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Abstract. We present and validate a set of equations for representing the atmosphere’s large-scale general 

circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been 15 
implemented in Aeolus, which is a Statistical Dynamical Atmosphere Model (SDAM) and includes radiative 

transfer and cloud modules (Coumou, 2011; Eliseev, 2013). The statistical dynamical approach is 

computationally efficient, and thus enables us to do climate simulations at multi-millennia timescales, which is a 

prime aim of our model development. Further, this computational efficiency enables us to scan large and high-

dimensional parameter space to tune the model parameters.  20 

We optimize the dynamical core parameter values by tuning all relevant dynamical variables to ERA-Interim 

reanalysis data (1983-2009) using monthly mean data of climatology data as well as the data for the El Niño and 

La Niña composites. We use a Simulated Annealing optimization algorithm, which approximates the global 

minimum of a high-dimensional function. 

With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean 25 
circulation, planetary waves and storm tracks. The Simulated Annealing optimization improves in particular the 

model’s representation of the northern hemisphere jet stream and storm tracks as well as the Hadley circulation.  

The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation 

experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in 

particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too weak zonal-30 
mean zonal winds and a too narrow Hadley circulation. We discuss possible reasons for these model biases as 

well as planned future model applications.  
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1 Introduction 

Numerical models of the Earth system play a key role in our understanding of physical processes in Earth and 5 
Atmosphere and can be used to simulate past and future climate changes.  

General circulation models (GCMs) are physically the most realistic tools for studying and modelling climate 

variability and climate change in the Earth system. However, due to their relatively high-resolution, they are 

costly in terms of CPU runtime limiting their applicability to study climate variability over long (~millennia) 

timescales.  10 

On the other hand, highly idealized and computational efficient models for the climate system are able to 

simulate long time periods, but those are often box-, one- or two dimensional models describing only a limited 

number of processes or feedbacks of the real world. Hence their application is limited, but they have been 

applied to study paleo climate (Berger et al., 1992; Harvey, 1989) and future global change (Xiao et al., 1997). 

A third class of models are so-called intermediate complexity climate models (EMICs) which form a 15 
compromise between the computationally expensive (but more realistic) GCMs and the very simplified models 

(Claussen et al., 2002). The number of processes and feedbacks are comparable to GCMs, however due to a 

reduction in resolution and/or complexity of some model components, it is possible to study climate simulations 

up to multi-millennia timescales (Eliseev et al., 2014a, 2014b; Ganopolski et al., 2001; Montoya et al., 2005). 

Other applications include determining quick assessments of climate change impacts or run thousands of 20 
parameter sensitivity experiments (Knutti et al., 2002; Schmittner and Stocker, 1999).  

EMICs are thus particularly useful for understanding the different roles of different Earth components on very 

long timescales (multi-millennia and longer) and consequently form useful tools complementary to GCMs. 

Internal climate processes on such very long timescales are primarily driven by ocean and ice dynamics (Holland 

et al., 2001; Latif, 1998; Polyakov et al., 2003), with the atmosphere’s role likely limited to globally distributing 25 
any perturbations to the system. In GCMs, it is however often the atmosphere which takes most of the 

computational load due to the need to resolve synoptic weather systems, which requires a high-resolution 

discretization in space and time. For these reasons, a key step in development of EMICs intended for studying 

ocean and ice dynamics on multi-millennial timescales, is the derivation and validation of statistical-dynamical 

equations which accurately represent atmosphere dynamics (Coumou et al., 2011). 30 

In section 2 we present the equations of the Aeolus dynamical core with the derivation of these equations 

presented in the Suppl. Mat. . The dynamical core is coupled with a convective plus 3-layer stratiform cloud 

scheme developed by Eliseev et al. (2013). In section 3 we describe the experiment setup and the used reanalysis 

data sets. In section 4 we explain the model discretization and in section 5 we introduce our specific calibration 

method. For parameter optimization of the wind velocities we use Simulated Annealing which approximates the 35 
global minimum of a high-dimensional function (Flechsig et al., 2013). In section 6, we present Aeolus’ 

dynamical fields with pre-optimized and optimized parameters and compare them with observations and output 
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from models of the Coupled Climate Modeling Experiment Phase 5 (CMIP5). We conclude by discussing 

performance and limitations of the model in section 7. 

 

 

2 Governing Equations 5 

2.1 General structure of the atmosphere 

Aeolus is a 2.5- dimensional statistical-dynamical model, with the vertical dimension largely parameterized and 

only coarsely resolved and it therefore belongs to the class of intermediate complexity atmosphere models. 

Water and energy conservations is achieved via a set of 2-dimensional, vertically averaged prognostic equations 

for temperature and water vapor (Petoukhov et al., 2000). 10 

The 3-dimensional structure is described by these 2-dimensional fields with the vertical dimensions 

reconstructed using an equation for the lapse rate and assuming an exponential profile for specific humidity 

The equations of the dynamical core of Aeolus describe the time evolution of synoptic-scale transient waves (or 

storm tracks), quasi-stationary planetary waves and the zonal-mean wind. Thus, following classical statistical-

dynamical approaches (Dobrovolski, 2000; Imkeller and von Storch, 2012), the key assumption is that the wind 15 
velocity field 𝑽𝑽 can be split into a synoptic scale (𝑽𝑽′) component (2-6 days period) and a large-scale long-term 

component (〈𝑽𝑽〉) (Fraedrich and Böttger, 1978) such that 

 𝑽𝑽 = 〈𝑽𝑽〉 + 𝑽𝑽′ = {〈𝒖𝒖〉, 〈𝒗𝒗〉, 〈𝒘𝒘〉} + {𝒖𝒖′,𝒗𝒗′,𝒘𝒘′} ( 1 ) 

The variables u,v and w describe the wind velocity in zonal, meridional and vertical direction. The brackets 〈… 〉 

symbolize time averaged quantities and the prime (′) indicates deviations from this time averaged field. The 

large-scale long term 〈𝑽𝑽〉 is subdivided into a zonal-mean 〈𝑽𝑽〉  and an azonal component 〈𝑽𝑽〉∗ : 20 

 〈𝑽𝑽〉 =  〈𝑽𝑽〉  + 〈𝑽𝑽∗〉 ( 2 ) 

The large scale, zonal-mean zonal wind velocity 〈𝑢𝑢(𝑧𝑧,𝜙𝜙)〉 with height above surface z and latitude 𝜙𝜙 is 

estimated using the general geostrophic wind equation: 

 〈𝑢𝑢(𝑧𝑧,𝜙𝜙)〉 = −
1
𝑓𝑓
�

1
𝜌𝜌0
〈
𝜕𝜕𝑝𝑝0
𝜕𝜕𝜕𝜕

〉 +�
𝑔𝑔

 𝑇𝑇0
〈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

〉d𝑧𝑧
𝑧𝑧

0
�, ( 3 ) 

whereby the sea level pressure gradient is calculated by 〈𝜕𝜕𝑝𝑝0
𝜕𝜕𝜕𝜕
〉 = 𝑣𝑣∗𝜌𝜌|𝑓𝑓|

−𝐶𝐶𝛼𝛼 sin 𝛼𝛼
 and 𝛼𝛼 is the cross-isobar angle defined 

as in Coumou et al. (2011). The variable 𝑣𝑣∗ is the azonal meridional wind velocity, 𝜌𝜌 is air density, f, the 

Coriolis parameter, reference air density 𝜌𝜌0 and 𝜙𝜙 is the latitude. The Coriolis parameter 𝑓𝑓, reference air densitiy 25 
𝜌𝜌0, reference temperature 𝑇𝑇0 and gravitational acceleration 𝑔𝑔 (See Petoukhov et al., 2000). 

As derived in S1.2, the large scale, zonal-mean meridional wind velocity 〈𝑣𝑣(𝑧𝑧,𝜙𝜙)〉 is given by 
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〈𝑣𝑣(𝑧𝑧,𝜙𝜙)〉

=
𝑑𝑑1 ∗ (−2 tan(𝜙𝜙) �〈𝑢𝑢∗𝑣𝑣∗〉+ 〈𝑢𝑢′𝑣𝑣′〉�) + 𝑑𝑑2 ∗ ( 𝜕𝜕𝜕𝜕𝜕𝜕 �〈𝑢𝑢

∗𝑣𝑣∗〉+ 〈𝑢𝑢′𝑣𝑣′〉�) + 𝑑𝑑3 ∗ (( 𝑧𝑧𝐻𝐻0
− 1)𝜕𝜕〈𝑢𝑢〉𝜕𝜕𝜕𝜕 𝑎𝑎) + 𝑑𝑑4 ∗ (𝐴𝐴)

𝑛𝑛1 ∗ (tan(𝜙𝜙)〈𝑢𝑢〉) + 𝑛𝑛2 ∗ �−𝜕𝜕〈𝑢𝑢〉𝜕𝜕𝜕𝜕 � + 𝑛𝑛3 ∗ (2Ω𝑎𝑎 sin(𝜙𝜙))
, 

( 4 ) 

 

Where 𝑑𝑑1, 𝑑𝑑2,𝑑𝑑3,𝑑𝑑4,𝑛𝑛1, 𝑛𝑛2and 𝑛𝑛3are tunable parameters and 

 

𝐴𝐴 =
ℒ〈𝑃𝑃𝑐𝑐𝑐𝑐〉������

𝐻𝐻0

〈𝑢𝑢𝑠𝑠𝑠𝑠〉�������

Γ𝑎𝑎 − Γ0 − Γ1(𝑇𝑇𝑎𝑎 − 𝑇𝑇0)�1− 𝑎𝑎𝑞𝑞𝑞𝑞𝑠𝑠2�+ Γ2𝑛𝑛𝑐𝑐 
 

 

 

 The vertical friction coefficient 𝐾𝐾𝑧𝑧, atmosphere scale height 𝐻𝐻0, and Earth’s angular velocity Ω as well as dry 

adiabatic lapse rate Γ𝑎𝑎, latent heat of evaporation ℒ and model parameters Γ0,Γ1,Γ2,𝑎𝑎𝑞𝑞 ,𝑇𝑇0  are explained in Table 5 
1. 𝑇𝑇𝑎𝑎 is a temperature which would occur near the surface if the lapse rate did not change within the planetary 

boundary layer (PBL), 𝑞𝑞𝑠𝑠 is the surface air specific humidity and 𝑛𝑛𝑐𝑐 is the cumulus cloud amount. The variable 

〈𝑃𝑃𝑐𝑐𝑐𝑐〉 is the convective precipitation rate and is calculated by the cloud model (Eliseev et al., 2013). The variable 

〈𝑢𝑢𝑠𝑠𝑠𝑠〉������� is the surface wind and stated in the Supl. Ment. . 

 The azonal component of the wind field describes quasi-stationary planetary waves and depends on the latitude, 10 
longitude and height. At the equivalent barotropic level (EBL), azonal geostrophic components of horizontal 

velocities are computed employing the definition of the stream function 𝜓𝜓 depending on latitude 𝜙𝜙 and longitude 

𝜆𝜆, 

 〈𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸∗ (𝜆𝜆,𝜙𝜙)〉 =  −∇𝜙𝜙〈𝜓𝜓𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉 ( 5 ) 

 〈𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸∗ (𝜆𝜆,𝜙𝜙)〉 = ∇𝜆𝜆〈𝜓𝜓𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉 ( 6 ) 

whereby the stream function can be subdivided into contributions from thermally and orographically induced 

waves depicted by subscript th and or respectively. They are considered to be additive due to linearity of the 15 
barotropic vorticity equations such that 

 
〈𝜓𝜓𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉 =  Ψ0 ⋅ 〈𝜓𝜓𝑡𝑡ℎ ,𝐸𝐸𝐸𝐸𝐸𝐸

∗ 〉+ 〈𝜓𝜓𝑜𝑜𝑜𝑜,𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉 

 
( 7 ) 

The parameter Ψ0 is a tuning parameter which is necessary since smoothing is applied to dampen local moisture 

feedbacks in the model. This smoothing however reduces spatial gradients in 𝜓𝜓𝐸𝐸𝐸𝐸𝐸𝐸∗  and therefore 𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸∗  and 𝑣𝑣∗ 

itself. 

The zeroth order solution of the thermally induced waves of the barotropic vorticity equation is given by (see 20 
Suppl. Information S.2.): 
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〈𝜓𝜓𝑡𝑡ℎ ,0,𝐸𝐸𝐸𝐸𝐸𝐸

∗ 〉 = −〈𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉
𝑎𝑎𝑎𝑎

Ω𝜌𝜌0𝑇𝑇02 cos𝜙𝜙 ∇𝜙𝜙
� 𝜌𝜌0〈[𝑇𝑇(𝑧𝑧)]〉
𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸

0
𝑑𝑑𝑑𝑑 

 

( 8 ) 

It is solved at two beta-planes, for the northern and southern hemisphere, respectively: 

 〈𝜓𝜓𝑡𝑡ℎ,0,𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉𝑁𝑁𝑁𝑁 = −〈𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉

𝑎𝑎𝑎𝑎
Ω𝜌𝜌0 𝑇𝑇02 cos𝛽𝛽𝑁𝑁𝑁𝑁

∇𝜙𝜙 � 𝜌𝜌0〈[𝑇𝑇(𝑧𝑧)]〉
𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸

0
𝑑𝑑𝑑𝑑 ( 9 ) 

 
〈𝜓𝜓𝑡𝑡ℎ ,0,𝐸𝐸𝐸𝐸𝐸𝐸

∗ 〉𝑆𝑆𝑆𝑆 = −〈𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸∗ 〉
𝑎𝑎𝑎𝑎

Ω𝜌𝜌0 𝑇𝑇02 cos𝛽𝛽𝑆𝑆𝑆𝑆
∇𝜙𝜙 � 𝜌𝜌0〈[𝑇𝑇(𝑧𝑧)]〉

𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸

0
𝑑𝑑𝑑𝑑 

 

( 10 ) 

The beta-plane is an approximation, in which the Coriolis parameter is linearized to a reference latitude, 

respectively 𝛽𝛽𝑁𝑁𝑁𝑁  and 𝛽𝛽𝑆𝑆𝑆𝑆  for the Northern Hemisphere and Southern Hemisphere. In the tropical belt the 

variable 〈𝜓𝜓𝑡𝑡ℎ ,0,𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉 is interpolated linearly between the beta-planes 

The integrated heat content in equation (8) (𝐼𝐼𝑣𝑣 =  ∫ 𝜌𝜌0〈[𝑇𝑇∗(𝑧𝑧)]〉𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸
0 𝑑𝑑𝑑𝑑) is calculated analytically by assuming a 5 

constant lapse rate Γ  such that 𝑇𝑇(𝑧𝑧) = 𝑇𝑇(𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸)− Γ(𝑧𝑧 − 𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸). One obtains 

𝐼𝐼𝑣𝑣 = 𝜌𝜌0([𝑇𝑇(𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸)]− [Γ]𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸)𝐻𝐻0 �1− 𝑒𝑒−
𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸
𝐻𝐻0 � − Γ𝜌𝜌0𝐻𝐻0 �(𝐻𝐻0 − 𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸)�𝑒𝑒−

𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸
𝐻𝐻0 − 1�� 

In addition, 𝐼𝐼𝑣𝑣 is smoothed by 5 points in latitude to avoid numerical artefacts which may arise due to spatial 

differentiating. 

To remove possible singularities near the poles, at high latitudes the stream function is dampened by a fourth 

order interpolation function. Planetary waves at other tropospheric level are directly calculated from those at the 10 
EBL (see in the Suppl. Mat.) . 

The time averaged kinetic energy of transient eddies 〈𝐸𝐸′𝑘𝑘〉 =  1
2

(〈𝑢𝑢′2〉 + 〈𝑣𝑣′2〉) is determined using the 

statistical-dynamical equations as described in Coumou et al., (2011): 
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𝜕𝜕〈𝐸𝐸𝑘𝑘
′ 〉

𝜕𝜕𝜕𝜕
= −〈𝑽𝑽〉 ⋅ ∇〈𝐸𝐸𝑘𝑘′ 〉+ 〈𝑢𝑢′𝑽𝑽′〉 ⋅ ∇〈𝑢𝑢〉 − 〈𝑣𝑣′𝑽𝑽′〉 ⋅ ∇〈𝑣𝑣〉 +𝐾𝐾𝑓𝑓ℎ∇𝐻𝐻〈𝐸𝐸𝑘𝑘′ 〉 − 𝐾𝐾𝑓𝑓𝑓𝑓〈𝐸𝐸𝑘𝑘′ 〉+ 𝑓𝑓�〈𝑢𝑢′𝑣𝑣𝑎𝑎𝑎𝑎′ 〉 −

〈𝑣𝑣′𝑢𝑢𝑎𝑎𝑎𝑎′ 〉�  

 

( 11 ) 

Here, 𝐾𝐾𝑓𝑓ℎ and 𝐾𝐾𝑓𝑓𝑓𝑓 are internal atmospheric small/meso-scale friction coefficients in the horizontal and vertical 

direction respectively, 𝐾𝐾𝑓𝑓𝑓𝑓is the surface friction coefficient, 𝑓𝑓 the Coriolis parameter and subscript “ag” denotes 

ageostrophic terms.  

By assuming that the vertical (baroclinic) flux term is equiportioned between the zonal and meridional kinetic 

energy component, we can split the Eq. (9) into three separate equations for 〈𝑢𝑢′2〉,〈𝑣𝑣′2〉 and 〈𝑢𝑢′𝑣𝑣′〉: 20 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-263, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 2 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



6 

 

 

 

𝜕𝜕〈𝑢𝑢′2〉
𝜕𝜕𝜕𝜕 = −〈𝑽𝑽〉 ⋅ ∇〈𝑢𝑢′2〉 − 2〈𝑢𝑢′2〉

𝜕𝜕〈𝑢𝑢〉
𝜕𝜕𝜕𝜕 − 2〈𝑢𝑢′𝑣𝑣′〉

𝜕𝜕〈𝑢𝑢〉
𝜕𝜕𝜕𝜕 +𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 ��

𝜕𝜕〈𝑢𝑢〉
𝜕𝜕𝜕𝜕

�
2

+ �
𝜕𝜕〈𝑣𝑣〉
𝜕𝜕𝜕𝜕

�
2

�

+ 𝐾𝐾𝑓𝑓ℎΔ𝐻𝐻〈𝑢𝑢′2〉+ 𝐾𝐾𝑓𝑓𝑓𝑓Δ𝑧𝑧〈𝑢𝑢′2〉 − 𝐾𝐾𝑓𝑓𝑓𝑓〈𝑢𝑢′2〉+ 𝑓𝑓�〈𝑢𝑢′𝑣𝑣𝑎𝑎𝑎𝑎′ 〉 − 〈𝑣𝑣′𝑢𝑢𝑎𝑎𝑎𝑎′ 〉� 

( 12 ) 

 

 

𝜕𝜕〈𝑣𝑣′2〉
𝜕𝜕𝜕𝜕 

= −〈𝑽𝑽〉 ⋅ ∇〈𝑣𝑣′2〉 − 2〈𝑣𝑣′2〉 𝜕𝜕〈𝑣𝑣〉
𝜕𝜕𝜕𝜕

− 2〈𝑢𝑢′𝑣𝑣′〉 𝜕𝜕〈𝑣𝑣〉
𝜕𝜕𝜕𝜕

+𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 ��
𝜕𝜕〈𝑢𝑢〉
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕〈𝑣𝑣〉
𝜕𝜕𝜕𝜕
�
2
�+𝐾𝐾𝑓𝑓ℎΔ𝐻𝐻〈𝑣𝑣′2〉+

𝐾𝐾𝑓𝑓𝑓𝑓Δ𝑧𝑧〈𝑣𝑣′2〉 − 𝐾𝐾𝑓𝑓𝑓𝑓〈𝑢𝑢′2〉+ 𝑓𝑓�〈𝑢𝑢′𝑣𝑣𝑎𝑎𝑎𝑎′ 〉 − 〈𝑣𝑣′𝑢𝑢𝑎𝑎𝑎𝑎′ 〉�  

 

( 13 ) 

 

 

𝜕𝜕〈𝑢𝑢′𝑣𝑣′〉
𝜕𝜕𝜕𝜕 

= −〈𝑽𝑽〉 ⋅ ∇〈𝑢𝑢′𝑣𝑣′〉 − 〈𝑢𝑢′𝑽𝑽〉 ⋅ ∇〈𝑣𝑣〉 − 〈𝑣𝑣′𝑽𝑽〉 ⋅ ∇〈𝑢𝑢〉  + 𝐾𝐾𝑓𝑓ℎΔ𝐻𝐻〈𝑢𝑢′𝑣𝑣′〉 +𝐾𝐾𝑓𝑓𝑓𝑓Δ𝑧𝑧〈𝑢𝑢′𝑣𝑣′〉 −

𝐾𝐾𝑓𝑓𝑓𝑓〈𝑢𝑢′𝑣𝑣′〉 + 𝑓𝑓�〈𝑢𝑢′𝑢𝑢𝑎𝑎𝑎𝑎′ 〉 − 〈𝑣𝑣′𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎′ 〉�  

 

( 14) 

The parameterizations for 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑓𝑓�〈𝑢𝑢′𝑢𝑢𝑎𝑎𝑎𝑎′ 〉 − 〈𝑣𝑣′𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎′ 〉� were found and derived in Coumou et al. (2011). 

This provides us with a coupled set of equations for 〈𝑢𝑢〉, 〈𝑣𝑣〉, 〈𝑢𝑢∗〉, 〈𝑣𝑣∗〉, 〈𝑢𝑢′2〉, 〈𝑣𝑣′2〉  and 〈𝑢𝑢′𝑣𝑣′〉, which can be 5 
solved. Cross terms like 〈𝑢𝑢∗𝑣𝑣∗〉 can be determined by multiplying 〈𝑢𝑢∗〉 with 〈𝑣𝑣∗〉 and taking the zonal-mean of 

that quantity. All derivatives are determined numerically. The values of the parameters are listed in Table 1. 

 

3 Forcing data and Reanalysis data sets 

The simulations were forced by multi-year averages of monthly mean climatological, El Niño and La Niña 10 
months data (surface temperature, specific humidity, temperature at 500 mb, geopotential height at 500 mb and 

1000 mb) using ERA-Interim Reanalysis (Dee et al., 2011) for 1983-2009 as our aim is that Aeolus captures 

year-to-year variability associated with the ENSO cycle. We identified  87 El Niño ( 74 La Niña ) months using 

3 month running mean of ERSST.v4 SST anomalies (Huang et al., 2016) and applying the definition that those 

months, where at least 5 consecutive overlapping seasons of SST anomalies are greater than 0.5K ( less than -15 
0.5K), are El Niño (La Niña) events.  

Multi-year averages of monthly mean, El Niño and La Niña months cumulative cloud fraction is taken from 

ISSCP (Rossow and Commission, 1996). The spatial resolution is 2.5 × 2.5 degrees lat × lon and the time range 

is 1983-2009.  

We chose this time period, because the cumulative cloud fraction data is only available for this time period, 20 
which is needed to calculate the lapse rate. 

To avoid strong temperature gradients in the specified boundary conditions for the numerical experiments, we 

use the lapse rate equation to calculate temperatures at 1000 mb from those at 500 mb. We first calculate the 
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lapse rate using the temperature field and specific humidity using the equation as in Petoukhov et al. (2000) at 

1000 mb. Then, we recalculate temperature field at 1000 mb by using the temperature field at 500 mb and the 

linear lapse rate equation. This way we ensure that the temperature at 500 mb is close to observations, and at the 

same time we have a vertical temperature profile realistic for a model like Aeolus. Since the ERA-Interim 

500 mb temperatures contain an orographic component, we exclude 〈𝜓𝜓𝑜𝑜𝑜𝑜,𝐸𝐸𝐸𝐸𝐸𝐸
∗ 〉 in equation (7) in order not to 5 

incorporate orographic forcing of planetary waves twice. 

We optimized the numerical solutions of the wind velocities 𝑢𝑢∗, 𝑣𝑣∗ and 〈𝑢𝑢〉���� as well as eddy kinetic energy 〈𝐸𝐸𝑘𝑘′ 〉 at 

𝑝𝑝 = 500 mb. To compare the strength and position of the Hadley and Ferrel cells between observation and 

model, we calculate a zonal-mean mass flux 〈𝑚𝑚〉����� in the lower troposphere using the zonal-mean meridional wind 

velocity 〈𝑣𝑣〉���� at levels between 1000 mb – 500 mb and assuming exponential decay of air density with height 10 
(Petoukhov et al., 2000).  

For use with Aeolus, all data sets are interpolated to 3.75 × 3.75 degrees lat × lon spatial resolution. 

4 Model discretization 

Aeolus operates on a reduced grid to overcome the restriction of small time steps near the poles due to the CFL 

criteria (Jablonowski et al., 2009). In the grid generation, longitudinally adjacent cells are merged, if their zonal 15 
width in meters would be less than half of the cell width at the equator.  

This way the reduced grid has the same resolution as a regular grid at the equator, but, at nominal resolution 

3.75 × 3.75 degrees lat × lon, around the poles only 6 cells are defined. On the regular grid, the maximum 

permissible time step due to the CFL criteria would be ca. 5 min, while the limit for the reduced grid is ca. 2 

hours.  20 

5 Calibration 

The equations (1) – (14) are implemented in Aeolus and numerically solved on a 3.75 × 3.75 degrees lat × lon 

reduced grid with 5 tropospheric height levels (1000 m, 3000 m, 5000 m, 9000 m).  

The calibration of the winds is divided into two parts. First, we optimize the dynamical variables primarily 

driven by the thermal state of the atmosphere: The azonal velocities in zonal and meridional direction 〈𝑢𝑢∗〉 and 25 
〈𝑣𝑣∗〉 as well as the zonal-mean zonal wind velocity 〈𝑢𝑢〉����. In the second step, we tune the zonal-mean synoptic 

kinetic energy 〈𝐸𝐸𝑘𝑘′ 〉������ and the lower troposphere integrated mass flux 〈𝑚𝑚〉�����, which solely depends on the zonal-mean 

meridional wind 〈𝑣𝑣〉����. 

A common approach for parameter tuning is Simulated Annealing (Ingber, 1996) It is one experiment type in the 

multi-run simulation environment SimEnv for sensitivity and uncertainty analysis of model output (Flechsig et 30 
al., 2013) which we use for all calibration experiments. 

For each model run, the thermal state of the atmosphere is kept constant (and initialized as described above) and 

the dynamical core is equilibrated to this thermal state. This typically requires only a few time steps. Since we 

tune only the parameters of the dynamical core, Aeolus first calculates the clouds using its cloud scheme 
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(Eliseev et al., 2013) to determine lapse rate and initialize the 3D thermal state. After that only the state of the 

dynamical core is updated. 

5.1 Dynamical Core Tuning - Step 1 

For a good starting point the parameters are first tuned manually providing “pre-optimised” values. Next, we 

define physically realistic parameter-ranges for automatic tuning as listed in Table 2. 5 

For the azonal wind velocities we use a weighting function which excludes tropics (from 10°S to 10°N) and 

polar regions (poleward of 60° for the Southern Hemisphere and poleward 70° for the Northern Hemisphere) 

such that the mid-latitudes, where planetary waves are important, are optimized.  

The non-excluded grid as well as the zonal-mean zonal wind is weighted by 𝑤𝑤(𝜙𝜙) = |cos(𝜙𝜙)|. 

The total skill score for the scheme in step 1 is calculated by multiplying the individual skills for the azonal 10 
velocities in zonal and meridional direction (𝑆𝑆𝑢𝑢∗ ,𝑆𝑆𝑣𝑣∗) and the skill for the zonal-mean zonal wind velocity(𝑆𝑆〈𝑢𝑢〉): 

𝑆𝑆 = 𝑆𝑆𝑢𝑢∗𝑆𝑆𝑣𝑣∗𝑆𝑆〈𝑢𝑢〉 

The goal of the optimization procedure is to maximize the skill S. 

Skill score functions for individual variables are computed as in Taylor (2001)  

 𝑆𝑆(𝜙𝜙,𝜆𝜆, 𝑡𝑡) =
(1 + 𝑟𝑟𝑋𝑋)4

�𝐴𝐴𝑋𝑋 + 1
𝐴𝐴𝑋𝑋� �

2 ( 15 ) 

In Eq. ( 15 ) 𝑟𝑟𝑋𝑋  is the coefficient of the spatial correlation between the area-weighted modelled and observed 

fields of 𝑋𝑋; and 𝐴𝐴𝑋𝑋is the so-called relative spatial variation calculated according to  15 

 𝐴𝐴𝑋𝑋 =  𝐴𝐴𝑋𝑋,𝑀𝑀
𝐴𝐴𝑋𝑋,𝑂𝑂
� . (16 ) 

Here, the variable 𝐴𝐴𝑋𝑋,𝑀𝑀 is the spatial average of �𝑋𝑋𝑀𝑀 − 𝑋𝑋𝑀𝑀,𝑔𝑔� and 𝑋𝑋𝑀𝑀,𝑔𝑔is a globally averaged value of the 

modelled field 𝑋𝑋𝑀𝑀. The observed field is similarly defined by 𝐴𝐴𝑋𝑋,𝑂𝑂. 

5.2 Dynamical Core Tuning - Step 2 

For tuning the zonal-mean meridional wind velocity 〈𝑣𝑣〉 and in particular the strength and width of the Hadley 

cell we use the vertical integral of the lower tropospheric integrated mass flux 〈𝑚𝑚〉. In addition, we tune the 20 
zonal-mean area-weighted synoptic kinetic energy 〈𝐸𝐸𝑘𝑘′ 〉. Both variables strongly depend on the dynamic fields 

tuned in step 1 which is the reason for tuning them in a separate second step. 

Total skill score for the scheme in step 2 is calculated by multiplying the individual skills for the vertical integral 

of lower troposphere mass flux (𝑆𝑆〈𝑚𝑚〉.) as well as the eddy kinetic energy (𝑆𝑆 〈𝐸𝐸𝑘𝑘
′ 〉) 

𝑆𝑆 = 𝑆𝑆〈𝑚𝑚〉.𝑆𝑆 〈𝐸𝐸𝑘𝑘
′〉 

The goal of the optimization procedure is again to maximize skill S. 25 
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The skill score function for the eddy kinetic energy is given by the Taylor skill score function, e.g. Eq. (15).  

The skill score function for the mass flux consists of the product of the correlation of observation and model as 

well as the mean mass flux of the Hadley cell. The skill score is then calculated by 

𝑆𝑆〈𝑚𝑚〉 = �meanHadley_Obs −meanHadley_Model�
2
𝑟𝑟𝑋𝑋2 ( 17 ) 

Here 𝑟𝑟𝑋𝑋  is the coefficient of the spatial correlation between area-weighted modeled and observed fields (as in Eq. 

(15)), meanHadley_Model and meanHadley_Obs are the mean values of the area-weighted modeled and observed 5 
fields. We use this more elaborate skill function to promote a proper Hadley circulation in the model. 

The weights of the lower troposphere mass flux 〈𝑚𝑚〉 are calculated according to: 

𝑤𝑤(𝜙𝜙) = �
|cos(𝜙𝜙)|,              𝜙𝜙 > 60°𝑆𝑆

           0                         𝜙𝜙 ≤ 60°𝑆𝑆      . 

For calculating the mean intensity of the Hadley cell we determine the roots of the mass flux in observation data 

close to 0° and 30° which determine the Hadley cell latitudinal boundaries. This way, we have 36 values for the 10 
boundaries of the northern Hadley cell. Between these latitudinal borders we calculate the mean strength of the 

Hadley cell. 

In Table 3 the manually tuned (or pre-optimized) parameters and their ranges are listed. 

6 Results 

6.1 Results of Calibration – Step 1 15 

We compared the numerical solutions using the optimized parameters for the wind fields 〈𝑢𝑢∗〉, 〈𝑣𝑣∗〉 and 〈𝑢𝑢〉���� of 

climatological monthly averages, El Niño and La Niña months from ERA-Interim Reanalysis (Dee et al., 2011) 

for 1983-2009.  

The figures for azonal wind velocities are divided into 6 subplots: The left column shows observational data and 

the right column model data. The top row shows climatological monthly averages, the middle multi-year 20 
averages of El Niño months and the bottom row multi-year averages of La Niña months. 

In Figure 1 and Figure 2 the azonal zonal wind velocity for February and August at 500 mb are displayed,  

respectively. The figures show that with optimized parameters the model reasonably reproduces the main 

observed features both in terms of spatial position and magnitude. In particular the extra-tropical planetary 

waves are well captured with some minor discrepancies in the tropics. Both the seasonal cycle and the response 25 
to the ENSO cycle are well captured by the model. 

Figure 3 and Figure 4 show the same type of plots for 〈𝑣𝑣∗〉. Also for the meridional wind velocity the most 

important features of the reanalysis data are well represented in the model. The model results coincide well in 

wind strength and spatial pattern with the reanalysis data. The wind strength in winter, for both climatological 

and El Niño months are stronger than for winter La Niña months. In summer the opposite is seen for both model 30 
and reanalysis data. 
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In Figure 5 the zonal-mean zonal wind velocity 〈𝑢𝑢〉���� at 500 mb is shown with the orange line representing 

reanalysis data, red representing model data with optimized parameters, and gray representing model data with 

pre-optimized parameters. The figure is subdivided into six subplots: The top row depicts 〈𝑢𝑢〉���� in February and 

the bottom row shows 〈𝑢𝑢〉���� in August and the columns providing respectively climatological data, El Niño data 

and La Niña data. It is noticeable that the results obtained with pre-optimized parameters are already reasonable 5 
but that optimization hardly improves model results. The Northern Hemisphere 〈𝑢𝑢〉���� profile is well resolved in 

both seasons and for El Niño and La Niña months. Parameter optimization slightly improves results in the 

tropics. The modeled amplitude of 〈𝑢𝑢〉���� in the Southern Hemisphere is too small in February for all plots, and in 

August too high. 

The optimized parameters are listed in Table 2. The 𝛽𝛽𝑁𝑁𝑁𝑁  in the Northern Hemisphere has a higher value, 10 
whereas the 𝛽𝛽𝑆𝑆𝑆𝑆  in the Southern Hemisphere has a lower value. 

The last parameter is Ψ0 and is changed to a higher value in order to strengthen velocities in 〈𝑣𝑣∗〉 and 〈𝑢𝑢∗〉. 

 

6.2 Results of Calibration – Step 2 

We compared the numerical solutions using the optimized parameters for the zonal-mean lower troposphere 15 
integrated mass flux 〈𝑚𝑚〉 and eddy kinetic energy 〈𝐸𝐸𝐾𝐾′ 〉������. 

The plots in Figure 6 show that in general the monthly mean zonal-mean mass flux calculated with optimized 

parameters matches better with observational data. The Hadley cell is generally too weak with pre-optimized 

parameters, which improves with the optimized parameters. The ENSO cycle is clearly visible and the width of 

the Hadley cell is wider compared to results with pre-optimized parameters. However, the width of the Hadley 20 
cell (especially in August) is still too small compared to the width of the Hadley cell obtained by reanalysis data. 

The figure shows only plots with a latitudinal range from 60°S to 90°N as reanalysis data is spikey over 

Antarctica. 

Figure 7 shows the zonal-mean eddy kinetic energy 〈𝐸𝐸𝐾𝐾′ 〉������. We show the same color code as in Figure 6. 

Northern Hemisphere modeled 〈𝐸𝐸𝐾𝐾′ 〉������ profile is again well resolved in both seasons and for El Niño and La Niña 25 
months with the parameter optimization. Smaller spikes vanish such that the modeled 〈𝐸𝐸𝐾𝐾′ 〉������ better matches the 

observed data. However, the modeled optimized 〈𝐸𝐸𝐾𝐾′ 〉������  curve in the Southern Hemisphere does not substantially 

improve compared to pre-optimized parameters.  

In Figure 8 and Figure 9 the eddy kinetic energy 〈𝐸𝐸𝐾𝐾′ 〉������  for February and August is displayed. The left column 

shows observational data and the right column model data. The top row presents climatological monthly 30 
averages, the middle El Niño months and the bottom row La Niña months.   

The spatial position and the magnitude are well captured, seasons and the ENSO-cycles are also well resolved 

with some discrepancies in the tropics (i.e. the region over the Atlantic and Pacific Ocean) and the Southern 

Hemisphere. In February and August 〈𝐸𝐸𝐾𝐾′ 〉������  is stronger for both climatology and El Niño in the Northern 
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Hemisphere than in the Southern Hemisphere. Only in La Niña months, 〈𝐸𝐸𝐾𝐾′ 〉������  is weaker in the Northern 

Hemisphere. 

The optimized parameters are listed in Table 3. The parameters 𝑈𝑈0 and 𝑚𝑚 for optimizing the eddy kinetic 

energy are greater than the manually tuned values.  

The parameters 𝑑𝑑3 and 𝑛𝑛3 are close to one, whereas the parameters 𝑑𝑑2,𝑑𝑑4 and 𝑛𝑛1 are close to 2 and have a 5 
strong impact on the amplitude of the Hadley cell and the Ferrell cell. The parameter with the smallest influence 

is 𝑑𝑑1 (𝑑𝑑1 = 0.41).  

6.3 Comparison to CMIP5 Models 

Figure 10 shows the comparison of February and August 〈𝐸𝐸𝐾𝐾′ 〉������, 〈𝑢𝑢〉����  and 〈𝑚𝑚〉 between CMIP5 (grey lines), 

Aeolus (red) and ERA-Interim data (orange). In General CMIP5 models represent the 〈𝐸𝐸𝐾𝐾′ 〉������ and 〈𝑢𝑢〉���� very well in 10 
both Hemispheres. However, in the Southern Hemisphere, the storm tracks, i.e. 〈𝐸𝐸𝐾𝐾′ 〉������, of all models are too weak 

compared to observations with Aeolus on the lower end of the CMIP5 range. Further, some individual CMIP5 

models can have too low or too high 〈𝐸𝐸𝐾𝐾′ 〉������ and 〈𝑢𝑢〉���� as compared to ERA - Interim, similar to Aeolus.  

The CMIP5 multi-model mean of 〈𝑚𝑚〉 appears to be close to the reanalysis and most models reproduce this well. 

Still, some CMIP5 models can differ strongly from 〈𝑚𝑚〉 in ERA-Interim with some spikey behavior. 15 
Nevertheless, the width and strength of the Hadley cell is in most models well presented, but the Ferrell cell is 

often too strong. Aeolus results give reasonable strength and width of the Ferrell cell, but the width of the 

Southern Hemisphere Hadley cell in August is too small compared to both reanalysis and CMIP5 models. 

 

7 Summary and Discussion 20 

In this paper we presented the atmosphere model Aeolus, which is a statistical-dynamical atmosphere model and 

belongs to the class of intermediate complexity models. The equations of Aeolus are time-averaged and the 

model has a spatial resolution of 3.75° × 3.75°. The 3-dimensional structure of Aeolus  is reconstructed using a 

set of 2-dimensional, vertically averaged prognostic equations for temperature and water vapor (Petoukhov et al., 

2000).  The advantage of such type of models is the fast computation time and for that reason the possibility to 25 
study and simulate long time periods as well as conduct sensitivity experiments. 

We performed parameter optimization of the dynamical core consisting of a large multi-dimensional parameter 

space, which is in a high parameter range and can be searched due to its fast computation time. For this approach 

we used the optimization algorithm Simulated Annealing, which approximates the global minimum of a high-

dimensional function. We divided the calibration into two parts. At first, the azonal velocities in zonal and 30 
meridional direction as well as the zonal-mean zonal wind velocity were optimized, because they are primarily 

driven by the thermal state of the atmospheres. In the second step we optimized the zonal-mean synoptic kinetic 

energy and the lower troposphere integrated mass flux, and hence the zonal-mean meridional velocity, since 

those variables depend strongly on variables of step 1.  

The results of the winds and eddy kinetic energy are in reasonable agreement with the reanalysis data and 35 
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showed that our model is able to reproduce the dynamic response from the season-cycle as well as the ENSO 

cycle which is a prime goal of our model development efforts. Parameter optimization in particular improves 

representation of the Hadley cell in terms of strength and width.  

In the Southern Hemisphere the dynamical fields tend to be too weak. This model bias might be related to the 

missing Antarctica ice sheet, upper-tropospheric ozone, the constant lapse rate assumption, or fundamental 5 
limitations of the equations. These possibilities will be analysed in future work using the coupled Potsdam Earth 

Model (POEM) to which Aeolus has been coupled.  

Compared to CMIP5 models, Aeolus reasonable well captures the dynamical state of the atmosphere in the 

Northern Hemisphere, particularly for monthly mean eddy kinetic energy 〈𝐸𝐸𝐾𝐾′ 〉������, zonal-mean wind velocity 

〈𝑢𝑢〉���� and mass flux 〈𝑚𝑚〉. Especially the mass flux of the Ferrell cell is better captured than in other models, 10 
whereas the Southern Hemisphere Hadley cell width of Aeolus in August is too small compared to CMIP5 

models. 
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Figure 1 Monthly mean azonal large scale zonal wind u* in February at 500mb. The first column shows 

the results from observation data and second column shows the results from Aeolus received by optimized 

parameters.  
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Figure 2 Monthly mean azonal large scale zonal wind velocity u* in August at 500mb (compare Fig. 1). 
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Figure 3 Monthly mean azonal large scale meridional wind velocity v* in February at 500mb (compare 

Fig. 1). 

 

 

Figure 4 Monthly mean azonal large scale meridional wind velocity v* in August at 500mb (compare Fig. 

1). 
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Figure 5 Monthly mean zonal-mean large scale zonal wind velocity 〈𝒖𝒖(𝒛𝒛,𝝓𝝓)〉 at 500mb. (a) shows the 

monthly mean climatological zonal-mean zonal velocity in February, (b) depicts the monthly mean of el 

niño months zonal-mean velocity in February and (c) the monthly mean of el niña months zonal-mean 5 
velocity in February. (d) displays the monthly mean climatological zonal-mean zonal velocity in August, 

(e) the monthly mean of el niño months zonal-mean velocity in August and (f) the monthly mean of el niña 

months zonal-mean velocity in August. 
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Figure 6 Monthly mean zonal-mean large scale mass flux 〈𝒎𝒎〉�����. (a) shows the monthly mean climatological 

zonal-mean mass flux in February, (b) depicts the monthly mean of el niño months zonal-mean mass flux 

in February and(c) the monthly mean of el niña months zonal-mean mass flux in February. (d) displays 

the monthly mean climatological zonal-mean mass flux in August, (e) the monthly mean of el niño months 

zonal-mean mass flux in August and (f) the monthly mean of el niña months zonal-mean mass flux in 

August. 
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Figure 7  Zonal-mean time averaged eddy kinetic energy 〈𝑬𝑬𝒌𝒌′ 〉������ (compare Fig. 5). 
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Figure 8 Monthly mean time averaged eddy kinetic energy 〈𝑬𝑬𝒌𝒌′ 〉 in February at 500mb (compare Fig. 1). 
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Figure 9 Monthly mean time averaged eddy kinetic energy 〈𝑬𝑬𝒌𝒌′ 〉 in August at 500mb (compare Fig. 1). 
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Figure 10 Comparison to CMIP5-Models. The orange line represents Era Interim data, the red line 

results from Aeolus and grey lines CMIP5 Models (yearly mean zonal-mean data). 

 

13 Tables 

Table 1 Atmosphere model parameters 

Symbol Description Value 

𝑎𝑎 Earth’s radius 6.4 ⋅ 106 m 

𝜌𝜌0 Reference air density 1.3 kg m−3 

g gravitational acceleration 9.8 ms−2 

 𝑇𝑇0  Reference Temperature 273.16 K 
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f Coriolis parameter 2Ω sin(𝜙𝜙) 

Ω Earth’s angular velocity 7.3 ⋅ 10−5rad s−1 

𝐶𝐶𝛼𝛼 Ageostrophic velocity parameter 5 

𝛼𝛼 cross-isobar angle ≤ 10° 

𝐻𝐻0 Atmosphere scale height 8 ⋅ 103m 

𝐿𝐿 Latent heat of evaporation 2.257⋅ 106 J
Kg

 

Γ𝑎𝑎 Dry adiabatic Lapse Rate 9.8 ⋅ 10−3
K
m 

Γ0 Temperature lapse rate parameters 5.2 ⋅ 10−3
K
m 

Γ1 Temperature lapse rate parameter 5.5 ⋅ 10−5
1
m 

Γ2 Temperature lapse rate parameters 10−3
K
m 

𝑎𝑎𝑞𝑞 Temperature lapse rate parameters 103 �
kg
kg
�
2

 

𝐾𝐾𝑧𝑧 
coefficient of the small-scale and meso-scale turbulent 

exchange for the momentums 0.005 𝑧𝑧 
𝑚𝑚2

𝑠𝑠  

   

 

Table 2 Pre-optimized and optimized Parameter set and parameter ranges for optimization step 1 

Parameters Optimized value Range Pre-optimized value 

𝜙𝜙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓0 56.5 56.0:84.0 70.0 

𝛽𝛽𝑁𝑁𝑁𝑁    57.2 30.0:60.0 37.5 

𝛽𝛽𝑆𝑆𝑆𝑆    -31.3 -60.0:-30.0 -52.5 

Ψ0            10.14 7.4 : 12 8.0 
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Table 3 Pre-optimized and optimized Parameter set and parameter ranges for optimization step 2 

Parameters optimized value Range Pre-optimized value 

U0 5.86 3.5:6.5 5 

m 0.7849 0.4662:0.86658 0.6666 

d1 0.41 0.:2. 1.0 

d2 2.36 0.:2.5 1.0 

d3 0.83 0.:2.5 1.0 

d4 1.84 0.:2.5 1.0 

n1 2.16 0.:2.5 1.0 

n2 1.63 0.:2. 1.0 

n3 1.06 0.:2. 0.5 
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