
Exploring	precipitation	pattern	scaling	methodologies	and	robustness	among	CMIP5	
models	
Kravitz	et	al.,	Geoscientific	Model	Development	
Response	to	reviewers	
	
Reviewer	comments	in	plain	text.		Responses	in	bold.	
	
	
General	response	
	
We	thank	the	reviewers	for	their	comments	on	our	paper.		Both	reviewers	
were	critical	of	the	“physically-based”	method,	and	we	have	carefully	
considered	their	points.		We	agree	that	it	is	important	to	evaluate	this	method	
more	carefully,	including	additional	checks	of	the	accuracy	of	our	
implementation.		Exploring	this	method	would	also	require	a	discussion	of	its	
usefulness	as	a	pattern	scaling	method	and	why	we	obtained	the	results	that	
we	did.		Given	the	large	increase	in	scope	this	would	require,	which	would	
distract	from	our	assessments	of	the	performance	of	the	other	two	methods,	
we	have	elected	to	remove	mention	of	this	method	from	the	present	
manuscript.		We	will	do	a	better	job	with	it	in	a	future	study.	
	
	
Reviewer	#1	
	
In	my	opinion,	the	paper	constitutes	an	interesting	contribution	that	should	be	
published	in	Geoscientific	Model	Development	after	adequate	revisions.	An	
evaluation	of	the	performance	of	different	pattern	scaling	methods	for	climate	
variables	other	than	temperature	(here:	precipitation)	is	of	significant	practical	
importance.	The	evident	main	conclusion	of	the	work	is	that	two	of	the	methods	
work	reasonably	but	the	third	one	does	not.	This	should	be	clarified	in	the	text.		
	
We	thank	the	reviewer	for	his/her	comments.		As	stated	above,	we	have	
removed	the	third	method,	so	our	conclusions	will	change	slightly.		We	have	
updated	the	text	to	accommodate	this.	
	
General	comments		
	
Regarding	the	two	traditionally-used	methods,	here	termed	the	regression	and	
epoch	methods,	I	mainly	agree	with	the	conclusions	presented	by	the	authors.	These	
methods	appear	to	be	fit	for	scaling	precipitation.	However,	the	verbal	assessments	
given	for	the	“physically-based”	method	in	the	manuscript	do	not	seem	to	be	
supported	by	the	quantitative	results	presented	in	the	figures	and	Table	3.	Examples	
of	statements	that	I	find	unjustified:	“the	physically-based	method	shows	a	greater	
degree	of	robustness	(less	relative	root-mean-square	variation	than	the	other	two	
methods)	and	could	be	a	particularly	advantageous	method	if	outstanding	biases	



could	be	reduced”	(abstract,	l.	7–9);	“This	indicates	the	potential	for	robustness	of	
the	physically-based	method”	(p.	5,	l.	2);	“The	overall	performance	of	the	physically-
based	method	is	still	worse	in	all	cases,	but	these	results	suggest	that	if	the	overall	
bias	in	the	physically-based	method	could	be	reduced	or	corrected,	it	holds	great	
promise	in	being	a	useful	pattern	scaling	method...”	(p.	8,	l.	26–28);	“The	physically-
based	method	has	substantially	worse	performance	than	the	other	two	methods	but	
shows	some	features	of	robustness	that	could	be	advantageous	if	overall	biases	in	
the	method	could	be	reduced”	(p.	12,	l.	16–18).		
	
In	all	the	examples	studied,	the	performance	of	the	“physically-based”	method	
appears	to	be	inferior	to	the	other	two	methods	(Table	3).	In	some	cases	(e.g.,	that	
depicted	in	Fig.	6),	the	gap	between	the	performances	is	apparently	somewhat	
smaller.	Note,	however,	that	in	these	experiments	the	magnitude	of	the	projected	
change	B	is	small,	which	makes	the	scaling	error	Bˆ	−	B	small	as	well.	Accordingly,	in	
these	cases	the	small	RMS	error	produced	by	the	“physically-based”	method	is	likely	
to	be	a	trivial	consequence	of	the	smallness	of	B.	(See	further	discussion	in	“specific	
comments”.)	
	
Furthermore,	on	l.	10–11	of	p.	3	it	is	stated	that	“There	are	many	possibilities	for	
physically-based	approaches”.	Therefore,	I	suggest	that	the	authors	should	use	some	
other,	more	specified	name	for	the	version	of	the	method	examined	in	this	paper.	
Note	also	that	’physically-based’	inherently	sounds	very	positive	and	thus	a	more	
neutral	term	should	be	preferred;	particularly,	taking	into	account	the	low	
performance	of	that	method.		
	
We	agree	with	all	of	the	points	in	the	previous	several	paragraphs	of	the	
reviewer’s	assessment.		Per	the	general	response	above,	we	have	removed	the	
physically-based	method	from	this	manuscript	and	all	text	associated	with	it.	
	
The	number	of	figures	in	the	paper,	19,	is	excessive.	In	particular,	there	are	plenty	of	
figures	(14)	that	visually	very	similar,	consisting	of	a	set	of	six	global	map	panels.	A	
high	level	of	concentration	is	required	for	a	reader	in	order	to	study	this	large	
manifold	of	illustrations.	I	find	that	it	is	mainly	Figs.	4,	9,	10,	12,	14	and	16	that	
include	key	information.	Conversely,	Figs.	5–7,	11,	15	and	17–19	are	not	that	
essential	and	mainly	relevant	for	readers	of	special	interest.	For	the	majority	of	
readers,	it	would	facilitate	reading	the	article	if	these	figures	(or	a	significant	
portion	of	them)	would	be	shifted	into	an	electronic	supplemental	file	that	is	
available	in	conjunction	with	the	article.		
	
We	agree	with	the	reviewer	that	there	were	too	many	figures.		After	reviewing	
the	paper,	we	have	moved	Figures	5-7	and	17-19	to	supplemental	material.		
We	have	also	removed	Figure	2.	
	
Is	the	precipitation	variable	discussed	in	the	paper	an	annual	mean?	That	should	be	
specified	in	the	abstract,	introduction,	conclusions	and,	perhaps,	in	some	of	the	



figure	captions	as	well.		
	
Agreed.		We	have	added	mentions	of	this	throughout	the	paper.	
	
Compared	to	the	other	two	methods,	the	performance	of	the	“physically-based”	
method	is	very	poor.	The	poorness	is	so	striking	that	I	recommend	that	the	authors	
should	check	the	correctness	of	their	algorithms	once	again.		
	
Per	the	general	response	above,	we	have	removed	the	physically-based	
method	from	this	manuscript.	
	
Specific	comments		
	
Interpolation,	extrapolation.	For	readers	less	familiar	with	the	idea,	please	specify	
that	you	are	dealing	with	interpolation	(extrapolation)	in	time	(p.	1,	3,	7,	8	and	12).		
	
Thanks	for	pointing	that	out.		We	have	added	more	specificity	where	
appropriate.	
	
Earth	System	Models	(ESMs)	vs.	Atmosphere-Ocean	General	Circulation	Models	
(AOGCMs).	According	to	the	definition	applied	in	Chapter	9	of	IPCC	(2013),	ESMs	are	
those	climate	models	that	include	an	interactive	carbon	cycle.	All	models	listed	in	
Table	1	of	your	paper	do	not	fulfill	this	criterion	but	belong	to	the	category	of	
AOGCMs.	I	recommend	that	you	would	use	the	same	terminology	as	IPCC	(2013).	—	
This	does	not	have	any	impact	on	the	quantitative	findings	as	you	have	used	
concentration-driven	model	runs	alone	(p.	5,	l.	7).		
	
A	point	well	taken.		We	have	replaced	all	mentions	of	ESM	with	AOGCM	in	the	
manuscript.	
	
P.	4,	l.	8–17:	The	idea	of	the	“physically-based”	method	should	be	explained	in	more	
detail.	The	present	formulation	is	not	adequate	to	make	the	idea	understandable	
without	consulting	the	reference.		
	
Per	the	general	response,	we	have	removed	mentions	of	the	physically	based	
method.	
	
There	is	an	error	in	Eq.	(5):	in	the	denominator,	replace	s21	by	s
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2
	by	s

4
2.	

Check	whether	this	is	an	typing	error	only	or	whether	you	have	used	the	wrong	df	in	
the	calculations.		
	
This	was	just	a	typo	in	the	manuscript.		Thanks	for	pointing	that	out.	
	
P.	7,	l.	18:	the	poorer	performance	of	these	two	methods	may	be	due	to	the	large	
contribution	of	noise	in	the	pattern	of	P	that	is	determined	from	the	early	years	of	



the	simulation	when	the	true	climate	change	signal	is	weak.		
	
Good	point.		We	have	added	a	sentence	to	this	effect.	
	
P.	7,	l.	20–23:	The	error	for	the	“physically-based”	method	is	not	similar	but	nearly	
double	that	produced	by	the	other	methods	(Table	3).	More	importantly:	the	
smallness	of	the	error	for	the“physically-based”	method	may	have	been	caused	by	
the	fact	that	P	=	0	over	the	majority	of	the	domain.	Then,	in	these	areas	Bˆ	=	0	as	well	
and,	since	B	is	small,	the	difference	B	−	Bˆ	=	0	is	likewise	small.	Thus,	the	smallness	
of	the	RMS	error	is	not	any	indication	of	the	good	performance	of	the	“physically-
based”	method.	See	also	general	comment	1	and	the	text	that	you	have	written	on	p.	
8,	l.	19–21	and	p.	11,	l.	12.		
	
Per	the	general	response,	we	have	removed	mentions	of	the	physically	based	
method.	
	
P.	7,	l.	27–28:	“error	is	reduced	by	a	factor	of	two	for	the	physically-based	method”:	
is	this	a	trivial	consequence	of	the	smallness	of	B?	“and	increases	by	a	factor	of	two	
for	the	regression	and	epoch	difference	methods”:	this	may	be	an	indication	of	true	
non-linearity.	Also,	p.	8,	l.	22–26	need	revision.		
	
Per	the	general	response,	we	have	removed	mentions	of	the	physically	based	
method.		We	have	revised	what’s	left	of	the	lines	on	page	8	to	improve	clarity.	
	
Section	3.3	and	Fig.	8:	When	you	present	the	results	for	a	certain	number	of	models,	
have	you	used	in	each	experiment	the	same	sub-ensemble	models	in	calculating	P	
and	B?	Or	are	the	models	chosen	randomly	for	that	comparison?	Please	clarify.		
	
The	models	are	chosen	randomly.		We	have	clarified	this	in	the	text.	
	
P.	9,	l.	17–19:	I	did	not	understand	the	idea.	How	the	dominance	of	the	CO2	response	
helps	to	apply	the	non-CO2	pattern	for	the	other	scenarios?	Please	clarify.	Note	also	
that	the	non-CO2	response	includes	both	a	warming	(other	GHGs)	and	cooling	
component	(aerosol	forcing)	that	may	have	different	ratios	in	the	various	RCP	
forcing	scenarios.		
	
We	have	removed	that	part	of	the	sentence	that	perplexed	the	reviewer.		As	to	
the	other	point,	that	is	well	taken.		We	have	added	an	additional	paragraph	
that	discusses	many	of	these	issues.	
	
P.	10,	l.	28–32:	Note	that	warming	does	not	follow	radiative	forcing	immediately	but,	
due	to	the	thermal	inertia	of	oceans	etc.,	with	a	lag.	Has	this	been	taken	into	
account?	If	not,	a	caveat	should	be	included	in	the	text.		
	



We	have	not	accounted	for	lags	like	this.		We	have	added	a	caveat	to	the	text.	
	
P.	34,	l.	9–11:	In	my	opinion,	there	is	a	contradiction	between	the	text	and	the	Figure	
captions	18–19.	In	the	captions,	it	is	stated	that	P	is	extracted	from	one	group	of	
models	and	∆T	and	B	from	the	other	group.	Thus,	the	experiments	would	be	
“antisymmetric”	and	accordingly,	one	would	expect	that	the	errors	would	be	of	a	
similar	order	of	magni-	tude.	Differences	in	P	between	the	groups	1	and	2	should	
affect	Figs.	18	and	19	by	about	a	similar	magnitude.	According	to	the	text,	figures	
and	Table	3,	however,	this	is	not	so.	Please	check	and	clarify.		
	
We	apologize	for	the	confusion.		We	had	a	typo	in	the	text,	so	the	descriptions	
of	the	two	figures	appeared	to	be	antisymmetric,	but	they	weren’t.		We	have	
fixed	this	so	the	paper	better	says	what	we	actually	did.	
	
The	discussion	presented	in	the	Appendix	might	be	transferred	into	electronic	
supplementary	material.		
	
Agreed.		We	have	moved	this	text	and	the	associated	figures	to	supplemental	
material.	
	
Minor	comments		
	
P.	1,	l.	12–13:	for	other	models	->	to	be	utilized	in	other	models	?		
	
Agreed	and	changed	in	the	manuscript.	
	
P.	2,	l.	19:	a	long	history	of	research	->	a	fairly	long	history	of	research	(the	method	
has	been	used	for	a	few	decades,	not	millenia).		
	
Agreed	and	changed	in	the	manuscript.	
	
P.	2,	l.	26–27:	“no	single	fit	(e.g.,	regression	coefficients)	will	be	applicable	to	all	grid	
points”	(and	a	similar	statement	on	p.	3,	l.	27–28).	This	is	a	trivial	consequence	of	
the	fact	that	the	modelled	precipitation	change	is	not	geographically	uniform.	If	you	
want	to	say	something	more,	please	clarify.		
	
We	agree	with	the	reviewer’s	statement.		We	are	simply	reviewing	what	
previous	studies	have	shown.	
	
P.	3,	l.	6–7:	“If	the	climate	response	is	perfectly	linear,	then	any	pattern	scaling	
method	will	work	equally	well	and	will	be	highly	accurate.”	I	would	prefer	a	more	
conditional	formulation,	e.g.:	“If	the	climate	response	were	perfectly	linear,	then	any	
pattern	scaling	method	would	work	equally	well	and	would	be	highly	accurate.”		
	
Agreed	and	changed	in	the	manuscript.	
	



P.	3.,	l.	9:	Conversely	->	In	principle;	the	findings	of	the	present	work	do	not	favour	
the	“physically-based”	method.		
	
We	have	removed	mentions	of	the	physically-based	method	in	this	
manuscript.	
	
P.	3,	l.	30:	“this	approach	automatically	accounts	for	correlations	between	local	
temperature	and	local	precipitation	changes”.	How?	� 	
	
This	sentence	ended	up	being	more	confusing	than	illuminating,	so	we	have	
removed	it.	
	
P.	4,	l.	30:	This	may	be	caused	(i)	by	the	rather	small	area	of	the	polar	regions	and	
(ii)	by	the	fact	that	both	B	and	Bˆ	are	relatively	small	there.	� 	
	
Per	the	general	response	above,	we	have	removed	this	paragraph.	
	
P.	7,	7–8:	“If	the	scaling	pattern	P	(x)	truly	is	time-invariant,	then	the	results	
presented	in	this	section	will	be	identical	to	those	previously	discussed.”	->	“If	the	
scaling	pattern	P	(x)	truly	were	time-invariant,	then	the	results	presented	in	this	
section	would	be	identical	to	those	previously	discussed.”	(They	are	not	identical.)	� 	
	
Changed.		Thanks	for	the	phrasing.	
	
P.	7,	l.	16:	none	->	virtually	none	?	� 	
	
Agreed	and	changed	in	the	manuscript.	
	
P.	8,	l.	9:	I	did	not	understand	“The	values	in	Table	3	indicate	that	Group	1	(13	
models)	is	not	an	outlier.”	Please	clarify.	� 	
	
We	have	clarified	this	sentence.	
	
P.	8,	l.	27:	I	do	not	agree	with	“holds	great	promise”.	
	
Agreed.		Keeping	with	the	general	response	above,	we	have	removed	this	
paragraph.	
	
Title	of	section	4	might	be	modified:	you	discuss	the	total	forcing	and	its	partition	
into	the	CO2	and	non-CO2	components.	� 	
	
Changed	to	“Pattern	Scaling	for	Additional	Forcings”.	
	
P.	9,	l.	17:	“There	is	no	a	priori	reason	to	expect	this	will	work”.	Do	you	mean	“There	
is	�no	a	priori	reason	to	expect	that	this	will	work”?	� 	



	
Yes,	changed.	
	
P.	9,	l.	30:	Giving	the	actual	years	(e.g.,	2076–2100	for	model	years	227–251?)	would	
be	� informative	(in	figure	captions	as	well).	� 	
	
Agreed.		Changed	in	the	text	and	the	relevant	figure	captions.	
	
P.	10,	l.	11–12:	One	possible	explanation	is	aerosol	forcing.	� 	
	
Agreed.		We	have	added	a	mention	of	aerosol	forcing.	
	
P.	10,	27–28:	“If	the	approach	fails,	it	is	because	this	pattern	does	not	represent	
actual	non-CO2	forcing.”	Noise	due	to	unforced	internal	variability	in	the	climate	
system	may	also	have	an	influence.	� 	
	
Good	point.		We	have	added	this.	
	
P.	10,	l.	30:	log2([CO2]).	In	what	units	[CO2	]	is	expressed?	This	determines	the	
values	of	the	coefficients.	� 	
	
Added	units	of	ppmv.	
	
P.	11,	l.	1–2:	“The	temperature	contribution	of	the	non-CO2	part	increases	with	the	
CO2	concentration”	was	not	entirely	clear	for	me.	� 	
	
We	have	revised	this	sentence	to	be	less	confusing.	
	
P.	11,	l.	22–23:	“The	epoch	difference	and	regression	methods	show	too	much	CO2	
response	and	not	enough	non-CO2	response	as	indicated	by	the	patterns	displayed	
in	Figure	15.”	Would	you	please	explain	in	more	detail	how	one	can	see	this?	� 	
	
We	have	substantially	revised	this	section.		The	comment	now	references	
removed	text.	
	
P.	11,	l.	27:	“values	depicted	in	Figure	16	are	almost	entirely	due	to	CO2	forcing”.	
According	to	Table	2,	the	ratio	of	non-CO2	to	CO2	forcing	does	not	differ	
substantially	between	these	two	RCP	scenarios.	� 	
	
We	have	substantially	revised	this	section.		The	comment	now	references	
removed	text.	
	
P.	11,	l.	28–29:	“this	indicates	that	the	non-CO2	forcing	in	RCP2.6	is	insufficiently	
large	to	overcome	issues	with	low	signal-to-noise	ratios	in	reconstructing	patterns	
of	precipitation	change	using	this	sort	of	decomposition.”	This	was	difficult	to	



understand.	Please	explain	in	more	detail.	� 	
	
We	have	substantially	revised	this	section.		The	comment	now	references	
removed	text.	
	
P.	11,	l.	30:	“polar	amplification	of	the	precipitation	response”.	In	general,	polar	
amplification	refers	to	the	temperature	response.	� 	
	
Added.		Thanks!	
	
P.	12,	l.	18:	the	methods	work	relatively	well,	but	i	regard	“excellent”	as	a	too	
emphatic	word.	� 	
	
Agreed.		We	have	rephrased	this	sentence.	
	
P.12,l.25–26:“it	is	the	best	equipped	to	deal	with	these	sources	of	nonlinearity.”	
Perhaps	in	theory,	but	the	present	findings	do	not	support	this	statement.	� 	
	
Agreed.		We	have	removed	the	physically	based	method,	so	this	sentence	has	
been	removed	as	well.	
	
P.	12,	l.	32	–	p.	13,	l.	1:	“However,	given	the	difficulties	many	Earth	System	Models	
have	with	proper	representations	of	convective	processes	and	the	resulting	
precipitation	biases	those	difficulties	cause..”	->	“However,	given	the	difficulties	that	
many	Earth	System	Models	(->	climate	models	(?))	have	with	proper	
representations	of	convective	processes	and	the	resulting	precipitation	biases	that	
those	difficulties	cause..”	(would	be	much	more	easy	to	understand	for	a	non-native	
reader).	� 	
	
Changed.		Thanks	for	the	suggested	phrasing!	
	
Caption	of	Fig.	3:	should	there	be	Bˆ	rather	than	Tˆ?	� 	
	
Yes,	fixed.	
	
Caption	of	Fig.	5:	“Differences	in	the	precipitation	scaling	pattern...”	Actually,	the	left	
column	panels	do	not	depict	differences	but	the	absolute	distributions	of	P1−50.	
Caption	text	needs	revision.	The	same	error	occurs	in	the	captions	of	Figs.	9	and	17.	
� 	
	
Agreed.		Thanks	for	catching	that.	
	
Fig.	8:	Should	the	title	of	the	top	panel	be	“physically-based”	rather	than	
“reconstruction”?	� 	
	



Yes,	thanks	for	catching	that.		Although	we	have	removed	this	panel	anyway,	
as	we	no	longer	include	the	physically-based	reconstruction.	
	
Fig.	11:	this	period,	years	1965–1989	(if	I	have	calculated	correctly),	actually	does	
not	yet	belong	to	the	RCP	but	to	the	historical	period	of	the	CMIP5	runs.	� 	
	
This	is	correct.		We	have	clarified	what	we	meant.	
	
	
Reviewer	#2	
	
The	submitted	manuscript	compares	several	methods	for	the	pattern	scaling	of	
precipitation	across	time	periods	and	scenarios.	They	compare	a	regression	based	
approach,	an	epoch	difference	and	a	’physically’	approach.	I	cannot	recommend	this	
paper	for	publication	because	of	two	significant	errors	in	the	methodology,	
combined	with	a	manuscript	which	is	too	long,	without	a	clear	structure.		
	
We	have	substantially	shortened	the	paper	and	provided	outlining	and	clearer	
desciptions	as	to	our	main	findings.	
	
Firstly,	the	’physically-based’	approach,	which	is	based	on	the	work	of	Lau	(2013),	is	
very	likely	incorrectly	applied.	In	Figure	4,	which	is	basically	a	test	of	whether	the	
methods	are	able	to	reconstruct	an	in-sample	pattern	of	precipitation	using	the	
same	ensemble	and	time	period	as	a	test	response	pattern	as	was	used	to	produce	
the	pattern	itself.	In	this	case,	the	method	produces	errors	an	order	of	magnitude	
greater	than	the	other	approaches	-	which	suggests	that	there	is	an	error	in	
application.	If	there	is	no	error,	this	huge	discrepancy	requires	an	explanation.		
	
However,	even	taking	this	into	account,	there	is	little	logic	that	this	approach	is	
’physically-based’	at	all.	The	precipitation	rates	are	binned	by	different	monthly	rain	
rates,	averaged	over	the	ensemble	and	recombined	into	a	single	pattern.	If	a	single	
pattern	is	being	scaled	-	the	ability	to	treat	differently	rain	rates	in	different	regimes	
has	already	been	lost.	The	entire	concept	is	not	clearly	defensible.		
	
After	careful	consideration	(see	general	response	above),	we	have	removed	
the	physically-based	method	from	this	manuscript.	
	
The	separation	of	response	patterns	into	CO2	and	non-CO2	components	could	
potentially	be	useful,	but	the	implementation	is	flawed.	The	authors	assume	in	
Figure	14	that	the	non-CO2	response	pattern	is	given	by	the	difference	between	the	
RCP8.5	and	1pctCO2	patterns.	This	is	not	correct.		
	
Assume	there	is	a	’pure	CO2’	precipitation	response	which	can	be	measured	from	
the	1pctCO2	simulation:		
	



BCO2	=	∆P1pctCO2/∆T1pctCO2� If	we	assume	things	are	linear,	the	precipitation	
response	in	RCP8.5	is	this	pure	CO2	response,	multiplied	by	the	pure	CO2	warming,	
plus	a	non-CO2	response:		
	
∆PRCP	85	=	∆TRCP	85,CO2BCO2	+	∆TRCP	85,nonCO2BnonCO2� so	-	by	solving	this,	
we	get	the	BnonCO2	pattern	and	could	reconstruct	the	∆PRCP85	exactly.		
	
We	thank	the	reviewer	for	this	comment.		We	agree	that	we	were	not	as	
careful	as	we	should	have	been	in	the	previous	iteration	of	this	manuscript.		
We	have	added	Supplemental	Section	1,	which	goes	through	this	derivation	
and	arrives	at	a	more	accurate	formulation	for	the	non-CO2	pattern.	
	
However,	it’s	still	not	clear	that	CO2/nonCO2	is	the	correct	way	to	break	this	
problem	down.	The	nonCO2	component	is	a	broadly	mix	of	aerosols,	and	other	
greenhouse	gases	(CH4,	N2O	etc).	These	two	groups	can	have	opposite	effects	on	
global	mean	temperature	-	potentially	making	∆TRCP85,nonCO2	near	zero	and	
making	the	above	equation	ill-posed.		
	
Furthermore,	CH4	and	aerosols	have	very	different	precipitation	response	
fingerprints.	RCP8.5	and	RCP2.6	have	very	similar	aerosol	forcings,	but	very	
different	CH4	trajectories,	so	the	nonCO2	pattern	appropriate	for	RCP8.5	would	be	
very	different	than	that	for	RCP2.6.		
	
A	far	more	logical	decomposition	would	be	between	GHG	and	nonGHG	forcing.	The	
authors	could	solve	this	by	treating	the	1pctCO2	response	as	the	GHG	response	pat-	
tern,	and	then	in	RCP8.5	calculating	the	effective	CO2	concentration	using	the	
emission	factors	for	each	of	the	non	CO2	gases,	and	then	computing	the	
∆TRCP85,GHG	as	before	using	effCO2	rather	than	CO2	itself.		
	
We	acknowledge	the	reviewer’s	excellent	point.		We	have	opted	to	keep	the	
division	into	CO2	and	non-CO2	because	dividing	into	GHG	and	nonGHG	
components	results	in	nonlinearities	that	violate	the	conditions	of	pattern	
scaling.		The	new	Supplemental	Section	1	provides	more	details	as	to	why	we	
made	this	choice.		We	have	also	added	a	new	paragraph	of	text	in	Section	4	
that	describes	the	above	issues	that	the	reviewer	raises.	
	
The	general	formulation	of	the	rest	of	the	paper,	and	the	treatment	of	the	other	two	
pattern	scaling	approaches,	is	broadly	correct	-	but	the	presentation	is	often	
frustratingly	vague.	It	is	often	not	made	clear	what	is	in	sample,	and	what	is	being	
tested.	In	Figure	8,	are	the	same	models	being	used	to	make	the	patterns	and	the	
test	the	errors?	In	Figure	11,	is	it	1pctCO2	or	RCP85	being	reconstructed?		
The	authors	should	correct	the	major	errors	above	and	restructure	the	paper	to	
ensure	concise	and	clear	communication	before	resubmission.	
	
We	acknowledge	both	of	the	items	the	reviewer	points	out.		We	have	clarified	



our	description	of	Figure	8,	also	in	line	with	a	comment	from	Reviewer	#1.		
For	Figure	11,	we	have	clarified	what	we	are	doing	in	the	text.	
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Abstract. Pattern scaling is a well established method for approximating modeled spatial distributions of changes in tem-

perature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare three
:::
two

methods of pattern scaling for
::::::
annual

:::::
mean precipitation (regression , epoch difference, and a physically-based method

:::
and

:::::
epoch

::::::::
difference) and evaluate which methods are

::::::
method

::
is “better” in particular circumstances by quantifying their robust-

ness to interpolation/extrapolation
:
in
:::::
time, inter-model variations, and inter-scenario variations. Although

::::
Both

:
the regression5

and epoch difference methods (the two most commonly used methods of pattern scaling) have better
::::
good

:
absolute performance

in reconstructing the climate model outputby two orders of magnitude (
:
, measured as an area-weighted root mean square er-

ror), the physically-based method shows a greater degree of robustness (less relative root-mean-square variation than the other

two methods) and could be a particularly advantageous method if outstanding biases could be reduced. We decompose the

precipitation response in the RCP8.5 scenario into a CO2 portion and a non-CO2 portion; these two patterns oppose each other10

in sign. Due to low signal-to-noise ratios, extrapolating .
::::::::::::
Extrapolating RCP8.5 patterns to reconstruct precipitation change in

the RCP2.6 scenario results in double the error of reconstructing the RCP8.5 scenario for the regression and epoch difference

methods
::::
large

:::::
errors

:::
due

::
to

::::::::
violations

::
of

::::::
pattern

::::::
scaling

:::::::::::
assumptions

:::::
when

:::
this

::::::::::::
CO2/non-CO2::::::

forcing
::::::::::::
decomposition

::
is

::::::
applied.

The methodologies discussed in this paper can help provide precipitation fields for
:
to
:::

be
:::::::
utilized

::
in other models (including

integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.15
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1 Introduction

Quantifying uncertainties in projections of climate change is one of the cornerstone investigative areas in climate science.

There are numerous sources of uncertainty, including parametric (which parameter values are the “right” ones), structural

(which key processes are missing or poorly characterized), and scenario (how climate forcing agents will change in the future).

One commonality among these sources is that uncertainties in each of them can be explored using climate models.5

Earth System Models (ESMs
:::::::::::::::
Atmosphere-Ocean

:::::::
General

::::::::::
Circulation

::::::
Models

::::::::::
(AOGCMs) are the gold standard of climate

models used for projections of global change, as they incorporate many of the fundamentally climatically important processes,

including atmosphere, land, ocean, and sea ice responses and feedbacks, as well as interactions between these different areas.

Their
::::::::
However,

::::
their

:
complexity means that these models are often computationally expensive, however, so any sensitivity

studies or uncertainty quantification efforts using them are necessarily limited. No modern uncertainty quantification technique10

is capable of fully characterizing the space of ESM
:::::::
AOGCM

:
uncertainties and how they affect projections of climate change

(Qian et al., 2016).

Emulators of ESMs
::::::::
AOGCMs

:
are often an effective compromise for exploring uncertainty by sacrificing precision for vastly

improved computational efficiency. This allows other models, such as integrated assessment models or impacts assessment

models, to include a ESM-emulating
::
an

:::::::::::::::::
AOGCM-emulating climate component and incorporate feedbacks between the climate15

and other sectors. There are many methods of building emulators (see MacMartin and Kravitz, 2016, for a discussion of

different linear, time-invariant approaches), but one of the most commonly used methods is pattern scaling, described in more

detail in Section 2.1
:
2. This methodology involves computing a time-invariant pattern of change in a variable in response to

change in global mean temperature, which vastly reduces the dimensionality of input needed to produce projections of climate

change.20

Pattern scaling has a
::::
fairly

:
long history of research (e.g., Mitchell, 2003) and has been shown to be reasonably accurate for

a variety of purposes. Lynch et al. (2017) provide a review of pattern scaling of temperature, as well as an in-depth exploration

of two commonly used pattern scaling methods (regression and epoch difference methods, described later in Section 2.1). Both

of these methods perform quite well in reproducing the actual model output for temperature. Conversely, comparatively little

work has been done on pattern scaling for
:::::
annual

:::::
mean precipitation. Ruosteenoja et al. (2007) found that local precipitation25

changes are generally linear with global mean temperature change, with errors of 15–30% over 90 years of simulation. Holden

and Edwards (2010) identified the importance of covariance between local temperature change and local precipitation change,

and Frieler et al. (2012) furthered this discovery, concluding that no single fit (e.g., regression coefficients) will be applicable to

all grid points. Herger et al. (2015) used a novel method of piecing together results associated with the desired global mean tem-

perature change and found excellent agreement with model output (errors rarely exceed 0.3 mm day�1). In a different style of30

emulation, Castruccio et al. (2014) trained a statistical model on pre-computed climate model simulations and found that it was

capable of capturing nonlinearities in the response in ways that pattern scaling inherently cannot.
::::::::::::::::::::::::
Xu and Lin (2017) compared

::::::
several

:::::::
different

:::::::
methods

:::::
(akin

::
to

::::
what

:::
we

::
do

::
in

:::::::
Section

::
4)

::
to

:::::
assess

::::::
pattern

::::::
scaling

::
on

:::::::::::
temperature,

:::::::::::
precipitation,

:::
and

::::::::
potential

2



:::::::::::::::
evapotranspiration

::
in

:::
the

::::::
CESM

:::::
Large

::::::::
Ensemble

:::::::::::::::
(Kay et al., 2015).

:
To the best of our knowledge, no previous study has com-

pared different methods of pattern scaling of precipitation
:
,
:::::::::
particularly

::::
with

::
a
:::::
focus

::
on

::::::
robust

:::::
model

::::::::
response.

Here we provide a systematic (although non-exhaustive) assessment of the robustness of pattern scaling of precipitation.

Section 3 focuses on pattern scaling the response to temperature changes solely due to carbon dioxide increases, looking

at interpolation
::
in

:::::
time,

:::::::::::
extrapolation

::
in

::::
time, extrapolation, and inter-model robustness. Section 4 explores inter-scenario5

robustness, i.e., whether the patterns obtained for CO2 are useful for pattern scaling other scenarios.

One common feature of all pattern scaling methods is that they are largely statistical approaches. While this is often

suitable for obtaining scaling factors that accurately approximate simulations conducted with more complicated models (here,

Earth System Models), there are potential issues that are necessarily inherent to statistical approaches, primarily dealing with

nonlinearity in the response and extrapolation. If the climate response is perfectly linear, then any pattern scaling method will10

work equally well and will be highly accurate. However, if the climate response is nonlinear, as might be expected to some

degree, then any linear approximation will have reduced fidelity, and error will increase as one extrapolates to time periods

farther from the training data set. Conversely, physically-based approaches are less prone to issues that arise from extrapolation,

provided that all of the relevant system dynamics are captured in the emulated pattern. There are many possibilities for

physically-based approaches; here we evaluate one (described below) and compare it to the other two methods.15

Through these investigations, we hope to better reveal which
:
in

:::::
what

::::::::::::
circumstances methods of pattern scaling of precipi-

tation perform better than others
::::
well. We will also provide some (limited) guidance as to which situations pattern scaling is

likely to provide a computationally efficient, reasonably accurate result, versus which situations require actual simulation using

Earth System Models
::::::::
AOGCMs.

2 Pattern Scaling Methods20

2.1 Three
::::
Two Methods of Pattern Scaling for Precipitation

Pattern scaling involves approximating a timeseries of the pattern of change in a field of interest �B(x, t) by �B̂(x, t):

�B(x, t)⇡�B̂(x, t) = P (x)�T̄ (t) (1)

where P (x) describes a time-invariant spatial pattern (the spatial dimension is denoted by x), and �T̄ (t) describes a time-

varying (the time dimension is denoted by t) series of the change in global mean temperature, starting from a reference period25

t= 0 (often the preindustrial era). This notation will be used repeatedly throughout the manuscript. There are two commonly

used methodologies for ascertaining P (x): regression and epoch differencing (Barnes and Barnes, 2015). In the regression

method, P (x) is obtained by regressing �B(x, t) =B(x, t)�B(x,0) against �T̄ (t) at each point in x. In the epoch method,

P (x) =
B (x, [k,n+ k])�B (x, [0,n])

T̄ ([k,n+ k])� T̄ ([0,n])
(2)

where the intervals [0,n] and [k,n+k] indicate averaging over n-year time periods at the beginning and end of the simulation,30

respectively. All values calculated are over a multi-model mean; Ruosteenoja et al. (2007) showed that pattern scaling for
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precipitation over a model mean outperforms results obtained from using single models. Frieler et al. (2012) argued that no

single set of regression coefficients will be applicable to all grid points. We circumvent this issue by (for example) regressing

�T̄ against �B at each grid point. By the results of Lynch et al. (2017), who showed excellent pattern scaling relationships for

temperature, this approach automatically accounts for correlations between local temperature and local precipitation changes.

In addition to these two methods, which were explored by Lynch et al. (2017) for use in pattern scaling temperature, we5

introduce a third, physically-based method. The physically-based reconstruction is founded on the work of Lau et al. (2013),

who discovered a robust hydrological cycle response to global warming amongst the models participating in the Coupled

Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). The idea of this method is based on the “rich-get-richer,

poor-get-poorer” concept wherein areas that receive high amounts of precipitation will receive more as global temperature

increases, and areas with low precipitation will receive even less (e.g., Trenberth, 2011). Instead of finding differences in10

annual averages, this method calculates differences in statistics of precipitation intensity and spatial distribution.

The pattern P (x) for the physically-based method is constructed as follows:

1. For each model, monthly mean precipitation values over the first 25 years of the simulation being evaluated are binned

into low (< 0.3 mm day�1), medium (0.9� 2.4 mm day�1), and high precipitation (> 9 mm day�1). The same is done

for a later epoch of length 25 years. The difference between the two epochs is then calculated, yielding three maps of15

precipitation change for low, medium, and high precipitation.

2. The multi-model mean of the results of Step 1 is calculated for each of the three maps. Map values are set to 0 where

fewer than 65% of the models agree on the sign of the response. Then all three maps are added together.

3. For each epoch, global mean temperature is averaged over the entire 25-year period, and then the results for the two

epochs are subtracted to obtain an estimate of change in global mean temperature over that period. The pattern P (x) is20

then defined as the map from Step 2 divided by this temperature change.

Lau et al. (2013) found that for 14 models participating in CMIP5, there is a robust hydrological cycle response both in terms

of frequency of occurrence of precipitation events, as well as the spatial distribution of precipitation change. Preliminary tests

using a different set of models (Table 1 below, results not shown) indicate that we can replicate the findings and spatial patterns

of precipitation change as depicted by Lau et al. (2013) rather well.25

2.2 Methodology

In the following sections, we quantify differences between the reconstruction B̂ and the actual model output B via the root

mean square (RMS) over the area-weighted difference B̂�B, calculated as

RMS =

r
P

x

h⇣
B̂(x)�B(x)

⌘
·A(x)

i2

qP
x

[A(x)]
2

(3)

where A(x) is the area of grid box x, and sums are calculated over all x.30
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Because Lau et al. (2013) only define their methodology for grid boxes between 60�S and 60�N, we compared RMS values

restricted to that range with RMS values calculated over the entire globe. The results were quite similar in both cases (comparison

not shown), so we only report RMS values calculated over the entire globe. This indicates that, on average, errors in the range of

60�S to 60�N are similar to errors at high latitudes, which is somewhat inconsistent with a conclusion of Tebaldi and Arblaster (2014) that

scalings that include zonal mean temperature have better fidelity to the actual model output because they can account for the5

effects of polar amplification. This indicates the potential for robustness of the physically-based method.

All of the analysis conducted here uses simulations from Earth System Models
::::::::
AOGCMs contributed to CMIP5. The models

used in the bulk of the analysis in this study (Table 1, Group 1) are identical to those used by Lynch et al. (2017) with two

exceptions (due to model output availability):

1. The present study used NorESM1-ME instead of NorESM1-M. NorESM1-ME includes prognostic biogeochemical10

cycling and has the capability of being emissions-driven, but when using concentration-driven scenarios (as is the case

here), the two versions of the model will produce nearly identical results (Bentsen et al., 2013).

2. The present study used CMCC-CM instead of CMCC-CMS. The difference between these two versions is that CMCC-

CMS has a fully-resolved stratosphere, whereas CMCC-CM is the lower-top version of the model (Davini et al., 2014;

Sanna et al., 2013). Cagnazzo et al. (2013) describe some of the differences between these two models. In general, the15

models agree on qualitative climate features, although as might be expected, CMCC-CMS better matches observations

in situations where a fully resolved stratosphere is important for capturing the effects, including dynamical feedbacks

of stratospheric circulation and ozone chemistry on surface climate. Although these effects are non-negligible, they

are generally of lower order than the changes that occur over the course of the scenarios analyzed in this study (to be

discussed presently), so we anticipate that differences between these two models will not substantially affect results for20

the model mean.

Throughout this study, we evaluate three scenarios. The 1pctCO2 scenario involves a 1% per year increase in the CO2

concentration, beginning at its preindustrial value. This simulation is run for 140 years to an approximate quadrupling of the

CO2 concentration. The RCP8.5 and RCP2.6 scenarios (Representative Concentration Pathways, or RCPs; Moss et al., 2010;

Meinshausen et al., 2011) describe the results of two socioeconomic narratives that produce particular concentration profiles of25

greenhouse gases, aerosols, and other climatically relevant forcing agents over the 21st century. The RCP8.5 scenario reflects

a “no policy” narrative, in which total anthropogenic forcing reaches approximately 8.5 W m�2 in the year 2100. Conversely,

the RCP2.6 scenario involves aggressive decarbonization, causing radiative forcing to peak at approximately 3 W m�2 around

2050 and decline to approximately 2.6 W m�2 at the end of the 21st century. Table 2 provides additional forcing details for

the two RCP scenarios, as calculated by Hector (Hartin et al., 2015), a climate, carbon-cycle model that is used as the climate30

component of the Global Change Assessment Model (GCAM), a state-of-the-art Integrated Assessment Model. Both RCPs are

appended to simulations of the historical period, for total simulation lengths of 251 years (1850–2100).

Throughout the remainder of the paper, subscripts on P , T̄ , B̂, and B are used to denote the scenario (e.g., RCP8.5), the

model group (e.g., Group 2), or the years over which the patterns are computed (e.g., 1�50). If there is no subscript specified,
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then the associated value corresponds to the Group 1 (see Table 1) multi-model mean of the 1pctCO2 simulation, averaged over

years 116–140 of the simulation
:::
(the

::::
last

::
25

:::::
years

::
of

:::
the

::::::::
1pctCO2

::::::::::
simulation,

::::::::::::
approximately

::
at

:::::::::
quadruple

:::
the

:::::::::::
preindustrial

::::
CO2 ::::::::::::

concentration).

Statistical significance was calculated using Welch’s t-test, which is analogous to a Student’s t-test, but where the variances

s1 and s2 of the two samples x1 and x2, respectively, do not need to be equal. We use this statistic here because the ensemble5

for each method is small, and the ensemble pattern distribution is assumed to be normal. The test statistic is defined by

t=
x̄1 � x̄2p

s

2
1/n1 + s

2
2/n2

(4)

where n1 and n2 are the number of models in each sample, respectively. Once the t statistic is calculated for each grid box,

the value in any given grid box is determined to be statistically significant if the test value exceeds a threshold computed from

the inverse of the Student’s t cumulative probability distribution at the 97.5% confidence level (which is the 95% confidence10

level for a two-sample test). The number of degrees of freedom df used to generate that threshold is approximated by the

Welch-Satterthwaite Equation:

df =

�
s

2
1/n1 + s

2
2/n2

�2

s

2
1/n1

n1�1 +
s

2
2/n2

n2�1

�
s

2
1/n1 + s

2
2/n2

�2

(s21/n1)
2

n1�1 +
(s22/n2)

2

n2�1
::::::::::::::::

(5)

In all figures, stippling is used to obscure values that are not statistically significant, i.e., the t-statistic failed to exceed the 95%

confidence threshold.15

3 Comparisons Between Pattern Scaling Methods for CO2-Only Forcing

3.1
::::::

Pattern
:::::::
Scaling

:::
for

::::
CO2:::::::::::::

Concentration
::::::::
Changes

Figure 1 shows the baseline (preindustrial)
::::::
annual

::::
mean

:
precipitation pattern B(x,0) and the scaling patterns P (x) for each

of the three
::::
both

::
of

:::
the

:
pattern scaling methods generated from the Group 1 (see Table 1) model average for the 1pctCO2

simulation. The regression and epoch difference methods have very similar scaling patterns, and both are quite different from20

the comparatively more responsive physically-based method. All
::
no

:::::::::
differences

::::::
greater

:::
in

:::::::::
magnitude

::::
than

::::
0.05

::::
mm

::::::
day�1

::::
K�1,

::::
and

::
no

::::::::::
differences

:::
are

::::::::::
statistically

:::::::::
significant

::::
(not

:::::::
shown).

:::::
Both patterns show similar broad features: an increase in

tropical precipitation with global warming, particularly over the oceans; increases at high latitudes, again over the oceans; and

decreases in the South Pacific, North Atlantic, and South Indian Oceans, as well as Central America and the Mediterranean

basin.25

Figure ?? shows differences in P (x) between each of the three methods. The epoch difference and regression methods have

no differences greater in magnitude than 0.05 mm day�1 K�1, and no differences are statistically significant. In comparison

to those two methods, the physically-based method is more responsive in the tropics (except the equatorial Pacific, where it

is less responsive) and generally less responsive in other regions where the patterns show a nonzero response. Most of these

differences in patterns are statistically significant.
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3.2 Pattern Scaling for CO2 Concentration Changes

Figure 2 shows a comparison between the actual model output (Group 1 averaged over the mean of years 116–140 of the

1pctCO2 simulation) and the three
:::
two methods of reconstruction. All of the

::::
Both

:
methods show qualitatively similar features.5

The physically-based reconstruction has too much precipitation in the tropics and Northern Hemisphere subtropics, especially

over the tropical oceans
:
In
:::::::
general,

::::
they

:::::::::
reproduce

::
the

::::::
actual

:::::
model

::::::
output

::::
well,

::::
with

:::::::
possible

:::::::::
exceptions

::
in

:::
the

::::::
tropics. Tebaldi

and Arblaster (2014) note that pattern scaling methodologies have difficulty in representing convection processes, so departures

in these areas might be expected. The regression and epoch difference methods are quite similar to each other, and both

reproduce the qualitative features of the actual model output well.10

Figure 3 shows a more quantitative comparison between the different reconstruction methods and the actual model output.

The physically-based method has larger error than the other two methods nearly everywhere. Overall error (RMS; Equation
:::::::
equation 3)

is approximately 50 times greater than the other two methods (Table ??). Error in the regression and epoch different methods

are very small (0.04 and 0.03 mm day�1, respectively
:
;
:::
see

:::::
Table

::
??), and no region in the reconstruction is statistically different

from the actual model output. Conversely, the physically-based reconstruction often exceeds 25% error.15

3.2 Interpolation/Extrapolation

In this section, we examine robustness of the methods to interpolation or extrapolation
:
in
::::
time. If the scaling pattern P (x) truly

is
::::
were time-invariant, then the results presented in this section will

:::::
would

:
be identical to those previously discussed.

The poor performance of the physically-based method extends to extrapolation. Figure ??
:::::::::::
Supplemental

::::::
Figure

:
1
:
shows the

patterns P (x) obtained by conditioning the reconstructions only on years 1–50 of the 1pctCO2 simulation. In the physically-based20

and epoch difference methods
:::::
epoch

::::::::
difference

:::::::
method, the second epoch is calculated over years 26–50 instead of years

116–140. In the regression method, the regression coefficients are calculated only using the first 50 years of simulation. The

pattern P (x) is nearly zero everywhere for the physically-based method, indicating that the statistics of precipitation do not

differ appreciably between the two periods. This results in large areas of statistically significant differences from the patterns

calculated using the full 140 years. Conversely, the patterns calculated
::::::
patterns

:::::::::
calculated by using the regression and epoch25

difference methods only show small changes between the two periods,
:::::::
virtually none of which is statistically significant.

Despite similarities, using patterns conditioned on the earlier period to reconstruct the precipitation in the later period (years

116–140) results in considerably poorer performance for the regression and epoch difference methods (Figure ??
:::
both

::::::::
methods

::::::::::::
(Supplemental

::::::
Figure

:
2) than the results shown in Figure 3. RMS error for the regression and epoch difference methods

increases by an order of magnitude (Table ??
:::
not

:::::
shown), although few areas show statistically significant differences from the30

actual model output over this time period. RMS error for the physically-based method is reduced by a factor of three and is

similar to the RMS error of the other two methods. The physically-based reconstruction still has areas of statistically significant

error, but they are generally fewer and smaller in absolute magnitude.
::::
This

::
is

:::::
likely

::::
due

::
to

:::
the

:::::
noise

:::::::::
introduced

::
by

::::::::
building

::::
P (x)

:::
on

:::
the

::::
early

:::::
years

::
of

:::
the

:::::::::
simulation

:::::
when

:::
the

::::::
climate

::::::
change

::::::
signal

:
is
::::::
weak.
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Figure ??
:::::::::::
Supplemental

::::::
Figure

:
3
:

shows results for interpolation
:
in

:::::
time, where the patterns are conditioned on the full

1pctCO2 simulation (years 116–140), but the reconstruction predicts the average temperature in years 58-82 (halfway through

the 1pctCO2 simulation). More specifically, B̂ = P116�140(x)�T̄ (58�82). In general, the patterns for interpolation show sim-

ilar qualitative features to those of reconstructing the later time period of years 116–140 (Figure 3). However, error is reduced

by a factor of two for the physically-based method and increases by a factor of two for the regression and epoch difference5

methods
:::
both

::::::::
methods,

:::::
which

::::::::::
potentially

:::::::
indicates

:::
the

::::::::
presence

::
of

::::::::::
nonlinearity. As before, no difference is statistically signifi-

cantfor the regression or epoch difference methods. The physically-based method has some areas with statistically significant

differences, but they are fewer and smaller in extent.
:
.

3.3 Inter-Model Robustness

In this section, we explore the role of the number of models in improving robustness of the prediction, as well as inter-10

model robustness of pattern scaling by comparing reconstructions with actual model output where the scaling pattern P (x) is

conditioned on an entirely different set of models. More specifically, we examine two questions: (1) How does the prediction

fidelity vary with the number of models used in the average? (2) If one conditions the pattern scaling on the average of Group

1, can one predict the response of Group 2 (or vice versa)?

Figure 4 shows the RMS error in the reconstruction (1pctCO2 simulation, averaged over years 116–140) as a function of15

the number of models used in the comparison. This figure was created by randomly sampling the space of all 26 models listed

in Table 1
:::
and

::::
then

:::::::
building

:::
P ,

::
T̄ ,

::::
and

::
B̂

:::
for

:::
the

:::::::
models

::
in

::::
that

:::
set; each box/set of whiskers indicates 20

:::::::
different sets of

random samples. Results ascertained from this figure parallel those discussed in previous sections: the regression and epoch

difference
:::
both

:
methods have similar magnitudes of error (except for small numbers of models), and both have error that is

approximately two orders of magnitude lower than the physically-based reconstruction. The values in .
::::
The

:::::
RMS

::::
error

::::::
values20

:
(Table ??indicate that

:
)
::
for

:
Group 1 (13 models)

::
are

:::::::::
consistent

::::
with

:::
the

:::::
RMS

::::
error

::::::
ranges

:::::::
depicted

::
in

::::::
Figure

::
4,

::::::::
indicating

::::
that

:::::
Group

::
1 is not an outlier.

Both the physically-based reconstruction and regression methods show
:::
The

:::::::::
regression

::::::
method

::::::
shows a dependence of RMS

error on the number of models, whereas with the exception of low model numbers (<10), there is much lower dependence for

the epoch method. However, except for low model numbers, none of the boxes/whiskers is substantially different from any of25

the others, leading us to conclude that each of the methods is largely robust to changes in the number of models used to carry

out pattern scaling. Appendix 1
:::::::::::
Supplemental

:::::::
Section

:
2
:
and the associated figures provide additional comparisons between the

patterns generated for Groups 1 and 2.

3.4 Discussion of Pattern Scaling the Precipitation Response to CO2

The
::::
Both

:::
the regression and epoch difference methods show great promise in their usefulness as precipitation pattern scaling30

methods. Both are able to reconstruct the changes in precipitation due to CO2 increases with errors of less than 5% in ev-

ery region of the globe (Figure 3). Conversely, the physically-based method has comparatively poor performance, with error

regularly exceeding 25%. This method often scales too strongly with global mean temperature change. The test of extrapolation

8



shows that for the time periods analyzed here, using P (x) = 0 would result in better absolute performance than using the

physically-based pattern P (x) depicted in Figure ??.

However, the physically-based method shows robustness in several ways that the regression and epoch difference methods

do not. One example is with interpolation
:::::::
However, where error drops substantially for the physically-based method but5

increases for the other two. Another is related to inter-model robustness: the pattern of error is relatively unchanged for the

physically-based method, regardless of the group of models that is used (Appendix
:::::
when

:::::::::
examining

:::::::::::
interpolation

::
in

:::::
time,

::::
error

::::::::
increases

:::
for

::::
both

:::::::
methods,

:::::::::
indicating

:::::
issues

::::
with

:::::::::
robustness

::
to
::::::::
timescale

:::::::::::::
(Supplemental

::::::
Section

:
1), whereas

:
.
:::::
Also, the

pattern shows increased error in many places for the other methods. The overall performance of the physically-based method

is still worse in all cases, but these results suggest that if the overall bias in the physically-based method could be reduced10

or corrected, it holds great promise in being a useful pattern scaling method, particularly in situations (like the ones explored

in Sections 3.2 and 3.3)where statistically-based or other non-physical methods might be expected to perform less well
:::::
when

:::::::
different

::::::
models

:::
are

::::
used

::::::::::::
(Supplemental

:::::::
Section

:::
2),

::::::::
indicating

:::::
issues

::::
with

::::::::::
inter-model

:::::::::
robustness.

Like the temperature pattern scaling results of Lynch et al. (2017), we find that the regression and epoch difference methods

have similar performance. In the present work, we find that the epoch difference method slightly outperforms the regression15

method, but the differences are relatively minor. Given the slight advantages in computational expense and reduced data input

requirements, we profess a slight preference for using the epoch difference method to generate scaling patterns for the precipi-

tation response to CO2-induced global warming. In the next section, we explore a more broad application of pattern scaling by

including non-CO2 forcings.

4 Pattern Scaling for Non-CO2:::::::::
Additional

:
Forcings20

In this section, we compare the patterns and reconstructions between scenarios, primarily related to the RCP8.5 and 1pctCO2

simulations. We do this first as a test of robustness: does any one of the three methods
:::
one

::::::
method

:
perform “better” for CO2-

only simulations versus RCP8.5? If the fidelity of the reconstruction to the actual model output is similar for the two scenarios,

then subtracting the reconstructions conditioned on RCP8.5 and 1pctCO2 could reveal a scaling pattern for non-CO2 forcing.

We note that this is one of the few ways of ascertaining the non-CO2 response pattern without running separate simulations25

both with and without CO2 forcing—without a scaling method to normalize for similar climate conditions, there is no way

of obtaining meaningful results from directly subtracting a 1pctCO2 simulation from an RCP8.5 simulation. (The approach

discussed here is analogous to the methodology of Herger et al. (2015), but where they attempted to ascertain similarities

between patterns for a given change in global mean temperature, we are interested in the differences.)

We note several caveats with this approach. One is that, based on the results of Herger et al. (2015), the reconstructions30

of RCP8.5 and 1pctCO2 are likely to be similar
::::
have

:::::
some

:::::::::
similarities

:
for a given temperature change because the dominant

forcing in RCP8.5 is CO2 (see Table 2). As such, ascertaining the non-CO2 signal could be limited by low signal-to-noise ratios.

A second caveat, one more germane to pattern scaling, is to ascertain whether the non-CO2 pattern obtained from RCP8.5 can

be used to reconstruct the non-CO2 precipitation change for a different scenario. There is no a priori reason to expect
:::
that

9



this will work, as different scenarios have different combinations of forcings, but as long as the CO2 portion dominates the

response, such endeavors may still be useful. In Section 4.3, we investigate this problem using an extreme case, where we

ascertain the scaling patterns from an RCP8.5 simulation and use them to attempt to reconstruct the RCP2.6 simulation.5

:::
We

:::::::::::
acknowledge

:::
that

::::
the

::::::::
non-CO2 :::::::::

component
::
is
::
a
::::::::::
combination

:::
of

::::
both

::::::::
non-CO2::::::::::

greenhouse
:::::
gases

:::
and

::::::::
aerosols,

::::::
which

::::
have

:::::::
opposite

::::::
effects

::
on

::::::
global

:::::
mean

::::::::::
temperature.

::::::
These

:::
two

:::::::::
categories

::
of

:::::::
forcing

::::
have

:::::::
different

:::::
local

::::::::
responses

::
as

:::::
well.

:::
An

::::::::
alternative

::::::::
approach

::::::
would

::
be

::
to

::::
split

:::
the

::::::
RCP8.5

::::::::
response

:::
into

::
a
::::
CO2::::::::::

component,
:
a
::::::::
non-CO2:::::::::

greenhouse
::::
gas

:::::::::
component,

::::
and

:
a
:::::::::::::
non-greenhouse

:::
gas

::::::::::
component.

::::::::::::
Supplemental

:::::::
Section

:
3
::::::::
discusses

:::
the

:::::::::
necessary

::::::::::
calculations

:::
for

::::
both

::
of

:::::
these

::::::::::
approaches.

:::
The

::::::::::::
CO2/non-CO2:::::::::

approach
::::::
proved

::
to

:::
be

:::::
quite

::::::::
amenable

:::
to

::::::
pattern

:::::::
scaling.

:::
On

::::
the

:::::::
contrary,

::::
the

:::::::::
CO2/other

::::::::::
greenhouse10

::::::::::::::::
gas/non-greenhouse

:::
gas

::::::::
approach

::
is

:::
not,

::::
due

::
to

::::::
distinct

:::::::::::
nonlinearities

:::
in

::
the

:::::::
derived

::::::::::
temperature

::::::::
responses

:::
for

:::::
these

::::::::
particular

::::::
forcing

:::::::::
categories.

:::
As

::::
such,

:::
we

::::
have

::::::
chosen

::
to
:::::::
proceed

::::
with

::
a

::::::::::::
CO2/non-CO2 :::::::

division
::
for

:::
the

:::::::
purpose

::
of

::::::
pattern

:::::::
scaling.

:

4.1 Inter-Scenario Differences

Figure 5 shows the RCP8.5 scaling pattern PRCP8.5(x) and the difference from the CO2-only pattern. Patterns are nearly

identical to those in Figure 1. The physically-based pattern shows some statistically significant changes, particularly in the15

tropics and at high latitudes. The
::::
Both

:::
the

:
regression and epoch difference methods show no differences exceeding 0.1 mm

day�1 K�1 in magnitude and no statistically significant differences of any magnitude. This figure reinforces the findings of

Herger et al. (2015) that patterns generated from commonly used scaling methods (regression and epoch difference) do not

differ appreciably between scenarios, so pattern scaling can be accomplished by using periods in different scenarios with the

same global mean temperature change.20

Figures 6 and 7 show this in practice, where the reconstruction
::
of

:::
the

:::::::::::::::
historical/RCP8.5

::::::::::
simulation B̂ is built on the

RCP8.5 pattern, multiplied by �T̄ averaged over years 227–251
:::::::::::
(2076–2100) and 116–140

::::::::::
(1965–1990), respectively. The

physically-based method qualitatively and quantitatively matches the results in Figure 3. For the regression and epoch difference

methods, the reconstructed precipitation response in Figure 6 is generally too strong in the tropics and too weak in the midlati-

tudes (which is the same pattern in Figure 3), but Figure 7 shows the opposite pattern. None of these differences is statistically25

significant, and the RMS error is approximately the same in both figures (0.09–0.10 mm day�1 K�1; 2–3 times greater than

the error in Figure 3), but they suggest that there is a distinct non-CO2 pattern that, while small, is still important in explaining

precipitation differences in periods with large temperature change.

Figure 8 provides descriptions of the actual precipitation effects of both CO2 and non-CO2 forcing. (In the following, we

omit discussion of the results from the physically-based method due to the aforementioned strong biases in the results. ) Large30

features of
::::::::
Although

:::
the

::::
two

:::::::
portions

::
of

:::
the

:::::::::::::
reconstruction

::::::::
generally

:::::
show

::::::
similar

:::::::
features,

:::
the

::::::::
regional

::::::
effects

::::
have

:::::
quite

:::::::
different

::::::::::
magnitudes

::
in

:::::
many

:::::::
regions.

:::
In

:::::::::
particular, the non-CO2 response are the opposite of

:
is

::::::
weaker

:::::
over

:::
the

:::::::
tropical

:::::
Pacific

:::::
than the CO2 response , indicating an offsetting. In the non-CO2 forcing case, equatorial precipitation is weakened,

possibly indicating a Southward shift in the intertropical convergence zone. Precipitation
:::
and

::
is

:::::::
stronger

::::
over

:::::
much

:::
of

:::
the

:::::::
Northern

:::::::::::
Hemisphere.

::::
One

::::::
distinct

:::::::::
difference

:::::::
between

:::
the

:::
two

:::::::
patterns

::
is
::::
that

::::::::::
precipitation

::
is
:::::::
reduced

:
over East Asia and the

maritime continent is also weaker, while precipitation in Amazonia, the South Pacific, the North Atlantic , and the Northern

10



Hemisphere subtropical Pacific is stronger
::::
India

:::
in

:::
the

::::::::
non-CO2 :::::::

response
:::
but

::::::::
increases

::
in
::::

the
::::
CO2::::::::

response.
::::
This

::
is

:::::
likely

::
a

::::
result

:::
of

:::::
global

::::::::
dimming

:::::
from

:::::
heavy

::::::
aerosol

:::::::::
emissions.

:::::::
Another

::::::
source

::
of

::::::::::
differences,

::::::::::
potentially

:::::::::
attributable

::
to

:::::
dust,

::
is

:::
the

::::::
Saharan

:::::::
outflow

::::
over

:::
the

:::::::
Atlantic

:::::
ocean

::::
and

::::::::
extending

::::
into

:::
the

::::::::
Amazon.

::::
This

::::
gives

:::
us

:::::::::
confidence

:::
that

::::::::
although

:::
the

::::::::
non-CO25

:::::::
response

::
is

:::::
likely

:::::::::
dominated

::
by

::::::::
non-CO2:::::::::

greenhouse
:::::
gases

:::::
(most

::::::::::
prominently

:::::::::
methane),

:
it
:::::::
appears

::
to

::::
have

:::::::
captured

:::
an

::::::
aerosol

:::::::
signature. It would be a useful future area of investigation to ascertain whether these patterns of precipitation change arise

in climate models forced with appropriate non-CO2 forcings , and if so, the mechanistic reasons why these responses are

different from CO2 forcing. Such investigations would also aid in understanding the robustness of these signals, i.e., what

portion of the reported response in Figure 8 is signal versus noise.
::::::
conduct

::::::
pattern

::::::
scaling

::::::
studies

::
on

::::::::::::
single-forcing

::::::::::
simulations10

::::::::::::::::::::::
(e.g., Marvel et al., 2016) to

::::::
reveal

:::::
more

:::::
robust

:::::::
signals

:::
and

:::::::::
determine

:::::
which

::::::::
forcings

:::
are

::::::::
amenable

::
to
:::::::

pattern
::::::
scaling,

:::::
with

:
a
::::::::
particular

::::
eye

:::
on

::::::::::
inter-model

::::::::
variations

::
in
::::

the
::::::::
responses

::
to
::::::::

identical
::::::::
forcings.

:
The results in Figure 8 also reinforce the

conclusions of Frieler et al. (2012), who argue that the scaling patterns from one scenario are not
:
in

:::::::
general translatable to

scaling patterns for another scenario if the two scenarios are driven by different forcing. Even though Figure 5 shows that the

patterns PRCP8.5 and P1pctCO2 are nearly identical, even small differences can affect reconstructions of precipitation change15

for large values of �T̄ .

4.2 Non-CO2 Forcing Pattern

Here we calculate a non-CO2 pattern for use in pattern scaling. We begin by assuming that the effects of CO2 forcing and

non-CO2 forcing are separable, that is, that there are no nonlinear interactions between the two forcings that would produce a

non-additive response. Although this assumption is not strictly true, it is approximately true to a sufficient degree that such cal-20

culations are useful (MacMartin et al., 2015; MacMartin and Kravitz, 2016). Following the notation in Equation 1, separability

means that

�B̂RCP8.5 =�T̄CO2PCO2 +�T̄non�CO2Pnon�CO2 (6)

We set PCO2 equal to P1pctCO2 (from Section 3), because if pattern scaling holds, the time-invariant pattern of CO2 forcing

should be identical, regardless of the scenario from which it is derived. Pnon�CO2 is assumed to be PRCP8.5 �PCO2 . This is the25

inherent assumption of the
::::::
defined

::
to

::
be

::::::::::::::::
4PRCP8.5 � 3PCO2 ::::

(see
:::::::::::
Supplemental

::::::
Section

::
3
:::
for

:::
the

::::::::
derivation

::
of

::::
this

::::::::::
expression).

:::::::::
Embedded

::
in

:::
this

:::::::::
expression

:::
are

:::::::
inherent

:::::::::::
assumptions

:::::
about

:::
the

::::::
validity

:::
of

:
a
:
linear pattern scaling approach. If the approach

fails, it is because
::::
either

:
this pattern does not represent actual non-CO2 forcing

::
or

:::::::
because

:::
the

:::::::
pattern

::
is

:::
too

:::::::
difficult

:::
to

::::::::
accurately

::::::::
estimate,

:::::::
perhaps

:::
due

::
to
:::::::
internal

:::::::::
variability. To calculate �T̄CO2 , we assume that global mean temperature scales

linearly with radiative forcing (e.g., Gregory et al., 2004), and radiative forcing is known to scale logarithmically with the CO230

concentration (Myhre et al., 1998). Performing linear regression of log2 ([CO2]) against global mean temperature change in

the 1pctCO2 simulation yields a slope of ↵= 2.40, an intercept of � =�19.89, and an R

2 value of 0.99. (Brackets [·] indicate

the CO2 concentration
:
in
:::::
ppmv.) Then T̄CO2 = ↵ log2 ([CO2]) +�. T̄non�CO2 is calculated as the residual T̄RCP8.5 � T̄CO2 .

:::
We

::::
note

:::
that

::::
this

::::::::::
formulation

::::
does

:::
not

::::::::
explicitly

:::::::
account

:::
for

::::
lags

::
in

:::
the

:::::::
climate

:::::::
response

::
to
::::::::

radiative
:::::::
forcing,

::::
such

::
as

::::::
ocean

::::::
thermal

::::::
inertia.

:
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Figure 9 shows all of the aforementioned T̄ values, plotted as a function of the CO2 concentration. The temperature

contribution of the non-CO2 part increases with the
::::
Both

:
CO2 concentration, which monotonically increases

:::
and

::::::::
non-CO2

::::::::::::
monotonically

:::::::
increase

:
with time in the RCP8.5 simulation. This is consistent with the design of the RCP8.5 scenario, in5

which non-CO2 radiative forcing increases over the period 2000–2100 (Table 2), largely due to a doubling of the methane

concentration over this period. This change in forcing corresponds to a non-CO2 induced temperature change (green line in

Figure 9) from 0.31 to 1.36 K.

We next explore the ability of this decomposition to reconstruct
:::
This

:::::::::::::
decomposition

::
of

:::
the

::::::
scaling

:::::::
patterns

::::
into

::::
CO2::::

and

:::::::
non-CO2::::::::::

components
::::::::
performs

:::::
rather

::::
well

:::
for

::::::::::::
reconstructing

:::
the actual model outputfor the

:
.
:::
For

:::
the

:::::
period

::::::::::
2076–2100

::
at

:::
the10

end of the RCP8.5 scenario
:::::::::
simulation (Figure 10)and a historical period in the late 20th century

:
,
:::
the

:::::
epoch

::::::::
difference

:::::::
method

:::
has

:::::
fewer

:::::
errors

::::
than

:::
the

:::::::::
regression

:::::::
method,

::::::::
especially

:::
in

:::
the

::::::
tropics

:::
and

::::::::
Northern

::::::::::
Hemisphere

:::::::::::
midlatitudes.

:::
No

:::::
error

::
in

:::
the

::::::::
regression

:::::::
method

:::::::
exceeds

:::
0.4

:::
mm

::::::
day�1

::
in

::::::::::
magnitude,

:::
and

:::
no

::::
error

::
in

:::
the

:::::
epoch

:::::::::
difference

:::::::
method

::::::
exceeds

:::
0.2

::::
mm

::::::
day�1

::
in

:::::::::
magnitude.

:::
For

:::
the

::::::
period

::::::::::
1965–1990 (Figure 11). Qualitatively, the results for the physically-based method are similar to

those of Figure 6 (RMS error is approximately 44% larger) , whereas the differences between the reconstruction and the actual15

model output (B̂�B) have the opposite sign as compared to Figure 6 for the other two methods (RMS error is slightly higher

but of a similar magnitude). Conversely, Figure 11 shows greater similarity to Figure 6for the epoch difference and regression

methods (RMS error is nearly identical); while the physically-based method shows similar qualitative features in both Figures 6

and 11 , the magnitude of error is reduced
:
,
::::
both

:::::::
methods

:::::::
perform

::::::
nearly

:::::::::
identically

::::
with

:::::
slight

:::::
(<0.2

::::
mm

::::::
day�1)

::::::
biases

::
in

::
the

:::::::
tropics,

::::
East

:::::
Asia,

:::::::
Europe,

:::
and

::::
the

:::::
South

::::::
Pacific.

::::
The

::::::
errors

::
in

::::::
Figure

::
10

:::
are

::::::::
generally

:::
of

:::
the

:::::::
opposite

::::
sign

:::
of

:::::
those

::
in20

:::::
Figure

::
6,
::::
and

:::::
some

::
of

:::
the

:::::::
features

:
in

:::::
Figure

:::
11

:::
are

::
of

:::
the

::::::::
opposite

::::
sign

::
of

:::::
those

::
in

:
Figure 11 by nearly a factor of 10. The

epoch difference and regression methods show a hemispheric contrast in error in the historical period, but in the later, future

period, the errors have more similar patterns to those in previously described figures
::
7.

::::
This

::::::::
indicates

:::
that

:::::
some

:::::::
features

:::
of

:::::::
non-CO2::::::::

response
:::::
offset

:::::::
features

::
of

:::
the

:::::
CO2 ::::::::

response.
::::::::
Particular

:::::
areas

::
of

:::::
these

:::::::::
differences

:::::::
include

:::
the

:::::::::
previously

::::::::
identified

::::::
regions

:::::::::
associated

::::
with

:::::
strong

::::::
aerosol

:::::::
forcing.25

4.3 Scaling to Predict Other Scenarios

The final stage of inter-model exploration is to see how well the CO2 and non-CO2 patterns generated from one scenario can

be used on another scenario. Here we choose the extreme case of predicting the pattern of precipitation change in RCP2.6,

based on the patterns calculated from RCP8.5. In this scenario, the CO2 concentration peaks and then drops slightly (Table 2).

The non-CO2 forcing comprises 29% of the total forcing in RCP8.5 in 2100 and 32% of the total forcing in RCP2.6 in 2100,30

according to simulations using Hector (Hartin et al., 2015).

Figure 12 shows the effectiveness of this reconstruction process. The physically-based method shows a similar pattern of

error, but with reduced magnitude. The
::::
Both

:::
the

:
epoch difference and regression methods show too much CO2 response and

not enough non-CO2 response as indicated by
:::::
strong

::::::::::
differences

:::
that

:::
are

:::::::::
consistent

::::
with

:
the patterns displayed in Figure15.

This can potentially be explained by the forcing values given in Table 2. Although the
::
8.
::::::::::::
Supplemental

:::::::
Section

:
4
::::::::
provides

::::
some

:::::::::
additional

:::::::::
derivations

::::
that

::::::
explore

:::
the

:::::::
sources

::
of

:::::
these

::::::
biases.

:::::
There

:::
are

::::
two

::::
main

::::::::::
conclusions

:::::
from

:::
this

:::::::
section.

:::::
First,
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::::
using

:::
the

:
non-CO2 forcing is approximately the same percentage of the total forcing in both the

:::::
pattern

:::::
build

::
on

:
RCP8.5 and

RCP2.6 simulations, the absolute forcing values are such that only 0.37 W m�2 of
:::
was

::::
not

:::::::
effective

:::
for

:::::::::
explaining non-CO2

forcing is exerted
:::::::
behavior

:
in RCP2.6in the year 2100. This indicates that global mean temperature change in RCP2.6 due5

to
:
,
::::::::
indicating

::::
that

::::
there

:::
are

:::::
limits

::
to
:::

the
:::::::::::

applicability
::
of

::
a

:::::::::
“universal”

:
non-CO2 forcing(�T̄RCP2.6,non�CO2

) is small, and as

such, the values depicted in Figure 12 are almost entirely due to CO2 forcing. Although more formal study is needed, this

indicates that
:
.
::
A

:::::
future

::::
area

::
of

::::::::::
investigation

:::::
could

:::::::
explore

::::
these

::::::
limits:

:::
for

::::::::
example,

:::::
would

:
the non-CO2 forcing in RCP2.6 is

insufficiently large to overcome issues with low signal-to-noise ratios in reconstructing patterns of precipitation change using

this sort of decomposition .10

One notable feature in Figure 12 is a difference at high latitudes due to polar amplification that is more pronounced

in
::::::
pattern

::::
built

:::
on

:
RCP8.5 than

::::
work

:::
on

:::::::
RCP6.0

::
or

:::::::
RCP4.5

:::::::
instead

::
of

::::
the

:::::::
extreme

:
RCP2.6 . This is an example of a

nonlinearity that cannot be well captured by linear pattern scaling; future work involving scaling by zonal mean temperature

(as was suggested by Tebaldi and Arblaster, 2014) could show promise in improving these sorts of inter-scenario comparisons
::::
case?

:::
The

::::::
second

::::::::::
conclusions

::
is

:::
that

:::
the

:::::
ability

::
to
:::::::
perform

::::
this

::::::::::::
CO2/non-CO2 ::::::::::::

decomposition
::
is

::::
itself

::::::
limited.

::::::::::::
Supplemental

::::::
Section

::
415

::::
goes

:::::::
through

:::::::
detailed

::::::::::
calculations

::::::::
showing

:::
that

::
if
::::

one
::::::::
assumes

:::
that

:::::
such

:
a
:::::::::::::

decomposition
::
is

::::::::
possible,

::::::::::::
contradictions

::::
and

::::::::::::
inconsistencies

:::::
arise.

:::::::::::
Determining

::::
why

::::
this

::::::::::::
decomposition

:::::
failed

:::
for

:::::::
RCP2.6

::::::
would

::::::
require

::
a

::::
more

::::::::
thorough

::::::::::::
investigation,

:::::::
possibly

::::::::
including

:::::
single

::::::
forcing

::::::::::
simulations,

:::
that

::
is

::::::
beyond

:::
the

:::::
scope

::
of

:::
this

::::::
study.

::::
Such

:::::::
research

:::::
could

:::
lead

::
to
:::
an

:::::::::::
understanding

::
of

:::::
which

::::::::
scenarios

:::::
would

:::
be

::::
more

:::::::::
amenable

::
to

::::::::
separable

::::::
forcing

:::::::::
treatments

::::
than

:::::
others.

4.4 Discussion of Pattern Scaling for Non-CO2 Forcings20

In general, the pattern scaling results depicted in Section 4 are consistent with previous studies. Herger et al. (2015) found that

the patterns between scenarios are rather similar, which Figure 5 confirms. However, the results for pattern scaling may be

scenario-dependent (Figure 8) if global mean temperature change (�T̄ ) is sufficiently large, which confirms the conclusions

of Frieler et al. (2012).

The patterns of change indicate some degree of nonlinearity in the response, particularly in that Figures 6 and 7 show opposite25

signs of error. Because the relationships between CO2 concentration and precipitation are quite linear (Section 3), we conclude

that the nonlinearities are due to the non-CO2 response. Without conducting pattern scaling analyses on single forcing runs,

we are unable to ascertain the exact sources of nonlinearity. However, this does explain in part why the RCP8.5 pattern was

unable to reproduce some of the features of the
:
In

:::::::::
particular,

:::
we

:::::
found

::::::
limited

::::::
ability

::
in

::::::::::::
reconstructing

:::
the RCP2.6 response,

in that they have substantially different magnitudes of non-CO2 forcing, likely due to different combinations of forcing agents.30

We note that the differences between
:::::
model

:::::::
behavior

:::::
from

:::
the

:
RCP8.5

:::
run,

::::::::
indicating

::::::
limits

::
in

:::::::
building

:::::::
scalings

:::::
using

::::
one

:::::::
scenario

:::
and

:::::::
applying

:::::
them

::
to

:
a
:::::::
different

::::::::
scenario.

:::
We

::::::::::
deliberately

:::::
chose

::
an

:::::::
extreme

::::
case

::
to

:::::::::
understand

:::::::
whether

::::
such

::::::::
universal

::::::::::
applications

::::
exist.

::::
The

::::::
ability

::
to

::
do

::::
this

:::::
might

::
be

::::::::
improved

:::
for

:::::::
“closer”

::::::::
scenarios,

:::::
such

::
as

:::::::
RCP8.5 and RCP2.6 are as extreme

as was available, and the decomposition into CO2 and non-CO2 components may be more effective for scenarios that are more

similar, particularly in their non-CO2 components
::::::
RCP6.0

::
or

:::::::
RCP4.5.
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5 Conclusions

We have explored three different
:::
two

::::::::
different,

::::::::::
commonly

::::
used

:
methods of pattern scaling for

:::::
annual

:::::
mean

:
precipitation,5

with a focus on robustness to interpolation/extrapolation
:
in

::::
time, inter-model variations, and inter-scenario differences. The

physically-based method has substantially worse performance than the other two methods but shows some features of robustness

that could be advantageous if overall biases in the method could be reduced. The
::::
Both

:::
the

:
regression and epoch difference

methods have excellent, approximately similar performance
::::::
perform

::::
well

::::
and

::::::::::::
approximately

:::::::
similarly.

One of the features that emerged was that the CO2 and non-CO2 components offset each other. Without a detailed assessment10

of the different single forcing agents that comprise the non-CO2 patterns, we are unable to provide a mechanistic understanding

of the causes of these features, but we highlight this as a promising area of future research.

Most of the errors that arise for any of the methods
:::::
either

::::::
method

:
are either in areas dominated by convection (predominantly

over the tropical oceans) or at high latitudes. Both of these areas are large sources of nonlinear responses to global mean

temperature change, so pattern scaling might not be expected to perform well in these areas. The physically-based method does15

include a bin for high precipitation, so despite providing too much precipitation in these regions, it is the best equipped to deal

with these sources of nonlinearity. Moreover, the approach of Tebaldi and Arblaster (2014) of using zonal mean temperature

as a scaling parameter may prove useful in accounting for errors at high latitudes.

In terms of the usefulness of pattern scaling of precipitation, because the regression and epoch difference methods perform

well over most land regions, they are likely quite suitable for a variety of applications, including societal models (like Integrated20

Assessment Models or impacts models) that mostly deal with land areas. If one’s application requires good performance over

tropical oceans, then pattern scaling may no longer be appropriate, and instead output from the full Earth System Model

:::::::
AOGCM

:
may be required. However, given the difficulties many Earth System Models

:::
that

:::::
many

:::::::
climate

::::::
models

:
have with

proper representations of convective processes and the resulting precipitation biases those difficulties cause (e.g., Song and

Zhang, 2009), there may be doubts as to how well Earth System Models
::::::::
AOGCMs

:
represent precipitation in these areas in the25

first place.

The results presented
:
in

:::::::
Section

:
4
::::::::
indicated

::::
that

:::::
while

::::
some

::::::::
scenarios

:::
are

:::::::::
amenable

::
to

:::::
broad

:::::::::
separations

::
of

:::::::
pattern

::::::
scaling

:::::::
forcings,

:::::
some

:::::
others

:::
are

::::
not.

:::::
Much

::::
more

:::::::::
systematic

:::::
work

:::::
needs

::
to

::
be

:::::
done

::
in

:::
this

::::
area

::
to

:::::::::
determine

:::
the

::::::::
usefulness

:::
of

::::::
pattern

::::::
scaling

:::
for

:::::::
different

::::::::
forcings.

::::::
Single

::::::
forcing

::::::::::
experiments

::::::
would

::
be

::::::::::
particularly

::::::
useful,

:::
as

::::
they

:::
can

:::::
allow

::
a

:::::::::::
determination

:::
as

::
to

:::::
which

:::::::
forcings

:::::
work

::::
best

:::
for

::::::
pattern

:::::::
scaling,

::
as

::::
well

::
as
::::::::

whether
::::
there

:::
are

::::
any

::::::::
nonlinear

::::::
effects

:::
that

::::::
result

::::
from

::::::::
applying30

:::::::
multiple

:::::::::::
simultaneous

:::::::
forcings.

:::::::
Another

:::::::
potential

::::::::
approach

:::::
would

:::
be

::
to

:::
use

::
the

::::::::::::::
“hybrid-pattern”

::::::
method

:::::::::
described

::
by

::::::::::::::::
Xu and Lin (2017),

::
in

:::::
which

:
a
::::::
simple

::::::
energy

::::::
balance

::::::
model

::
is

::::
used

::
to

::::
build

:::::::
separate

::::::::
forcings,

::::::::::::
circumventing

:::
the

::::
need

:::
for

::::::::
expensive

::::::::::::
single-forcing

:::::::
AOGCM

:::::::::::
simulations.

:::
The

::::::
results

::::::::
presented here have applications that extend beyond providing libraries of scaling patterns for Integrated Assess-

ment Models
::::::::::::::::
(Lynch et al., 2017). Another more speculative application involves efficacy of climate forcings. Kravitz et al.

(2015) developed a method of comparing forcing agents via analyses of their rapid adjustments (fast responses), that is, their

responses in the absence of global mean temperature change. If our method of decomposing the response into CO2 and non-5

14



CO2 components could be extended to single forcings, then one could isolate the feedback responses (slow responses), which

are the portions of the responses that depend on global mean temperature change. Thus, there is potential to provide a more

quantitative intercomparison of the different effects of climate forcing agents.

6 Code and/or Data Availability

All computations were performed using MATLAB 2012b, developed by MathWorks. The libraries of patterns for each method10

will be included in an upcoming official code release of the Global Change Assessment Model (GCAM).
::
are

::::::::
available

:::
on

::::::
GitHub

::
at

:::::::::::::::::::::::::::::::::::
http://github.com/JGCRI/CMIP5_patterns.

:
All code used to generate figures in this manuscript will be publicly

released through a code repository
:
is

::::::::
available

::::
upon

::::::
request.
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Table 1. Models used in the present analysis. Most of the analysis was conducted using the models in Group 1. Additional investigations

described in Section 3.3 (inter-model robustness) were conducted using the models in both Group 1 and Group 2. 2
::

to
::::::::
determine

:::::::::
inter-model

::::::::
robustness

:
of
:::
the

::::::
different

::::::
pattern

:::::
scaling

:::::::
methods

:::::::
discussed

::
in

:::
this

::::
study.

:
All model names listed are the standard names used in contributions

to the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). Knutti et al. (2013) provide an excellent description of

these models and their provenance.

Group 1 Group 2

ACCESS1.0 ACCESS1.3

CanESM2 BCC-CSM1.1

CCSM4 BCC-CSM1.1M

CMCC-CM BNU-ESM

CNRM-CM5 CESM1-BGC

CSIRO-Mk3.6 CESM1-CAM5

GFDL-CM3 FGOALS-g2

HadGEM2-ES GFDL-ESM2M

INMCM4 IPSL-CM5A-LR

IPSL-CM5A-MR IPSL-CM5B-LR

MIROC-ESM MIROC5

MPI-ESM-MR MPI-ESM-LR

NorESM1-ME MRI-CGCM3

Table 2. Radiative forcing values (W m�2) for RCP8.5 and RCP2.6 in 2000, 2050, and 2100. CO2 forcing and total forcing were calculated

using the simple climate model Hector (Hartin et al., 2015). Non-CO2 forcing is calculated as the difference between total and CO2 forcing.

Percentages in parentheses indicate the percentage of the total forcing.

2000 2050 2010
:::
2100

:

CO2 forcing (RCP8.5) 1.226 3.289 6.167

Total forcing (RCP8.5) 1.991 5.049 8.686

non-CO2 forcing (RCP8.5) 0.765 (38%) 1.760 (35%) 2.519 (29%)

CO2 forcing (RCP2.6) 1.267 2.174 1.765

Total forcing (RCP2.6) 2.066 3.195 2.601

non-CO2 forcing (RCP2.6) 0.799 (39%) 1.021 (32%) 0.836 (32%)
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Baseline

Regression

Epoch Difference

Figure 1. The components needed for pattern scaling of the precipitation response to CO2 forcing, averaged over the 13 models in Group

1 (Table 1). Top-left
:::
Top shows the baseline precipitation pattern for the multi-model average: B(x,0) in Equation 1 (mm day�1; averaged

over years 1–25 of the 1pctCO2 simulation). All
:::
The

:
other panels show the time-invariant pattern P (x) in Equation 1 (mm day�1 K�1) for

the physically-based method (top-right), the regression method (bottom-left
:::::
middle), and the epoch difference method (bottom-right

:::::
bottom).
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Actual Model Output

Regression

Epoch Difference

Figure 2. Differences in
:::::::::
Comparison

:::::::
between

:
the

::::
actual

::::::
Group

::
1

:::::::::
multi-model

:::::::
average

:
precipitation scaling

:::::
output

::::
(top)

::::
and

:::
the

:::::::::::
reconstructions

:::::::
produced

::
by

:
pattern P (x)

:::::
scaling

:
(
::
B̂

:
in
:
Equation 1). Top panel shows Pphys �Pepoch, middle panel shows Pphys �Pregr,:::

All

:::::
values

::
are

::
in

:::
mm

:::::
day�1

:
and bottom

:::::::
represent

:::::::
averages

:::
over

::::
years

:::::::
116–140

::
of

:::
the

:::::::
1pctCO2

::::::::
simulation.

::::::
Middle panel shows Pepoch �Pregr,

where physdenotes the physically-based method, regrdenotes the regression method, and epochdenotes
:::::
bottom

:::::
panel

::::
shows

:
the epoch differ-

ence method.All units are mm day�1 K�1 and were calculated for the multi-model average of Group 1 (Table 1). Stippling indicates a lack

of statistical significance in the pattern of differences (Section 2.2).

Comparison between the actual Group 1 multi-model average precipitation output (top-left) and the reconstructions produced by pattern

scaling (T̂ in Equation 1). All values are in mm day�1 and represent averages over years 116–140 of the 1pctCO2 simulation. Top-right

shows the physically-based method, bottom-left shows the regression method, and bottom-right shows the epoch difference method.
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Figure 3. Differences between the reconstructions produced by pattern scaling (B̂) and the actual model output for precipitation (B). Left

column shows absolute values of B̂�B (mm day�1), and right column shows percent change. Top row shows results for the physically-based

method, middle row shows the regression method, and bottom row shows the epoch difference method. All values are calculated for a Group

1 multi-model average for the 1pctCO2 simulation over the years 116-140. Stippling indicates a lack of statistical significance in the pattern

of differences (Section 2.2).
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Differences in the precipitation scaling pattern P (x) (Equation 1) when different time periods are used to construct the pattern (years 1–50

versus years 116–140 of the 1pctCO2 simulation). Left column shows values of P1�50, and right column shows values of

P1�50 �P116�140 (mm day�1 K�1). Values in subscripts denote that the associated quantities are calculated from an average over those

years. Top row shows results for the physically-based method, middle row shows the regression method, and bottom row shows the epoch

difference method. All values are calculated for a Group 1 multi-model average for the 1pctCO2 simulation. Stippling indicates a lack of

statistical significance in the pattern of differences (Section 2.2).

As in Figure 3 but where the reconstruction B̂ is built on the pattern P for years 1–50 (Group 1 average of the 1pctCO2 simulation), and

global mean temperature �T̄ is averaged over years 116–140. That is, B̂ = P1�50(x)�T̄ (116� 140). Results shown are for the difference

between the reconstruction and the actual model output B̂�B(x,116� 140).

As in Figure 3 but where the reconstruction B̂ is built on the pattern P for years 116–140 (Group 1 average of the 1pctCO2 simulation), and

global mean temperature �T̄ is averaged over years 58–82. That is, B̂ = P116�140(x)�T̄ (58� 82). Results shown are for the difference

between the reconstruction and the actual model output B̂�B(x,58� 82).
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Figure 4. Root mean square (RMS) error (Equation 3, calculated on the difference
:::::::
expressed

::
in
::::
mm

:::::
day�1 between the reconstruction and

actual model output B̂�B) as a function of the number of models used to conduct the scaled precipitation reconstruction. Models were

chosen randomly from a
::::
From

:::
the

:::
full

:
set of 26 models (Table 1),

::::::::
anywhere

::::::
between

::
6
:::
and

::
18

::::::
models

::::::
(x-axis)

::::
were

::::::
chosen

:::::::
randomly

:::
20

::::::
different

:::::
times. All values are calculated over an average of years 116–140. Each box in the plots represents

::::
those

:
20 sets of models: red

:
.

:::
Red lines indicate median values, blue boxes indicate the 25th and 75th percentiles, and whiskers indicate the full range of model response

among the 20 sets of models.
:::
All

:::::
values

::
are

::::::::
calculated

::::
over

::
an

::::::
average

::
of

::::
years

:::::::
116–140.
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Figure 5. Differences
:::::::
Absolute

:::::
values

::::
(left)

::
of

:::
and

::::::::
differences

:::::
(right)

:
in the precipitation scaling pattern P (x) (Equation 1) when different

scenarios are used to construct the pattern (RCP8.5 vs 1pctCO2). Left column shows values of PRCP8.5, and right column shows values of

PRCP8.5 �P1pctCO2 (mm day�1 K�1). Top row shows results for the physically-based method, middle row shows the regression method,

and bottom row shows the epoch difference method. All values are calculated for a Group 1 multi-model average for the 1pctCO2 simulation.

Stippling indicates a lack of statistical significance in the pattern of differences (Section 2.2).
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Figure 6. As in Figure 3 but where the reconstruction B̂ is built on the pattern P for the RCP8.5 simulation (Group 1 average over

years 227–251), and global mean temperature �T̄ is averaged over years 227–251
::::::::::
(2076–2100) of the RCP8.5 simulation. That is,

B̂ = PRCP8.5(x)�T̄RCP8.5(227�251). Results shown are for the difference between the reconstruction and the actual model output
:
of

:::
the

::::::
RCP8.5

::::::::
simulation B̂�BRCP8.5(x,227� 251).
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Figure 7. As in Figure 3 but where the reconstruction B̂ is built on the pattern P for the RCP8.5 simulation (Group 1 average over years

227–251), and global mean temperature �T̄ is averaged over years 116–140
:::::::::
(1965–1990)

:
of the

:::::::
historical/RCP8.5 simulation. That is,

B̂ = PRCP8.5(x)�T̄RCP8.5(116�140). Results shown are for the difference between the reconstruction and the actual model output
:
of

:::
the

:::::::
historical

::::::::
simulation B̂�BRCP8.5(x,116� 140).
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Figure 8. The CO2 (left
::
top) and non-CO2 (right

:::::
middle) responses over the period

:::
years

:
227–251

:::::::::
(2076–2100)

:
of the RCP8.5 simulation

:
,

:
as
::::

well
::
as
:::

the
::::::::
difference

:::::::
between

:::
the

:::
two

:::::::
(bottom). CO2 response is calculated as �B̂ = P1pctCO2T̄RCP8.5(227� 251), and non-CO2

response is calculated as �B̂ = (PRCP8.5 �P1pctCO2)T̄RCP8.5(227� 251)
:::::::::::::::::::::::::::::
�B̂ = Pnon�CO2 T̄RCP8.5(227� 251) (see Equation 1

:::
and

::
the

::::::::
discussion

:::::::::
surrounding

:::::::
Equation

::
6
::
for

::::::
further

:::::
details). Top row

:::
Left

::::::
column shows results for the physically-based method, middle row

shows the regression method, and bottom row
::::
right

::::::
column shows the epoch difference method.
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Figure 9. Decomposition of global mean temperature change (as a function of the CO2 concentration) into its components, as described in

Section 4.2.
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Figure 10. As in Figure 3 but where B̂ = (PRCP8.5 �P1pctCO2)T̄RCP8.5,nonCO2(227� 251)+P1pctCO2T̄RCP8.5,CO2(227� 251)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
B̂ = Pnon�CO2 T̄RCP8.5,nonCO2(227� 251)+P1pctCO2T̄RCP8.5,CO2(227� 251),

and results are shown for B̂�BRCP8.5(227� 251). (See Equation 1 and the discussion surrounding Equation 6 for details.)
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Figure 11. As in Figure 3 but where B̂ = (PRCP8.5 �P1pctCO2)T̄RCP8.5,nonCO2(116� 140)+P1pctCO2T̄RCP8.5,CO2(116� 140)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
B̂ = Pnon�CO2 T̄RCP8.5,nonCO2(116� 140)+P1pctCO2T̄RCP8.5,CO2(116� 140),

and results are shown for B̂�BRCP8.5(116� 140). (See Equation 1 and the discussion surrounding Equation 6 for details.)
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Figure 12. As in Figure 3 but where B̂ = (PRCP8.5 �P1pctCO2)T̄RCP2.6,nonCO2(227� 251)+P1pctCO2T̄RCP2.6,CO2(227� 251)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
B̂ = Pnon�CO2 T̄RCP2.6,nonCO2(227� 251)+P1pctCO2T̄RCP2.6,CO2(227� 251),

and results are shown for B̂�BRCP2.6(227� 251). (See Equation 1 and the discussion surrounding Equation 6 for details.)

Comparison of Pattern Scaling Between Two Groups of Models

Figure ?? further supports the findings in Section 3.3 by showing that the patterns P (x) are not statistically different for Groups 1 and 210

except for isolated areas. The results for the physically-based method indicate that the findings of Lau et al. (2013) are generally reproduced

here, in that the pattern is largely robust across different groups of models.

Figures ?? and ?? show differences in the reconstructions, averaged over years 116–140. More specifically, Figure ?? shows differences

PGroup 2�T̄Group 1 ��BGroup 1 and Figure ?? shows differences PGroup 1�T̄Group 2 ��BGroup 2.

The results in Figures ?? and ?? for the physically-based method are both qualitatively and quantitatively similar to those in Figure 3,15

and global RMS values are similar. Conversely, results for the regression and epoch difference methods, while similar to each other, have

qualitatively more error than the results in Figure 3. Global RMS values are 2–3 times higher in Figure ?? than in Figure 3, but errors in

Figure ?? are comparable to Figure 3. This might be expected, as on average, �T̄Group 1 ⇡�T̄Group 2, so differences in Figure ?? would

be small, whereas differences in Figure ?? are driven by differences in the patterns PGroup 1 and PGroup 2 (Figure ??). As discussed in

Section 3.3, the physically-based method shows some statistically significant regions of error in both Figures ?? and ??, whereas practically

no region is statistically significant for the regression and epoch difference methods.5

Differences in time-invariant patterns P (x) among the two groups of models (Table 1), calculated for the 1pctCO2 simulation. Left

column shows the multi-model average for Group 2, and right column shows the differences in multi-model averages among the two groups.

All values shown have units mm day�1 K�1. Stippling indicates a lack of statistical significance in the pattern of differences (Section 2.2).
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As in Figure 3 but where the reconstruction B̂ is built on the pattern P for Group 2 (average of years 116–140 of the 1pctCO2 simulation),

and global mean temperature �T̄ is averaged over years 116–140 of Group 1. That is, B̂ = PGroup2(x)�T̄Group1(116� 140). Results

shown are for the difference between the reconstruction and the actual model output B̂�BGroup1(x,116� 140).540

As in Figure 3 but where the reconstruction B̂ is built on the pattern P for Group 1 (average of years 116–140 of the 1pctCO2 simulation),

and global mean temperature �T̄ is averaged over years 116–140 of Group 2. That is, B̂ = PGroup1(x)�T̄Group2(116� 140). Results

shown are for the difference between the reconstruction and the actual model output B̂�BGroup2(x,116� 140).
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