. However, for an arbitrary482

kernel function and initial SIP ensemble, this is not guaranteed and we recommend to use adaptive483

sorting algorithms that benefit from partially pre-sorted data sets (Estivill-Castro and Wood, 1992).484

Adaptive sorting is also advantageous, when AIM is employed in real world applications, where485

sedimentation, advection and condensation changes the SIP ensemble in each individual grid box.486
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Figure 4. As in Fig. 3, for the AON algorithm.

2.5 Description of the All-Or-Nothing (AON) algorithm487

The All-Or-Nothing (AON) algorithm is based on the ideas of Sölch and Kärcher (2010) and488

Shima et al. (2009). Fig. 2 illustrates how a collection between two SIPs is treated. SIP i is assumed489

to represent fewer droplets than SIP j, i.e. νi < νj . Each real droplet in SIP i collects one real droplet490

from SIP j . Hence, SIP i contains νi = 4 droplets, now with mass µi+µj = 15. SIP j now contains491

νj−νi = 8−4 = 4 droplets with mass µj = 9. Following Eq. 23, only νk = 2 pairs of droplets would,492

however, merge in reality. The idea behind this probabilistic AON algorithm is that such a collection493

event is realised only under certain circumstances in the model, namely such that the expectation494

values of collection events in the model and in the real world are the same. This is achieved if a495

collection event occurs with probability496

pcrit = νk/νi (29)497

in the model. Then, the average number of collections in the model,498

ν̄k = pcritνi = (νk/νi)νi, (30)499

is equal to νk as in the real world. A collection event between two SIPs occurs, if pcrit >rand(). The500

function rand() provides uniformly distributed random numbers ∈ [0,1]. Noticeably, no operation on501

a specific SIP pair is performed if pcrit <rand().502

The treatment of the special case νk/νi > 1 needs some clarification. This case is regularly en-503

countered when the singleSIP-init is used, where SIPs with large droplets and small νi collect small504
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Algorithm 3 Pseudo-code of the all-or-nothing algorithm (AON); style conventions are explained at

the end of Section 2.2; rand() generates uniformly distributed random numbers ∈ [0,1].

1: INIT BLOCK

2: Given: Ensemble of SIPs; Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Check each i− j-combination for a possible collection event}

6: for all i < j ≤NSIP do

7: Compute νk according to Eq. 19

8: νnew =min(νi,νj)

9: pcrit = νk/νnew

10: {Update SIP properties on the fly}

11: if pcrit > 1 then

12: MULTIPLE COLLECTION

13: {can occur when νi and νj differ strongly and be regarded as special case; see text

for further explanation}

14: assume νi < νj , otherwise swap i and j in the following lines

15: {pcrit > 1 is equivalent to νk > νi}

16: {transfer νk droplets with µj from SIP j to SIP i, allow multiple collections in SIP i,

i.e. one droplet of SIP i collects more than one droplet of SIP j.}

17: SIP i collects νk droplets from SIP j and distributes them on νi droplets: µi =

(νi µi + νk µj)/νi

18: SIP j loses νk droplets to SIP i: νj = νj − νk

19: else if pcrit >rand() then

20: RANDOM SINGLE COLLECTION

21: assume νi < νj , otherwise swap i and j in the following lines

22: {transfer νi droplets with µj from SIP j to SIP i}

23: SIP i collects νi droplets from SIP j: µi = µi +µj

24: SIP j loses νi droplets to SIP i: νj = νj − νi

25: end if

26: end for

27: t= t+∆t

28: end while

29: EXTENSIONS

30: {Self-collections for a kernel with K(m,m) 6= 0 can be treated in the following way: }

31: {Insert the following loop before line 6 or after line 26.}

32: for i= 1 to NSIP do

33: pcrit = νk/νi

34: if 2 pcrit >rand() then

35: {every two (identical) droplets coalesce}

36: νi = νi/2

37: µi = 2 µi

38: end if

39: end for
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droplets from a SIP with large νj . The large difference in droplet masses µ lead to large kernel505

values and high νk with νi < νk < νj . By the way, the case of νk being even larger than νj is not506

considered, as it occurs only with unrealistically large time steps. If pcrit > 1, we allow multiple507

collections, as each droplet in SIP i is allowed to collect more than one droplet from SIP j. In total,508

SIP i collects νk droplets from SIP j and distributes them on νi droplets. A total mass of νkµj is509

transferred from SIP j to SIP i and the droplet mass in SIPs i becomes µnew
i = (νi µi + νk µj)/νi.510

The number of droplets in SIP j is reduced by νk and νnewj = νj − νk. Sticking to the example in511

Fig. 2 and assuming νk = 5, each of the νi = 4 droplets would collect νk/νi = 1.25 droplets. The512

properties of SIP i and SIP j are then: νi = 4, µi = 17.25, νj = 3 and µj = 9.513

Another special case appears if both SIPs have the same weighting factor which regularly occurs514

when the νconst-init is used. After a collection event, SIP j would carry νj−νi = 0 droplets, whereas515

SIP i would still represent νi droplets. In this case, half of the droplets from SIP i coalesce with half516

of the droplets from SIP j and vice versa. Accordingly, both SIPs carry νnewj = νnewi = 0.5× νi517

droplets with mass µi +µj . Without this correction, zero-ν SIPs would accumulate over time and518

reduce the effective number of SIPs causing a poorer sampling. Instead of this equal splitting, one519

can also assign unequal shares ξ νi and (1−ξ)νi to the two SIPs (with ξ being some random number).520

Moreover, self-collections can be considered for kernels with Kii > 0. If 2 pcrit >rand(), self-521

collections occur between the droplets in a SIP (note the factor 2 due to symmetry reasons). Then522

every two droplets within a SIP coalesce, implying νi = νi/2 and µi = 2 µi.523

So far, we explained how a single i−j-combination is treated in AON. In every time step, the full524

algorithm simply checks each i− j-combination for a possible collection event. To avoid double-525

counting only combinations with i < j and self-collections with i= j are considered. Pseudo-code526

of the algorithm is given in Algorithm 3. The SIP properties are updated on the fly. If a certain SIP is527

involved in a collection event in the model and changes its properties, all subsequent combinations528

with this SIP take into account the updated SIP properties. Similar to the update on the fly version529

of RMA, results may depend on the order in which the i− j-combinations are processed.530

For most i−j-combinations, pcrit is small and usually only a limited number of collection events531

occurs in the model and AON may suffer from an insufficient sampling of the droplet space. Ac-532

tual collections are a rare event in this algorithm. In our standard setup, < 1% of all possible col-533

lections occur in the model until rain is initiated by very few lucky SIPs (similar to lucky drops,534

e.g. Kostinski and Shaw (2005)). Indeed, Shima et al. (2009) reported convergence of AON only535

for tremendously many SIPs (on the order of 105 to 106 in a box). We will later see that conver-536

gence is possible with as few as O(102) SIPs, if the SIPs are suitably initialised. Hence, it will537

be demonstrated that AON is a viable option in 2D/3D cloud simulations, as already implied in538

Arabas and Shima (2013).539

As for AIM in Fig. 3, Fig. 4 (top) shows the (ri,νi)-evolution of selected SIPs for AON. The540

picture looks more chaotic than for AIM, as each individual SIP has its own independent history due541
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to the probabilistic nature of AON. For the initially smallest SIP, only νi changes for most of the542

time, as only collections occur where the partner SIPs have smaller weighting factors ν. Towards543

the end, the still very small SIP is at least once involved in a collection with a very large SIP that544

has a larger ν. Hence, ri of this SIP increases substantially. In contrast to the smallest SIP, other545

initially small SIPs i with similar properties are never part of a collection with νi < νj . Hence, their546

radii ri remain small over the total period and νi is the only property that changes. The bottom panel547

summarises the overall changes in νi (black) and ri (red) for all SIPs of the simulation. Unlike to548

AIM, where only the initially largest SIPs grow, SIPs from both ends of the spectrum grow in AON.549

Those SIPs have small ν-values in common and in each collection their mass is updated to mi+mj .550

The SIPs with initially large ν-values lie in the radius range [2µm,15µm] and keep their initial radii551

(at least in the singleSIP-init used here). The reductions in νi scatter around ∼ 103 for most SIPs and552

fall off to 1 for the largest SIPs.553

For the generation of the random numbers, the well-proven (L’Ecuyer and Simard, 2007) Mersenne554

Twister algorithm by Matsumoto and Nishimura (1998) is used. AON simulations may be acceler-555

ated if random numbers are computed once a priori. However, this requires saving millions of random556

numbers for every realisation. An AON simulation with 1000 time steps and 200 SIPs, for instance,557

implies 200× 100 potential collections during one time step and in total 2 · 107 random numbers.558

Using random numbers with a smaller cycle length deteriorated the simulation results in several tests559

and is not recommended.560

The current implementation differs slightly from the version in Shima et al. (2009). Due to an561

unfavourable SIP initialisation similar to the νconst-technique, Shima et al. (2009) deal with large562

NSIP -values in their simulations, where it becomes prohibitive to evaluate all NSIP (NSIP − 1)563

SIP-combinations. Hence, they resort to ⌊NSIP /2⌋ randomly picked i−j-combinations, where each564

SIP appears exactly in one pair (if NSIP is odd, one SIP is ignored). As only a subset of all possible565

combinations are numerically evaluated, the extent of collisions is underestimated. To compensate566

for this, the probability pcrit is up-scaled with a scaling factor NSIP (NSIP − 1)/(2 ⌊NSIP /2⌋) to567

guarantee an expectation value as desired.568

Moreover, in Shima’s formulation the weighting factors are considered to be integer numbers. In569

contrast, we use real numbers ν which can even attain values below 1.0. This has several computa-570

tional advantages: 1. better sampling of the DSD, in particular at the tails, 2. simpler AON imple-571

mentation with fewer arithmetic and rounding operations, and 3. more flexibility, e.g. SIP splitting572

with real-valued ξ in the case of identical weighting factors.573

Sölch and Kärcher (2010) makes use of the vertical position of the SIPs and explicitly calculates574

whether or not a larger droplet overtakes a smaller droplet within a time step. This approach will be575

thoroughly analysed in a follow-up study.576

In RMA and AIM, SIPs with negative weights may be generated depending, e.g. on the condition577

∆t
∑NSIP

j=1 oij > 1 in RMA. By construction, this cannot happen in AON and the latter condition578
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implies that
∑

j=1 pcrit,ij of SIP i is greater than unity. Then, this SIP is likely to be involved in579

several collections (for j with pcrit,ij < 1) or is involved in one or several multiple collections (for580

j with pcrit,ij > 1).581

3 Box model results582

In this section, box model simulations of the three algorithms introduced in the latter section are583

presented, starting with the results of the Remapping (RMA) Algorithm, then those of the Average584

Impact (AIM) and finally the All-or-Nothing (AON) algorithm. The results of each algorithm are585

tested for three different collection kernels (Golovin, Long and Hall). As default, probabilistic SIP586

initialisation methods are used. For each parameter setting, simulations are performed for 50 differ-587

ent realisations. Simulations with the Golovin kernel are compared against the analytical solution588

given by Golovin (1963). Consistent with many previous studies we choose b= 1.5 m3 kg−1 s−1.589

Simulations with the Long and Hall kernel are compared against high-resolution benchmark simu-590

lations obtained by the spectral-bin model approaches of Wang et al. (2007) and Bott (1998). The591

volume of the box is assumed to be ∆V = 1m3.592

In all simulations, collision/coalescence is the only process considered in order to enable a rig-593

orous evaluation of the algorithms. The evaluation is based on the comparison of mass density dis-594

tributions, and the temporal development of 0th, 2nd, and 3rd moment of the droplet distributions.595

The 1st moment is not shown since the mass is conserved in all algorithms per construction. The596

supplement (abbreviated as SUPP in the following) contains a large collection of figures that sys-597

tematically reports all sensitivity tests that have been performed. The behaviour of the second and598

third moment is similar and the λ3-evolution is shown only in SUPP. Later it will be mentioned that599

Hall kernel simulations are not as challenging as Long kernel simulations from a numerical point of600

view. Hence, simulation with the Hall kernel are only shortly discussed in the manuscript and figures601

are shown in SUPP.602

3.1 Performance of Remapping (RMA) Algorithm603

Figure 5 compares DSDs of the RMA algorithm and the analytical reference solution for the Golovin604

kernel. Each panel displays DSDs from t= 0 to 60min every 10min. The upper left panel shows an605

excellent agreement of RMA with the reference solution and proves at least a correct implementa-606

tion. Figure 6 compares the temporal evolution of the moments. Moreover, the first row shows the607

number of SIPs used in RMA. Except for the case with a very coarse grid (κ= 5) with fewer than 40608

SIPs in the end, the regular RMA results shown in the left column agree perfectly with the reference609

solution irrespective of the chosen κ (≥ 10) and minimum weak threshold η ranging from 10−5 to610

10−8. The number of non-zero bins increases as the DSD broadens over time. In the last step of the611

time iteration, SIPs are created from such bins. Hence, their number increases over time. Using a612
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Figure 5. Mass density distributions obtained by the RMA algorithm for the Golovin kernel from t= 0 to

60min every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the

solid curves the RMA simulation results (ensemble averages over 50 realisations). The parameter settings are

singleSIP-init with weak threshold η = 10−8, κ= 60 and ∆t= 1s. The following versions of the RMA al-

gorithm are depicted (clockwise from top left): regular version, version with Reduction Limiter, version with

update on the fly OTFl and OTFs (starting with combinations of the largest or smallest droplets, respectively).

strict threshold, the total mass is not conserved; the larger η is, the more mass is lost (see SUPP).613

Hence, using a weak threshold or some other measure (e.g. creation of a residual SIP containing614

contributions of all neglected bins) to avoid this is highly recommended.615

Next, RMA simulations with the Long kernel are discussed. As already mentioned, the default616

RMA version would require tiny time steps which would rule out RMA from any practical ap-617

plication. Both approaches introduced before, "Update on the fly" (OTF) and "Reduction Limiter"618

(RedLim), succeed in eliminating negative νi-values and in finishing the simulation within a rea-619

sonable time. However, the results are not as desired. Fig. 7 shows the DSDs for a simulation with620

Reduction Limiter γ̃ = 0.1, weak threshold η = 10−8,κ= 20 and ∆t= 0.1s. Whereas the algorithm621

is capable of realistically reducing the number of the smaller droplets, strong oscillations appear in622

the intermediate radius range [100µm,200µm] (see right panel). If we average over 50 realisations623

(as usually, left panel) or use a coarse grain visualisation (as usually with κplot = 4, middle panel),624

the oscillations are smoothed out (or better say masked). Nevertheless, the formation of the rain625

mode is impeded; probably the mass flux across the problematic radius range is too slow, which is626
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Figure 6. SIP number and moments λ0 and λ2 as a function of time obtained by the RMA algorithm for the

Golovin kernel. The black diamonds show the reference solution. The curves depict the RMA results (ensemble

averages over 50 realisations). The default settings are: Probabilistic singleSIP-init with weak threshold η and

∆t= 1s. Left column: regular RMA version for various κ-values (see legend in the middle) and threshold

η = 10−8, 10−7, 10−6, 10−5 (solid, dotted, dashed, dash-dotted ; shown only for κ= 40). Middle column: as

in left column, but RedLim version. Right column: version with update on the fly. (solid lines OTFs and dotted

lines OTFl). The colours define κ as in the two other columns, but only κ= 10 and 60-cases are shown.
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Figure 7. Mass density distributions obtained by the RMA algorithm for the Long kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the simulation results of the RMA algorithm with Reduction Limiter (γ̃ = 0.1), weak threshold η = 10−8,

∆t= 0.1s and κ= 40. The left panel shows the average over 50 realisations and the middle panel one specific

realisation. For both, the bin resolution of the visualisation is by default κplot = 4. The right panel shows again

the specific realisation (only t= 20min and 40min), but for κplot = κ.

a direct consequence of applying the Reduction Limiter (mostly SIPs in this part of the spectrum627

obtain negative weights and have to be corrected).628

We tested the algorithm for many parameter settings varying all of the aforementioned parame-629

ters, ∆t ∈ [0.01s,1s],κ ∈ [5,100], γ̃ ∈ [0,1] and η ∈ [10−15,10−5]. Figure 8 shows the evolution of630

moment 0 and 2 for various ∆t-values (at κ= 10, left column) and κ-values (at ∆t= 0.1s right631

column). Obviously, the simulation results are nearly insensitive to the bin resolution (as long as632

κ≥ 10), however the higher moment does not come close to the reference value. The effect of a633

∆t-variation is more substantial. Descreasing ∆t, the total droplet numbers become smaller and the634

λ2-values become larger, both leading to a better agreement. Despite using already a very small635

time step of 0.01s in the end (we will later see that AIM and AON produce reasonable results for636

∆t= 10s), the agreement with the reference solution is still not perfect.637

Hence, our RMA implementation is not capable of producing reasonable results for the Long638

kernel. It is not clear whether the oscillations are inherent to the original RMA algorithm or caused639

by the introduction of the Reduction Limiter. The latter might introduce discontinuities which could640

trigger instabilities.641

At least, the Golovin RMA simulations with Reduction Limiter do not show any signs of instabil-642

ity and agree well with the reference. However, this is not surprising. Clearly, the RedLim correction643

is only performed for SIPs, where negative weights are predicted. In Golovin simulations this hap-644

pens less frequently than in Long simulations. Only in the very end, the abundance of the largest645

droplets is underestimated (see top right panel in Figure 5) and the increase of the higher moment646

levels off slightly (middle column of Fig. 6). Bascially, the application of the Redlim correction,647
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Figure 8. SIP number and moments λ0 and λ2 as a function of time obtained by the RMA algorithm for the

Long kernel. The black diamonds show the reference solution. The curves depict the RMA results (ensemble

averages over 50 realisations). The default settings are: RedLim version with γ̃ = 0.1, singleSIP-init with weak

threshold η = 10−8, κ= 10,∆t= 1s and rcritmin = 5.0µm. The left column shows a variation of ∆t (see

legend), the right one a variation of κ (see legend) .
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which re-scales ν∆i , can be interpreted as an artificial reduction of the time increment (see Eq. 20)648

and hence slows down the growth of all corrected SIPs.649

Another RMA variant uses update on the fly which also effectively eliminates negative weights.650

Such Golovin RMA simulations can be close to the reference, however the results depend on the651

order in which the SIP combinations are processed. If collections between the smallest SIPs are652

treated first within each time iteration (OTFs), then the growth of the largest droplets is too slow653

(see bottom left panel in Figure 5). Starting the processing with collections between the largest SIPs654

(OTFl), the DSDs are as desired (see bottom right panel in Figure 5) and the moments agree perfectly655

with the reference if κ is sufficiently large (see right column of Fig. 6). The update on the fly has656

the strongest impact on those SIPs where the regular version would predict negative weights. With657

OTF, the weights of such SIPs strongly decrease during one time iteration and hence the continuous658

evaluations of the Oij-values depends on the order in which the SIP combinations are processed.659

Long kernel simulations with OTFl yield results qualitatively similar to the RedLim version (see660

SUPP) and spurious oscillations still appear in the DSDs.661

Note that the Golovin simulations used rcritmin = 1.6µm, whereas the Long simulations used662

rcritmin = 5.0µm (note the truncated left tail in the DSDs in Figure 7). A higher rcritmin-value663

reduces the SIP number and the computational effort and made simulations with small time steps664

possible at all. The simulated λ-values are insensitive to the choice of rcritmin (see SUPP).665

We conclude that for time steps feasible in operational terms, none of the tested RMA implemen-666

tations is capable of producing reasonable results with the Long kernel. Andrejczuk et al. (2010)667

introduced and evaluated the RMA algorithm and applied it in a simulation of boundary layer stra-668

tocumulus. Our findings are seemingly in conflict with the conclusions of their evaluation exercises.669

What both studies have in common is a similar trend for a κ-variation. In their Fig. 13, simulations670

for κ ranging roughly from 4 to 30 are depicted. The simulations with many bins show oscilla-671

tions, whereas the coarsest simulation has no oscillations, but is clearly far from the real solution672

(largest droplets around 40µm compared to 500µm in the reference simulation). In their Fig. 14,673

they presented a detailed sensitivity test only for a κ= 4 simulation, which downplays the sever-674

ity of the oscillation issue. Moreover, their simulations ran up to 2000s compared to 3600s in this675

study and many other studies (e.g. Bott, 1998; Wang et al., 2007). Hence, they missed the regime676

where the effect of the oscillations is strongest. Despite our extensive tests we cannot exclude that677

in Andrejczuk et al. (2010) an RMA implementation was used where oscillations are less cumber-678

some; however, the study missed to demonstrate this for a conclusive test case and we come to the679

conclusion that the evaluation exercises were incomplete and not suited to reveal the deficiencies680

faced here.681

RMA simulations with the Hall kernel are similarly corrupted by oscillations and do not produce682

useful simulations either (not shown).683
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Figure 9. Mass density distributions obtained by the AIM algorithm for the Golovin kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the AIM simulation results (ensemble averages over 50 realisations). The parameter settings are: probabilistic

singleSIP-init with weak threshold η = 10−9, ∆t= 1s and κ= 40 (left) or κ= 200 (right).

Figure 10. Moments λ0 and λ2 as a function of time obtained by the AIM algorithm for the Golovin kernel. The

black diamonds show the reference solution. The curves depict the AIM results (averages over 50 realisations).

The default settings are: probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 1s. Left

column: default simulation (red), larger time step (∆t= 10s, blue) and more SIPs (κ= 200, brown). Right

column: νconst-init (red) and νdraw-init (blue) with NSIP = 160. In all panels, the curves are on top of each

other.

3.2 Performance of Average Impact (AIM) Algorithm684
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Figure 11. Mass density distributions obtained by the AIM algorithm for the Long kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the AIM simulation results (ensemble averages over 50 realisations). The default settings are: probabilistic

singleSIP-init with weak threshold η = 10−9, κ= 40, ∆t= 1s (left panel); ∆t increased to 20s (middle

panel); νconst-init technique with NSIP = 160 (right panel).

Fig. 9 displays DSDs obtained by AIM for the Golovin kernel. Compared to the reference, the685

droplets pile up at too small radii and the algorithm is not capable of reproducing the continuous686

shift to larger sizes, even if a fine grid with κ= 200 (right) instead of κ= 40 (left) is used. For both687

κ-values, the increase of the higher moments proceeds at a too low rate (see Fig. 10), whereas the688

decrease in droplet number matches the analytical evolution. AIM is a very robust algorithm in the689

sense that the results are fairly insensitive to most numerical parameter variations as demonstrated for690

κ and ∆t in the left column of Fig. 10. Most simulations converge to—what we call—the best AIM691

solution, which is, however, not identical to the correct solution. The results deteriorate slightly if the692

initial SIP ensemble is generated with the νconst-init or νdraw-init instead of with the singleSIP-init693

(right column of Fig. 10).694

The algorithm performs, in general, better for the Long and Hall kernel as is detailed in the follow-695

ing. Fig. 11 displays DSDs obtained by AIM for the Long kernel. Generally, the results are in good696

agreement with the reference solution, as long as the SIP ensemble is initialised with the singleSIP-697

init method (left and middle column). Towards the end of the simulated period (magenta and cyan698

lines), the removal of small droplets is a bit underestimated and too many small droplets are present.699

For t= 30 and 40min, the large droplet mode is too weak as not enough large droplets have formed.700

At that stage, the droplets grow rapidly by collection and the AIM results lag behind. Although the701

offset is less than five minutes, it might become crucial in simulations of short-lived clouds. Also702

the evolution of the moments (see Fig. 12) confirms this, as the onset of the rapid changes at around703

t= 30min is only slightly retarded if parameters are suitably chosen. Towards the end, the AIM re-704

sults get again very close to the reference solution. The left column of Fig. 12 shows the dependence705

on the time step. For time steps ∆t≤ 20s all results are similar to the best AIM solution which is706
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Figure 12. Moments λ0 and λ2 as a function of time obtained by the AIM algorithm for the Long kernel. The

black diamonds show the reference solution. The curves depict the AIM results (averages over 50 realisations).

The default settings are: probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 10s. The

left column shows a variation of ∆t (see legend) and the middle column a variation of κ (see legend). The

right column displays simulations with various initialisation techniques: the νconst-init (solid) and νdraw-init

(dotted) with various NSIP -values (see legend) as well as the νrandom,rs-init (green dashed) and νrandom,lb-

init (green dash-dotted).

close to the reference. Time steps of 50s and more do not produce good enough results. Moreover,707

AIM is fairly insensitive to the choice of κ, rcritmin and νcritmin. Simulations with κ ranging from708

10 to 100 yield similar results (see middle column). Only, for a very coarse resolution (κ= 5) with709

25 SIPs, the decrease in droplet number is too small. Increasing the lower cutoff radius rcritmin from710

0.6µm to 5µm, the r < 5µm-part of the DSD is represented by a single SIP and NSIP is reduced711

by 60% (see Table 3). The predicted moments are unaffected by this variation (see SUPP). Those712

small-ri SIPs are not relevant for the AIM performance. They simply carry too small fractions of the713

total grid box mass to be important. Their status will not change over time as already illustrated in714

Fig. 3. Similarly, a variation of νcritmin or the switch to a strict threshold νcritmin has no effect (see715

SUPP).716
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Now we draw the attention to the importance of the SIP-init method. The right panel of Fig. 11717

shows the DSDs when the SIPs are initialised with the νconst-init method. The algorithm completely718

fails and no droplets larger than 70µm occur after 60 minutes. Consequently, the moments are far off719

from the reference solution (solid lines in the right column of Fig. 12). Switching to the νdraw-init720

method (dotted lines) or using many more SIPs (up to 1600) improves the results, yet they are still721

useless. This clearly demonstrates how crucial the initial characteristics of the SIP ensemble are.722

Initialising the SIPs with an appropriate technique like the singleSIP-init, useful results are obtained723

with as few as 50 SIPs. Using the νconst-init or νdraw-init, on the other hand, solutions are still724

useless, even though the number of SIPs and the computation time are factor 30 and 900 higher,725

respectively.726

The νrandom-simulations give another example of the importance of the init method. Even though727

both techniques, νrandom,rs (dashed line) and νrandom,lb (dash-dotted line), are similar in design728

and differ only in the creation of the largest SIPs (see Fig. 1), the outcome of the simulations is quite729

different. For the νrandom,lb-init, the solution matches the best AIM solution, whereas for νrandom,rs730

the moment λ2 stagnates at a too low level. The latter test pinpoints the main weakness of the AIM731

which is also reflected in its name (average impact). The initial weighting factors of those initially732

largest SIPs (in relation to ν of the remaining SIPs) controls how strong this growth is and how the733

large droplet mode emerges.734

All quantities shown in Fig. 10 and 12 are averages over 50 realisations of the initial SIP ensem-735

ble. All individual realisations yield basically identical simulation results and it would have been736

sufficient to carry out and display simulations of a single realisation.737

Next, simulations with the Hall kernel are shortly discussed (figures are only shown in the supple-738

ment). Compared to the Long simulations, the reference solution reveals that small droplets are much739

more abundant, as the collection of small droplets proceeds at a lower rate. This makes the simula-740

tion less challenging from a numerical point of view and AIM DSDs come closer to the reference741

than in the Long simulations. Consequently, the AIM moments agree very well with the reference.742

For ∆t≤ 20s and κ≥ 20, all solutions are similar to the best AIM solution.743

3.3 Performance of All-Or-Nothing (AON) Algorithm744

Fig. 13 shows the AON results for the Golovin kernel. An excellent agreement with the reference745

solution is found which proves at least the correct implementation of AON. Switching to a version746

without multiple collections (i.e. SIP i collects at most νi droplets in every time step) does not affect747

the solution as cases with pcrit > 1⇔ νk > νi occur rarely. The AON moments closely follow the748

reference solution, even when the time step is increased from 1s to 10s or fewer SIPs are used by749

decreasing κ from 40 to 10 (left column of Fig. 14). Unlike to AIM, AON is successful, even when750

the initial SIP ensemble is created with the νconst-init or νdraw-init (right column of Fig. 14).751
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Figure 13. Mass density distributions obtained by the AON algorithm for the Golovin kernel from t= 0 to

60min every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the

solid curves the AON simulation results (ensemble averages over 50 realisations). The default settings are:

probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40, ∆t= 1s. The left panel shows results of

the regular algorithm and the right panel those of a version disregarding multiple collections.

Figure 14. Moments λ0 and λ2 as a function of time obtained by the AON algorithm for the Golovin kernel. The

black diamonds show the reference solution. The curves depict the AON results (averages over 50 realisations).

The default settings are: probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 1s. Left

column: default simulation (red), larger time step (∆t= 20s, blue) and fewer SIPs (κ= 10, brown). Right

column: νconst-init (brown) and νdraw-init (blue).
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Figure 15. Mass density distributions obtained by the AON algorithm for the Long kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the AON simulation results. The top row shows two specific realisations (each ∗-symbol depict a non-zero g-

value). Rows 2 and 3 show averages over 50 and 500 realisations: The left column uses the format as all DSD

plots before. The right column depicts the final DSD at t= 60min together For each bin, the interquartile range

is determined and depicted by diamonds and a dashed bar. If there is only one (or none) diamond in a bin, the

25th (and the 75th) percentile is/are too small to be visible. The settings are: probabilistic singleSIP-init with

η = 10−9, κ= 40 and ∆t= 20s.
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Figure 16. Moments λ0 and λ2 as a function of time obtained by the AON algorithm for the Long kernel.

Each realisation was initialised with a different SIP ensemble (probabilistic singleSIP, red) or all realisations

started with the same SIP ensemble (deterministic singleSIP, blue). In both cases, the curves show an average

over 50 realisations with the vertical bars indicating the interquartile range. The crosses show the minimum and

maximum values and the circle the median value. The parameter settings are ∆t= 20 and κ= 40.

Fig. 15 displays DSDs of an AON simulation for the Long kernel. The simulations exhibit large752

differences between individual realisations which deserves a closer inspection. The top row show753

DSDs of two specific realisations. The ∗-symbol depicts the g-value for each bin. Those symbols are754

connected by default. An interruption of the connecting line indicates one or more empty bins (g = 0)755

where no SIPs exist in this specific radius interval. This occurs frequently due to the broadening756

of the DSD. The solutions are full of spikes and irregularly over- and undershoot the reference757

solution, particularly in the large droplet mode. The small droplet mode is underestimated in the758

first realisation and overestimated in the second realisation, for instance. The advantages of AON759

become apparent when the DSDs are averaged over many realisations as shown in rows 2 and 3. Then760

the DSDs come close to the reference solution (left column) and the interquartile range indicates761

the broad envelope the individual realisations span around the reference solution (right column).762

Whereas the average over 50 realisations still has some fluctuations (row 2), the average over 500763

realisations produces a smooth solution (row 3).764

There are two sources that are potentially responsible for the large ensemble spread: the proba-765

bilistic SIP initialisation and the probabilistic AON approach. In a sensitivity test, 50 realisations are766
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Figure 17. Mass density distributions obtained by the AON algorithm for the Long kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the AON simulation results (ensemble averages over 50 realisations). The default settings are: probabilistic

singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 1s. The left panel shows results of the regular

algorithm, the middle panel those of a version disregarding multiple collections at ∆t= 10s and the right panel

results for νconst-init with NSIP = 160.

computed, all using the same SIP initialisation obtained by a deterministic singleSIPinit. Figure 16767

compares those simulations to regular simulations with differing SIP initialisations. In both cases,768

we find a substantial ensemble spread. Starting with identical SIP initialisations the spread in terms769

of interquartile range is, however, somewhat smaller suggesting that both sources contribute to the770

ensemble spread.771

Fig. 17 shows AON results with 50 realisations and probabilistic initialisation which gives a good772

trade-off between computational cost and representativeness. Clearly, AON DSDs are less smooth773

than those of AIM. Column 1 shows a default simulation with singleSIP-init and shows very good774

agreement with the reference solution. Disenabling multiple collections (column 2), far too few small775

droplets become collected and their abundance is substantially overestimated. As a consequence, the776

mass transfer from small to large droplets is slowed down and the large droplet mode is under-777

estimated. Using the νconst-init, the large droplet mode is not well matched and results are again778

useless.779

Fig. 18 shows the temporal evolution of moments λ0 and λ2 for a large variety of sensitivity tests.780

Column 1 shows a variation of ∆t for the singleSIP-init. The larger ∆t is chosen, the more often781

combinations with pcrit > 1 occur and the more crucial it becomes to consider multiple collections.782

Even for the smallest time step considered, the version without multiple collections does not col-783

lect enough small droplets and hence overestimates droplet number. With the regular AON version784

considering multiple collections, reasonable results are obtained for time steps ∆t≤ 20s. Column 2785

shows a variation of κ for singleSIP-init. Whereas the higher moments perfectly match the reference,786

the droplet number shows a non-negligible dependence on κ. For κ < 100, droplet number decrease787
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Figure 18. Moments λ0 and λ2 as a function of time obtained by the AON algorithm for the Long kernel. The

black diamonds show the reference solution. The curves depict the AON results (averages over 50 realisations).

The default settings are: probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 10s.

The left column shows a variation of ∆t (see legend) for the regular AON version (solid) and for a version

disregarding multiple collections (dotted, only cases with ∆t≤ 20s are displayed). The middle column shows

a variation of κ (see legend). The right column displays simulations with various initialisation techniques: the

νconst-init (solid) and νdraw-init (dotted) with various NSIP -values (see legend) as well as the νrandom,rs-init

(green dashed) and νrandom,lb-init (green dash-dotted).

is faster, the finer the resolution is. For κ≥ 100, a variation of κ has no effect, hence convergence788

is reached. However, those simulations underestimate the droplet number. Best results are obtained789

for an intermediate resolution of κ= 40. Using the MultiSIP-init, the simulations show the same790

undesired behaviour (see left panel of Figure 19). Hence, increasing the SIP concentration in the791

middle part of the initial DSD has no positive effect despite using around 160% more SIPs (see792

NSIP -values listed in the figure’s legend). In another experiment, a hybrid singleSIP-init was used.793

Below r = 16µm SIPs are initialised as usually with the prescribed κ. Above this radius, a high res-794

olution with κ= 100 is always used irrespective of the chosen κ. Clearly, more SIPs are initialised795

with this hybrid version relative to the original version (see NSIP -values listed in the figure legend).796

The middle panel of Figure 19 shows the droplet number evolution for the original singleSIP-init797
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Figure 19. Droplet number as a function of time obtained by the AON algorithm for the Long kernel. The

black symbols show the moments of the reference solution. In each panel, the dotted curves depict the results

with the regular singleSIP-init as already shown in column 2 of Fig. 18. The solid curves depict results with a

modified initialisation: the right panel shows results with the MultiSIP-init, the middle column with the hybrid

init and the right column with the singleSIP-init with rcritmin = 1.6µm. Each panel shows results for various

κ-values (see corresponding legend). The hybrid version uses κ= 100 for radii above 15µm and κ as labeled

for radii below 15µm. The MultiSIP-init and hybrid version use more SIPs than the regular SingleSIP-init. An

rcritmin-increase leads to a NSIP -reduction. See listed NSIP -values in the plots for a comparison.

and the new hybrid version. The sensitivity to κ is basically suppressed when the hybrid version798

is used. This implies that the AON algorithm is more or less insensitive to the resolution in radius799

range r < 16µm, however, it is sensitive to the SIP resolution in the right tail. For example, the800

κ= 5-simulation with the hybrid version and 87 SIPs performs better than the κ= 20-simulation801

with the regular init and 98 SIPs.802

In the conventional version, SIPs are initialised down to a radius of 0.6µm (as can be seen in803

the top left panel of Fig. 1). Another variation of the singleSIP-init is shown in the right panel of804

Figure 19 where this lower cut-off radius is raised to 1.6µm and around 25% fewer SIPs are used to805

describe the DSD. The simulation results are basically identical to the conventional init version and806

suggest that those initially small-ri, small-νi SIPs are not relevant for the performance of AON.807

Further tests with the singleSIP-init include a variation of the threshold parameter η and a switch808

from weak thresholds to strict thresholds. Moreover, we investigated the implications of update-on-809

the-fly of the SIP properties. The singleSIP-init produces an initially radius-sorted SIP ensemble and810

looping over the i-j combinations in the algorithm starts with combinations of the smallest droplets,811

which may introduce a bias. We reversed the order (i.e. started with largest droplet combinations) or812

randomly rearranged the order of the SIP combinations. None of those variations had a significant813

effect on the ensemble-averaged results (see SUPP). The latter insensitivity is in contrast to the RMA814

40



behaviour. The reason for this is the comparably small number of SIP combinations that actually815

result in collections, as well as probabilistic determination of these combinations. This prevents any816

pronounced bias due to size-sorting. Moreover, AON does not preserve the size-sortedness of the817

SIP list (cf. Fig. 4).818

Finally, the AON performance for other SIP initialisations is discussed (right column of Fig. 18).819

As already demonstrated in Fig. 17, AON is not able to produce a realistic large droplet mode, if820

a moderate number of SIPs is initialised with the νconst-technique. Hence, the higher moments are821

underestimated and droplet number is overestimated. Increasing the number of SIPs up to 1600,822

the solutions get closer to the reference, yet the agreement is still not satisfactory. The performance823

for the νdraw-init is similar. Keeping in mind the previous sensitivity studies (hybrid singleSIP-init,824

MultiSIP-init), it is apparent that the νconst-init and νdraw-init suffer from an undersampling of825

the initially largest droplets. Due to its simplicity, using constant weights for initialisation has been826

a common approach in previous 3D-LCM cloud simulations (Shima et al., 2009; Hoffmann et al.,827

2015). Hence, we tested AON extensions aiming at a better performance for such equal weights828

initialisations.829

Let us consider the possible weighting factors the SIPs can attain in the course of a simulation. In830

the beginning, all SIPs have ν = νinit. After a collection event, for both involved SIPs ν = νinit/2. If831

such a ν = νinit/2-SIP collects a ν = νinit-SIP, both SIPs carry νinit/2 droplets. Subsequent collec-832

tions can generate SIPs with weighting factors νinit/4, 3νinit/4 and so on. It may be advantageous,833

if AON generates a broader spectrum of possible ν-values and produces SIPs with smaller weights834

more efficiently. So far, the equal splitting approach with ξ = 0.5 in a collection event of two equal-ν835

SIPs has been used. In sensitivity tests, a random number for ξ is drawn in each collection event,836

either from a uniform distribution ξ ∈ [0,1] or from a log-uniform distribution ξ ∈ [10−10,100]. En-837

hancing the spread of ν-values, more collection events occur in the algorithm, as pcrit is larger838

when small-ν SIPs are involved. Once most SIPs were part of a collection event, the first option839

with ξ ∈ [0,1] produces a distribution of ν-values that is similar to the initial ν-distribution of the840

νdraw-init technique and further equal weights combinations are unlikely to occur. Hence, the new841

version does not improve the simulation results, as the outcome for the νdraw-init and the standard842

νconst-init are similar (see SUPP). Other variations produce smaller weights with ξ = 10−10 rand()
843

or ξ = 10−10 rand()2 , yet without any noticeable improvement in the simulation results (see SUPP).844

To complete the analysis for the Long kernel, the right column of Fig. 18 shows simulation results845

for νrandom,lb and νrandom,rs. In short, AON can cope with those initialisations and produces useful846

results.847

As already noted in the AIM section, Hall simulations are not as challenging as Long simulations848

from a numerical point of view. As the collection of small droplets proceeds at a lower rate for the849

Hall kernel, disenabling multiple collections in the AON simulations does not deteriorate the results850
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as much as in the Long simulations (see SUPP). Besides this, simulations with the Hall kernel lead851

to similar conclusions as for the Long simulations and are therefore not discussed in more detail.852

4 Discussion853

The presented box model simulations can be regarded as a first evaluation step of collection/aggregation854

algorithms in LCMs. The final goal is the evaluation in (multi-dimensional) applications of LCMs855

with full microphysics. In order to isolate the effect of collection, other microphysical processes856

like droplet formation and diffusional droplet growth have been switched off and all box model857

simulations started with a prescribed SIP ensemble following a specific exponential distribution. In858

section 4.1 the performance of the different algorithms is compared and we summarise the findings859

from section 3. Section 4.2 discusses implications of our results and provides further insights.860

4.1 Summarising comparison of the algorithms’ performance861

The initialisation techniques for the SIP population generation are mostly probabilistic and by de-862

fault, each simulation was performed for 50 different realisations. For RMA and AIM, we found the863

ensemble spread to be small and a single realisation is as good as the ensemble mean. The AON al-864

gorithm is inherently probabilistic and we highlighted the substantial ensemble spread. Reasonable865

results are only obtained only by averaging over many realisations. One may argue that this precludes866

the usage of AON in real-world applications as it is not feasible to run 50 realisations in each grid867

box of a 2D/3D model simulation. However, we are not that pessimistic. In such simulations, many868

grid boxes have similar atmospheric conditions and averaging will occur across such grid boxes. We869

made a similar experience in simulations of contrail-cirrus, where we tested the NSIP -sensitivity of870

the deposition/sublimation process (see section 3.1 in Unterstrasser and Sölch, 2014). We found that871

very few SIPs per grid box sufficed to reach convergence even though the few SIPs in a single grid872

box could not realistically represent a smooth DSD and reasonable DSDs could only be obtained by873

averaging over several grid boxes.874

RMA simulations for the Long kernel require around a factor 1000 smaller time steps than the875

respective AON and AIM simulations (∆t= 0.01s versus 10s). Using the Long kernel, rapid col-876

lection growth occurs in a certain size range. In RMA, this puts a strong constraint on the time step877

(see Eq. 24). In AON the inclusion of multiple collections allows simulating the rapid growth without878

the need to reduce the time step. Without multiple collections, the AON requirements on ∆t would879

be similar to RMA. AIM seems to be unaffected by rapid collections resulting in negative weight-880

ing factors as observed in RMA. The reason for this might origin from AIM’s typical behavior. If881

large and therefore most effectively collecting SIPs are produced at all, they will exhibit very small882

weighting factors. This property reduces the potentially hazardous impact of multiple collections at883

larger time steps in the tested setups. However, this might not be a universal feature of AIM.884
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If the initial SIP ensemble is created with the SingleSIP-init, 50 to 100 SIPs are needed for con-885

vergence in any of the three algorithms. This value is similar to the number of bins used in traditional886

algorithms for spectral-bin models (Bott, 1998; Wang et al., 2007).887

For a given NSIP , the number of floating point operations performed in one time iteration is888

roughly similar for all three algorithms but depends ultimately on details of the implementations.889

The RMA RedLim variant is, e.g., more demanding than its OTF counterpart. In the AON algorithm,890

the generation of the random numbers needs a non-negligible share of the computing time.891

The time complexity of all presented algorithms is O(N2
SIP ) as computations are carried out892

for all pairwise combinations of SIPs. A linear sampling approach as introduced by Shima et al.893

(2009), which processes only NSIP /2 SIP pairs, has complexity O(NSIP ) and can be applied in894

the RMA or AON algorithm. However, more SIPs may be required to reach convergence and in895

full microphysical models this may slow down the calculation of all other microphysical processes896

(which have usually linear time complexity).897

All in all, the time step ∆t, which controls the number of iterations, is the most critical parameter898

for the computing time.899

4.2 Implications and further insights900

In this section, we provide further insight and discuss the implications from the box model tests.901

Since our results have been gained with typical assumptions for warm clouds, we discuss their rep-902

resentativeness for ice clouds.903

The evaluation of different initialisation methods showed that the performance of the collec-904

tion/aggregation approaches depends essentially on the way the SIPs are initialised, a problem which905

is inherently absent in spectral-bin models. Their initialisation resembles the singleSIP technique906

used here, i.e. the number concentration (the weighting factor) within a bin (for a certain mass range907

represented by one SIP) is directly prescribed. However, LCMs exhibit a larger variety of how an908

initial droplet spectrum can be translated into the SIP space. The study showed that the singleSIP is909

advantageous for the correct representation of the collisional growth, since they initialise large SIPs910

with small weighting factors, which are responsible for the strongest radius growth. On the other911

hand, the νconst initialisation technique, in which all SIPs have the same weighting factor initially912

as it is done in many current (multi-dimensional) applications of LCMs, impedes significantly the913

correct representation of collisional growth.914

In this idealised study, we were able to control (to a certain extent) the representation of droplet915

spectra by various initialisation methods. In more-dimensional simulations with full microphysics,916

however, this is not straightforward nor has it been intended. So far, convergence tests in "real-917

world" LCM applications simply included variations of the SIP number and have not focused on918

more detailed characteristics of the SIP ensemble (i.e. the properties that have been discussed in919

Fig. 1). Droplet formation and diffusional droplet growth, which usually create the spectrum from920
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Figure 20. Normalised SIP mass χ̃i as a function of the initial SIP radius ri. χ̃i is defined as = χi/M=

(νiµi)/M, i.e. the total droplet mass in a SIP is normalised by the total mass within the grid box. χ̃init denotes

χ̃i of the initial SIP ensemble. χ̃max denotes the maximum χ̃i-value each SIP attains over the course of a

simulation. The left/right panel shows AIM/AON simulations with κ= 20 or 100 (see legend). Both algorithms

use the singleSIP-init and ∆t= 10s. The plots show results from a single realisation.

which collisions are triggered, should be implemented such that "good" SIP ensembles are gener-921

ated or evolve before collection becomes important. Here, good refers to a SIP ensemble for which922

the collection/aggregation algorithm performs well. For instance, the basic idea of the νrandom-923

initialisation technique (weighting factors are uniformly distributed in log (ν)) might also improve924

multi-dimensional simulations.925

Generally, the performance of the algorithms is better when the SIP ensemble features a broad926

range of weighting factors. One viable option to achieve this is the introduction of a SIP splitting927

technique (Unterstrasser and Sölch, 2014). How this may improve the performance of the collec-928

tion/aggregation algorithms is outlined next.929

Mass fractions represented by individual SIPs, χ̃i, are analysed. χ̃i is defined as χi/M, i.e. the930

total droplet mass in a SIP χi is normalised by the total mass within the grid box M. Figure 20 shows931

the initial χ̃i-values of all SIPs as a function of their initial radius ri. Results are shown for AIM and932

AON with the singleSIP-init method and two bin resolutions κ= 20 and 100. This corresponds to933

99 and 493 SIPs for the specific realisation depicted here. The two rows show the same data, using934

a logarithmic (top row) or linear y-scale (bottom). The log scale version highlights that χ̃i-values935

spread over many orders of magnitudes. Mainly, the parameter νcritmin controls the minimum value936

of χi. The heaviest SIPs carry initially up to 6.5% (κ= 20) or 1.2% (κ= 100) of the total mass937

M (see bottom row). Clearly, the values of the κ= 20-simulation are larger, as the total mass is938
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Figure 21. Moments λ0 and λ2 as a function of time obtained for the Long kernel by AIM (left) and AON

(right). The black symbols depict the moments of the reference solution. The simulations are initialised with

Wang’s solution after 20 minutes (solid lines) using the singleSIP-init with various κ-values (see legend). The

default AON and AIM simulations initialised at t= 0, which have been shown before in Figs. 12 and 18, are

depicted by dotted lines.

distributed over fewer SIPs. For each SIP, χ̃i is tracked over time and the maximum value, χ̃i,max(t),939

is recorded (red and brown curves in the graphs). Characteristically of AIM, only the largest SIPs940

grow substantially and collect mass from other SIPs. Hence, only χi of those SIPs increases. By the941

way, this also illustrates that the χi-values of the smallest SIPs are so small that all those SIPs can be942

merged into a single SIP without changing the AIM outcome (see rcritmin-variation before). Using943

the fine resolution (κ= 100), heavy SIPs (i.e. those with largest χ̃i) carry up to 10% of the total944

grid box mass at some point in time. In the κ= 20-simulation, this ratio can be higher than 50%,945

meaning that one specific SIP accumulated more than 50% of the total grid box mass at some time.946

Hence, the grid box mass is distributed fairly unevenly over the SIP ensemble. Astonishingly, this947

has no effect on the performance of AIM as the predicted λk,SIP -values for both AIM simulations948

are basically identical (see middle column of Fig. 12). In the AON simulations, we similarly find949

that the grid box mass is unevenly distributed over the SIP ensemble. Different to AIM, also many950

initially small SIPs and a few initially medium-sized SIPs carry a relevant portion of the grid box951

mass at some time. The algorithms may converge better if those heavy SIPs are split into several952

SIPs during the simulation.953
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In all simulations so far, the mean radius of the initial DSD was 9.3µm. Then the abundance of954

droplets larger than around 10µm drops strongly, which poses a challenge to representing this part955

of the droplet spectrum in SIP space. In a sensitivity test, we start with more "mature" DSDs. The956

simulations are initialised with the reference solution from Wang et al. (2007) after tinit = 10, 20957

or 30 minutes (cf. red, green and blue solid curves in previous plots of mass density distributions)958

using the singleSIP-init. Fig. 21 shows λ0 and λ2 of the DSD for AIM and AON for tinit = 20min959

and the default tinit = 0min (cases tinit = 10 and 30min are shown in SUPP). The initial DSD is960

broader for a later initialisation time and hence more SIPs are initialised for a given κ (see Table 3961

for the resulting NSIP -values). This implies in particular that the spectrum above 10−20µm is sam-962

pled with more SIPs. For both algorithms, the simulation results are close to the reference solution.963

Compared to the default tinit = 0-case, a much weaker κ-dependence of the AON predicted droplet964

number is apparent and the AIM results do not lag behind. Even though this sensitivity test cannot965

be repeated for other init methods (as they require an analytical description of the initial DSD), the966

singleSIP-init simulations already indicate that the SIP initialisation is not as crucial when a later ini-967

tialisation time is chosen and that our default setup with a narrow DSD may overrate the importance968

of the SIP initialisation. What are the implications of this for simulations with full microphysics?969

Clearly, the tinit = 20min and 30min-case oversimplify the problem, as such DSDs cannot be pro-970

duced by diffusional growth only. The tinit = 10min-DSD, on the other hand, is still close to the971

tinit = 0min-DSD and may be produced by diffusional growth. RMA simulations with non-zero972

tinit again show spurious oscillations and fail to predict the higher moments correctly (see SUPP).973

In multi-dimensional models, collection/aggregation might be further influenced by the movement974

of SIPs due to sedimentation or flow dynamics. For instance, sedimentation removes the largest SIPs975

with the potentially smallest weighting factors, while turbulent mixing may add SIPs with their initial976

weighting factor into matured grid boxes, where collection has already decreased the weighting977

factors of the older SIPs. Indeed, the additional variability in more-dimensional simulations might978

compensate for the missing variability in the weighting factors usually present in simulations using979

the νconst-initialisation technique.980

It is not clear which findings of our evaluation efforts are the most relevant aspects that control the981

performance of collection/aggregation algorithms in more complex LCM simulations. Nevertheless,982

the idealised box simulations are an essential prerequisite towards more comprehensive evaluations983

as they disclosed the potential importance of the SIP initialisation (an aspect that is inherently absent984

in spectral bin models). All in all, we can state that the behaviour of Lagrangian collection algorithms985

in more complex simulations demands further investigation. Nevertheless, we have already learned986

a lot from the box model simulations. A summary will be given in the concluding section.987

Besides the academic Golovin kernel, our simulations used the hydrodynamic kernel with collec-988

tion efficiencies that are usually employed for warm clouds (Long and Hall). We found that Hall sim-989

ulations are not as challenging as Long simulations from a numerical point of view. For ice clouds,990
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usually a constant aggregation efficiency Ea (the analogon to collection efficiency Ec) is chosen,991

partly due to the lack of better estimates (Connolly et al., 2012). AON simulations with Ea = 0.2992

indicated that using a constant efficiency makes the computational problem less challenging, e.g. we993

find a smaller sensitivity to κ compared to the Long simulations shown in Fig. 18 (see SUPP). Hence,994

the presented algorithms can be equally employed for aggregation. Certainly, the assumption of995

spherical particles used here is overly simplistic for ice cloud, in particular, if aggregates form. How-996

ever, including mass-area relationships (e.g. Mitchell, 1996; Schmitt and Heymsfield, 2010) in the997

kernel expression and using parameterisations of ice crystal fall speed (e.g. Heymsfield and Westbrook,998

2010) should not change the nature of the problem.999

5 Conclusions1000

In the recent past, Lagrangian cloud models (LCMs), which use a large number of simulation par-1001

ticles (SIPs, also called super droplets in the literature) to represent a cloud, have been developed1002

and become more and more popular. Each SIP represents a certain number of real droplets; this1003

number is termed the weighting factor (or multiplicity) of a SIP. In particular, the collision process1004

leading to coalescence of cloud droplets or aggregation of ice crystals is implemented differently1005

in the various models described in the literature. The present study evaluates the performance of1006

three different collection algorithms in a box model framework. All microphysical processes ex-1007

cept collection/aggregation are neglected and an exponential droplet mass distribution is used for1008

initialisation. The box model simulation results are compared to analytical solutions (in the case1009

of the Golovin kernel) and to a reference solution obtained from a spectral bin model approach by1010

Wang et al. (2007) (in the case of the Long or Hall kernel).1011

LCMs exhibit a large variety of how an initial droplet spectrum can be translated into the SIP space1012

and various initialisation methods are thoroughly explained. The performance of the algorithms de-1013

pends crucially on details of the SIP initialisation and various characteristics of the initialised SIP1014

ensemble (an issue that is inherently absent in spectral bin models and has not been paid much1015

attention in previous LCM studies).1016

The Remapping Algorithm (based on ideas of Andrejczuk et al., 2010) produces perfect solu-1017

tions in simulations with the Golovin kernel, however shows a poor performance when we switch1018

to the Long kernel. Spurious oscillations occur in the intermediate radius range [100µm,200µm]1019

which impedes the development of a realistic rain mode. Only for unfeasibly small time steps of1020

0.01s, the simulation results get close to the reference solution. The evaluation exercises presented1021

in Andrejczuk et al. (2010) were not suited to reveal these shortcomings or downplayed its severity.1022

Based on our extensive tests, we cannot recommend the algorithm at its present state for further1023

LCM applications, unless some mechanism to eliminate those oscillations is developped.1024
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The Average Impact (AIM) algorithm (based on ideas of Riechelmann et al., 2012) can produce1025

very good results, however, appears to be inflexible inasmuch as only the initially largest SIPs are1026

allowed to grow in radius space. The performance depends on details of the SIP initialisation much1027

more than, e.g. on the time step or the SIP number.1028

The probabilistic All-or-Nothing (AON) algorithm (based on ideas of Shima et al., 2009; Sölch and Kärcher,1029

2010) yields the best results and is the only algorithm that can cope with all tested kernels. Unlike1030

to AIM, in AON it is not pre-determined which SIPs will eventually contribute to the large droplet1031

mode. By design, any SIP can become significant at some point and the algorithm can cope with SIP1032

initialisations that guarantee a broad spectrum of weighting factors. If an equal weights initialisation1033

is used, tremendously many SIPs are necessary for AON convergence as reported by Shima et al.1034

(2009).1035

Many current (multi-dimensional) applications of LCMs use such SIP ensembles with a narrow1036

spectrum of weighting factors causing a poor performance of the collection/aggregation algorithms.1037

This should be clearly avoided in order to have collection/aggregation algorithms to work properly1038

and/or efficiently. The time step and the bin resolution κ (used in the singleSIP-init) have values1039

similar to those used in traditional spectral-bin models and hence the computational efforts of both1040

approaches for the collection/aggregation treatment are in the same range. The presented box model1041

simulations are a first step towards a rigourous evaluation of collection/aggregation algorithms in1042

more complex LCM applications (multidimensional domain, full microphysics).1043
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