
Atmospheric Inverse Modeling

via Sparse Reconstruction

2nd �nal response of the authors

N. Hase, S. M. Miller, P. Maaÿ, J. Notholt, M. Palm, and T. Warneke

First of all, we thank the topical editor again for taking charge of this review process
and the reviewer for his/her feedback and suggestions. In a �rst part, we comment on
the general changes to the manuscript. We address the comments of the reviewer in the
second part. The �nal part is the updated version of the manuscript with di�erences
highlighted in red and blue colors.

1 General changes to the manuscript

Only minor changes were made to the manuscript. Most changes correct for faulty En-
glish language.

2 Author's comments to the reviews

Anonymous Referee #1
Submitted: 19 July 2017
Review for "Atmospheric Inverse Modeling via Sparse Reconstruction"

General comments:

The analyis has been much improved since the last version, but it appears some of the
conclusions were hastily written, as they're not supported by the �gures (see below)

We comment on this in the speci�c comments part.
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Additionally, the text is still very colloquial and needs to be corrected to be more readable.
There is a mixture of tenses, sometimes in the same paragraph. For example, Page 17,
Line 4-5: "For our experiments we decided not to include atoms that were constructed
from EDGAR or geostatistical data. We will use a pixel basis."

The text has been proofread and corrected by a native speaker, which led to
minor corrections. As mentioned in the previous �nal response, it is 'our aim
to present the content of this study in the most understandable form. Opin-
ions may di�er on our style of writing.' (see 'Final response of the authors',
P. 2)

Thanks to the authors for adding the error analysis in addition to the sensitivity analysis.
It's interesting that they don't quite agree (i.e. the L2 and L1 POS DIC are not all that
di�erent in errors), and this di�erence needs to be explained better in Section 5.2. As it
stands, it's di�cult to connect the sensitivity, smoothing and actual errors in the three
subsections.

We comment on this in the speci�c comments part.

Speci�c comments:

Page 3, Lines 13-14: It's incorrect to say that the particles �travel backward in time�.
Rather they sample the adjoint of the atmospheric transport, of which time is a dimen-
sion. This is not the only paper to make this simpli�cation, but it's confusing given the
role of di�usion, etc in transport. Also, the footprint is the surface in�uence on the mea-
surement, rather than airmasses as it's stated here. ...

The authors of the STILT model use the formulation `backward in time' to
describe their modeling approach (see [Lin et al., 2003]). We adopted this
formulation. Obviously, this description is a modeling concept rather than
a description of the true processes. We want to give the reader an intuition
of how the model works, particularly readers who may not be familiar with
model adjoints.

... Also, the footprint is the surface in�uence on the measurement, rather than airmasses
as it's stated here.

Page 3, Lines 12-14 read: �STILT will release an ensemble of imaginary par-
ticles at the time and location of an atmospheric measurement. The particles
then travel backward in time and indicate where air masses were located be-
fore reaching the measurement location. STILT then uses the distribution of
these particles to compute an upwind [surface] in�uence on the measurement,
called footprint. The footprint quantitatively relates the surface �uxes to the
atmospheric measurement [...].�
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We corrected the tense, added the units for the footprint and replaced �in�u-
ence� by �surface in�uence� to be more precise. We are not sure what is meant
by the reviewer's comment.

Page 3, Lines 20-22: This sentence at the end of the paragraph feels a bit out of place,
since it's not an exhaustive list of the open problems in AIM, but rather two selected
examples. I suggest to leave out these examples and state that this method addresses only
the issue of representation of solutions in the inverse problem.

We use the atmospheric inverse modeling approach

z = y + b = Ax+ b,

where z are the atmospheric in-situ measurements consisting of background
concentrations b and enhancements thereof y. The transport model A de-
scribes the relationship between surface �uxes x and enhancements y. In our
case, A is determined by the STILT model footprints.
The interpretation of atmospheric measurements z based on this modeling ap-
proach thus involves A, b or x. Our study focusses only on one aspect of AIM,
i.e. the determination of surface �uxes x, given A and y (= z − b). With the
chosen formulation we intend to express that the determination of A and b are
open problems, too. Based on this equation the list of problems is complete,
though not detailed.
However, we added that the list of problems may not be complete.

Page 4, Line 4-5. I think you mean that the dimensions of the two spaces are not the
same. Are you making a claim about the sizes of n and m? ...

Measurement space Y and parameter space X can be any suitable space. In
most applications one will choose Rm and Rn, respectively. A theoretical
physicist might use speci�c functional spaces for X and Y , which might re-
quire a deeper mathematical theory to solve the inverse problem. We specify
the dimensions for the test problem in Sect. 4.2.

... Throughout the paper, you use the word �realistic�, though that's not a precise word.
The last sentence in this paragraph should be rephrased, since each norm will give a unique
solution, irregardless of how �realistic� it is.

By `realistic' we mean that the value for a quantity could be true. It meets our
expectations without having determined it. The phrase `realistic/unrealistic'
appears 4 times in the article. We �nd that it properly describes what we
intend to express in each instance. We are open to speci�c suggestions for
reformulations.
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Page 4, Line 14: The parameters are sensitive to the noise, rather than the data, in the
way that you've de�ned the terms on Line 12.

The inverse mapping maps from data space Y to parameter space X. If the
problem is ill-posed, the output, i.e. the parameters, is sensitive to the input,
which is any form of data. This can be noiseless data, noisy data or noise.
We avoid a formulation that uses 'sensitive to noise' because noise is not an
isolated input.

Page 5, Line 1: �best include this information�. This seems to be a hanging fragment.

We corrected this aspect.

Page 5, Line 9: It may be clearer to the reader to explain what you mean by �the origin�.
I'm not sure what you mean here by �oscillations�. Is it the dipole behavior in the opti-
mized �uxes in the absence of smoothness constraints? This needs a bit more development
to be clear.

The `origin' refers to the origin or zero point of a coordinate system. We have
clari�ed this point in the text.
Unstable inversions produce estimates of oscillating behaviour. These oscil-
lations originate from the fact that the coe�cients to high frequent singular
vectors are perturbed most by the noise in ill-posed problems. This article
does not present the formulation of a solution using singular vectors. We
added a reference that explains this fact (see [Hansen, 2010]) and reformu-
lated the phrase to be more speci�c.

Page 5, Line 15: �and vice versa� Do you mean rougher estimates with negative corre-
lation? What would rougher mean? Larger dipoles, I assume, but I haven't ever seen
negative correlations in background covariance matrices personally, and I expect that this
would cause instability in the estimation problem, which assumes positive de�nite matri-
ces.

A covariance matrix can include negative correlations and be positive de�nite,
e.g.

Q =

(
1 −1

2
−1

2 1

)
.

The corresponding weighting matrix La can then be calculated by Q−1 =
α(LtaLa), i.e.

Q−1 =
4

3

(
1 1

2
1
2 1

)
.
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Assuming α = 4
3 , it remains

La =

(
1 1

2

0
√
3
2

)
or La ≈

(
0.9659 0.2588
0.2588 0.9659

)
or La =

(
1 1

2

)
,

where the �rst matrix is calculated using the Cholesky decomposition and the
second matrix is the principle matrix square root. The third matrix is a rect-
angular matrix decomposition that avoids redundant information.

We agree that positive correlations are used more frequently than negative
correlations. However, this argument does not rule out the use of negative
correlations in cases where such information is available.

The underconstrained test problem

x∗ = arg min
x∈R2
‖
(
1 0

)
x−

(
1
)
‖2
2

+ α‖Lax‖22

illustrates the consequences of correlating weighting matrices. For α = 1 we
have

positive correlation La =

(
1 −1
−1 1

)
x∗ =

(
1
1

)
,

no correlation La =

(
1 0
0 1

)
x∗ =

(
1
2
0

)
,

negative correlation La =

(
1 1
1 1

)
x∗ =

(
1
−1

)
.

The test problem is set up such that only the �rst component of the solution is
constrained by the measurement. The second component is only constrained
by the penalty term. In the uncorrelated case, there is a trade-o� between
data and penalty reducing the �rst component. For the correlated cases, the
matrices create a null space. Still, the minimizer is unique in both cases. Pos-
itive correlation increases the smoothness compared to the uncorrelated case.
Negative correlation reduces the smoothness.

Page 9, Line 29: �often straightforward to calculate analytically� - this is true only for a
small set of distributions, of which the Gaussian is the prime example. However, it's not
the case that most modern �ux inversion techniques estimate the posterior uncertainty
using these formulae, as the covariance matrices in question are of very high rank. Typ-
ically variational or ensemble techniques construct estimates using Monte Carlo methods.

This statement was wrong without further speci�cations and confusing given
the explanations on Page 9, Lines 23 - 26. We corrected both paragraphs
accordingly.
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Page 10, Line 12: �a smaller smoothing error results in a greater measurement error.
The smallest total error is expected when both terms are approximately balanced.� I'm
not sure what you're referencing here. Is this a general principle? If so, please provide a
reference, or give an example.'

This is a general principle in inverse problem theory (see e.g. [Hansen, 2010],
Ch. 5). We added the reference to the manuscript.

Page 10, Line 25-26: What does it mean that assumptions are hard to guarantee? Are
typical state vectors and models not su�ciently smooth/bounded/...?

Several studies have studied error bounds E in the form

‖x+ − x∗‖ ≤ E,

where x+ is the true solution and x∗ = R(yδ) is the estimate of a reconstruction
method from noisy data yδ = Ax+ + δ. Such bounds can only be installed if
the noise δ and the true solution x+ meet certain assumptions. A common
assumption for the noise is

‖δ‖ ≤ δ̄,

where δ̄ is called the noise level. Assumptions on the true solution vary
in the studies. A classical approach assumes an abstract smoothness, i.e.
x+ ∈ N (A)⊥ or smoother (see e.g. [Tautenhahn, 1998]). It can be hard to
show that a physical quantity meets these assumptions.
Error bounds have also been established for sparse reconstruction methods (see
e.g. [Jin and Maass, 2012],[Elad, 2010]). In �nite dimensional spaces, sparse
reconstruction methods require that the solution x+ is k-sparse. This means
that at most k elements of the solution vector are nonzero. How large k is de-
pends on properties of the forward model A (see e.g. [Elad, 2010]). Typically,
it is hard to guarantee that x+ is k-sparse. However, it might have a sparse
approximation.

Page 21, Line 29-30: Can you mark the location of the single large point source in Figure
8? The maps don't make this obvious at all, and look like the �ux �eld in Figure 3, rather
than a single large point source. Maybe I'm misunderstanding?

As explained in the caption and in the text above (see Page 21, Line 19) Fig.
8 shows the diagonal of the sensitivity matrix. Each column of this matrix
shows the response of the inverse model to data that includes an additional
pixel source. Ideally, the response should be exactly this pixel source. The
diagonal of the matrix shows how much of the pixel source would be seen in
that exact pixel. Methods that produce smoother emission �elds are expected
to have smaller values on the diagonal, because pixel sources are smoothed.
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We have reformulated Lines 29-30 on Page 21 because the formulation ap-
peared to be misleading.

Page 23, Line 31: Why would the L1 POS have a larger smoothing error? Earlier text
points to the success of this technique for targeting pixel sources, so this result is confusing.

As mentioned on Page 23, Lines 17-20 �it is misleading to look at either the
smoothing or measurement error without the other. For ill-posed inverse prob-
lems, a small smoothing error comes at the expense of a larger measurement
error and vice versa. A well chosen regularization parameter balances both
errors such that the total error is minimized.
We illustrate this behaviour using classical Tikhonov regularization, i.e.

x∗ = arg min
x∈Rn

1

2
‖Ax− yδ‖2

2
+
α

2
‖x‖2

2

=
(
AtA+ αI

)−1
Atyδ

with the notations from the manuscript. For yδ = Ax+ + δ we have the total
error

x∗ − x+ =
(
AtA+ αI

)−1
Atyδ − x+

=
(
AtA+ αI

)−1
At(Ax+ + yδ)− x+

=
(
AtA+ αI

)−1
AtAx+ − x+︸ ︷︷ ︸

smoothing error

+
(
AtA+ αI

)−1
Atδ︸ ︷︷ ︸

measurement error

.

This method is known to produce smooth solutions. However, for the choice
α = 0 the smoothing error is zero. Thus, the method is similar to uncon-
strained least squares, which largely ampli�es the noise, leading to a large
measurement error. On the other hand, we could choose a very large value for
α. This will produce the estimate x∗ ≈ 0. As a result the measurement error
is zero but the smoothing error is equal to x+. The regularization parameter
is ideally chosen such that the total error is minimized. Whether smoothing
or measurement error dominate for this optimal regularization parameter de-
pends on the problem and the method used.

With this in mind, one can observe for L1 POS that the smoothing error is
reduced in some pixels with larger sources (e.g. Salt Lake City). However,
this improvement in some locations does not balance the errors made in other
locations and causes a larger smoothing error.

Figure 9: It's not clear from this �gure that L2 POS isn't the best method overall, as the
dipoles seem to be smallest in this �gure, even though the overall MSE is larger than the
L1 DIC POS method. Similarly, the smoothing error isn't obviously better in the bottom
panel than the top panel.
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We agree that it is hard to see visually which method performs best. That is
the reason for calculating the mean squared error. We use the mean squared
error because it is a standard metric in image analysis.

Page 26, Line 5-7: This conclusion is much too strong. For the regional �uxes, the
standard inversion is as accurate as the L1 POS DIC inversion, particularly in the large
emitting regions. It's di�cult to pick a clear winner between all of the di�erent methods
in this case.

We agree that the conclusions were too strong as written. With the exception
of L1 POS and the Gibbs Sampler all methods have a comparable average
performance in the estimation of regional �uxes. We changed the conclusion
in Sect. 5.3.2 accordingly.
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3 Updated manuscript

The updated manuscript is on the next pages. Changes in the text compared to the
previous version are marked in colors.
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Abstract.

Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems

is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a

Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill-equipped to

capture localized structures like large point sources or localized hot spots.5

Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse

reconstruction techniques to identify localized structures. In this study,
:
we present a new regularization approach for ill-

posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows

bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an

atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric10

measurements.

Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized

hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well , but adds

details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show

an example for source estimation of synthetic methane emissions from the Barnett shale formation.15

1 Introduction

Inverse problems are widespread in atmospheric sciences. The estimation of greenhouse gas sources and sinks is a prime

example. Numerous studies combine observations of greenhouse gas concentrations in the atmosphere and inverse modeling to

infer sources and sinks at the Earth’s surface. Existing studies have applied
:::::
apply these techniques at municipal (e.g. Saide et al.,

2011), regional (e.g. Zhao et al., 2009), continental (e.g. Miller et al., 2013) and global scale (e.g. Stohl et al., 2009). Inverse20

modeling estimates of greenhouse gas emissions are not only of scientific interest (e.g., to assess biospheric fluxes or improve

process-based models). These estimates are also key for monitoring and evaluating greenhouse gas emissions regulations (U.S.

National Research Council, 2010).

In almost all cases, these parameter estimation problems are ill-posed. Ill-posed means that small noise on the measurements

can be amplified by the inversion leading to unrealistic estimates. Thus, special techniques are required for a stable inversion.25

1



A Bayesian inversion is a common tool in atmospheric sciences that can handle the ill-posed nature of these problems (e.g.

Rodgers, 2000). In Bayesian inversion, the unknown parameters are assumed to follow an a priori distribution. The observations

are used to calculate an a posteriori distribution, which contains balanced information from the observations and the prior. The

maximum of the a posteriori distribution is often used as a best estimate.

A classical approach is the use of a Gaussian prior, which often allows rapid calculations via analytical expressions. However,5

the Gaussian prior is known to return a best estimate that is a smoothed version of the true solution (Rodgers, 2000, ch. 3). It

is well-suited to detect the overall process, but local structures such as large point sources are often smoothed out for ill-posed

problems.

Other research areas solve inverse problems using Tikhonov regularization. Tikhonov regularization is formulated as an

optimization problem. The functional to be minimized consists of a data fitting term and a penalty term that prevents overfitting.10

The classical choice of these terms is analogous to
:
a Bayesian inversion with

:
a Gaussian prior.

Recently, Tikhonov regularization with sparsity constraint has become a popular alternative to these classical inverse meth-

ods within a number of engineering fields. It has been used successfully in many different
::::::
Several

:::::
recent

::::::
studies

::::::
apply

:::
the

:::::::
approach

::
to

::
a
::::::
variety

::
of applications, including medical imaging, signal analysis and compressed sensing (see e.g. Hämäläinen

et al., 2013; Knopp and Weber, 2013; Candès et al., 2011). All of these applications make use of the fact that the underlying15

process can be described as a localized signal in a suitable representation system. While the classical approach tends to smooth

the true process (in any representation system), sparse reconstruction is designed to find such localized structures. Jin and

Maass (2012) give a detailed summary of the mathematical advances with the sparsity constraint.

These
::::
Only

::
a

::::::
handful

::
of

::::::
studies

:::::
apply

:::::
these modern inversion techniques have only been applied to atmospheric sciencesin a

small number of cases. Martinez-Camara et al. (2013) used a sparse reconstruction approach to estimate emissions of radioac-20

tive substances for the Fukushima accident, and Ray et al. (2015) analyzed fossil fuel carbon dioxide emissions in an idealized,

synthetic data setup.

The goal of this paper is to show how sparse reconstruction techniques can improve the flux estimates in an atmospheric

inverse modeling scenario. We use a synthetic case study from Miller et al. (2014), where different inversion methods that

force positive surface fluxeswere analyzed
:
a
:::::
study

:::
that

::::::::
explores

:::::::
different

::::::
inverse

::::::::
modeling

::::::::
methods

:::
that

:::::::
enforce

:::::::::::
non-negative25

::::::
surface

:::::
fluxes. The setup considers anthropogenic methane emissions in the United States. We couple a sparse reconstruction

approach with a positivity constraint.

Our
:::
The

::::::
present

:
study is organized as follows: First, we briefly introduce the atmospheric inverse modeling problem (Sect.

2). Section 3 gives an overview on
:
of

:
inverse problems and introduces the concept of sparse reconstruction. We use a redundant

dictionary representation system to sparsify the flux signal. The setup of the synthetic case study and our
:::
the sparse dictionary30

reconstruction method are presented in Sect. 4. Estimates, error analysis and a comparison with state-of-the-art methods are

shown in the results Sect. 5. We also analyze the sensitivity to emissions from an oil and gas drilling region before drawing

conclusions.

Additional graphics, source code and a pseudocode of our
::
the

:
sparse dictionary reconstruction method are included in the

supplementary information.35
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2 Surface flux estimation using atmospheric inverse modeling

Existing studies employ a number of different techniques to quantify greenhouse gas surface fluxes (e.g. Hensen et al., 2013).

Atmospheric inverse modeling (AIM) is an approach that relies on the knowledge of a proper atmospheric transport model

to link surface sources and sinks to enhancements in atmospheric greenhouse gas concentrations. The idea is to invert the

transport model and thus map atmospheric measurements to surface fluxes.5

We use the WRF-STILT (Weather Research and Forecasting - Stochastic Time-Inverted Lagrangian Transport) model

(Nehrkorn et al., 2010) to simulate atmospheric transport in this study, the same simulations used in Miller et al. (2013,

2014). WRF is a meteorology model (e.g. Skamarock et al., 2005), and STILT is a back-trajectory model (e.g. Lin et al.,

2003; Gerbig et al., 2003). STILT will release
::::::
releases

:
an ensemble of imaginary particles at the time and location of an atmo-

spheric measurement. The particles then travel backward in time and indicate where air masses were located before reaching10

the measurement location. STILT then uses the distribution of these particles to compute an upwind
::::::
surface

:
influence on the

measurement, called footprint. The footprint quantitatively relates the surface fluxes to the atmospheric measurement
::
(in

:::::
units

::
of

::::::::::
atmospheric

::::::
mixing

::::
ratio

:::
per

::::
unit

::
of

::::::
surface

:::::
flux).

For a given emission field, x, the enhancement of the measurement above a known background level, yk, can be simulated

by integrating the product of footprint, Ak, and emissions over the Earth’s surface area of interest, Ω, which gives
:
:15

y = Ax, where [Ax]k :=

∫
Ω

Ak(s)x(s)ds (1)

and s ∈ Ω is the integration variable of location. The central question in AIM is how to determine a realistic flux field x given

(noisy) atmospheric measurements yδ and footprints A, which means solving the inverse problem of Eq. (1). Apart from the

inverse problem itself, challenges involve
::::
AIM

::::
may

:::::::
involve

:
a
:::::::
number

::
of

:::::::::
additional

::::::::::
challenges,

::::::::
including

:::
but

:::
not

:::::::
limited

::
to

estimation of background concentrations and proper modeling of atmospheric transport and chemistry, but this
:
.
:::
The

:::::::
present20

article only adresses the solution of the inverse problem.

3 Mathematical background of inverse problems

In this section we give
::::::
provide

:
some mathematical background for inverse problems and how our approach

:::
the

::::::::
approach

::::::::
developed

::
in
::::

this
::::::
article is related to commonly used inverse methods. We will formulate the AIM problem as a parameter

optimization problem, which is based on norm notation. Thus, we define25

‖z‖2 :=

√∑
k

|zk|2 and ‖z‖1 :=
∑
k

|zk| .

Both norms measure the length of a vector z, where z is a vector of any quantity. The 2-norm is the standard norm in most

fields of study. The 1-norm is a central concept in sparse reconstruction, as we will see below
:::::::
discussed

::
in

:::::
Sect.

:::
3.3.
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3.1 Ill-posed inverse problems

Inverse problems arise , when the quantity of interest cannot be measured directly. Instead, another quantity y is measured

that is related to the unknown parameters x by a forward model F. The forward model maps from parameter space X to

measurement space Y . For most problemswe have
:
, X = Rn and Y = Rm. The forward problem is to calculate simulated

measurement data y from known parameters x by evaluating the potentially nonlinear forward model, y = F(x). Estimating5

realistic parameters that explain the given measurements means solving the inverse problem.

The problem of finding parameters that best explain noisy measurements yδ in a least squares sense is equivalent to solving

x∗ = arg min
x∈X

1

2
‖F(x)−yδ‖22. (2)

Often the inverse problem is ill-posed. This means that the minimizer x∗
:
,
::
if

:::
one

::::::
exists, might be nonunique and particularly

that the inversion is unstable. Unstable denotes that small changes in the measurements result in large changes in estimated10

parameters. In the real world, measurements are never exact. A common assumption is that
:::
the

::::
noisy

:::::::::::::
measurements yδ can

be split up into a part that can be explained exactly
:::::
exact

::::
data,

::::::
y ∈ Y ,

:::
and

::::::
noise,

::::::
δ ∈ Y ,

::::
such

:::
that

:::::::::::
yδ = y+ δ.

:::
The

:::::
exact

::::
data

:
is
:::::::
defined by the true parameters x+ via the underlying forward model, so

::
i.e.

:
y = F(x+), and some noise δ ∈ Y , such that

yδ = y+ δ.
:
. In this definition, the noise includes errors from the measurements, the forward model as well as

:::
and

:
numerical

approximations. Solving Eq. (2) means fitting the parameters to the
:::::
exact data and the noise. The

:
In
::::::::

ill-posed
:::::::::
problems,

:::
the15

retrieved parameters are very sensitive to the datain ill-posed problems
:::
data, so the true solution x+ is typically far away

from the least squares solution x∗. Thus, the inverse mapping using Eq. (2) is not suitable for ill-posed problems (see the

supplementary information).

3.2 Tikhonov regularization

The inversion using Eq. (2) is unstable for ill-posed problems. Tikhonov regularization, by contrast, stabilizes the inversion by20

adding a convex penalty function φ :X → R (see e.g. Hansen, 2010; Louis, 1989)

x∗ = arg min
x∈X

1

2
‖F(x)−yδ‖22 +αφ(x). (3)

Classical Tikhonov regularization uses φ(x) = 1
2‖x−xa‖

2
2

with xa = 0. The regularization parameter α, with α > 0, weights

::
the

:
data fitting and

::
the

:
penalty term. A greater value forces the solution to stay close to the a priori solution xa, trusting less

in the data, while a small value results in less discrepancy in the data fitting terma
:::::
better

::::::::::
model-data

::
fit. A number of methods25

are available to automatically choose a balancing regularization parameter (see e.g. Reichel and Rodriguez, 2012). We use

Morozov’s discrepancy principle (see Eq. (15) in Sect. 4.2), which requires knowledge of the noise level ‖δ‖. A suitable

regularization parameter prevents overfitting of the estimated parameters x∗ to the noisy data via the forward model.

If more detailed noise characteristics are known, these can be introduced by adaptation of the data fitting term. In case of

Gaussian noise, penalized,
:
weighted least squares30

x∗ = arg min
x∈X

1

2
‖Lδ(F(x)−yδ)‖22 +αφ(x) (4)
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with an a
:
noise covariance R , with

:::
and

:
R−1 = Lt

δLδ , best include
:::
best

::::::::::
incorporates

:
this information. The covariance is es-

pecially useful to weight measurements of
::::
with different uncertainties. For a suitable penalty function, this approach translates

to Bayesian inverse modeling (see Sect. 3.6).

3.3 Choice of the penalty function

We solve the inverse problem using Tikhonov regularization, Eq. (4). Information about the measurement noise is introduced5

in the data fitting term of the Tikhonov functional, and prior information about the unknown parameters is formulated in

the penalty function φ. In the absence of any prior information, the classical Tikhonov approach uses a 2-norm penalty

with zero a priori, φ(x) = 1
2‖x‖

2
2
. Among all possible solutions, it will choose

:::::::
chooses

:
the solution that is closest to the

origin,
::::

i.e.
:::::::::::
(0, ...,0) ∈X

:
but still reproduces the data. Proximity to the origin means that the solution will be

:
is

:
simple.

In particular, it prevents oscillations
:::
the

:::::::::
oscillating

:::::::::
behaviour

::
of

:::
the

::::::::::
parameters

:
as encountered when the inversion is un-10

stable .
:::::::::::::::::::::
(e.g. Hansen, 2010, ch. 4) .

:
If an a priori estimate xa of the parameters is available, it can be included by

::::::
setting

φ(x) = 1
2‖x−xa‖

2
2
.

Sometimes it can be useful to penalize the components of the parameter vector x differently. This results in a weighted 2-

norm penalty, so
:
: φ(x) = 1

2‖Lax‖22. In a Bayesian inversion setup Q := 1
α (Lt

aLa)−1
::::::::::::::
Q = 1

α (Lt
aLa)−1 gives the covariance

of a
::::::::::
multivariate Gaussian a priori distribution. Diagonal elements in La weight the parameters while off-diagonal entries15

correlate parameters resulting in smoother estimates in case of positive correlation and vice versa.

A large number of methods is
:::
are available to solve optimization problems of the type (see e.g. Rodgers, 2000, ch. 5)

x∗ = arg min
x∈X

1

2
‖Lδ(F(x)−yδ)‖22 +

α

2
‖La(x−xa)‖2

2
. (5)

The minimizer x∗, if it exists (see Sect. 3.4), can also be interpreted as a maximum a posteriori solution to a Gaussian prior

with Gaussian noise in a Bayesian inversion framework (see Rodgers, 2000, ch. 3).20

Localized structures like point sources or edges in the true solution x+ are smoothed out by regularization with the 2-norm

and thus disappear in the estimate x∗.

Over the last decade, the
:::
The

:
sparsity contraint has become very popular for regularization of inverse problems . Instead

:::
over

:::
the

::::
last

::::::
decade.

::::
The

::::::
1-norm

::
is

::::
used

::
to

::::::::
constrain

:::::::::
parameters

::::::
instead

:
of taking the 2-norm as a penalty function, the 1-norm

is used to constrain the parameters. This results in the optimization problem25

x∗ = arg min
x∈X

1

2
‖Lδ(F(x)−yδ)‖22 +α‖x‖1. (6)

The constraint produces solutions with only a few nonzero components, which are called sparse solutions. Replacing the 2-

norm by the 1-norm adds more
:
a
::::::
greater penalty on small components in the solution while bigger components are included

:::
and

:::::
favors

:::
the

:::::::
inclusion

:::
of

:::::
larger

::::::::::
components

:::::
within

:::
the

:::::::
solution. The effect is that the 1-norm constraint selects a sufficient number

of components to explain the data
:::::
while setting the others to zero. In constrast, the 2-norm penalty attempts to explain the data30

using all components with the focus on avoiding
:::
uses

:::
all

:::
the

::::::::::
components

::
to

::::::::
reproduce

:::
the

::::
data

::::
and

:::::
avoids

:
large components.

Figure 1 illustrates why parameters that are not sufficiently constrained by the data are set to zero when using the sparsity

constraint. Due to this property, the method in Eq. (6) is called sparse reconstruction.
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Figure 1. Illustration of 2-norm and 1-norm regularization for an underdetermined problem Ax= y in R2. Generally, the minimum 1-norm

solution (left) is zero in one of the two components. Such sparsity almost never
:::::
rearely

:
happens when considering the minimum 2-norm

solution (right). Similarly, the minimum 1-norm solution produces solutions with as many zero components as consistent with the data in

higher dimensional underdetermined problems.

Flux fields with some
:::::::
sporadic local hot spots are a prime example of sparse signals and sparse reconstruction is well suited

:::::::::
well-suited

:
to identify such sparse but nonsmooth signals. However, if the true solution x+ is not sparse, reconstruction by

Eq. (6) will still seek
::::::
produce

:
a sparse approximation of the solution. Of course, the same is true for other penalty functions

promoting certain properties of the estimate. Whether or not a signal is sparse is a matter of the representation system used.

The solution might be non-sparse in the natural parameter space but have a sparse representation when transformed into a5

different space. To make use of the sparsity constraint, we have to find
:::::
present

:
a representation system that allows for sparse

representation for all possible solutions.

Signal
:::
The

::::
field

:::
of

:::::
signal

:
and image processing offer

:::::
offers

:
a variety of transforms designed for sparse representation

of oscillations, localized signals, edges and the like. Options include regular basis transforms, Fourier transforms, wavelets,

shearlets, curvelets, among other options (see e.g. Diniz et al., 2010; Elad, 2010). However, finding
:
it
::
is

:::
not

:::::::::::::
straightforward

::
to10

:::
find

:
a sparsifying transform for a given applicationis not straightforward, and often a basis with its unique representation of

the state is too restrictive. We consider a more flexible representation system called dictionary, described in detail in the next

paragraph.

A dictionary is a collection of N elementary functions dk ∈X , called atoms, that can be combined linearly to represent the

parameters, so x=
∑N
k=1 ckdk. These atoms can be thought of as building blocks of the signal. By the choice of the atoms, it15

can be ensured , that there is at least one representation for each state x ∈X . Dictionaries are typically redundant representation

systems, meaning that N > dim(X). This implicates
::::::
quality

:::::
means

:
that there are infinitely many representations c for the

same parameter vector x. From a suitable dictionary we
::
We

:
expect that at least one of these representations

::::::::::::
representation

::
in

:
a
:::::::
suitable

:::::::::
dictionary is sparse, which means that true signal x+ is a linear combination of only a few atoms. The sparse

reconstruction approach, Eq. (6), can be used to select these atoms.20

6



We give
:::::::
Consider

:
an example for X = R3 . Consider

::::
with the dictionary

D = (d1,d2,d3,d4) =


1√
2

1 0 0

1√
2

0 1 0

0 0 0 1

 .
Each column of D is an atom of norm one (‖dk‖2 = 1). The vector x= (1,1,1)t can be represented in the dictionary by

coefficients c ∈ R4 in infinitely many different ways as the dictionary is redundant. Some possible representations are
::::::
include

:
0

1

1

1

 ,

−
√

2

2

2

1

 ,

√

2

0

0

1

 ,


1√
2

1
2

1
2

1

 , ...5

The first representation is a somewhat natural choice as it represents each dimension with a different atom. The third repre-

sentation has minimal 1-norm and the fourth minimal 2-norm. All other choices have more complicated structures. The third

representation is also the sparsest possible representation. This example illustrates not only that the sparsest solution often

coincides with the minimum 1-norm solution, but also how a redundant representation system is able to sparsify the signal

with fewer nonzero entries than the vector it represents.10

We assume that the estimated state in our
::
the

:
AIM problem can be sparsely represented in a given dictionary D, leading to

the optimization problem

c∗ = argmin
c∈C

1

2
‖Lδ(F(Dc+xa)−yδ)‖22 +α‖c‖1

x∗ = Dc∗, (7)

where xa is an a priori estimate of the state. Again, the assumption when solving Eq. (7) is that the difference between true15

solution and a priori, x+−xa, can be approximated by a linear combination of a small number of dictionary atoms dk. In

contrast to the sparse reconstruction approach, Eq. (6), this assumption does not require that the flux field is sparse. A suitable

dictionary is able to provide
:::::::
provides a sparse approximation to many signals that are non-sparse in the standard representation

system (see e.g. Candès et al., 2011; Starck et al., 2004; Elad, 2010). The approach is thus particularly well-suited to sparse

problems, but it can also adeptly estimate non-sparse signals. We refer to this approach as sparse dictionary reconstruction.20

3.4 Solving Tikhonov regularized inverse problems

We have formulated
:::
The

::::::::
previous

::::::
section

:::::::::
formulates

:
the AIM problem as optimization problems

::
an

::::::::::
optimization

::::::::
problem

using Tikhonov functionals. In the following paragraphs, we focus on efficient methods to solve problems (5), (6) and (7).

Henceforth, we only consider linear forward models F(x) := Ax. Nonlinear forward models require additional properties

for the existence of a minimizer and might have local minima. They are typically addressed by solving a sequence of linearized25
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problems. Theory for nonlinear inverse problems is still an active field of study. Jin and Maass (2012) summarize the basic

results.

For linear forward models the classical Tikhonov functional, Eq. (5), is strictly convex, and thus a unique global minimizer

exists. The optimization problem can be solved by exerting the necessary conditions of first order, i.e. setting its derivative

equal to zero. This
:::::
setup leads to the linear equation5

(AtLt
δLδA +αLt

aLa)x= AtLt
δLδyδ +αLt

aLaxa,. (8)

whose solution
:::
The

:::::::
solution

::
to

::::
this

:::::::
equation

:
is the minimizer of problem (5). A variety of methods exist to solve this linear

equation. Our choice is a conjugate gradient method. Note the similarity of Eq. (8) to Bayesian inversion when Lt
δLδ = R−1

and αLt
aLa = Q−1.

For the sparse reconstruction problem, Eq. (6), the functional to minimize is only convex and no longer differentiable10

everywhere. For this kind of problem, subgradient methods can be applied to find a minimizer. A fundamental contribution

was the Iterative Shrinkage Thresholding Algorithm (ISTA) (Daubechies et al., 2004), which is a simple iterative scheme

consisting of a gradient and a shrinkage step
:
:
:

xk+1 =Sαβ
(
xk−βAtLt

δLδ(Axk−yδ)
)

Sλ(x)i :=max(|xi| −λ,0)sign(xi). (9)15

The stepsize β has to
::::
must

:
be chosen such that 0< β < 2/‖LδA‖2. The gradient step adds a non-sparse update to the current

iterate. Then
:::::::::::
Subsequently, the shrinkage operator Sλ :X →X shrinks the updated parameters componentwise by λ towards

zero. This way,
:::
step

::::::
ensures

::::
that only dominant components may increase and differ from zero

:::
can

:::::::
increase

::
to

::::::::
non-zero

:::::
values.

The algorithm converges rather slowly, but by now more sophisticated
::::
faster

:
algorithms have been developed (Elad, 2010;

Loris, 2009). We use the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009).20

The sparse dictionary reconstruction problem (7) translates into the sparse reconstruction problem (6) by defining Ã := AD

and ỹδ := yδ −Axa. This reformulation allows the use of the methods stated.

3.5 Bounds on the parameters

Some problems require a bound on the parameter space, so
:
: x ∈M ⊂X . Examples are nonnegative physical quantities like

concentrations. We will
::::::::::
atmospheric

::::::
mixing

::::::
ratios.

:::
We only consider a positivity

:::::::::::
nonnegativity constraint here, but our

:::
the ap-25

proach works for general closed convex subsets. When enforcing positivity, we use iterative methods to solve the optimization

problems (5), (6) and (7) and couple the update scheme T with a projection step PM onto the set of permitted parameters M ;

xk+1 = PM(T(xk)).

For a positivity constraint, the projection is straightforward when the iteration is carried out in the state space X by setting

all negative parameters to zero. However,
:
it

:::
can

::
be

:::::::::::
complicated

::
to

:::::::
translate

:::::
these

:::::::::
constraints

::
to

:::
the

::::::::::::
corresponding

:::::
space when30

sparsity is assumed in a different representation system (e.g. a dictionary), it can be complicated to translate these constraints

8



to the corresponding space. For our sparse dictionary reconstruction, we have to calculate the corresponding parameters xk

to the current iterate ck before projecting, so :
:
xk = Dck. Then

::::::::::::
Subsequently, the projection can be performed

:
in

:::::::::
parameter

::::
space, x+

k = PM(xk), and .
:::::::
Finally, we have to translate

:::
x+
k back into dictionary space. Note, that there are infinitely many

representations for the same statex.

The iterative scheme of the sparse dictionary reconstruction creates a sparse representation ck. Hence, we
:::
one

:
should also5

choose the sparsest representation for the projected state x+
k , which means

:::::::
requires solving

ck+1 = argmin
c∈C

1

2
‖Dc−x+

k ‖
2
2

+α‖c‖1. (10)

The problem can be solved using the iterative shrinkage algorithm (see Eq. (9)). We can speed up the convergence with a good

inital value, which is given by the current iterate ck. Moreover, the iteration does not need to run until convergence is reached

as the outcome will be changed
::::::
change in the next update stepanyway. Still, solving Eq. (10) for each iteration of the update10

scheme is a costly operation.

The projection step for the dictionary is difficult because the dictionary D is not invertible. We suggest the following heuristic

approach; we select a subset of atoms from the dictionary that form a basis. The projection update is then only calculated for

these components. This
::::::::
procedure might damage the sparsity of the current iterate. However, sparsity will be created by the

next shrinkage step, if the update by the projection was not too large. It is important to note that this idea is heuristic, meaning15

that the algorithm may not converge against a minimizer of problem (7) restricted to nonnegative parameters x in some cases.

3.6 Link to Bayesian inversion

The methods presented in this paper are formulated as Tikhonov regularizations. The inverse modeling community might
::::
may

be more familiar with the statistical formulation, namely Bayesian inversion
:::::
inverse

::::::::
modeling. In the following

:::::
section, we

briefly describe how both formulations overlap.20

In a Bayesian inversion
::::::
inverse

::::::::
modeling setup, noise and unknown parameters are assumed to be realizations of known

probability distributions. Given these distributions and the forward model, Bayes’ theorem is used to infer the a posteriori dis-

tribution. The maximizer of the posterior probability density function, called maximum a posteriori solution, is often presented

as a best estimate. Further evaluation of the posterior distribution also yields uncertainty bounds for the estimate.

We previously mentioned
::::::::
explained that covariance matrices for

:::
the noise or prior translate into weighting matrices for the25

norms in the Tikhonov formulation
::::
(see

::::
Sect.

:::
3.2

::::
and

::::
3.3). For proper weighting matrices, Tikhonov regularization with 2-

norm penalty as in Eq. (5) is equivalent to a Gaussian prior and a Gaussian noise model. By contrast, Tikhonov regularization

with 1-norm penalty from Eq. (6) translates into a Laplacian prior and Gaussian noise. The probability density functions

for Gaussian and Laplacian distributions are shown in Fig. 5. The Tikhonov approach only aims at the calculation of a best

estimate, which compares to the maximum a posteriori solution in the Bayesian approach. Uncertainties can be assessed by30

additional calculations, which we will present in Sect. 3.7.

Inversions with non-Gaussian priors, like the Laplacian in Eqs. (6) and (7), rarely have an analytical solution simplifying

the calculation of the posterior distribution. Thus,
:::
The

:::::::
posterior

::::::::::
distribution

:::
can

::::
also

:::
be

:::::::::::
approximated

:::
by

:::::::
samples

::::::
created

:::
by

9



::::::
Markov

::::::
Chain

:::::
Monte

:::::
Carlo

:::::::
methods

::::::::::::::::::::::::::::::::::::::::::
(e.g. Andrieu et al., 2003; Tarantola, 2005, Ch. 2) .

::
In

::::
those

:::::
cases

:
the computational cost

for Bayesian inversion methods might
:::
can become intractable. Tikhonov methods calculate a best estimate without further in-

formation about the underlying distribution. This property makes them more suitable for computationally demanding nonlinear

or large scale problems , if no
::
if

::
an uncertainty analysis is carried out

:::
not

:::::::
required.

3.7 Error analyis5

To judge the quality of an estimate, it is necessary to know the uncertainty associated with each estimated parameter. For

Bayesian methods, these uncertainties are often straightforward to calculate analytically alongside
:::
and the best estimate .

:::
are

:::::::
deduced

::::
from

:::::::
samples

::
of
::::

the
:::::::
posterior

::::::::::
distribution

::
if

:::
no

::::::::
analytical

::::::::::
expressions

:::::
exist. For the Tikhonov methods used in this

work, uncertainty estimates are an extra calculation performed after the retrieval of a best estimate. In this section, we present

an uncertainty analysis for Tikhonov methods based on Rodgers (2000, ch. 3).10

We call the true parameters x+ and the a priori xa. Let R denote a general inversion method, R : Y →X , and F a general

forward model, F :X → Y . Then, the best estimate is given by

x∗ = xa+ R(yδ −F(xa)) = xa+ R(F(x+)−F(xa) + δ).

If we linearize
:::
We

:::::::
linearize

:::
the

:
forward model and reconstruction method , we have in first order

::
to

::::::::
determine

:::
the

::::
first

:::::
order

::::
terms

:
15

x∗ = xa+
∂R

∂y

∂F

∂x
(x+−xa) +

∂R

∂y
δ. (11)

For linear forward models we have ∂F
∂x = A, but the reconstruction methods remain nonlinear. Thus the analysis depends on

the point of linearization. The total error can be differentiated between smoothing and (total) measurement error:

x∗−x+ =

(
∂R

∂y

∂F

∂x
− I

)
(x+−xa)︸ ︷︷ ︸

smoothing error

+
∂R

∂y
δ.︸ ︷︷ ︸

measurement error

(12)

The measurement error describes how noise on the measurement data propagates to errors in the estimated parameters. Recall20

that our
::
the definition of noise

::::
used

::::
here includes errors in the measurement, the forward model and numerical approximations.

Reconstruction methods try to suppress the effect of noise on the parameters by stabilizing the unstable inversion (e.g. via a

penalty term or an a priori). This modification introduces the smoothing error. For ill-posed problems, a smaller smoothing error

results in a greater measurement error and vice versa. The smallest total error is expected when both terms are approximately

balanced
::::::::::::::::::::::::
(see e.g. Hansen, 2010, Ch. 5) .25

The exact total, smoothing and measurement error can be calculated from the true solution, x+, the estimate under noisy

data, x∗, and the estimate to noiseless data using the same regularization parameter as in the noisy case. The errors are given

by

x∗−x+︸ ︷︷ ︸
total error

=Rα∗(yδ −F(xa))−Rα∗(y−F(xa))︸ ︷︷ ︸
measurement error

+ xa+ Rα∗(y−F(xa))−x+︸ ︷︷ ︸
smoothing error

. (13)
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Note that no sensitivity matrix needs to be calculated using this equation
::
this

::::::::
equation

::::
does

:::
not

::::::
require

::
a

::::::::
sensitivity

::::::
matrix.

In real data problems, the error terms in Eqs. (12) and (13) are impossible to calculate as they require knowledge of the true

solution x+ as well as the noise δ. Instead, it is common to estimate reliable uncertainties that bound the actual errors.

To find such bounds for the smoothing error, Bayesian methods make additional assumptions on the true solution by applying

so called a priori knowledge. Comparable source conditions also exist for Tikhonov methods (e.g. Natterer, 1984; Tautenhahn,5

1998; Engl et al., 1989; Jin and Maass, 2012), but such assumptions are often hard to guarantee.

Without applying a priori knowledge, the best one can do is to analyze the sensitivity matrix S := ∂R
∂y

∂F
∂x , sometimes called

averaging kernel matrix. For linear forward models A it can be approximated by

S:,k :=
R(yδ −Axa+ A∆xk)−R(yδ −Axa)

‖∆xk‖
. (14)

The k-th column of this matrix expresses how the estimate reacts on a perturbation in the k-th parameter of the true fluxes,10

∆xk. Its structure gives an insight into the smoothing error. For an ideal sensitivity matrix equal to the identity the smoothing

error vanishes (see Eq. (12)). Thus, the closer the sensitivity matrix is to the identity, the smaller smoothing error can be

expected. For nonlinear reconstruction methods R, interpretation of the sensitivity matrix is difficult. The information is only

local and cannot predict reactions of the estimate for perturbations different from ∆xk via Eq. (12). Even the normalization

in Eq. (14) might be misleading, if the amplitude of the perturbation ‖∆xk‖ is not provided. However, sensitivities are still15

meaningful for assessing the accuracy of the estimate. We explain
:::::::
describe further details on how we analyze the sensitivity

matrix in Sect. 4.6. The numerical computation requires one to solve a reconstruction problem per parameter, which can be

done in parallel, but might still be infeasible for large scale problems.

Even in real data problems, one has often
::::
often

:::
has access to the noise characteristics. Uncertainty bounds for the measure-

ment error can be approximated via resampling of the noise and recalculation of the estimate under this noise for a sufficient20

number of samples. The distribution of estimates to different realizations of the noise yields the uncertainties commonly ex-

pressed by standard deviations. If the noise characteristics are unknown, resampling can be achieved by bootstrapping of the

residual of the estimate (see Banks et al., 2010). This numerical approach is computationally demanding, but can also be run

in parallel.

4 Case study: Methane emissions in the United States25

Our goal is to
:::
We apply the sparse dictionary reconstruction method in an atmospheric inverse modeling setup. We use an-

thropogenic methane emissions in the United states as a synthetic case study, the same case study used in Miller et al. (2014).

This setup gives us the
::::::
provides

:::
an opportunity to compare our flux estimates not only to the knownsynthetic fluxes but also to

the estimates by state-of-the-art methods already used in atmospheric inverse modeling
:::
flux

::::::::
estimates

:::::::
obtained

:::::
using

::::::::
different

:::::::
methods

::::::
against

:::
the

::::::
known,

::::::::
synthetic

:::::
fluxes. This section describes the details of the case study and the methods we use

:::
used.30

Before we specify how the sparse dictionary reconstruction method is set up, we compare Tikhonov regularization with 2-norm

and 1-norm penalty to visualize the effect of the 1-norm.
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4.1 Case study details

Our study area is
:::
We

:::::::
estimate

:::::::::
emissions

:::
for

:::
the North American mainland at

:
(25− 55◦ N and 145− 51◦ W . Emissions are

estimated
:
) on a 1◦ by 1◦ grid and limited to

:
(land grid cells

::::
only). We use a combination of synthetic in-situ aircraft and tall

tower measurements, that were available during May to September 2008 from operations by the NOAA Earth Systems Research

Laboratory (NOAA; Andrews et al., 2014), the United States Department of Energy (Biraud et al., 2013) and the START085

aircraft campaign (Pan et al., 2010). Footprints for these measurements, that define the forward model, are calculated using the

WRF-STILT model (see Sect. 2).
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Figure 2. Available in-situ methane measurements for May to September 2008

Synthetic methane emissions are generated from the Emission Database for Global Atmospheric Research (EDGAR). We

project anthropogenic methane emissions from the EDGAR v3.2 FT2000 inventory (Olivier and Peters, 2005) onto our model

grid. These emissions are constant in time during our observation period. As discussed in Miller et al. (2014), inventories have10

been updated
:::::
newer

:::::::
versions

::
of

:::
the

:::::::
EDGAR

:::::::::
inventory

:::
are

:::::::
available, but we use this version for reasons of comparison to the

previous study. Moreover, we work with simulated data only, so there is no strict need to use the most recent inventory version.

Rather the solution should comprise typical features, which we assume holds for this version as well.

The simulated noisy measurements are calculated by applying the linear WRF-STILT forward model to the EDGAR fluxes

and adding Gaussian noise of realistic magnitude. The noise vector is sampled from the multivariate Gaussian distribution15

with a diagonal covariance matrix, .
::::::::::::::::::::::
Miller et al. (2013) estimte

:::
the

::::::
values

::
of

::::
this

:::::
matrix

:::::
using

::::
real

:::::::::::
observations

::::
(Fig.

::
2)

::::
and

:::::::
restricted

:::::::::
maximum

:::::::::
likelihood.

:

that was estimated for the real data of these measurements by restricted maximum likelihood estimation in Miller et al.

(2013).

4.2 Classical Tikhonov regularization vs. sparse reconstruction20

12
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Figure 3. US methane emissions from the EDGAR v3.2 FT2000 in the native 1◦ by 1◦ resolution. The largest source regions, New York and

Eastern Kentucky, have fluxes higher than three times the limit of the colormap.

We have one unknown emission parameter per land grid cell in our setup because we use temporally constant fluxes, so
:::
The

:::::
fluxes

:::
are

:::::::::
temporally

:::::::
constant

::
in

:::
the

::::::::
inversion

:::::
setup

::::
here,

:::
so

::::
each

::
of

:::
the

:::::
1469

:::
land

::::
grid

::::
cells

::::
has

::::
only

:::
one

::::::::
unknown

::::::::
emission

::::::::
parameter

:
(x ∈ R1469.

:
). On the other hand, we have a total of

::::
there

:::
are 4600

:::
total

:
measurements, so yδ ∈ R4600. Despite the

fact that there are more measurements than unknowns, the inverse problem is still ill-posed as many measurements yield similar

pieces of information. We estimate the surface fluxes x only by knowledge of the forward model A defined by the footprints,5

the noisy measurements yδ and the noise characteristics determined by the noise covariance matrix R. In this scenario R does

not have any off-diagonal entries, thus it is easy to calculate Lδ from Lt
δLδ = R−1. In general cases we recommend using the

Cholesky factorization. For all problems
:
, we use a zero a priori, so xa = 0. In real data scenarios more

::::
More

:
advanced a priori

models should be considered
:
in

::::
real

::::
data

:::::::
scenarios.

We start by comparing Tikhonov regularization with classical 2-norm penalty10

x∗ = arg min
x∈Rn

1

2
‖Lδ(Ax−yδ)‖22 +

α∗

2
‖x‖2

2
(L2)

and Tikhonov regularization with sparsity constraint

x∗ = arg min
x∈Rn

1

2
‖Lδ(Ax−yδ)‖22 +α∗‖x‖1. (L1)

The optimal regularization parameter α∗ is approximated by Morozov’s discrepancy principle for each problem; we start with

a value α0 that is certainly too large, so the corresponding minimizer is the a priori xa, here xa = 0. Then, the regularization15

parameter is reduced iteratively by αk = qαk−1 with 0< q < 1 and the corresponding minimizer xαk is calculated. For each

minimizer we check whether

‖Lδ(Axαk −yδ)‖2 < τδ̄, (15)

where δ̄ = ‖δ‖2 is the expected noise-level and τ > 1. If it holds, an appropriate regularization parameter α∗ := αk is found and

the corresponding minimizer xα∗ is our best estimate x∗. In Eq. (15),
:
we have δ̄ =

√
m, m= 4600 as the noise is normalized20

by Lδ .

13



For a fixed α-value
:
, we use a conjugate gradient method to solve problem (L2) via Eq. (8). We included a speed up

::::::
include

:
a
::::::::
speed-up by Frommer and Maass (1999), which detects in early iterations whether or not Morozov’s criteria, Eq. (15), can be

reached for the given parameter. This allows
::::::::
speed-up

:::::
allows

::::
one to continue with the next

:::::::::
subsequent smaller regularization

parameter α before convergence is reached.

To determine the sparse reconstruction solution, Eq. , to a fixed α-value we
::
We

:
use FISTA, which is an accelerated version of5

ISTA (see Sect. 3.4). Instead of calculating the update based on the last iteration only, it ,
::
to

:::::::::
determine

::
the

::::::
sparse

::::::::::::
reconstruction

:::::::
solution,

:::
Eq.

:
(L1)

:
,
::
to

:
a
:::::
fixed

:::::::
α-value.

::
It uses a weighted combination of the last two iterates

:
to

::::::::
calculate

::
an

::::::
update

:::::::
instead

::
of

::::
using

:::
the

::::
last

:::::::
iteration

::::
only.

4.3 Preliminary results: Classical Tikhonov regularization vs. sparse reconstruction
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Figure 4. Emission estimates using Tikhonov regularization with classical 2-norm penalty (see Eq. (L2)) and sparsifying 1-norm penalty (see

Eq. (L1)) inverted from noisy simulated methane measurements. The true flux field is shown in Fig. 3. While L2 shows the typical smoothing

effect, L1 concentrates the signal, which results in better estimates of large sources, but also tends to explain regional emissions by larger

point sources.

Figure 4 shows the methane emission estimates by the Tikhonov methods L2 and L1. Small sinks appear in both estimates10

because both methods are not restricted to positive emissions. We should mention that our
:
It

::
is

:::::
worth

:::::
noting

::::
that

:::
the measure-

14
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Figure 5. Normalized histogram of randomly signed EDGAR fluxes. The histogram data has been used to estimate the parameters of corre-

sponding Gaussian and Laplacian probability density functions. Note that only ten grid cells have emissions larger than 0.1 µ mol m−2 s−1

with the largest one reaching 0.29 µ mol m−2 s−1. Even though the center bin is largely populated, only less than 10% of all fluxes are equal

to zero.

ments include some negative values, which is due to the fact that they are enhancements above a background level and were
:::
are

perturbed by noise. But even with nonnegative measurements only, we could not expect to have no sinks in the estimates
::::
Even

::::::
without

:::::::
negative

:::::::::::
observations,

:::
the

::::::::
estimated

:::::::::
emissions

::::
may

::::::
include

:::::::
negative

::::::
values, if not explicitly enforced. An overestima-

tion in one grid cell and an underestimation in another might still be consistent with the data because the data are not sufficient

to fully constrain all flux parameters in an ill-posed inverse problem.5

Both estimates are significantly different
:::
The

::::::::
estimates

:::::
differ

:::::
(Fig.

::
4 but explain the data up to the noise. It is a typical

feature of inverse problems that the datais insufficient to constrain the solution. Instead, it is partly determined by
:::::
Most

::::::
inverse

:::::::
problems

:::
are

:::::::::::::::
under-constrained

:::
by

:::
the

::::
data.

:::
As

::
a

:::::
result,

:
the penalty term

:::
has

::
a

::::
large

:::::
effect

:::
on

:::
the

::::
final

:::::::
estimate

::::
and

:::::::
explains

::::
many

:::
of

::
the

::::::::::
differences

:::::::
between

:::
the

::
L1

::::
and

::
L2

::::::::
estimates. As expected, L2 estimates

:::::::
produces an emission field that is smooth.

Large sources are avoided to minimize the 2-norm. In contrast, L1 estimates
:::::::
produces

:
emissions that are larger in magnitude10

but more concentrated to few pixels. The resulting estimated emission field is sparse.

Often, the sparse emission field better estimates large sources such as those from major cities ,
:
(see e.g. Salt Lake City

emissions at 111◦ W, 40◦ N). Such large isolated pixel emissions are smeared to regional emissions by L2. However, L1

misplaces some of these large emitters ,
:
(see e.g. the San Franciscan Bay Area). This particular misplacement is present in

all methods and
::
is caused by a combination of small footprint information and the measurement noise. For other realizations15

of the noise, the
:::
The

:
source is placed to the correct grid cell

::
for

:::::
other

::::::::::
realizations

::
of

:::
the

:::::
noise. Also, L1 estimates regional

emissions such as those in Kansas or Arkansas falsely as large pixel emitters and neglects many small sources. The estimate

given by L2 much better reconstructs these regional emissions. A grid cell by grid cell comparison favors the L2 estimate. L2

also prodoces a better estimate for the total emissions (see Table 1).

The histogram of the EDGAR fluxes in Fig. 5 supports the use of the sparsity constraint. As
:::
We

:::::
assign

:
a
:::::::
random

::::
sign

::
to

::::
each20

:::
flux

::
as

:
fluxes are nonnegative, in contrast to the a priori models of L2 and L1, we assigned a random sign to each flux. The

15



resulting empirical distribution agrees much better with a Laplacian than with a Gaussian prior. Recall that L1 corresponds to

a Laplacian and L2 corresponds to a Gaussian prior.

Based on these preliminary results we conclude : The
:::
that

:::
the estimate using L2 is closer to the true EDGAR emissions than

L1, but the estimate is not satisfying for the reconstruction of large emitters due to the smoothing effect. Also, this methane

emissions case study is not suitable for sparse reconstruction
::
in

:::
the

:::::::
standard

::::::::::::
representation

::::::
system.5

4.4 Sparse dictionary reconstruction

The preliminary results in the previous section showed
::::
show

:
that the classical 2-norm regularization estimates a flux field that

is too smooth. Large pixel sources
::::
such

:
as those from cities are smoothed out. Sparse reconstruction improved

::::::::
improves the

estimate of these large sources. However, we also observed
:::::::
observe that regional sources are likely incorrectly represented

as point sources and that the total emissions are underestimated. The EDGAR solution is neither smooth nor naturally sparse10

because we expect methane emissions of differing sizes in most grid cells. We seek to find a representation system that is able

to sparsely represent such emission fields.

We decided to use a dictionary
::::::
employ

:
a
:::::::::

dictionary
:::

to
::::::
achieve

::::
this

::::
goal. We therefore need to select atoms, such that

the dictionary can sparsely approximate all methane emission patterns. Efficient dictionaries can be created using learning

algorithms, but a set of training data is required (see e.g Mairal et al., 2014). We could extract training data from the EDGAR15

inventory for other regions, learn a dictionary and use it for the United States setup, but results could be too optimistic as this

will not be an option for real data scenarios. Our approach will be
::
is to identify typical source shapes and include these shape

functions as atoms in our dictionary. The sparse reconstruction approach will then select those atoms that explain the data in

the sparsest way.

The 1◦ by 1◦ model grid is too coarse to identify individual sources. Many typical methane sources such as cities, landfills20

and waste, industrial facilities and mining do not extend more than a
::::::
beyond

::::
one

:
grid cell. To be able to represent these

:::::::
represent

:::::
these

::::
grid

:::
cell

::::::::
emissions

:
efficiently, we include the pixel basis in our dictionary. Metropolitan areas, livestock areas,

oil and gas fields might extend over several pixels though. Thus, we also add circular peak shape functions (see Fig. 6). We

could add more functions with bigger and more complicated shapes. That approach not only requires more computational time,

but it also leads to more redundancy. It is our intention to create some redundancy but only to the degree that it helps sparsify25

the representation of our possible emission fields. From numerical experiments, we found
:::
find that including bigger shape

functions does
::
do

:
not add value to the reconstruction.

Another idea
:::::
option to sparsify the representation is to look at the whole domain.

:::
use

:::::
atoms

::::
that

:::::
cover

:
a
::::
large

:::::::
portion

::
of

:::
the

:::::::
domain.

:
A background is best represented by a constant function. With the same argument we could add regional background

functions. We in fact found
:::
find

:
that a division into regions as shown in Fig. 10 would improve the estimate, but the placement30

of those regions was
:
is
:
partly inspired by looking at the true EDGAR fluxes.

Michalak et al. (2004) suggested
::::::
presents

:
a geostatistical inversion as an extension of L2. This approaches uses a model of

the mean in place of a traditional prior emissions estimate. It spatially correlates regions based on geostatistical information

such as population density or agricultural use. This setup results in shape functions, which we could include in our dictionary
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Figure 6. A selection of atoms from the dictionary used for the sparse dictionary reconstruction method. These atoms are scaled to represent

the state vector via linear combination. The left and the middle element are the basic shapes centered in each grid cell of the domain. At

coasts and lakes these shapes are limited to land grids. All atoms are normalized in the 2-norm. The dictionary chosen here also holds a

constant background function.

as well. The difference between both approaches is that our coefficients receive penalization to select the atoms during the

inversion, whereas the geostatistical information is
::::
shape

::::::::
functions

::::
are preselected and unconstrained in the geostatistical

inversion. Weighting the penalty on the coefficients individually would translate from one approach to the other.

For our experimentswe decided
:
,
:::
we

:::::
decide

:
not to include atoms that were

:::
are constructed from EDGAR or geostatistical

data. We will use a pixel basis, a basis with peaks that extend into the direct neighbors (see Fig. 6) and a background function5

for the entire domain. Thus, we have D ∈ Rn×N withN ≈ 2n+1. All atoms are normalized in the 2-norm. Generally speaking,

our dictionary holds functions to represent processes at different spatial scales.

To estimate the flux parameters x with sparse dictionary reconstruction we solve

c∗ = arg min
c∈RN

1

2
‖Lδ(A(Dc+xa)−yδ‖22 +α∗‖c‖1

x∗ = Dc∗. (L1 DIC)10

As before, we use a zero a priori, xa = 0, the discrepancy principle, Eq. (15), to determine the optimal regularization parameter

α∗ and FISTA to solve problem (L1 DIC) for a given α. A pseudocode is included in the supplementary information.

4.5 Enforcing positive fluxes

For further analysis, we add a positivity constraint on the flux parameters, x ∈Rn+, which we denote by the suffix POS. We

use the projection approach described in Sect. 3.5 for all methods to enforce positivity. Projecting the iterates of a conjugate15

gradient method may lead to poor performance, as the special structure of the search directions is lost. Thus, we also use FISTA

with a shrinkage operator for the 2-norm penalty when solving L2 POS. Note that the projection step for L1 DIC POS is more

demanding as it involves the transition from parameter to dictionary space (see Eq. (10)). Instead, we apply the suggested

heuristic nonnegativity update (see Sect. 3.5) using the pixel basis as an invertible submatrix to correct for negative fluxes.

Further details are included in the supplementary information.20

By enforcing positive parameters, three different constraints determine the final estimate: Positivity
::::::::
positivity, data and min-

imal norm. Often, these constraints may pull the estimate in different directions. The final estimate depends on the balance

between them. Using a projection, positivity is always enforced. As long as Morozov’s discrepancy principle is fulfilled the
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:::
The

:
emissions will also explain the given data up to the noise

::
as

::::
long

::
as

:::::::::
Morozov’s

::::::::::
discrepancy

::::::::
principle

:
is
:::::::
fulfilled. The most

flexible constraint in this setup is thus the smoothness or sparsity assumption defined through the penalty term , because it is

the most uncertain of all constraints.

4.6 Error analysis

We carry out two types of analysis to measure the quality of the estimates. First, we perform an uncertainty analysis based on5

knowledge about the noise characteristics but without knowledge about the true fluxes as would be the case for many real data

scenarios. As discussed in Sect. 3.7, we assess smoothing and measurement error separately by analyzing the sensitivity matrix

and by resampling of the noise respectively. In a second analysis, we make use of the true EDGAR solution and calculate the

exact total, smoothing and measurement errors.

The smoothing error describes the error that results from stabilizing the inversion. It can only be estimated if additional10

assumptions on the true fluxes are made. Without such assumptions, the best one can do is to analyze the sensitivity matrix

(see Eq. (14)). As mentioned before, an ideal sensitivity matrix is equal to the identity. We address two measures:
::
the

:::::::
column

:::
sum

::::
and

:::
the

:::::::
diagonal.

:
The column sum of the sensitivity matrix should be close to one. Otherwise, it indicates that the method

over- (> 1) or under estimates (< 1) in that region. The diagonal of the sensitivity matrix shows the sensitivity of the parameter

that is perturbed. Values close to one indicate high confidence in the reconstruction. Smaller values are either a consequence15

of smoothing or of not being sensitive at all. The latter is captured by looking at the column sum as well.

The measurement error shows the influence of the noise on the estimated parameters. We estimate uncertainty bounds

for the measurement error based on 1000 samples of noise as described in Sect. 3.7. We express the uncertainties by two

standard deviations of the empirical distribution of estimates corresponding to these samples. The exact total, smoothing and

measurement error are calculated using Eq. (13).20

4.7 Comparison to other methods

We compare our approaches to state-of-the-art methods studied in Miller et al. (2014). The scope of the article was
:::
that

::::::
article

:
is
:
to analyze different formulations to enforce positive parameters. The methods are:

– Standard inversion: This is a geostatistical approach following Michalak et al. (2004). It does not include a positivity

constraint and was
::
is taken as a benchmark method in Miller et al. (2014).25

– Transform inversion: Flux parameters are enforced to be positive by a power transformation

(see Snodgrass and Kitanidis, 1997). This technique can also be used to straighten skewed parameter distributions.

– Lagrange multiplier method: Positivity is enforced by formulating an optimization problem with
::
an inequality constraint,

which is solved via the Lagrangian function. As a deterministic method, no direct uncertainty estimates are given, but

they can be approximated using the approaches from Sect. 3.7.30
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– Gibbs sampler: The Gibbs sampler belongs to the group of Markov Chain Monte Carlo (MCMC) methods. These meth-

ods can generate realizations of complicated probability distributions such as the posterior distribution to non-Gaussian

priors in a Bayesian inversion framework. They
:::::::
MCMC

:::::::
methods differ in the way these realizations are calculated. One

can estimate statistical quantities such as mean and standard deviation given a sufficient number of realizations. Positiv-

ity is formulated in the prior distribution. In theory, one could implement one of several MCMC algorithms (see Miller5

et al., 2014), but we focus on the Gibbs sampler here (e.g. Michalak and Kitanidis, 2003).

All methods have been discussed in a Bayesian inversion framework. Further details and references are given in Miller et al.

(2014).

5 Results

In this section, we analyze the performance of our suggested sparse dictionary reconstruction method L1 DIC POS in the10

AIM scenario described in the previous section. First, we compare it with the methods L2 POS and L1 POS and carry out

an uncertainty analysis and an analyis of the exact errors. Then, we include the methods from Miller et al. (2014) into the

comparison. Finally, we analyze the ability of each method to reproduce spatially discrete emissions from oil and gas extraction

in the Barnett Shale region of Texas.

5.1 Methane emission estimates15

Figure 7 shows the estimated emissions using L2 POS, L1 POS and L1 DIC POS. Our first observation is that there are no sinks

anymore as positive fluxes are enforced by all methods. The results for L2 POS and L1 POS are close to the ones obtained by

L2 and L1 (see Fig. 4 and Sect. 4.3), setting negative fluxes to zero. However, projecting the final estimate (see Sect. 3.5) should

be avoided as the mismatch between modeled and measured data increases and thus does not make full use of the information

in the data. A projection step in every iteration allows the algorithm to correct for this
::::::
problem

:
in the next update. Especially20

for L2, we
:::
We measure significant improvement excluding sinks,

:::::::::
especially

::
for

:::
L2

:
(see Table 1).

In contrast to L1 POS, the solution of L1 DIC POS does not look sparse, as sparsity is enforced on the coefficients of the

dictionary. The background function in the dictionary has been
:
is
:

selected to represent a base level of small emissions (not

visible in the color map). It improves the inversion’s ability to accurately estimate total US emissions. Regionally, other atoms

have been
::
are

:
added and subtracted from this background level. The smooth character of the estimate in many regions is a25

result of the broader dictionary functions (see Fig. 6). The method adds pixel sources where local hot spots are assumed.

L1 DIC POS shows significant improvement in the estimate of localized sources against L2 POS (e.g. when looking at West

Coast emissions or Salt Lake City) , but a slight setback against L1 POS. Sometimes, these emission peaks might be misplaced

(e.g. San Francisco Bay Area). Regions of significant emissions like in the Midwest are often reasonably well reconstructed,

but the method still tends to spatially concentrate these sources. This localization property is a consequence of the sparsity30

constraint , because the flux field is represented by as few atoms as possible.
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Figure 7. Emission estimates from the methods L2 POS, L1 POS and L1 DIC POS inverted from noisy simulated methane measurements.

The true flux field is shown in figure 3.

We observe that the locations of significant sources agree much better with both sparsity methods L1 POS and L1 DIC POS

than with the classical L2 approach. This result can be explained by the fact that the sparse schemes look for the dominant

sources. Even if the magnitude is not captured exactly, the method L1 might be used in applications to identify the center of

source locations.
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5.2 Sensitivity, measurement uncertainty and error analysis

As described in Sects. 3.7 and 4.6 we assess smoothing and measurement error separately. In a first analysis, we ignore the

known, true emission field and analyze the sensitivity matrix and the measurement uncertainties as if we faced a real data

problem. In the error analysis, we study the exact total, smoothing and measurement errors.

5.2.1 Sensitivity analysis5

Without knowledge of the true fluxes, the
:::
The sensitivity matrix gives the best insight to the smoothing error

:::::::
without

:::::::::
knowledge

::
of

:::
the

:::
true

:::::
fluxes. Each column describes, how an additional pixel source would change the flux estimate. A perfect sensitivity

matrix is thus equal to the identity. The column sum indicates regions that are over- or underestimated. This
::::::::::
phenomenon

:
can

only be observed in regions with small footprint information outside the main study area, namely Florida, Mexico and Central

and Eastern Canada. The locations are similar for all methods, but L1 POS is far more biased in those regions. Table 1 shows ,10

that L1 POS indeed poorly estimates the total emissions.

The most valuable information is contained on the diagonal of the sensitivity matrix, plotted in Fig. 8 (left). The diagonal

shows the sensitivity of the parameter that is perturbed. Unsurprisingly, all methods are most sensitive in the vicinity upwind

of tower observation sites. Also, we observe that both sparse reconstruction schemes are less sensitive than L2 in regions that

are poorly constrained by the data and have an increased sensitivity in regions of greater footprint values. Large sensitivities15

can also be found where parameters are active, i.e. in grid cells with nonzero emission estimate.

The interpretation of the senstivity matrix is slightly different for both types of methods. If we excluded the positivity

constraint, L2 (POS) would be a linear method, meaning that the sensitivity matrix is independent of the parameters and

could be used to predict how additional sources would be reconstructed using Eq. (11). For positive parameters, nonlinearity

::::::::::
Nonlinearity

:
due to the positivity constraint should have little influence

::
for

:::::::
positive

::::::::::
parameters. In contrast, the sparsity con-20

straint adds to the nonlinearity. As a result, the sensitivity matrix might
:::
may

:
be different for each flux field. The sensitivity

for small sources might
:::
may

:
be small or even zero in some regions, but large sources or sources in several neighboring grid

cells could still be reconstructed. Figure
::
We

:::
use

::
a
:::::
rather

::::
large

:::::::::::
perturbation

::
to

::::::::::
approximate

:::
the

:::::::::
sensitivity

::::::::
matrices.

:::::::::
Therefore,

:::
Fig.

:
8 (left) shows the reconstruction ability

::::::
fraction

:
of a single larger pixel source , as we used a rather large perturbation to

approximate the sensitivity matrices
::::
large

::::
pixel

::::::
source

::::
that

:
is
::::::::::::
reconstructed

::
at

:
a
:::::
given

:::::::
location.25

5.2.2 Measurement uncertainty analysis

The measurement uncertainties describe the uncertainties in the estimate from the noise. We approximated
::::::::::
approximate

:
these

uncertainties by resampling the noise. Two standard deviations are plotted in Fig. 8 (right). The reason for regularization is to

limit the influence of noise on the estimate. However, no influence at all would also mean that the method is not sensitive to

data. For the L2 POS approach measurement
:
, uncertainties are rather equally distributed across the full domain excluding the30

poorly constrained regions of Mexico and Canada.
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Figure 8. Left: Diagonal of the numerically calculated sensitivity matrices for large deviations of ‖∆xk‖= 0.1µ mol m−2 s−1. Right: Two

standard deviation uncertainties due to noise on the measurements.

The sparse reconstruction method L1 POS has much larger measurement uncertainties, particularly in places where large

emitters are estimated. On the other hand, the estimated uncertainties are small or even zero in regions where the sensitivity

is small. This is a consequence of the thresholding algorithm. The method reacts with its active, nonzero parameters on small

perturbations in the data. The set of these active parameters is only adapted by significant changes. Theoretically, uncertainties

can be equal to zero but it is likely that zero uncertainties are a result of a limited number of samples used for their calcu-5
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lation. It is important to keep in mind that these uncertainties only show the influence
::::::::
represent

:::
the

:::::
effect from noise on the

solution
::::::::
estimated

:::::::::
parameters. Uncertainties for the smoothing error will be larger where the sensitivity is small.

L1 DIC POS looks more robust to noise than L1 POS. Similarly to L1 POS, there are large areas with neglectable measure-

ment uncertainties. The uncertainty correlates with the magnitude of the estimated emissions.

5.2.3 Error analysis5

Figure 9 shows the exact total,
:::::::
displays

:::
the smoothing and measurement errors.

:::::
Both

:::::
errors

:::
are

:
calculated using Eq. (13) for

the methods L2 POS, L1 POS and L1 DIC POS. The errors shown here are linked to this particular realization of noise. The

mean squared norm for the errors are calculated for comparison.

First, it
:
It is important to point out that it is misleading to look at either the smoothing or measurement error without the

other. For ill posed
:::::::
ill-posed

:
inverse problems, a small smoothing error comes at the expense of a larger measurement error and10

vice versa. A well chosen regularization parameter balances both errors such that the total error is minimized. For our methods
:
,

we observe that the measurement error is always smaller but the ratio is different for each method.

The measurement noise causes deviations on the estimated coefficients. This effect is described by the measurement error.

For L2 POS, these deviations affect most parameters whereas for L1 POS the effect is larger but mostly limited to the active

nonzero parameters. For L1 DIC POSthe noise works on ,
:::
the

:::::
noise

::::::
affects the active atoms of the dictionary.15

The smoothing error results from the stabilizing effect of the reconstruction methods. Because L2 POS aims at smooth emis-

sion fields, large pixel emissions are generally a combination of underestimation in that particular grid cell and overestimation

in the vicinity. This smoothing effect cannot be observed for
:::
does

::::
not

:::::::
manifest

::
in

:::
the

:
L1 POS (e.g. for the Salt Lake City

emission). For L1 DIC POS smoothing can happen , when spatially larger dictionary elements are selected.

While over- and underestimation are approximately equal for the measurement error, the smoothing error indicates whether20

a method over- or underestimates in general. Because of the zero a priori, all methods are expected to underestimate, but only

L1 POS significantly underestimates (see also Table 1).

L1 POS reduces the smoothing effect in some locations, but smoothing and measurement error are larger than for the other

methods
:::::::
because

:::
too

:::::
many

:::::
small

:::::::
sources

:::
are

:::::::::
suppressed. Sparse dictionary reconstruction has significantly less smoothing

error and thus gives the best estimate of the EDGAR fluxes. This result does
:::::
These

::::::
results

:::
do not rule out the method L125

POS
::::::
method

:
in general, but it suggests that this particular problem

:::
case

:::::
study

:
is not naturally sparse. However, the dictionary

representation is able to sparsify the signal and is thus well suited for these types of problems.

5.3 Comparison to other methods

In this section, we evaluate the estimates of our Tikhonov based methods by comparing them to the estimates of the methods

studied in Miller et al. (2014) (see Sect. 4.7).30
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Figure 9. Total (left), smoothing (middle) and measurement error (right) for the methods L2 POS, L1 POS and L1 DIC POS. Underesti-

mation is colored in red, whereas blue colors represent overestimation. The mean squared error
:::::
(MSE)

:
calculated for each panel is given in

10−4
(
µmolm−2s−1

)2. Note that the color coding is different for the measurement error.

5.3.1 General results

We examine the reconstruction quality using several measures, each of which focuses on aspects or qualities. Those
:::::
These

:::::::
measures

:
are:

relative total error :=

∫
Ω
x+−

∫
Ω
x∗∫

Ω
x+

(16)

relative regional error :=

∫
Ω
|x+ ∗©−x∗ ∗©|∫

Ω
(x+ ∗©)

(17)5

relative local error :=

∫
Ω
|x+−x∗|∫

Ω
x+

. (18)

The local error compares estimate and truth grid cell by
:::
the

::::::::
estimated

:::
and

:::::::
known,

:::::::
synthetic

::::::
fluxes

:::::
within

::::
each

:::::::::
individual

:
grid

cell while the total error sums up all grid cell emissions to a North American flux before comparison. We chose
:::::
choose

:
to

include the regional error as an intermediate measure between those two. The idea is to see if the total emissions over a region

24



around the grid cell is estimated correctly. This approach relativizes the smoothing effect of the reconstruction methods. Here,

© is a circular filter that gives a weighted sum of the neighbouring grid cells; in other words
:
, this measure compares smoothed

versions of the solution and the estimate.

The results for all estimates are listed in Table 1. We observe that our Tikhonov methods typically underestimate the total

emissions, which is expected when taking a zero a priori. Surprisingly, all methods from Miller et al. (2014) overestimate the5

total emissions, even though ≈ 5% difference can be considered a good result in this setup. Estimates of the total flux from L1

POS and the Gibbs sampler are poor in this scenario.

In the local error measure, which compares grid cell by grid cell, L1 DIC POS and the transform inversion perform best.

These methods come closer at addressing questions on the grid cell level but errors are still too high for accurate answers.

Reasonable estimates can only be made on a coarser scale by spatially integrating grid cells. The regional measure suggests10

that L2 POS and the Lagrange Multiplier method also perform well on a coarser grid.

From a modeling perspective
:
, the standard inversion is comparable to our method L2, whereas the Lagrange multiplier

method and Gibbs sampler include positivity constraints and compare to L2 POS. The estimates show similar features to

our estimates for L2 and L2 POS (see the supplementary information), namely rather smooth emission estimates. The spatial

correlation between parameters used by Miller et al. (2014) adds to the smoothness. As already discussed for our methods,15

large pixel sources such as cities appear more as regional sources in the estimate. That is why these methods do not perform

well on a grid cell level.

Our sparse dictionary reconstruction method and the transform inversion both estimate parameters in a different space, but

the transforms are fundamentally different. For L1 DIC POS, the sparsity constraint and the dictionary with the pixel elements

promote the estimation of pixel sources. For the tranform inversion, the nonlinear mapping between coefficient space and20

parameter space allows larger pixel emissions than the smoothing methods.

Table 1. Reconstruction errors measured on a local, regional and total scale (see Eqs. (16) - (18)). For the total, a negative sign means

overestimation. The regional and local meausures are always positive. All measures are relative and thus without unit.

method rel. total rel. regional rel. local

L2 0.113 0.554 0.945

L2 POS 0.080 0.492 0.812

L1 0.352 0.631 0.947

L1 POS 0.353 0.629 0.945

L1 DIC POS 0.051 0.500 0.747

Standard Inv. −0.052 0.691 1.039

Transform Inv. −0.057 0.490 0.683

Lagrange Mult. −0.053 0.523 0.827

Gibbs Sampler −0.273 0.664 0.957
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Figure 10. Regional EDGAR emissions and emissions estimates for the methods studied in Miller et al. (2014) and the Tikhonov reconstruc-

tion methods studied here.

5.3.2 Regional emission estimates

A common task is to determine the total emissions for a political or geographic region. Thus, we divided the domain into ten

regions, mainly along political borders. The flux estimates for these regions are shown in Fig. 10. We see that the estimates

of all methods agree for the central regions, while there are large differences in regions like Mexico and Canada. This is a

consequence of data availability. As many
:::::
Many measurement stations are located in the central regions,

::::
and the associated5

parameters are rather well constrained by the data, whereas .
:::
By

:::::::
contrast,

:
the formulation of the a priori knowledge determines

the parameters in regions with fewer observations. This results in underestimation for L2 POS and L1 POS as parameters are

forced to be small respectively equal to zero. For L1 DIC POS, the background function and the broader peak shape functions

included in the dictionary are used to describe the emissions in poorly-constrained regions and allow a proper estimate of the

regional fluxes. Along with the transform inversion,
:::::
Except

:::
for

:
L1 DIC POS best estimates the total flux of a region.

:::
POS

::::
and10

::
the

::::::
Gibbs

:::::::
Sampler

::
all

::::::::
methods

:::::::
perform

::::::::::
comparably

:::
well

:::
for

:::::::
regional

::::
flux

::::::::
estimates.

:

5.3.3 Case study: Methane emissions from the Barnett

In a final scenario, we test the reconstruction quality of our methods for methane emissions from unconventional gas wells. We

chose
::::::
choose the Barnett shale formation in Texas because it had the highest production of any US reservoirs in summer 2008.

We add a small synthetic source on top of the EDGAR fluxes and simulate noisy measurements. The synthetic emissions are15

inspired by the location of the formation and a recent map of well distribution (see Karion et al., 2015). The magnitude of the

emissions is roughly calculated from the 2008 production rate of 85 Million m3 y−1 and a leakage of about 1.5% as estimated

by Zavala-Araiza et al. (2015). It is not our aim to have the most accurate emissions but to analyze the potential of the methods.

The plots in Fig. 11 show the change in the estimates induced by this additional source. Table 2 states the numbers for the

spatially integrated flux change over the Barnett and the overall flux change. First, we observe that all methods underestimate20

the Barnett emissions. The reason for this underestimate is that all methods have low to middle sensitivity in that region (see Fig.
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8), which is a consequence of data availability. However, methods differ largely in the estimated magnitude of these emissions.

Best results are achieved by the transform inversion and the sparse reconstruction methods L1 POS and particularly L1 DIC

POS. The other methods might
::::
often

:
adjust the total emissions adequately but have problems attributing these emissions to

the Barnett. This result suggests that classical approaches lead to excessive smoothing for this application. In contrast, L1

POS is able to localize the added emissions, but it concentrates all emissions in just two grid cells within the Barnett. L1 DIC5

POS selects a larger and some smaller atoms from the dictionary to sparsely represent the Barnett emissions. While the source

shape is not exactly reconstructed, the method nicely displays the location and the total magnitude of the emissions within the

Barnett.

We should add that this scenario has not been
:
is
:::
not

:
designed to favor one of these methods. The source distribution cannot be

represented by a single atom in the dictionary. However, if potential source shapes like the distribution of wells were available,10

the sparse dictionary method would benefit from such knowledge.
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Figure 11. Additional methane sources in the Barnett shale gas reservoir (upper left) are added to the EDGAR emissions (see Fig. 3) and

noisy data is simulated. Differences to previous reconstructions from simulated EDGAR data are shown for each method. Emissions in the

red box are attributed to the Barnett.
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Table 2. Results for the Barnett scenario: Estimated emissions in the Barnett region (red boxes in Fig. 11) and total flux change induced by

the additional source for the methods of this study and the previous study by Miller et al. (2014).

method Barnett [mol s−1] tot. flux [mol s−1]

L2 POS 237.57 (36.1%) 580.35 (88.2%)

L1 POS 425.38 (64.7%) 558.29 (84.8%)

L1 DIC POS 534.82 (81.3%) 695.66 (105.7%)

Standard Inv. 323.52 (49.2%) 625.19 (95.0%)

Transform Inv. 580.59 (88.4%) 631.76 (96.0%)

Lagrange Mult. 318.63 (48.4%) 624.35 (94.9%)

Gibbs Sampler 262.26 (39.9%) 809.23 (123.0%)∗

true fluxes 657.99 (100.0%) 657.99 (100.0%)

∗ The mean is approximated from a limited number of random samples from the a

posteriori distribution. Thus, it slightly differs with every restart of the Gibbs

sampler.

6 Conclusions

This study analyzes different methods to solve inverse problems. We introduce Tikhonov regularization with the commonly

used 2-norm and the sparsifying 1-norm penalty function. We show how these approaches translate to a Gaussian and a

Laplacian prior, respectively, in a Bayesian inversion framework. We present a new sparse reconstruction method that enforces

sparsity in a redundant dictionary representation system taylored to this application. A simple heuristic approach is applied to5

all methods to force nonnegative parameters. To test our methods
::::
these

::::::::
methods, we consider an atmospheric inverse modeling

scenario, in which we estimate methane surface fluxes for the United States from atmospheric in-situ measurements.

We find that the choice of the penalty term has a significant
:::::::::
substancial influence on the estimate and is thus a crucial

step when solving inverse problems. Gaussian-like priors such as the 2-norm penalty in Tikhonov regularization produce a

smoothing effect. In our scenariothis
:
,
:::
this

::::::::::::
characteristic means that large localized sources such as emissions from cities10

cannot be estimated accurately. Instead, they appear more as regional sources. In constrast, the sparse reconstruction approach

can reproduce these large emitters, but it also suppresses too many small emissions to properly estimate the total flux. However,

we find a simple dictionary representation system that is able to sparsely approximate the emission field. Our
:::
The

:
resulting

sparse dictionary reconstruction method works equally well as established methods in determining the overall flux field and

adds information on the local scale.15

The Barnett case study shows the importance of such local information: While the smoothing methods recognize the addi-

tional emissions in the total flux, they cannot attribute these to the Barnett. Our
:::
The sparse dictionary reconstruction method

and the transform inversion studied in Miller et al. (2014) perform much better in localizing these emissions. This
:::::
result sug-

gests that the standard Gaussian prior is too prohibitive towards large emitters in this application and more sophisticated models

are required.20
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As concluded in the previous study by Miller et al. (2014), we can confirm that the positivity constraint on the flux parameters

further improves the estimate. For our Tikhonov based methods, we find a heuristic approach to meet these constraints by using

an iterative solver in combination with a projection step. Our iterative methods are also well-suited for large scale problems as

they avoid costly numerical operations. However, an error analysis might be intractable for very large problems.

Obviously, the
::::
The sparsity constraint works best when the underlying signal is sparse or can be sparsely approximated.5

The representation of the signal in a dictionary is very flexible and can create a sparse signal for many applications. Our

sparse reconstruction method is thus applicable to any inverse problem, but the dictionary would need to be adapted to suit

the application. For some applications, sparsifying transforms or training data to learn a dictionary might be available. In

others, finding a sparsifying dictionary might be a challenge on its own. We construct the dictionary by identifying some

building blocks of the signal. The estimate can be further improved by using spatial information about sources encoded in10

shape functions.

In summary, the sparse reconstruction approach here is a good alternative to commonly used Gaussian priors when the emis-

sion field has many point sources or heterogeneous spatial structure. The combination of a sparsifying dictionary representation

system and sparse reconstruction is a powerful tool for many inverse modeling applications.

7 Code and data availability15

The numerical methods and the case study data are available for download. The code is written in Matlab 2014b. See the

supplement for more information.
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