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Abstract. Pattern scaling is a well established method for approximating modeled spatial distributions of changes in temper-

ature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods

of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is “better”

in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and

inter-scenario variations. Both the regression and epoch difference methods (the two most commonly used methods of pattern5

scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean

square error. We decompose the precipitation response in the RCP8.5 scenario into a CO2 portion and a non-CO2 portion. Ex-

trapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations

of pattern scaling assumptions when this CO2/non-CO2 forcing decomposition is applied. The methodologies discussed in this

paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts10

assessment models) for a wide variety of scenarios of future climate change.
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1 Introduction

Quantifying uncertainties in projections of climate change is one of the cornerstone investigative areas in climate science.

There are numerous sources of uncertainty, including parametric (which parameter values are the “right” ones), structural

(which key processes are missing or poorly characterized), and scenario (how climate forcing agents will change in the future).

One commonality among these sources is that uncertainties in each of them can be explored using climate models.5

Atmosphere-Ocean General Circulation Models (AOGCMs) are the gold standard of climate models used for projections of

global change, as they incorporate many of the fundamentally climatically important processes, including atmosphere, land,

ocean, and sea ice responses and feedbacks, as well as interactions between these different areas. However, their complexity

means that these models are often computationally expensive, so any sensitivity studies or uncertainty quantification efforts

using them are necessarily limited. No modern uncertainty quantification technique is capable of fully characterizing the space10

of AOGCM uncertainties and how they affect projections of climate change (Qian et al., 2016).

Emulators of AOGCMs are often an effective compromise for exploring uncertainty by sacrificing precision for vastly

improved computational efficiency. This allows other models, such as integrated assessment models or impacts assessment

models, to include an AOGCM-emulating climate component and incorporate feedbacks between the climate and other sectors.

There are many methods of building emulators (see MacMartin and Kravitz, 2016, for a discussion of different linear, time-15

invariant approaches), but one of the most commonly used methods is pattern scaling, described in more detail in Section 2.

This methodology involves computing a time-invariant pattern of change in a variable in response to change in global mean

temperature, which vastly reduces the dimensionality of input needed to produce projections of climate change.

Pattern scaling has a fairly long history of research (e.g., Mitchell, 2003) and has been shown to be reasonably accurate for

a variety of purposes. Lynch et al. (2017) provide a review of pattern scaling of temperature, as well as an in-depth exploration20

of two commonly used pattern scaling methods (regression and epoch difference methods, described later in Section 2.1). Both

of these methods perform quite well in reproducing the actual model output for temperature. Conversely, comparatively little

work has been done on pattern scaling for annual mean precipitation. Ruosteenoja et al. (2007) found that local precipitation

changes are generally linear with global mean temperature change, with errors of 15–30% over 90 years of simulation. Holden

and Edwards (2010) identified the importance of covariance between local temperature change and local precipitation change,25

and Frieler et al. (2012) furthered this discovery, concluding that no single fit (e.g., regression coefficients) will be applicable

to all grid points. Herger et al. (2015) used a novel method of piecing together results associated with the desired global mean

temperature change and found excellent agreement with model output (errors rarely exceed 0.3 mm day−1). In a different style

of emulation, Castruccio et al. (2014) trained a statistical model on pre-computed climate model simulations and found that

it was capable of capturing nonlinearities in the response in ways that pattern scaling inherently cannot. Xu and Lin (2017)30

compared several different methods (akin to what we do in Section 4) to assess pattern scaling on temperature, precipitation,

and potential evapotranspiration in the CESM Large Ensemble (Kay et al., 2015). To the best of our knowledge, no previous

study has compared different methods of pattern scaling of precipitation, particularly with a focus on robust model response.
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Here we provide a systematic (although non-exhaustive) assessment of the robustness of pattern scaling of precipitation.

Section 3 focuses on pattern scaling the response to temperature changes solely due to carbon dioxide increases, looking

at interpolation in time, extrapolation in time, and inter-model robustness. Section 4 explores inter-scenario robustness, i.e.,

whether the patterns obtained for CO2 are useful for pattern scaling other scenarios.

Through these investigations, we hope to better reveal in what circumstances methods of pattern scaling of precipitation5

perform well. We will also provide some (limited) guidance as to which situations pattern scaling is likely to provide a com-

putationally efficient, reasonably accurate result, versus which situations require actual simulation using AOGCMs.

2 Pattern Scaling Methods

2.1 Two Methods of Pattern Scaling for Precipitation

Pattern scaling involves approximating a timeseries of the pattern of change in a field of interest ∆B(x, t) by ∆B̂(x, t):10

∆B(x, t) ≈ ∆B̂(x, t) = P (x)∆T̄ (t) (1)

where P (x) describes a time-invariant spatial pattern (the spatial dimension is denoted by x), and ∆T̄ (t) describes a time-

varying (the time dimension is denoted by t) series of the change in global mean temperature, starting from a reference period

t= 0 (often the preindustrial era). This notation will be used repeatedly throughout the manuscript. There are two commonly

used methodologies for ascertaining P (x): regression and epoch differencing (Barnes and Barnes, 2015). In the regression15

method, P (x) is obtained by regressing ∆B(x, t) =B(x, t)−B(x,0) against ∆T̄ (t) at each point in x. In the epoch method,

P (x) =
B (x, [k,n+ k])−B (x, [0,n])

T̄ ([k,n+ k])− T̄ ([0,n])
(2)

where the intervals [0,n] and [k,n+k] indicate averaging over n-year time periods at the beginning and end of the simulation,

respectively. All values calculated are over a multi-model mean; Ruosteenoja et al. (2007) showed that pattern scaling for

precipitation over a model mean outperforms results obtained from using single models. Frieler et al. (2012) argued that no20

single set of regression coefficients will be applicable to all grid points. We circumvent this issue by (for example) regressing

∆T̄ against ∆B at each grid point.

2.2 Methodology

In the following sections, we quantify differences between the reconstruction B̂ and the actual model output B via the root

mean square (RMS) over the area-weighted difference B̂−B, calculated as25

RMS =

√∑
x

[(
B̂(x)−B(x)

)
·A(x)

]2
√∑

x [A(x)]
2

(3)

where A(x) is the area of grid box x, and sums are calculated over all x.
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All of the analysis conducted here uses simulations from AOGCMs contributed to CMIP5. The models used in the bulk of

the analysis in this study (Table 1, Group 1) are identical to those used by Lynch et al. (2017) with two exceptions (due to

model output availability):

1. The present study used NorESM1-ME instead of NorESM1-M. NorESM1-ME includes prognostic biogeochemical

cycling and has the capability of being emissions-driven, but when using concentration-driven scenarios (as is the case5

here), the two versions of the model will produce nearly identical results (Bentsen et al., 2013).

2. The present study used CMCC-CM instead of CMCC-CMS. The difference between these two versions is that CMCC-

CMS has a fully-resolved stratosphere, whereas CMCC-CM is the lower-top version of the model (Davini et al., 2014;

Sanna et al., 2013). Cagnazzo et al. (2013) describe some of the differences between these two models. In general, the

models agree on qualitative climate features, although as might be expected, CMCC-CMS better matches observations10

in situations where a fully resolved stratosphere is important for capturing the effects, including dynamical feedbacks

of stratospheric circulation and ozone chemistry on surface climate. Although these effects are non-negligible, they

are generally of lower order than the changes that occur over the course of the scenarios analyzed in this study (to be

discussed presently), so we anticipate that differences between these two models will not substantially affect results for

the model mean.15

Throughout this study, we evaluate three scenarios. The 1pctCO2 scenario involves a 1% per year increase in the CO2

concentration, beginning at its preindustrial value. This simulation is run for 140 years to an approximate quadrupling of the

CO2 concentration. The RCP8.5 and RCP2.6 scenarios (Representative Concentration Pathways, or RCPs; Moss et al., 2010;

Meinshausen et al., 2011) describe the results of two socioeconomic narratives that produce particular concentration profiles of

greenhouse gases, aerosols, and other climatically relevant forcing agents over the 21st century. The RCP8.5 scenario reflects20

a “no policy” narrative, in which total anthropogenic forcing reaches approximately 8.5 W m−2 in the year 2100. Conversely,

the RCP2.6 scenario involves aggressive decarbonization, causing radiative forcing to peak at approximately 3 W m−2 around

2050 and decline to approximately 2.6 W m−2 at the end of the 21st century. Table 2 provides additional forcing details for

the two RCP scenarios, as calculated by Hector (Hartin et al., 2015), a climate, carbon-cycle model that is used as the climate

component of the Global Change Assessment Model (GCAM), a state-of-the-art Integrated Assessment Model. Both RCPs are25

appended to simulations of the historical period, for total simulation lengths of 251 years (1850–2100).

Throughout the remainder of the paper, subscripts on P , T̄ , B̂, and B are used to denote the scenario (e.g., RCP8.5), the

model group (e.g., Group 2), or the years over which the patterns are computed (e.g., 1−50). If there is no subscript specified,

then the associated value corresponds to the Group 1 (see Table 1) multi-model mean of the 1pctCO2 simulation, averaged over

years 116–140 of the simulation (the last 25 years of the 1pctCO2 simulation, approximately at quadruple the preindustrial30

CO2 concentration).

Statistical significance was calculated using Welch’s t-test, which is analogous to a Student’s t-test, but where the variances

s1 and s2 of the two samples x1 and x2, respectively, do not need to be equal. We use this statistic here because the ensemble
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for each method is small, and the ensemble pattern distribution is assumed to be normal. The test statistic is defined by

t=
x̄1 − x̄2√

s21/n1 + s22/n2
(4)

where n1 and n2 are the number of models in each sample, respectively. Once the t statistic is calculated for each grid box,

the value in any given grid box is determined to be statistically significant if the test value exceeds a threshold computed from

the inverse of the Student’s t cumulative probability distribution at the 97.5% confidence level (which is the 95% confidence5

level for a two-sample test). The number of degrees of freedom df used to generate that threshold is approximated by the

Welch-Satterthwaite Equation:

df =

(
s21/n1 + s22/n2

)2
(s21/n1)

2

n1−1 +
(s22/n2)

2

n2−1

(5)

In all figures, stippling is used to obscure values that are not statistically significant, i.e., the t-statistic failed to exceed the 95%

confidence threshold.10

3 Comparisons Between Pattern Scaling Methods for CO2-Only Forcing

3.1 Pattern Scaling for CO2 Concentration Changes

Figure 1 shows the baseline (preindustrial) annual mean precipitation pattern B(x,0) and the scaling patterns P (x) for both

of the pattern scaling methods generated from the Group 1 (see Table 1) model average for the 1pctCO2 simulation. The

regression and epoch difference methods have very similar scaling patterns, no differences greater in magnitude than 0.05 mm15

day−1 K−1, and no differences are statistically significant (not shown). Both patterns show similar broad features: an increase

in tropical precipitation with global warming, particularly over the oceans; increases at high latitudes, again over the oceans;

and decreases in the South Pacific, North Atlantic, and South Indian Oceans, as well as Central America and the Mediterranean

basin.

Figure 2 shows a comparison between the actual model output (Group 1 averaged over the mean of years 116–140 of the20

1pctCO2 simulation) and the two methods of reconstruction. Both methods show qualitatively similar features. In general, they

reproduce the actual model output well, with possible exceptions in the tropics. Tebaldi and Arblaster (2014) note that pattern

scaling methodologies have difficulty in representing convection processes, so departures in these areas might be expected.

Figure 3 shows a more quantitative comparison between the different reconstruction methods and the actual model output.

Overall error (RMS; equation 3) in the regression and epoch different methods are very small (0.04 and 0.03 mm day−1,25

respectively; see Table 3), and no region in the reconstruction is statistically different from the actual model output.

3.2 Interpolation/Extrapolation

In this section, we examine robustness of the methods to interpolation or extrapolation in time. If the scaling pattern P (x) truly

were time-invariant, then the results presented in this section would be identical to those previously discussed.
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Supplemental Figure 1 shows the patterns P (x) obtained by conditioning the reconstructions only on years 1–50 of the

1pctCO2 simulation. In the epoch difference method, the second epoch is calculated over years 26–50 instead of years 116–

140. In the regression method, the regression coefficients are calculated only using the first 50 years of simulation. The patterns

calculated by using the regression and epoch difference methods only show small changes between the two periods, virtually

none of which is statistically significant.5

Despite similarities, using patterns conditioned on the earlier period to reconstruct the precipitation in the later period

(years 116–140) results in considerably poorer performance for both methods (Supplemental Figure 2) than the results shown

in Figure 3. RMS error increases by an order of magnitude (not shown), although few areas show statistically significant

differences from the actual model output over this time period. This is likely due to the noise introduced by building P (x) on

the early years of the simulation when the climate change signal is weak.10

Supplemental Figure 3 shows results for interpolation in time, where the patterns are conditioned on the full 1pctCO2 sim-

ulation (years 116–140), but the reconstruction predicts the average temperature in years 58-82 (halfway through the 1pctCO2

simulation). More specifically, B̂ = P116−140(x)∆T̄ (58− 82). In general, the patterns for interpolation show similar qual-

itative features to those of reconstructing the later time period of years 116–140 (Figure 3). However, error increases by a

factor of two for both methods, which potentially indicates the presence of nonlinearity. As before, no difference is statistically15

significant.

3.3 Inter-Model Robustness

In this section, we explore the role of the number of models in improving robustness of the prediction, as well as inter-

model robustness of pattern scaling by comparing reconstructions with actual model output where the scaling pattern P (x) is

conditioned on an entirely different set of models. More specifically, we examine two questions: (1) How does the prediction20

fidelity vary with the number of models used in the average? (2) If one conditions the pattern scaling on the average of Group

1, can one predict the response of Group 2 (or vice versa)?

Figure 4 shows the RMS error in the reconstruction (1pctCO2 simulation, averaged over years 116–140) as a function of

the number of models used in the comparison. This figure was created by randomly sampling the space of all 26 models listed

in Table 1 and then building P , T̄ , and B̂ for the models in that set; each box/set of whiskers indicates 20 different sets of25

random samples. Results ascertained from this figure parallel those discussed in previous sections: both methods have similar

magnitudes of error (except for small numbers of models). The RMS error values (Table 3) for Group 1 (13 models) are

consistent with the RMS error ranges depicted in Figure 4, indicating that Group 1 is not an outlier.

The regression method shows a dependence of RMS error on the number of models, whereas with the exception of low

model numbers (<10), there is much lower dependence for the epoch method. However, except for low model numbers, none30

of the boxes/whiskers is substantially different from any of the others, leading us to conclude that each of the methods is largely

robust to changes in the number of models used to carry out pattern scaling. Supplemental Section 2 and the associated figures

provide additional comparisons between the patterns generated for Groups 1 and 2.
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3.4 Discussion of Pattern Scaling the Precipitation Response to CO2

Both the regression and epoch difference methods show great promise in their usefulness as precipitation pattern scaling

methods. Both are able to reconstruct the changes in precipitation due to CO2 increases with errors of less than 5% in every

region of the globe (Figure 3). However, when examining interpolation in time, error increases for both methods, indicating

issues with robustness to timescale (Supplemental Section 1). Also, the pattern shows increased error in many places when5

different models are used (Supplemental Section 2), indicating issues with inter-model robustness.

Like the temperature pattern scaling results of Lynch et al. (2017), we find that the regression and epoch difference methods

have similar performance. In the present work, we find that the epoch difference method slightly outperforms the regression

method, but the differences are relatively minor. Given the slight advantages in computational expense and reduced data in-

put requirements, we profess a slight preference for using the epoch difference method to generate scaling patterns for the10

precipitation response to CO2-induced global warming.

4 Pattern Scaling for Additional Forcings

In this section, we compare the patterns and reconstructions between scenarios, primarily related to the RCP8.5 and 1pctCO2

simulations. We do this first as a test of robustness: does one method perform “better” for CO2-only simulations versus RCP8.5?

If the fidelity of the reconstruction to the actual model output is similar for the two scenarios, then subtracting the reconstruc-15

tions conditioned on RCP8.5 and 1pctCO2 could reveal a scaling pattern for non-CO2 forcing. We note that this is one of

the few ways of ascertaining the non-CO2 response pattern without running separate simulations both with and without CO2

forcing—without a scaling method to normalize for similar climate conditions, there is no way of obtaining meaningful results

from directly subtracting a 1pctCO2 simulation from an RCP8.5 simulation. (The approach discussed here is analogous to the

methodology of Herger et al. (2015), but where they attempted to ascertain similarities between patterns for a given change in20

global mean temperature, we are interested in the differences.)

We note several caveats with this approach. One is that, based on the results of Herger et al. (2015), the reconstructions

of RCP8.5 and 1pctCO2 are likely to have some similarities for a given temperature change because the dominant forcing

in RCP8.5 is CO2 (see Table 2). As such, ascertaining the non-CO2 signal could be limited by low signal-to-noise ratios. A

second caveat, one more germane to pattern scaling, is to ascertain whether the non-CO2 pattern obtained from RCP8.5 can25

be used to reconstruct the non-CO2 precipitation change for a different scenario. There is no a priori reason to expect that this

will work, as different scenarios have different combinations of forcings. In Section 4.3, we investigate this problem using an

extreme case, where we ascertain the scaling patterns from an RCP8.5 simulation and use them to attempt to reconstruct the

RCP2.6 simulation.

We acknowledge that the non-CO2 component is a combination of both non-CO2 greenhouse gases and aerosols, which have30

opposite effects on global mean temperature. These two categories of forcing have different local responses as well. An alter-

native approach would be to split the RCP8.5 response into a CO2 component, a non-CO2 greenhouse gas component, and a

non-greenhouse gas component. Supplemental Section 3 discusses the necessary calculations for both of these approaches. The
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CO2/non-CO2 approach proved to be quite amenable to pattern scaling. On the contrary, the CO2/other greenhouse gas/non-

greenhouse gas approach is not, due to distinct nonlinearities in the derived temperature responses for these particular forcing

categories. As such, we have chosen to proceed with a CO2/non-CO2 division for the purpose of pattern scaling.

4.1 Inter-Scenario Differences

Figure 5 shows the RCP8.5 scaling pattern PRCP8.5(x) and the difference from the CO2-only pattern. Patterns are nearly5

identical to those in Figure 1. Both the regression and epoch difference methods show no differences exceeding 0.1 mm day−1

K−1 in magnitude and no statistically significant differences of any magnitude. This figure reinforces the findings of Herger

et al. (2015) that patterns generated from commonly used scaling methods (regression and epoch difference) do not differ

appreciably between scenarios, so pattern scaling can be accomplished by using periods in different scenarios with the same

global mean temperature change.10

Figures 6 and 7 show this in practice, where the reconstruction of the historical/RCP8.5 simulation B̂ is built on the RCP8.5

pattern, multiplied by ∆T̄ averaged over years 227–251 (2076–2100) and 116–140 (1965–1990), respectively. The recon-

structed precipitation response in Figure 6 is generally too strong in the tropics and too weak in the midlatitudes (which is

the same pattern in Figure 3), but Figure 7 shows the opposite pattern. None of these differences is statistically significant,

and the RMS error is approximately the same in both figures (0.09–0.10 mm day−1 K−1; 2–3 times greater than the error in15

Figure 3), but they suggest that there is a distinct non-CO2 pattern that, while small, is still important in explaining precipitation

differences in periods with large temperature change.

Figure 8 provides descriptions of the actual precipitation effects of both CO2 and non-CO2 forcing. Although the two

portions of the reconstruction generally show similar features, the regional effects have quite different magnitudes in many

regions. In particular, the non-CO2 response is weaker over the tropical Pacific than the CO2 response and is stronger over20

much of the Northern Hemisphere. One distinct difference between the two patterns is that precipitation is reduced over East

Asia and India in the non-CO2 response but increases in the CO2 response. This is likely a result of global dimming from heavy

aerosol emissions. Another source of differences, potentially attributable to dust, is the Saharan outflow over the Atlantic ocean

and extending into the Amazon. This gives us confidence that although the non-CO2 response is likely dominated by non-CO2

greenhouse gases (most prominently methane), it appears to have captured an aerosol signature. It would be a useful future25

area of investigation to conduct pattern scaling studies on single-forcing simulations (e.g., Marvel et al., 2016) to reveal more

robust signals and determine which forcings are amenable to pattern scaling, with a particular eye on inter-model variations in

the responses to identical forcings. The results in Figure 8 also reinforce the conclusions of Frieler et al. (2012), who argue that

the scaling patterns from one scenario are not in general translatable to scaling patterns for another scenario if the two scenarios

are driven by different forcing. Even though Figure 5 shows that the patterns PRCP8.5 and P1pctCO2 are nearly identical, even30

small differences can affect reconstructions of precipitation change for large values of ∆T̄ .
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4.2 Non-CO2 Forcing Pattern

Here we calculate a non-CO2 pattern for use in pattern scaling. We begin by assuming that the effects of CO2 forcing and

non-CO2 forcing are separable, that is, that there are no nonlinear interactions between the two forcings that would produce a

non-additive response. Although this assumption is not strictly true, it is approximately true to a sufficient degree that such cal-

culations are useful (MacMartin et al., 2015; MacMartin and Kravitz, 2016). Following the notation in Equation 1, separability5

means that

∆B̂RCP8.5 = ∆T̄CO2
PCO2

+ ∆T̄non−CO2
Pnon−CO2

(6)

We set PCO2
equal to P1pctCO2 (from Section 3), because if pattern scaling holds, the time-invariant pattern of CO2 forcing

should be identical, regardless of the scenario from which it is derived. Pnon−CO2
is defined to be 4PRCP8.5 − 3PCO2

(see

Supplemental Section 3 for the derivation of this expression). Embedded in this expression are inherent assumptions about the10

validity of a linear pattern scaling approach. If the approach fails, it is because either this pattern does not represent actual

non-CO2 forcing or because the pattern is too difficult to accurately estimate, perhaps due to internal variability. To calculate

∆T̄CO2
, we assume that global mean temperature scales linearly with radiative forcing (e.g., Gregory et al., 2004), and radiative

forcing is known to scale logarithmically with the CO2 concentration (Myhre et al., 1998). Performing linear regression of

log2 ([CO2]) against global mean temperature change in the 1pctCO2 simulation yields a slope of α= 2.40, an intercept of15

β = −19.89, and anR2 value of 0.99. (Brackets [·] indicate the CO2 concentration in ppmv.) Then T̄CO2
= α log2 ([CO2])+β.

T̄non−CO2 is calculated as the residual T̄RCP8.5 − T̄CO2 . We note that this formulation does not explicitly account for lags in

the climate response to radiative forcing, such as ocean thermal inertia.

Figure 9 shows all of the aforementioned T̄ values, plotted as a function of the CO2 concentration. Both CO2 and non-CO2

monotonically increase with time in the RCP8.5 simulation. This is consistent with the design of the RCP8.5 scenario, in20

which non-CO2 radiative forcing increases over the period 2000–2100 (Table 2), largely due to a doubling of the methane

concentration over this period. This change in forcing corresponds to a non-CO2 induced temperature change (green line in

Figure 9) from 0.31 to 1.36 K.

This decomposition of the scaling patterns into CO2 and non-CO2 components performs rather well for reconstructing the

actual model output. For the period 2076–2100 at the end of the RCP8.5 simulation (Figure 10), the epoch difference method25

has fewer errors than the regression method, especially in the tropics and Northern Hemisphere midlatitudes. No error in the

regression method exceeds 0.4 mm day−1 in magnitude, and no error in the epoch difference method exceeds 0.2 mm day−1

in magnitude. For the period 1965–1990 (Figure 11), both methods perform nearly identically with slight (<0.2 mm day−1)

biases in the tropics, East Asia, Europe, and the South Pacific. The errors in Figure 10 are generally of the opposite sign of

those in Figure 6, and some of the features in Figure 11 are of the opposite sign of those in Figure 7. This indicates that some30

features of non-CO2 response offset features of the CO2 response. Particular areas of these differences include the previously

identified regions associated with strong aerosol forcing.
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4.3 Scaling to Predict Other Scenarios

The final stage of inter-model exploration is to see how well the CO2 and non-CO2 patterns generated from one scenario can

be used on another scenario. Here we choose the extreme case of predicting the pattern of precipitation change in RCP2.6,

based on the patterns calculated from RCP8.5. In this scenario, the CO2 concentration peaks and then drops slightly (Table 2).

The non-CO2 forcing comprises 29% of the total forcing in RCP8.5 in 2100 and 32% of the total forcing in RCP2.6 in 2100,5

according to simulations using Hector (Hartin et al., 2015).

Figure 12 shows the effectiveness of this reconstruction process. Both the epoch difference and regression methods show

strong differences that are consistent with the patterns displayed in Figure 8. Supplemental Section 4 provides some additional

derivations that explore the sources of these biases. There are two main conclusions from this section. First, using the non-CO2

pattern build on RCP8.5 was not effective for explaining non-CO2 behavior in RCP2.6, indicating that there are limits to the10

applicability of a “universal” non-CO2 forcing. A future area of investigation could explore these limits: for example, would

the non-CO2 pattern built on RCP8.5 work on RCP6.0 or RCP4.5 instead of the extreme RCP2.6 case? The second conclusions

is that the ability to perform this CO2/non-CO2 decomposition is itself limited. Supplemental Section 4 goes through detailed

calculations showing that if one assumes that such a decomposition is possible, contradictions and inconsistencies arise. De-

termining why this decomposition failed for RCP2.6 would require a more thorough investigation, possibly including single15

forcing simulations, that is beyond the scope of this study. Such research could lead to an understanding of which scenarios

would be more amenable to separable forcing treatments than others.

4.4 Discussion of Pattern Scaling for Non-CO2 Forcings

In general, the pattern scaling results depicted in Section 4 are consistent with previous studies. Herger et al. (2015) found that

the patterns between scenarios are rather similar, which Figure 5 confirms. However, the results for pattern scaling may be20

scenario-dependent (Figure 8) if global mean temperature change (∆T̄ ) is sufficiently large, which confirms the conclusions

of Frieler et al. (2012).

In particular, we found limited ability in reconstructing the RCP2.6 model behavior from the RCP8.5 run, indicating limits

in building scalings using one scenario and applying them to a different scenario. We deliberately chose an extreme case to

understand whether such universal applications exist. The ability to do this might be improved for “closer” scenarios, such as25

RCP8.5 and RCP6.0 or RCP4.5.

5 Conclusions

We have explored two different, commonly used methods of pattern scaling for annual mean precipitation, with a focus on

robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario differences. Both the regression

and epoch difference methods perform well and approximately similarly.30
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Most of the errors that arise for either method are either in areas dominated by convection (predominantly over the tropical

oceans) or at high latitudes. Both of these areas are large sources of nonlinear responses to global mean temperature change,

so pattern scaling might not be expected to perform well in these areas. The approach of Tebaldi and Arblaster (2014) of using

zonal mean temperature as a scaling parameter may prove useful in accounting for errors at high latitudes.

In terms of the usefulness of pattern scaling of precipitation, because the regression and epoch difference methods perform5

well over most land regions, they are likely quite suitable for a variety of applications, including societal models (like Integrated

Assessment Models or impacts models) that mostly deal with land areas. If one’s application requires good performance

over tropical oceans, then pattern scaling may no longer be appropriate, and instead output from the full AOGCM may be

required. However, given the difficulties that many climate models have with proper representations of convective processes

and the resulting precipitation biases those difficulties cause (e.g., Song and Zhang, 2009), there may be doubts as to how well10

AOGCMs represent precipitation in these areas in the first place.

The results presented in Section 4 indicated that while some scenarios are amenable to broad separations of pattern scaling

forcings, some others are not. Much more systematic work needs to be done in this area to determine the usefulness of pattern

scaling for different forcings. Single forcing experiments would be particularly useful, as they can allow a determination as

to which forcings work best for pattern scaling, as well as whether there are any nonlinear effects that result from applying15

multiple simultaneous forcings. Another potential approach would be to use the “hybrid-pattern” method described by Xu and

Lin (2017), in which a simple energy balance model is used to build separate forcings, circumventing the need for expensive

single-forcing AOGCM simulations.

The results presented here have applications that extend beyond providing libraries of scaling patterns for Integrated Assess-

ment Models (Lynch et al., 2017). Another more speculative application involves efficacy of climate forcings. Kravitz et al.20

(2015) developed a method of comparing forcing agents via analyses of their rapid adjustments (fast responses), that is, their

responses in the absence of global mean temperature change. If our method of decomposing the response into CO2 and non-

CO2 components could be extended to single forcings, then one could isolate the feedback responses (slow responses), which

are the portions of the responses that depend on global mean temperature change. Thus, there is potential to provide a more

quantitative intercomparison of the different effects of climate forcing agents.25

6 Code and/or Data Availability

All computations were performed using MATLAB 2012b, developed by MathWorks. The libraries of patterns are available

on GitHub at http://github.com/JGCRI/CMIP5_patterns. All code used to generate figures in this manuscript is available upon

request.
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Table 1. Models used in the present analysis. Most of the analysis was conducted using the models in Group 1. Additional investigations

described in Section 3.3 were conducted using the models in both Group 1 and Group 2 to determine inter-model robustness of the different

pattern scaling methods discussed in this study. All model names listed are the standard names used in contributions to the Coupled Model

Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). Knutti et al. (2013) provide an excellent description of these models and their

provenance.

Group 1 Group 2

ACCESS1.0 ACCESS1.3

CanESM2 BCC-CSM1.1

CCSM4 BCC-CSM1.1M

CMCC-CM BNU-ESM

CNRM-CM5 CESM1-BGC

CSIRO-Mk3.6 CESM1-CAM5

GFDL-CM3 FGOALS-g2

HadGEM2-ES GFDL-ESM2M

INMCM4 IPSL-CM5A-LR

IPSL-CM5A-MR IPSL-CM5B-LR

MIROC-ESM MIROC5

MPI-ESM-MR MPI-ESM-LR

NorESM1-ME MRI-CGCM3

Table 2. Radiative forcing values (W m−2) for RCP8.5 and RCP2.6 in 2000, 2050, and 2100. CO2 forcing and total forcing were calculated

using the simple climate model Hector (Hartin et al., 2015). Non-CO2 forcing is calculated as the difference between total and CO2 forcing.

Percentages in parentheses indicate the percentage of the total forcing.

2000 2050 2100

CO2 forcing (RCP8.5) 1.226 3.289 6.167

Total forcing (RCP8.5) 1.991 5.049 8.686

non-CO2 forcing (RCP8.5) 0.765 (38%) 1.760 (35%) 2.519 (29%)

CO2 forcing (RCP2.6) 1.267 2.174 1.765

Total forcing (RCP2.6) 2.066 3.195 2.601

non-CO2 forcing (RCP2.6) 0.799 (39%) 1.021 (32%) 0.836 (32%)
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Table 3. RMS error values calculated over the entire globe (Equation 3) for each of the figures. All units are in mm day−1 for differences

(Figures 3, 6, 7, 10, 11, and 12) or mm day−1 K−1 for patterns (Figure 5).

Regression Epoch difference

Figure 3 0.04 0.03

Figure 5 0.02 0.02

Figure 6 0.10 0.10

Figure 7 0.09 0.09

Figure 10 0.10 0.07

Figure 11 0.10 0.09

Figure 12 0.21 0.20
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Baseline

Regression

Epoch Difference

Figure 1. The components needed for pattern scaling of the precipitation response to CO2 forcing, averaged over the 13 models in Group 1

(Table 1). Top shows the baseline precipitation pattern for the multi-model average: B(x,0) in Equation 1 (mm day−1; averaged over years

1–25 of the 1pctCO2 simulation). The other panels show the time-invariant pattern P (x) in Equation 1 (mm day−1 K−1) for the regression

method (middle), and the epoch difference method (bottom).
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Actual Model Output

Regression

Epoch Difference

Figure 2. Comparison between the actual Group 1 multi-model average precipitation output (top) and the reconstructions produced by pattern

scaling (B̂ in Equation 1). All values are in mm day−1 and represent averages over years 116–140 of the 1pctCO2 simulation. Middle panel

shows the regression method, and bottom panel shows the epoch difference method.
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Figure 3. Differences between the reconstructions produced by pattern scaling (B̂) and the actual model output for precipitation (B). Left

column shows absolute values of B̂−B (mm day−1), and right column shows percent change. Top row shows results for the regression

method, and bottom row shows the epoch difference method. All values are calculated for a Group 1 multi-model average for the 1pctCO2

simulation over the years 116-140. Stippling indicates a lack of statistical significance in the pattern of differences (Section 2.2).
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Figure 4. Root mean square (RMS) error (Equation 3, calculated on the difference expressed in mm day−1 between the reconstruction and

actual model output B̂−B) as a function of the number of models used to conduct the scaled precipitation reconstruction. From the full

set of 26 models (Table 1), anywhere between 6 and 18 models (x-axis) were chosen randomly 20 different times. Each box in the plots

represents those 20 sets of models. Red lines indicate median values, blue boxes indicate the 25th and 75th percentiles, and whiskers indicate

the full range of model response among the 20 sets of models. All values are calculated over an average of years 116–140.
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Figure 5. Absolute values (left) of and differences (right) in the precipitation scaling pattern P (x) (Equation 1) when different scenarios are

used to construct the pattern (RCP8.5 vs 1pctCO2). Left column shows values of PRCP8.5, and right column shows values of PRCP8.5 −

P1pctCO2 (mm day−1 K−1). Top row shows results for the regression method, and bottom row shows the epoch difference method. All

values are calculated for a Group 1 multi-model average for the 1pctCO2 simulation. Stippling indicates a lack of statistical significance in

the pattern of differences (Section 2.2).
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Figure 6. As in Figure 3 but where the reconstruction B̂ is built on the pattern P for the RCP8.5 simulation (Group 1 average over

years 227–251), and global mean temperature ∆T̄ is averaged over years 227–251 (2076–2100) of the RCP8.5 simulation. That is,

B̂ = PRCP8.5(x)∆T̄RCP8.5(227−251). Results shown are for the difference between the reconstruction and the actual model output of the

RCP8.5 simulation B̂−BRCP8.5(x,227− 251).
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Figure 7. As in Figure 3 but where the reconstruction B̂ is built on the pattern P for the RCP8.5 simulation (Group 1 average over years

227–251), and global mean temperature ∆T̄ is averaged over years 116–140 (1965–1990) of the historical/RCP8.5 simulation. That is,

B̂ = PRCP8.5(x)∆T̄RCP8.5(116−140). Results shown are for the difference between the reconstruction and the actual model output of the

historical simulation B̂−BRCP8.5(x,116− 140).
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Figure 8. The CO2 (top) and non-CO2 (middle) responses over years 227–251 (2076–2100) of the RCP8.5 simulation, as well as the differ-

ence between the two (bottom). CO2 response is calculated as ∆B̂ = P1pctCO2T̄RCP8.5(227− 251), and non-CO2 response is calculated

as ∆B̂ = Pnon−CO2 T̄RCP8.5(227−251) (see Equation 1 and the discussion surrounding Equation 6 for further details). Left column shows

results for the regression method, and right column shows the epoch difference method.
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Figure 9. Decomposition of global mean temperature change (as a function of the CO2 concentration) into its components, as described in

Section 4.2.
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Figure 10. As in Figure 3 but where B̂ = Pnon−CO2 T̄RCP8.5,nonCO2(227− 251) +P1pctCO2T̄RCP8.5,CO2(227− 251), and results are

shown for B̂−BRCP8.5(227− 251). (See Equation 1 and the discussion surrounding Equation 6 for details.)

26



R
e

g
re

s
s
io

n
E

p
o

c
h

 D
if
fe

re
n

c
e

Absolute Difference (mm day-1) Percent Difference

Figure 11. As in Figure 3 but where B̂ = Pnon−CO2 T̄RCP8.5,nonCO2(116− 140) +P1pctCO2T̄RCP8.5,CO2(116− 140), and results are

shown for B̂−BRCP8.5(116− 140). (See Equation 1 and the discussion surrounding Equation 6 for details.)
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Figure 12. As in Figure 3 but where B̂ = Pnon−CO2 T̄RCP2.6,nonCO2(227− 251) +P1pctCO2T̄RCP2.6,CO2(227− 251), and results are

shown for B̂−BRCP2.6(227− 251). (See Equation 1 and the discussion surrounding Equation 6 for details.)
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