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Abstract 13 

Data assimilation methods provide a rigorous statistical framework for constraining 14 

the parametric uncertainty of land surface models (LSMs), with the aim of improving our 15 

predictive capability as well as identifying areas in which the models need improvement. The 16 

increase in the number of available datasets in recent years allows us to address different 17 

aspects of the model at a variety of spatial and temporal scales. However, combining data 18 

streams in a DA system is not a trivial task. In this study we highlight some of the challenges 19 

surrounding multiple data stream assimilation, with a particular focus on the carbon cycle 20 

component of LSMs. We examine the impact of biases and inconsistencies between the 21 

observations and the model (resulting in non Gaussian error distributions) and the impact of 22 

non-linearity in model dynamics. In addition we explore the differences between performing a 23 

simultaneous assimilation (in which all data streams are included in one optimisation) and a 24 

step-wise approach (in which each data steam is assimilated sequentially), given the 25 

assumptions inherent to the inversion algorithm chosen for this study. We demonstrate some 26 

of these issues by assimilating synthetic observations into two simple models: the first a 27 

simplified version of the carbon cycle processes represented in many LSMs, and the second a 28 

non-linear toy model. We further discuss these experimental results in the context of recent 29 
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studies in the carbon cycle data assimilation literature, and finally we provide some 1 

perspectives and advice to other land surface modellers wishing to use multiple data streams 2 

to constrain their models. 3 

Keywords: data assimilation, carbon cycle, biogeochemical cycles, land surface model 4 

 5 

1 Introduction 6 

The carbon cycle is an important component of the Earth system, especially when 7 

considering the climatic impact of rising greenhouse gases concentrations from fossil fuel 8 

emissions and land use change. It is estimated that the oceans and land surface absorb 9 

approximately half of the CO2 emissions due to anthropogenic activity, but uncertainties 10 

remain in the strength and location of sources and sinks, as well as in predictions of future 11 

trends (Ciais et al., 2013). Observations allow us to understand the system up until the present 12 

day, but they cannot tell us about the future, and can be limited in their spatial coverage. They 13 

also cannot distinguish between the complex interactions that may occur between different 14 

processes. Incorporating our current knowledge of physical mechanisms of biogeochemical 15 

cycles, including carbon, C, dynamics, into Land Surface Models (LSMs) represents a 16 

promising approach to analyse these interacting effects, to upscale observations to larger 17 

regions, and to make future predictions. However, the models can be limited by the lack of 18 

process representation, either due to gaps in our knowledge or in our technical and computing 19 

capability. As a result, model evaluations reveal that not all variables are well-captured by the 20 

model under current conditions (Anav et al., 2013), and the spread between model projections 21 

is still very large (Sitch et al., 2015).  22 

Aside from model structural and forcing errors, one source of uncertainty is related to the 23 

parameter (i.e. fixed) values of a model. Model-data fusion, or data assimilation (DA), allows 24 

the calibration, or optimisation, of these values by reducing the model-data misfit while 25 

accounting for the uncertainties inherent in both the model and data in a statistically rigorous 26 

framework. The C cycle component of most LSMs is complex and contains a large number of 27 

parameters. Luckily however, there are an increasing number of in-situ and remote sensing-28 

based data streams that can be used for parameter optimisation. These data bring information 29 

on different spatial and temporal scales, such as: 30 
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• Atmospheric CO2 concentration data measured at surface stations at continental to 1 

global scales, which provide information from synoptic timescales to inter-annual 2 

variability (IAV) and long-term trends. 3 

• Eddy covariance net CO2 (net ecosystem exchange – NEE) and latent (LE) and 4 

sensible heat fluxes measured at half-hourly intervals at many sites across different 5 

ecosystems/regions, providing information at seasonal to inter-annual timescales. 6 

• Satellite-derived measures of vegetation dynamics, including “greenness” indices (i.e. 7 

the Normalised Difference Vegetation Index – NDVI), fraction of absorbed 8 

photosynthetically active radiation (FAPAR) and leaf area index (LAI) at global scales 9 

and at daily time step spanning more than a decade, thus capturing IAV and long-term 10 

trends (though usually with a trade-off between spatial and temporal resolution). 11 

• Satellite-derived measurements of soil moisture and land surface temperature at the 12 

same temporal and spatial scales as the satellite-derived observations of vegetation 13 

productivity. 14 

• Aboveground biomass measurements are currently taken at only one or a few points in 15 

time at plot scale up to regional scale from aircraft and satellite data, or are estimated 16 

from allometric relationships at each site.  17 

• Soil C stock estimates usually are only taken at one point in time at plot scale. 18 

• Ancillary data on vegetation characteristics such as tree height or budburst – one 19 

measured at certain well-instrumented sites.  20 

 21 

Increasingly, researchers are attempting to bring these sources of information together to 22 

constrain different parts of a model at different spatio-temporal scales within a multiple data 23 

stream assimilation framework (e.g. Richardson et al., 2010; Keenan et al., 2012; Kaminski et 24 

al., 2012; Forkel et al., 2014; Bacour et al., 2015). However, whilst the potential benefit of 25 

adding in extra data streams to constrain the C cycle of LSMs is clear, multiple data stream 26 

assimilation is not as simple as it may seem. When using more than one data stream there is 27 

the option to include all data streams together in the same optimisation (simultaneous 28 

approach), or to take a sequential (step-wise) approach. Mathematically, the optimal approach 29 

is the simultaneous, but computational constraints related to the inversion of large matrixes or 30 
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the requirement of numerous simulations (especially for global datasets), and/or the weight of 1 

different data streams in the optimisation, may complicate a simultaneous optimisation. On 2 

the other hand, in a step-wise assimilation the parameter error covariance matrix has to be 3 

propagated at each step, which implies that it can be computed. If the parameter error 4 

covariance matrix can be properly estimated and is propagated between each step, the step-5 

wise approach can be mathematically equal to simultaneous. However, many inversion 6 

algorithms (e.g. derivative based methods that use the gradient of the cost function to find its 7 

minimum) require assumptions of model (quasi-) linearity and Gaussian parameter and 8 

observation error distributions. If these assumptions are violated, or the error distributions are 9 

poorly defined, it is likely that the step-wise will not be equal to the simultaneous, and that 10 

information will be lost at each step. An incorrect description of the observation (– model) 11 

error distribution could result from the wrong assumption about the distribution of the 12 

residuals between the observation and the model, a poor characterisation of the error 13 

correlations, an incompatibility between the model and the data (possibly due to a model 14 

structural issue or differences in how a variable is characterised), or a bias in the observations 15 

that is not unaccounted for (i.e. is treated as a random error). Whilst a simultaneous 16 

optimisation is mathematically more rigorous in the sense that the error correlations are 17 

treated within the same inversion, if the prior distributions are not properly characterised any 18 

bias may be aliased to the wrong parameters (Wutzler and Carvalhais, 2014), more so than in 19 

a step-wise approach.  20 

This tutorial-style paper demonstrates some of the challenges of multiple data stream 21 

assimilation discussed above with two simple models: one a simplified version of the carbon 22 

dynamics included in many LSMs, and the other a “toy” model designed to demonstrate the 23 

issues that arise with complex, non-linear models. Section 2 provides a description of these 24 

models, the inversion algorithm used to optimise the model parameters and the experiments 25 

performed, followed by the results for each test case. Section 3 further discusses the 26 

challenges outlined in Section 2 with reference to recent carbon cycle multiple data stream 27 

assimilation studies in the literature. Finally Section 4 provides some advice to land surface 28 

modellers wishing to carry out multiple data stream assimilation.  29 

 30 
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 5 

2 Demonstration with two simple models and synthetic data 1 

2.1 Methods 2 

2.1.1 Simple carbon model 3 

To demonstrate the challenges of multiple data stream assimilation in a carbon cycle 4 

context, we have chosen a test model that represents a simplified version of the carbon cycle 5 

dynamics typically implemented in most LSMs. The model has been well-documented in 6 

Raupach (2007) and has been used previously in the OptIC DA inter-comparison project 7 

(Trudinger et al., 2007). It is based on two equations that describe the temporal evolution of 8 

two carbon pools, s1 and s2: 9 

ds1
dt

= F(t) s1
p1 + s1

⎛

⎝
⎜

⎞

⎠
⎟

s2
p2 + s2

⎛

⎝
⎜

⎞

⎠
⎟− k1s1 + s0                                               (1) 10 

ds2
dt

= k1s1 − k2s2                                                         (2) 11 

In this model formulation, s1 and s2 are approximately equivalent to above- and belowground 12 

biomass stocks. The unknown parameters p1, p2, k1 and k2 will be optimised in the inversions. 13 

The first term on the right-hand side of Eq. (1) corresponds to the Net Primary Production 14 

(NPP) i.e. the carbon assimilated into the system as a function of time, F(t), weighted by 15 

factors that account for the size of both pools in order to introduce a limitation on NPP (the 16 

two fractions in parentheses). The litterfall is an output of s1 and an input to s2 and is a 17 

constant fraction of the aboveground carbon reserve as represented by k1s1. Heterotrophic 18 

respiration (Rh) is an output of s2 and is represented k2s2. The constant s0 is a “seed 19 

production” term set to 0.01 (i.e. not optimised) to ensure the model does not verge towards 20 

zero. A more detailed description of the properties of the model is given in Trudinger et al. 21 

(2007) and an in-depth analysis of the model behaviour is provided in Raupach (2007). 22 

Synthetic observations of both s1 and s2 variables were used to optimise all the unknown 23 

parameters in the model (see Section 2.1.5).  24 

 25 

2.1.2 Non-linear toy model  26 

Although the simple carbon model contains a non-linear term it is essentially still a 27 

quasi-linear model. In order to illustrate the challenges associated with multiple data stream 28 
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data assimilation for more complex non-linear models, we defined a simple non-linear toy 1 

model based on two equations with two unknown parameters:  2 

s1 = aexp
b+ at2                                                                   (3) 3 

s2 = sin(10a+10b)+10t
2

                                                        (4) 4 

where s1 and s2 also correspond to two model state variables (as for the simple C model), a 5 

and b are the unknown parameters included in the optimisation, and t is the independent 6 

variable, which could represent time in a real-world scenario. Note that this model is not 7 

based on any particular physical process associated with land surface biogeochemical cycles, 8 

but it does contain typical mathematical functions that are observed in reality and 9 

implemented in LSMs. For example, the sinusoidal function (Eq. (4)) could represent diurnal 10 

variations of various processes such as photosynthesis and respiration. Exponential response 11 

functions (such as in Eq. (3)) are also observed for certain processes, including the 12 

temperature sensitivity of soil microbial decomposition. As for the simple carbon model, 13 

synthetic observations corresponding to the s1 and s2 variables were used to optimise both 14 

parameters (see Section 2.1.5).  15 

 16 

2.1.3 Bayesian inversion algorithm  17 

Most data assimilation approaches follow a Bayesian formalism which, simply put, 18 

allows prior knowledge of a system (in this case the model parameters) to be updated, or 19 

optimised, based on new information (from the observations). In order to achieve this we 20 

define a “cost function” that describes the misfit between the data and the model, taking into 21 

account their respective uncertainties, as well as the uncertainty on the prior information. If 22 

we follow a Bayesian formalism and least-squares minimisation approach, and assume 23 

Gaussian probability distributions for the model parameter and observation error 24 

variance/covariance, we derive the following cost-function (Tarantola, 1987):  25 

J(x) = 1
2
[(H (x)− y)T .R−1.(H (x)− y)+ (x− xb )T .B−1(x− xb )]                        (5) 26 

where y is the observation vector, H(x) the model outputs given parameter vector x, R the 27 

observation error covariance matrix (including measurement and model errors), xb the a priori 28 
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parameter values, and B the prior parameter error covariance matrix. This framework leads to 1 

a Gaussian posterior parameter probability distribution function. 2 

The aim of the inversion algorithm is to find the minimum of this cost function, 3 

thereby achieving the best possible fit between the model simulations and the measurements, 4 

conditioned on their respective uncertainties and prior information. For cases where there is a 5 

strong linear dependence of the model to the parameters (at least for variations in x of the size 6 

of those expected in the data assimilation system), and where the dimensions of the problem 7 

are not too large, the solution can be derived analytically. If not, as is usually the case with 8 

LSMs, there are different numerical methods to find the most optimal parameter values. 9 

These include global search methods that randomly search the parameter space and test the 10 

likelihood of a particular parameter set at each iteration, and derivative methods, which 11 

calculate the gradient of the cost function at each iteration to find its minimum. In this study 12 

we use the latter class of methods. More specifically we use a quasi-Newton algorithm that 13 

uses both the gradient of the cost function and its derivative (Hessian) to evaluate if the 14 

minimum has been reached (i.e. where the gradient is zero). Thus we obtain the following 15 

algorithm for iteratively finding the minimum (Tarantola, 1987, p195):  16 

xi+1 = xi +εi[H
TR−1H+B−1]−1HTR−1(y−H (x)−B−1(xi − x

b ))                         (6) 17 

where i is the iteration number and H is the Jacobian, or first-order derivatives, of H, which in 18 

this study is determined using a finite difference method. Note that as we are potentially 19 

dealing with non-linear models, the quasi-Newton method has been slightly adapted to 20 

include the constant scaling factor εi (with a value <1.0) to ensure that the algorithm will 21 

converge.  22 

 Of course no inversion algorithm is perfect, and therefore it is possible that the true 23 

“global” minimum of the cost function has not been found. Derivative methods in particular 24 

can get stuck in so-called “local minima”, preventing the algorithm from finding the true 25 

minimum. To address this issue we carry out a number of assimilations with different random 26 

first guess points in the parameter space. If they all result in the same reduction in cost 27 

function value, we can have more confidence that the true minimum has been found.  28 

Once the minimum of the cost function has been found, the posterior parameter error 29 

covariance can be approximated (using the linearity assumption) from the inverse Hessian of 30 
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 8 

the cost function around its minimum, which is calculated using the Jacobian of the model at 1 

the minimum of J(x) (for the set of optimized parameters), H∞, following Tarantola (1987): 2 

A = [H∞
TR−1H∞ +B

−1]−1                                                       (7) 3 

Note that the posterior error covariance matrix can be propagated into the model space to 4 

determine the posterior uncertainty on the simulated state variables as a result of the 5 

parametric uncertainty (as shown in the coloured error bands in the time series plots – Figures 6 

1 and 5) using the following matrix product and the hypothesis of local linearity (Tarantola, 7 

1987): 8 

R post =H∞.A.H∞
T                                                              (8) 9 

However, we do not detail the propagated posterior uncertainty on the state variables further 10 

in this study; rather, we describe the impact of the optimisation on the model–data fit in terms 11 

of the RMSE value and also in terms of the relative uncertainty reduction on the parameters. 12 

 13 

2.1.4 Step-wise versus simultaneous assimilation  14 

Step-wise approach 15 

In the step-wise approach each data stream (in our cases s1 and s2, see above) is 16 

assimilated sequentially, and the posterior error covariance matrix of Eq. (7) is propagated to 17 

the next step as the prior in Eq. (6). Note that the error covariance matrix can only be 18 

propagated if it is calculated within the inversion algorithm, which is the case here but may 19 

not be possible in other studies. The following details an example for two data streams. 20 

Step 1:  Assimilation of the first data stream, s1. The prior parameters, including their values 21 

and error covariance (xb and B), are optimised to produce a first set of posterior 22 

optimised parameters x1 with error covariance A1.  23 

Step 2:  Assimilation the second data stream, s2. The parameters, x1, and their error 24 

covariance, A1, are used as a prior to the optimisation system and further optimised 25 

to produce the second (and final) set of posterior optimised parameters, xpost, and the 26 

associated error covariance A.  27 
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Simultaneous approach 1 

Both data streams s1 and s2 are included in the optimisation and all parameters are optimised 2 

at the same time. The prior parameters, including their values and error covariance (xb and B) 3 

are optimised to produce the posterior parameter vector (xpost) and associated uncertainties A. 4 

 5 

2.1.5 Optimisation set-up: parameter values and uncertainty, and generation 6 

of synthetic observations 7 

In this study we used synthetic observations that were generated by running the model 8 

with known (or ‘true’) parameter values and adding random Gaussian noise corresponding to 9 

the defined observation error for both s1 and s2 (see Table 1). The true values of all parameters 10 

for both models are given in Table 1, together with their upper and lower bounds. The 11 

parameter uncertainty (1 sigma) was set to 40% of the parameter range following recent 12 

studies (e.g. Bacour et al., 2015). Prior values were chosen from a uniform random 13 

distribution bounded by the parameter bounds. We assumed independence (i.e. uncorrelated 14 

errors) for both the parameters and observation covariance matrices, thus the R and B 15 

matrices were diagonal. 16 

 17 

2.1.6 Experiments 18 

Table 2 details the experiments that were carried out based on all possible combinations 19 

for assimilating the two data streams. Three approaches were compared: i) separate – where 20 

only one data stream was included in the optimisation; ii) step-wise – where each data stream 21 

was assimilated sequentially; and ii) simultaneous – where both data streams were included in 22 

the optimisation. All parameters for both models were optimised in all experiments, therefore 23 

in the step-wise cases the parameters were optimised twice. Tests for the step-wise were also 24 

carried out with and without the propagation of the full posterior parameter error covariance 25 

matrix, A1, in between steps 1 and 2 (test cases 2b and d – see Table 2) – i.e. for these tests 26 

only the posterior variance was propagated. An additional test was included for the 27 

simultaneous assimilation in order to test the impact of having a substantial difference in the 28 

number of observations for the data stream included in the optimisation; therefore in test case 29 

3b, only one observation was included for data stream s2.  30 
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The differences in the parameter values and the theoretical reduction in their uncertainty 1 

(1 – (σpost / σprior)) were examined for all eight test cases, as well as the fit (RMSE) to both 2 

data streams after the optimisation. For the step-wise approach we investigated if the fit to the 3 

first data stream is degraded in the second step by comparing the RMSE after each step. Note 4 

that the reduction in uncertainty is a theoretical, or approximate, estimate of the real 5 

uncertainty reduction because of the assumptions made in the inversion scheme.   6 

In a second stage the impact of an unknown, un-accounted for bias in the model was 7 

examined. This bias could be a systematic bias in the observations due to the algorithm used 8 

for their derivation, the result of missing or incomplete processes in the model, or an 9 

incompatibility between the observations and the model, for example due to differences in 10 

spatial resolution or an inconsistent characterisation of a variable between the model and the 11 

observations. To test the impact of such an occurrence, we introduced a uniform scalar bias 12 

into the modelled s2 variable with a value of 10 (i.e. twice the magnitude of the defined 13 

observation uncertainty). All eight experiments were repeated, but a bias was introduced into 14 

the model calculation of s2 that was not accounted for in the cost function (i.e. the error 15 

distributions retained a mean of zero). This was treated as an unknown bias, and therefore not 16 

corrected or accounted for in the inversion scheme and the defined observation uncertainty 17 

(Table 1) was not changed for this set of experiments.  18 

In all experiments for both models twenty assimilations were performed starting from 19 

different random “first guess” points in the parameter space. As discussed in Section 2.1.3 20 

this was done to test the ability of the algorithm to converge to the true global minimum of the 21 

cost function. Note that the global minimum and possible reduction in J(x) will be different 22 

for each experiment, as each is based on a different cost function. 23 

 24 

2.2 Results 25 

The twenty random first guess assimilations were examined for each set of experiments 26 

for both models (before the results for each test were examined in more detail), in order to 27 

check that the algorithm converged to a global minimum. As shown in the supplemental 28 

information (Fig. S1), a high proportion of the twenty first guess assimilations across all test 29 

cases for both models resulted in a similar reduction in J(x), even though the overall 30 

magnitude of the reduction was sometimes different between tests. This indicates that the 31 
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algorithm does not easily get stuck in any local minima (if they exist). The examples shown in 1 

the results below were taken from one first guess parameter set for each model that belonged 2 

to the cluster that had the highest cost function reduction. Any differences seen in the 3 

parameter values, their posterior uncertainty or the resultant RMSE reduction described below 4 

therefore are due to the specific details of each test and not the inability of the algorithm to 5 

find the minimum.  6 

 7 

2.2.1 Typical performance with a quasi-linear model and no bias 8 

Figures 1a and b show the simple carbon model simulations for test case 3a (in which 9 

both data streams are assimilated simultaneously) for the s1 and s2 variables. A large reduction 10 

in RMSE is achieved after optimisation (blue curve) with respect to the observations (black 11 

curve). Overall, there is a good reduction in RMSE for all test cases (including the individual 12 

assimilations 1a and 1b) with a reduction of ~80% for s1 and s2. In addition, the optimisation 13 

of the s1 and s2 variables resulted in a good or moderate reduction in RMSE for variables not 14 

included in any assimilation: ~60% for the litterfall (Eqn. 1) and ~16% for the heterotrophic 15 

respiration (Rh – Eqn. 2) across all test cases (not shown), although there was already a good 16 

prior fit to the data. As would be expected from these results, the parameter values and the 17 

theoretical reduction in parameter uncertainty do not vary between the tests (Figures 2a and b 18 

blue symbols), except for a slight difference in the value of the k2 parameter in test cases 1a 19 

and 3b, for which there is also a lower reduction in uncertainty (~82% compared to >95%). 20 

Note that Fig. 2a shows the normalised parameter values to account for differences in the 21 

magnitude of the different parameters and their range (the zero line represents the “true” 22 

parameter value – see caption). In this situation therefore, where we have a relatively simple 23 

linear model and two data streams to which the model parameters are highly sensitive, we see 24 

that the differences between the step-wise and simultaneous approaches are minimal. This is 25 

even the case when the error covariance is not propagated between the two steps (test cases 2b 26 

and d), suggesting that under this assimilation set-up both s1 and s2 individually contain 27 

enough information to retrieve the true values of all parameters, as we can see from the 28 

separate test cases 1a and b.  29 

 30 
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2.2.2 Impact of unknown bias in one data stream – example with a simple 1 

carbon model 2 

In Section 2.2.1 we saw that there is little difference between a step-wise and 3 

simultaneous optimisation if there is no bias in the model or observations, and if the model is 4 

quasi-linear and therefore the critical assumptions behind the inversion approach were not 5 

violated. However, it is not uncommon to have a bias between your observations and model 6 

that is not obvious and therefore not accounted for in the optimisation, as the cost function 7 

used in most inversion algorithms (and in this study) assume Gaussian error distributions with 8 

zero mean. Note that this is also the case when defining a likelihood function for accepting or 9 

rejecting parameter values in a global search method. To test the impact of a bias, we added a 10 

uniform value to the simulated s2 variable in a second test (see Section 2.1.6) that was treated 11 

as an unknown bias, and therefore not corrected or accounted for in the inversion scheme. The 12 

impact of this bias on s1 and s2 is shown in Figures 1c-d, and the reduction in RMSE between 13 

the model and observations is seen in Fig. 3 for all variables (including Rh and litterfall). The 14 

red symbols in Fig. 2 show the resultant parameter values and theoretical reduction in 15 

uncertainty as a result of the bias. The inversion cannot accurately find the correct values for 16 

all parameters in any test case and there are now considerable differences between the 17 

simultaneous and step-wise approach. Furthermore the order in which the data streams are 18 

assimilated in the step-wise cases also results in different posterior parameter values (test 19 

cases 2a and b versus 2c and d in Fig. 2a and Fig. 3). Nevertheless the optimisation results in 20 

a similar reduction in uncertainty on the parameters, except in test case 1b where only s2 data 21 

are assimilated (Fig. 2b).  22 

The main impact of the bias in the modelled s2 variable is on the value of k2 parameter 23 

(Fig. 2a), which is consistently offset from the true value (dashed line in Fig. 2a) in all test 24 

cases. This was expected given that it is the parameter most directly related to the calculation 25 

of s2. However, in test cases 2a and 3a, the values of p1 and p2 are also incorrect (and p1 for 26 

test case 2b). Note that these parameters only indirectly influence the s2 pool in the model, 27 

and therefore we might have expected that they would be less affected by the bias. This nicely 28 

demonstrates one issue that could arise in all DA studies, where the bias in a particular 29 

variable (in the observations or the model) is aliased onto another process in the model 30 

(Wutzler and Carvalhais, 2014). Such an aliasing of bias onto indirectly related parameters is 31 

even more evident when only s2 is included in the assimilation and s1 does not provide any 32 
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constraint (test case 1b) – in this case all parameters are incorrect but the p2 parameter in 1 

particular shows a strong deviation from the true value (Fig. 2a). As a result we see a 2 

deterioration in the RMSE for the s1, litterfall and Rh variables in test case 1b and in the step-3 

wise cases where s2 is assimilated in the second step (Figures 3a, c and d – test case 1b, 2a 4 

and 2b). However, the RMSE reduction remains high for the s2 variable for these test cases 5 

(Fig. 3b), as the inversion has found a solution that accounts for the bias even though all 6 

inferred parameter values are incorrect. The assimilation of s1 in the second step lowers the 7 

reduction in RMSE for s2 gained in the first step to ~70%, but it is not a considerable 8 

degradation. 9 

Even though the posterior parameter values are incorrect, and despite the fact that the 10 

first step results in a degradation, the final reductions in RMSE are largely the same than the 11 

situation with no bias for all variables when s1 is included in a simultaneous assimilation or 12 

optimised in the second step (test cases 2c, d and 3a in Fig. 3). This shows that the inclusion 13 

of s1 observations can find a solution to counter the bias in s2 and prevents a degradation in 14 

the fit to the data. If s2 is assimilated in the second step there is a negative impact on all other 15 

variables as discussed above, demonstrating again that the order of data stream assimilation 16 

can matter when there are biases or inconsistencies between the data and the model.  17 

The analysis of the impact of the bias presented here is specific to this model and the 18 

type and magnitude of the bias that was added, but the broader findings can be generalised to 19 

any situation in which there is a bias or inconsistency between a model and data that is not 20 

accounted for in the assigned error distributions. Exactly what might constitute a bias or 21 

inconsistency is discussed more in Section 3.2. Also note that it is important to examine the 22 

impact on the other variables. For the separate test case 1b in which only s2 data are used to 23 

optimise the model, the negative impact on the other variables (Fig. 3) would have been 24 

concealed if we had only examined the posterior reduction in RMSE for the s2 variable. Again 25 

this is a concern that is inherent to all DA experiments, whether single- or multi-data stream, 26 

but we can see from these results (i.e. by comparing the separate test cases 1b with 2a and b) 27 

that adding another data stream in a multi-constraint approach does not always reduce the 28 

problem.  29 

 30 
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2.2.3 Difference between the step-wise and simultaneous approaches in the 1 

presence of a non-linear model  2 

As discussed in Section 2.2.1, there is little difference between the step-wise and the 3 

simultaneous assimilation approaches for simple, relatively linear models, unless the 4 

observation error (including measurement and model errors) distribution deviates strongly 5 

from the Gaussian assumption. However in reality, large-scale, complex LSMs may contain 6 

highly non-linear responses to certain model parameters. To demonstrate the impact of non-7 

linearity in a multiple data stream assimilation context, we used a non-physically based toy 8 

model chosen for its non-linear characteristics (see Section 2.1.2).  9 

Fig. 4a shows the posterior parameter values for both the a and b parameters of the 10 

non-linear toy model for all test cases. The values were not normalised as both parameters 11 

have the same range. The horizontal dashed line shows the “true” known values of the 12 

parameters (both equal to 1.0) that were used to generate the synthetic observations. Note that 13 

no bias has been introduced into the model in the results described here. The prior and 14 

posterior model s1 and s2 simulations for the non-linear toy model are compared to the 15 

synthetic observations in Fig. 5 for both step-wise cases in which the posterior error 16 

covariance matrix from step 1 (A1 – see section 2.1.4) was propagated to step 2 (experiments 17 

2a and c – Fig. 5a-d) and both simultaneous cases 3a and b (Fig. 5 e-h). Finally Fig. 6 18 

summarises the reduction in RMSE between the simulated and observed s1 and s2 variables 19 

for the non-linear toy model for all test cases and, in the step-wise cases, the reduction in 20 

RMSE after both the first and second steps (light versus dark green bars).  21 

Assimilating each data stream individually (test cases 1a and b) does not result in an 22 

accurate retrieval of the posterior parameters (Fig. 4a), nor in a strong constraint on either 23 

parameter, as shown by the lack of theoretical reduction in the parameter uncertainty after the 24 

optimisation (Fig. 4b). Despite this, there is a 91-92% reduction in RMSE for the data stream 25 

that was included in the optimisation (i.e. for s1 in test case 1a – Fig. 6a, and s2 in test case 1b 26 

– Fig. 6b). However, the improvement on the other data stream is much less (28% reduction 27 

in RMSE for s1 when s2 is assimilated) or even results in a degradation compared to the prior 28 

fit (e.g. in the case of s2 when s1 is assimilated – Fig. 6b). Lack of improvement, or even 29 

degradation, in the RMSE of other variables in the model is a common issue for data 30 

assimilation in general – one that is not often evaluated in model-data fusion studies. 31 
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Only the simultaneous case, in which all s1 observations have been included in the cost 1 

function (test case 3a), manages to retrieve the correct parameter values after the optimisation. 2 

All other posterior parameter values are incorrect, and are considerably different between 3 

each case, unlike for the simple carbon model (without a model bias). Most step-wise test 4 

cases (particularly 2b-d) do not result in the same parameter values as the simultaneous test 5 

case 3a in which all the observations are included (Fig. 4a), highlighting that strong non-6 

linearity in the model sensitivity to parameters together with the use of an algorithm that is 7 

only adapted to weakly non-linear problems, as well as the assumption of linearity in 8 

calculating the posterior error covariance matrix at the minimum of the cost function, can 9 

result in differences between a step-wise and simultaneous approach in multiple – data stream 10 

assimilation (see Section 1).  11 

In the simultaneous optimisation in which all observations are included (test case 3a) 12 

the posterior fit to the data dramatically improves for both the s1 and s2 data streams after the 13 

assimilation (blue dashed line in Fig. 5e and f). This was expected given that the correct 14 

values of the parameters were found. For the step-wise cases (test case 2a in Figures 5a and b, 15 

and test case 2c in Fig. 5c and d), the black dashed line shows the prior, and the posterior after 16 

step 1 is shown by green dashed line. In the step-wise assimilation we see two different 17 

scenarios depending on which data stream was assimilated first. In the first step the results are 18 

the same as the case where each individual data stream is assimilated separately. In both cases 19 

the first step results in a good fit to the data that was included in the optimisation in that step. 20 

When the s1 data was assimilated in the first step (Fig. 5 first row), the fit to s2 deteriorated 21 

after the optimisation (Fig. 5b green dashed line and Fig. 6b – test case 2a_s1), but when the 22 

s2 data were assimilated first (Fig. 5 second row) the optimisation step did manage to achieve 23 

an improvement in the s1 data stream (Fig. 5c green dashed line and Fig. 6a – test case 2c_s1).  24 

In the second step the optimisation of s2 in test cases 2a and b does not degrade the fit 25 

to s1 when the full parameter error covariance matrix (A1) is propagated between step 1 and 2 26 

(Figures 5a blue curve and 6a 2a_s2). Furthermore optimising s2 in the second step reverses 27 

the deterioration in s2 caused by assimilating s1 in the first step (Figures 5b blue curve and 6b 28 

2a and b dark green bars). However, when s1 data were assimilated in the second step (test 29 

cases 2c and d), we found that the good fit achieved with s2 observations in the first step was 30 

effectively reversed (Fig. 5d blue curve). Therefore assimilating s1 in the second step 31 

degraded the fit to the s2 observations, even compared to the prior case (Fig. 6b, dark green 32 
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bars for test cases 2c and d). This nicely highlights one of the main possible issues with a 1 

step-wise assimilation framework. 2 

The fact that the final reduction in RMSE values after both steps was ~90% for most 3 

cases, even though the values were not correct for all but case 3a (Fig. 4), indicates that the 4 

error correlation between the two parameters (~ -1.0 – calculated from the posterior error 5 

covariance matrix but not shown) led to alternative sets of values that resulted in a similar 6 

improvement to the data – a phenomenon known as model equifinality. 7 

 8 

2.2.4 Order of assimilation of data streams and propagation of parameter 9 

error covariance matrices in a step-wise approach 10 

Comparing the step-wise cases 2a and b with 2c and d for the non-linear toy model 11 

reveals that neither order in the assimilation, s1 then s2, or s2 then s1, results in the correct 12 

posterior parameter values that match the simultaneous test case (Fig. 4a). This is not a result 13 

that can be generalised to all step-wise assimilations as it will depend on the data stream 14 

involved and whether they contain enough information to accurately constrain all the 15 

parameters included in the optimisation, as well as any biases in the model or observations (as 16 

discussed in Section 2.2.2) or model non-linearity (section 2.2.3). In the case of the non-linear 17 

toy model, neither s1 nor s2 find the right parameter values when assimilated individually, 18 

therefore it is not surprising that neither order manages to achieve the right posterior 19 

parameter values. Nevertheless, the theoretical uncertainty of both parameters is reduced by 20 

>95% for the step-wise cases in which A1 from step 1 is propagated between step 1 and 2 (test 21 

cases 2a and c – Fig. 4b), even though the posterior values for the step-wise cases are 22 

incorrect. This demonstrates that a good theoretical reduction in uncertainty is not always 23 

indicative that the right parameters have been found by the optimisation. The lower 24 

theoretical reduction in parametric uncertainty for cases 2b and d (Fig. 4b) demonstrates that 25 

information is lost between the steps if the posterior error covariance terms of A1 after step 1 26 

are not propagated to step 2, and therefore cannot be used to further constrain the 27 

optimisation.  28 

From a mathematical standpoint the most rigorous approach is to propagate the full 29 

parameter error covariance matrices between each step. Without that constraint not only is 30 

information lost in the second step, but the information contained in the second data stream 31 
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may have a stronger influence compared to a simultaneous or step-wise case with a 1 

propagated error covariance matrix. The inversion may therefore be more vulnerable to any 2 

strong biases or incompatibilities between the model and the observations of the second data 3 

stream, or indeed the particular sensitivity of its corresponding model state variable to the 4 

parameters. This is one possible explanation for the degradation seen in s1 in the non-linear 5 

toy model when s2 is optimised in the second step and A1 is not propagated between the steps 6 

(Fig. 6a test case 2b_s2). The same was also true for the simple carbon model for test case 2b 7 

when a bias was introduced into the s2 simulation (see Section 2.2.2 and Fig. 3a). 8 

However, the reverse is also true – if the first data stream contains strong biases then 9 

the associated error correlations will be also propagated with A1. If autocorrelation in the 10 

observation errors, or indeed correlation between the errors of the data streams, is not 11 

accounted for it is likely that the posterior simulations are over-tuned, i.e. we will 12 

overestimate the reduction in parameter uncertainty. If this is the case and the first step results 13 

in incorrect parameter values, the propagation of A1 could restrict the parameter values to the 14 

wrong location in the parameter space and thus inhibit the ability of the inversion to find the 15 

correct global minimum. These issues are likely to be more considerable for non-linear 16 

models, as seen by the lack of difference between test cases 2a-d in the simple carbon model 17 

example (Fig. 2). 18 

 19 

2.2.5 Lessons to be learned when dealing with non-linearity 20 

Most optimisation studies with a large-scale LSM use derivative methods based on a 21 

least-squares approach, and therefore rely on assumptions of Gaussian probability and linear 22 

model sensitivity. However, if the model is weakly non-linear within the probability 23 

distribution around the point in parameter space that is being analysed (see Tarantola, 1987, 24 

p72), it is possible to use an iterative algorithm, such as the one described in Eq. (6), to find 25 

the minimum of the cost function (i.e. the maximum likelihood of the posterior parameter 26 

distribution). Furthermore a linearization of the model around the maximum likelihood 27 

estimation (minimum of J(x)) of the parameters can be used to calculate the posterior error 28 

covariance (see Eq. (6)). If the model is too strongly non-linear and therefore these 29 

assumptions are not met, it may not be possible to find the true global minimum of the cost 30 

function and the characterisation of the posterior probability distribution will be incorrect. 31 
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This is a particular problem if the posterior parameter error covariance matrix is then 1 

propagated in a step-wise approach, although these issues are relevant to both step-wise and 2 

simultaneous assimilation.  Note that performing a number of tests starting from different 3 

random “first guess” points in parameter space can help to diagnose if the global minimum 4 

has been reached, as outlined in Section 2.1.6 and discussed at the beginning of the results 5 

(Section 2.2). 6 

It is possible to avoid dealing with issues related to non-linearity in the model 7 

sensitivity and non-Gaussian error distributions by using a global search method (e.g. Markov 8 

Chain Monte Carlo or a genetic algorithm) that randomly, but effectively, searches the entire 9 

parameter space. However in large dimensional problems, as is likely the case when 10 

optimising a LSM at large scales with multiple data streams, using a global search method is 11 

likely not feasible due to computational time constraints. In these cases, a derivative method 12 

is likely the only option. 13 

An important finding of the results presented for the non-linear toy model in Section 14 

2.2.3 is that degradation in another data stream is not necessarily the result of a bias or 15 

incompatibility between the observations and the model. Rather if the model sensitivity to the 16 

parameters is very non-linear, multiple combinations of parameter values may exist that result 17 

in a similar reduction of the cost function (multiple minima), but provide a different fit to 18 

each data stream. Even though all data streams may be sensitive to all the parameters, the 19 

information content of each will not be the same. Finding the true global minimum in this 20 

instance may require a bit more careful thought in planning the assimilation set-up, and may 21 

depend on having a reasonable idea of the level of information each data stream can bring to 22 

constrain each parameter. It may be the case that one data stream has a higher non-linear 23 

sensitivity to the parameters and therefore may act as an “troublemaker” and pull the 24 

parameters in a direction that results in a degradation to the other data streams, as seen in 25 

Section 2.2.3. If a simultaneous optimisation is not possible, it may be useful under such 26 

circumstances to identify any “troublemaker” data streams, and assimilate them in the first 27 

step of the optimisation. In the second step “peacemaker” data streams, with a lower non-28 

linear sensitivity to the parameters, will then find a compromise set of parameter values that 29 

can fit both data streams well, provided the full posterior parameter error covariance matrix is 30 

propagated between the steps in order to retain all the information brought by the first data 31 

stream. As discussed this could be an explanation for the results seen for the non-linear toy 32 
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model test case 2a where s1 was assimilated prior to s2 (Figures 6a and b) as discussed in 1 

Section 2.2.3. 2 

 3 

3 Examples from existing carbon cycle data assimilation studies 4 

3.1 Extra constraint from multiple data streams 5 

Most site-based carbon cycle data assimilation studies have used eddy covariance 6 

measurements of NEE and LE fluxes to constrain the relevant parameters of ecosystem 7 

models. However, a few studies have also made use of chamber flux soil respiration data and 8 

field measurements of vegetation characteristics (e.g. tree height, budburst, LAI) or estimates 9 

of litterfall and carbon stocks as ancillary information (e.g. Keenan et al., 2012; Thum et al., 10 

in review; Van Oijen et al., 2005; Richardson et al., 2010; Williams et al., 2005). Two recent 11 

studies combined high-resolution satellite-derived FAPAR data and in-situ eddy covariance 12 

measurements to optimize parameters related to carbon, water and energy cycles of the 13 

ORCHIDEE and BETHY LSMs (Bacour et al., 2015; Kato et al., 2013, respectively).  14 

At global scales the number of studies that use multiple data streams from satellites or 15 

large-scale networks to optimise LSMs has been increasing in recent years, although this 16 

remains a relatively new area of research. CCDAS-BETHY was the first global carbon cycle 17 

data assimilation system (CCDAS) making use of the high-precision measurements of the 18 

atmospheric CO2 concentration flask sampling network (Rayner et al., 2005; Scholze, 2003) 19 

to constrain process parameters of the prognostic terrestrial carbon cycle model BETHY 20 

(Knorr, 2000). Since its first application assimilating atmospheric CO2 concentration data 21 

only, CCDAS-BETHY has been further developed to consistently assimilate multiple data 22 

streams both at local and global scales. In particular, Kaminski et al. (2012) optimised 70 23 

process parameters plus one initial condition by simultaneously assimilating a satellite-24 

derived FAPAR product derived from the Medium Resolution Imaging Spectrometer 25 

(MERIS; Gobron et al., 2008) and flask samples of atmospheric CO2 at two sites from the 26 

GLOBALVIEW product (GLOBALVIEW-CO2, 2008) on a coarse resolution. More recently, 27 

Scholze et al. (2015) demonstrated the added value of assimilating remotely sensed soil 28 

moisture data in addition to observations of atmospheric CO2 concentration from the flask-29 

sampling network. They used the same coarse resolution set-up of CCDAS as Kaminski et al. 30 

(2012) and CO2 observations from 10 sites of the GLOBALVIEW product (GLOBALVIEW-31 
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CO2, 2012) together with the SMOS L3 daily soil moisture product (version 246; CATDS-1 

L3, 2012).  2 

Two other global CCDAS based on different LSMs have been developed in recent years 3 

(Peylin et al., 2016; Schürmann et al., 2016). Schürmann et al. (2016) optimized model 4 

parameters and initial conditions of the land component JSBACH (Raddatz et al. 2007) of the 5 

MPI Earth System Model (ESM) (Giorgetta et al. 2013) using atmospheric CO2 concentration 6 

data and the TIP-FAPAR product (Pinty et al., 2007) as joint constraints over a 5 year period 7 

in addition to evaluating the mutual benefit of each data stream in a fully factorial design. 8 

Peylin et al. (2016) used three different data streams as global constraints for the ORCHIDEE 9 

LSM (Krinner et al., 2005), which forms the land surface component of the IPSL ESM 10 

(Dufresne et al., 2013), in a multi-site step-wise assimilation approach. First, satellite-derived 11 

vegetation index data (NDVI) from the MODIS instrument was used to constrain the 12 

phenology parameters at 60 sites for the temperate and boreal deciduous PFTs, followed by 13 

NEE and LE observations at 78 FLUXNET sites for 7 PFTs to optimise all the carbon-related 14 

parameters, and finally atmospheric CO2 concentration measurements from 53 sites in the 15 

GLOBALVIEW network (GLOBALVIEW-CO2, 2013), which predominantly provided a 16 

constraint on the initial magnitude of the soil carbon reserves in the model. Atmospheric CO2 17 

concentration observations are one of the most accurate, long-term data sets in environmental 18 

science and they provide important information about the global CO2 sink capacity by land 19 

and ocean. These three global multiple data stream CCDAS have allowed an improvement in 20 

both the mean seasonal cycle as well as the trend of net land surface CO2 exchange, especially 21 

with the inclusion of the atmospheric CO2 data (Kaminski et al., 2012; Peylin et al., 2016; 22 

Schürmann et al., 2016).  23 

Many of the aforementioned studies reported that adding extra data streams helped to 24 

constrain unresolved sub-spaces of the total parameter space. Scholze et al. (2015) found that 25 

adding SMOS soil moisture data to the assimilation simultaneously with CO2 observations 26 

reduced the ambiguity in the solution space when assimilating CO2 only, and the multiple 27 

data constraint was able to resolve a much larger sub-space in parameter space (about 30 28 

parameters out of the 101 compared to 15 without SMOS data). Bacour et al. (2015) and 29 

Schürmann et al. (2016) both reported that the addition of FAPAR data bought extra 30 

information on the phenology-related processes in the model, and therefore retrieved different 31 

posterior C flux-related parameter values than when assimilating NEE or atmospheric CO2 32 
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data alone. An interesting aspect of the Kaminski et al. (2012) study was that the inclusion of 1 

FAPAR in addition to atmospheric CO2 concentration samples resulted in a particular 2 

improvement for the hydrological fluxes in the model, thus demonstrating the importance of 3 

assessing the potential benefit for model variables that may not have been the main target of 4 

optimisation. Richardson et al. (2010) concluded that using ancillary information (e.g. woody 5 

biomass increment, field-based LAI and chamber measurements of soil respiration) as 6 

orthogonal constraints to NEE data provided a valuable added constraint on many model 7 

parameters, which improved both the bias in model predictions and reduced the associated 8 

uncertainties. Thum et al. (in review) also found that the addition of aboveground biomass 9 

stocks brought a longer-term constraint on allocation parameters and mortality/turnover 10 

processes. However, they noted an incompatibility when assimilating both annual increment 11 

and total biomass data, as the total stocks take into account losses related to disturbance and 12 

management (e.g. canopy thinning) – processes that were not included in that version of the 13 

model. Keenan et al. (2012) also argued that the use of such ancillary constraints is essential 14 

for a better partitioning of net carbon fluxes into their gross components. However, Williams 15 

et al. (2005) observed that one-off, or rarely taken, measurements of carbon stocks were 16 

unable to constrain components of the carbon cycle to which they were not directly related.  17 

This calls into question the issue of the influence of different data streams in a joint 18 

assimilation, especially if the number of observations for each is vastly different which is the 19 

case when assimilating both half-hourly C flux data in addition to soil C stock observations 20 

that are typically available at an annual time scale. The spatial coverage of each data stream is 21 

also important, especially for heterogeneous landscapes (Barrett et al., 2005). Test case 3b, in 22 

which only one observation was included for the s2 data stream instead of the complete time-23 

series, shows that a substantial difference in number of observations between the data streams 24 

can influence the resulting parameter values and posterior uncertainty (compare test cases 3a 25 

and b in Fig. 2 for the simple C model and Fig. 4 for the non-linear toy model) as each data 26 

stream will have a different overall “weight” in the cost function. However, the impact of 27 

having a different number of observations for each data stream in the cost function also 28 

depends strongly on the prescribed observation error and relative sensitivity of each 29 

corresponding model variable to the model parameters. If one variable has a greater 30 

sensitivity than the other, it will matter less if fewer observations of that variable are included 31 

in the cost function.  32 
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 Xu et al. (2006), among others, have mentioned the possible need to weight the cost 1 

function for different data sets. Different arguments abound on this issue. Some contend that 2 

the cost function should not be weighted by the number of observations because the error 3 

covariance matrices (B and R) already define this weight in an objective way (e.g. Keenan et 4 

al., 2013). Certainly it should not be necessary to weight by the number of observations in the 5 

cost function if there is sufficient information to properly build the prior error covariance 6 

matrices (B and R). On the other hand, it is a difficult task to characterise the model structural 7 

uncertainty and the observation error correlations (see Kuppel et al., 2013 for practical 8 

solutions). Given this, our expert knowledge on the workings of the model processes and the 9 

sensitivity of the model to the parameters may permit us to specify a stronger weight to a data 10 

stream that could help to constrain a particular section of the model, but for which there are 11 

only a few data points. Clearly the definition of the prior error model, including for the 12 

covariance between errors of the data streams, is of the upmost importance (Trudinger et al., 13 

2007) and merits close attention in future multiple data stream assimilation studies. 14 

Although a number of multiple data stream assimilation studies exist at various scales, 15 

very few studies have specifically investigated the added benefit of different combinations of 16 

data streams, with a few notable exceptions (Barrett et al., 2005; Richardson et al., 2010; Kato 17 

et al., 2013; Keenan et al., 2013; Bacour et al., 2015; Schürmann et al., 2016). Kato et al. 18 

(2013) and Bacour et al. (2015) both evaluated the complementarity of eddy covariance and 19 

FAPAR data streams at site level, i.e. the impact of assimilating one individual data stream on 20 

the other model state variable, as well as when both data streams were included in the 21 

optimization (see discussion in Section 3.2). The study of Keenan et al. (2013) was 22 

particularly notable in its aim to quantify which data streams provide the most information 23 

and how many data streams are actually needed to constrain the problem. They reported that 24 

of the 17 field-based data streams available, projections of future carbon dynamics were well-25 

constrained with only 5 of the data sources, and crucially, not with eddy covariance NEE 26 

measurements alone. These results may be specific to this site or type of ecosystem, but this 27 

study highlights the need for further research in this area, and in particular, for synthetic data 28 

experiments that allow us to understand which data will be the most useful for a given 29 

scientific question. This will also enable researchers to plan more efficient measurement 30 

campaigns with experimentalists, as also pointed out by Keenan et al. (2012).  31 

 32 
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3.2 Issue of bias and inconsistencies between the observations and the 1 

model 2 

Despite the theoretical benefit of adding data streams into an assimilation system as 3 

orthogonal constraints, several of the aforementioned studies at both site and global scale 4 

have reported a bias or inconsistency either between the different observation data streams, or 5 

between the observations and the model. This is easily detected when the optimisation of one 6 

data stream results in a worse fit than the prior in one or more of the other data streams, as 7 

seen in Section 2.2.2. Kato et al. (2013) assimilated SeaWiFS FAPAR (Gobron et al., 2006) 8 

and eddy covariance LE measurements at the FLUXNET site in Maun, Botswana. They 9 

showed that the individual assimilation of each the two data streams resulted in a perfect (i.e. 10 

within the observational uncertainty) fit to the assimilated data set, but a considerable 11 

degradation of the fit to the non-assimilated data set compared to the prior. A comparison 12 

against eddy covariance measurements of gross carbon uptake (gross primary production – 13 

GPP) hinted to a bias problem with the FAPAR data because the fit to the independent GPP 14 

data was degraded after assimilating FAPAR data only, while the fit improved after 15 

assimilating the LE data only. Nevertheless, the simultaneous assimilation of both data 16 

streams achieved a compromise between the two suboptimal states reached after assimilating 17 

only one data stream. The calibration further limited the number of parameters with correlated 18 

errors, and yielded a higher theoretical reduction in parameter uncertainty and a decrease in 19 

the RMS difference by 16% for the GPP data compared to the prior. 20 

Bacour et al. (2015) also noted that when assimilating both in-situ and satellite-derived 21 

FAPAR data (from the SPOT and MERIS instruments) and in-situ NEE and LE flux data 22 

from two French FLUXNET sites into the ORCHIDEE LSM both separately and together, the 23 

posterior parameter values changed significantly for the photosynthesis and phenology-related 24 

parameters, depending on the bias between the model and the observations and the correlation 25 

between the parameter errors. If NEE data were assimilated alone there was an even stronger 26 

positive bias (model–observations) in the start of leaf onset in the FAPAR data than in the 27 

prior simulations, and no improvement in the maximum value. This was likely due to the fact 28 

that there were enough degrees of freedom to fit the NEE without changing the phenology-29 

related parameters. Similarly, the fit to the NEE was degraded when the model was only 30 

optimized with FAPAR data. The model was able to fit the maximum FAPAR but this 31 

resulted in an adverse effect on the carbon assimilation capacity of the vegetation. The 32 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-25, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 11 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



 24 

authors argued this was related to incompatibilities between the FAPAR and both the model 1 

and NEE measurements, possibly due to its larger spatial footprint of the satellite-derived 2 

FAPAR data and/or inaccuracies in the retrieval algorithm. However, given that assimilating 3 

in-situ FAPAR also degraded the fit to the NEE, another culprit may be an inconsistency 4 

between the model and the data. The authors suggested this could be due to the different 5 

assumptions or characterisation of a variable in a model compared to what is described in the 6 

data. For example, satellite-derived greenness measures (FAPAR/NDVI) also contain 7 

information on the non-green elements of vegetation, but the model only simulates green LAI. 8 

Furthermore parameters and processes in models have been developed at certain temporal and 9 

spatial scales. Vegetation is often simply represented as a “big leaf” model in LSMs, taking 10 

no account of vertical canopy structure or the spatial heterogeneity in a scene, which is an 11 

additional source of inconsistency with what is measured. The joint (simultaneous) 12 

assimilation of all three data streams in Bacour et al. (2015) reconciled the different sources 13 

of information, with an improvement in the model-data fit for NEE, LE and FAPAR.  14 

However, the compromise achieved in the joint assimilation was only possible when the 15 

FAPAR data were normalised to their maximum and minimum values, which thus partially 16 

accounted for any bias in the magnitude of the FAPAR or inconsistency with the model.  17 

The story of biases and apparent inconsistencies in FAPAR data doesn’t end there. A 18 

bias correction was also necessary in the study by Kaminski et al. (2012) with CCDAS-19 

BETHY using the MERIS FAPAR product in addition to atmospheric CO2 data (see above). 20 

They found that optimisation procedure failed when using the original FAPAR product 21 

because the FAPAR values were biased towards higher values. Only after applying a bias 22 

correction on the FAPAR data before the assimilation procedure was the optimisation 23 

successful. Schürmann et al. (2016) also reported the need to reduce a prior model bias in 24 

FAPAR. Even though the assimilation corrected successfully for this FAPAR bias, an imprint 25 

of the prior bias was evident in the spatial patterns of the modelled heterotrophic respiration. 26 

Assimilating FAPAR data alone therefore resulted in a slight degradation in the net C flux 27 

and consequently led to incorrect simulations of the atmospheric CO2 growth rate. The 28 

addition of CO2 as a constraint prevented this degradation and resulted in a compromise in 29 

which FAPAR helped to disentangle these processes and find different parameter values 30 

compared to the CO2-only case, thus improving the fit to both data streams. Forkel et al. 31 

(2014) discovered an apparent inconsistency between satellite-derived FAPAR and GPP data 32 

in tundra regions when using these data (plus satellite-derived albedo) to optimise the LPJmL 33 
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LSM. They too speculated that the data might be positively biased, in this case due to issues 1 

with satellite measurements taken at high sun zenith angles. However, they gave alternative 2 

suggestions, one being that an inadequate model structure may be at fault – for example, the 3 

LPJmL does not include vegetation classes corresponding to shrub, moss and lichen species 4 

that are dominant in these ecosystems. They also noted that the GPP product they used, which 5 

is based on a model tree ensemble up-scaling of FLUXNET data (Jung et al., 2011), might 6 

contain representation-related biases, given that there are very few FLUXNET stations in 7 

tundra regions. The issue of representation errors of sites has been touched upon before (e.g. 8 

Raupach et al., 2005). Alton (2013), who performed a global multi-site optimisation of the 9 

JULES LSM with a diverse range of data including satellite-derived LAI, FLUXNET, soil 10 

respiration and global river discharge, raised the point that FLUXNET sites are known to be 11 

large carbon sinks, which could potentially result in biased global NEE estimates. Resolving 12 

these apparent inconsistencies was beyond the scope of most of these studies, aside from 13 

applying a bias correction where one was evident. Nonetheless this issue clearly merits further 14 

attention if the increasing number of available datasets is to be fully utilised. 15 

 16 

3.3 Step-wise versus simultaneous assimilation  17 

The paper by Alton (2013) documents the only previous study to have used a step-wise 18 

assimilation approach with more than two data streams, stating that the final parameter values 19 

were independent of the order of data streams assimilated. No studies in the LSM community 20 

to date have explicitly examined a step-wise versus simultaneous assimilation framework 21 

with the same optimisation system and model. The step-wise assimilation with the 22 

ORCHIDEE-CCDAS detailed in Peylin et al. (2016) has been compared to a simultaneous 23 

optimisation using the same three data streams as part of an on-going study. At each step, the 24 

resulting simulations (using the posterior parameters) were compared to the data stream from 25 

the previous steps. The fit to the MODIS NDVI (used in a similar manner to FAPAR as a 26 

proxy for vegetation greenness) was unchanged after further optimization of the phenology-27 

related parameters in the second and third steps using in-situ flux and atmospheric CO2 28 

concentration data. In the simultaneous optimisation, the addition of NEE or atmospheric CO2 29 

concentration measurements resulted in a lower improvement to the fit to MODIS NDVI.  As 30 

the NDVI data were normalised this was not a result of a simple bias in the magnitude of the 31 

data. Rather, it was likely due to inconsistencies between the model and data as discussed by 32 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-25, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 11 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



 26 

Bacour et al. (2015) and in Section 3.2. It is important to reiterate that there should be no 1 

difference between the step-wise and the simultaneous given an adequate description of the 2 

error covariance matrices and compliance with the assumptions associated with the inversion 3 

algorithm used. However, in practice it is very difficult to define a PDF that properly 4 

characterises the model structural uncertainty and observation errors accounting for biases and 5 

non-Gaussian distributions. This leads to issues within a simultaneous assimilation, 6 

particularly if the information content of one data stream is much higher, and a greater risk of 7 

differences between a step-wise and simultaneous assimilation. As discussed in Section 2.2.5 8 

a step-wise assimilation may be useful on a provisional basis for dealing with possible 9 

inconsistencies. In the step-wise approach of Peylin et al. (2016) the error covariance of the 10 

phenology-related parameters was strongly constrained by the satellite data in the first step 11 

(and was propagated to the second step), the later assimilations with NEE and atmospheric 12 

CO2 data in steps 2 and 3 found alternative solutions for the C flux-related parameters that 13 

provided a reasonable fit to all data streams. Wherever possible however, a simultaneous 14 

optimisation is favourable because the strong parameter linkages between different processes 15 

are maintained, and therefore biases and inconsistencies between the model and observations 16 

should be addressed prior to optimisation. 17 

 18 

4 Advice for Land Surface Modellers  19 

Although it is clear that in many cases, increasing the number of observations in a model 20 

optimisation provides additional, orthogonal constraints, challenges remain that should not be 21 

ignored. Based on the simple toy model results presented in this study, in addition to lessons 22 

learned from existing studies, we recommend the following points when carrying out multiple 23 

data stream carbon cycle data assimilation experiments: 24 

• Devote time to characterising the error structure for the observations and 25 

parameter error distributions, including their correlations (Raupach et al., 2005). 26 

For the observations this should include the model structural errors (Kuppel et al. 27 

2013), the temporal or spatial autocorrelation and correlation between different 28 

data streams.  29 

• In the case of non-Gaussian error distributions consider performing a 30 

transformation to make the distributions more Gaussian, or avoid a least squares 31 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-25, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 11 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



 27 

formulation and instead use a method that avoids outliers (e.g. absolute deviations 1 

– Trudinger et al., 2007). 2 

• Analyse and correct for biases in the observations, or approximately account for it 3 

in the observation error covariance matrix, R, using the off-diagonal terms or 4 

inflated errors (Chevallier, 2007), or by using the prior model-data RMSE to 5 

define the observation uncertainty.  6 

• Investigate potential incompatibilities between your model and data. Take time to 7 

understand which physical quantities your data correspond to and whether that is 8 

consistent with the description of the equivalent variable in the model. As for the 9 

previous point, one way of attempting to account for unknown inconsistencies 10 

between the model and data is to set the observation uncertainty, R, the prior 11 

RMSE between the model and the data. 12 

• Evaluate the impact on other model variables with independent observations, and 13 

if the optimisation degrades the fit compared to the prior, investigate the reasons 14 

behind the inconsistency and address them as above. 15 

• Assess the non-linearity of your model (multiple first guess tests can help in this 16 

regard), and if strongly so, avoid a least squares formulation of the cost function or 17 

use global search algorithms for the optimisation – although at the resolution of 18 

typical LSM simulations (≥0.5x0.5°) this will likely only be computationally 19 

feasible at site or multi-site scale. 20 

• Prior information is key in a Bayesian framework. Effort should be put into better 21 

constraining the prior parameter bounds of all parameters based on literature 22 

wherever possible. 23 

• Conduct preliminary sensitivity analyses to determine which parameters should be 24 

constrained by each data stream. 25 

• Set up experiments with synthetic data, as in this study, to understand the 26 

constraints posed by the different data streams you will include in the experiment. 27 

• If technical constraints require a step-wise approach is used it is preferable (from a 28 

mathematical standpoint) to propagate the full parameter error covariance matrix 29 
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between each step, if it can be calculated, and carefully consider the order of the 1 

assimilation of data streams (a synthetic experiment will aid in this regard).  2 

• Be aware that a good theoretical reduction in model or parameter uncertainty can 3 

be misleading, as it is not necessarily indicative that the right parameter values 4 

have been found. If this is the case, it could impact predictions made outside the 5 

spatio-temporal window included in the optimisation. 6 

 7 

Many of these issues are relevant to any data assimilation study, including those only 8 

using one data stream. However, most are more pertinent when considering more than one 9 

source of data. The impact of bias in the magnitude of satellite-derived FAPAR data has 10 

featured highly in past multiple data stream assimilation studies. Aside from simple 11 

corrections, Quaife et al. (2008) and Zobitz et al. (2014) suggested that LSMs should be 12 

coupled to radiative transfer models to provide a more realistic and mechanistic observation 13 

operator between the quantities simulated by the model and the raw radiance measured by 14 

satellite instruments. This proposition followed the experience gained in the case of 15 

atmospheric models for several decades (Morcrette, 1991). 16 

Other promising directions could also be considered to help constrain the problem of lack 17 

of information in resolving the parameter space, including the use of other ecological and 18 

dynamical “rules” that limit the optimisation (see for example Bloom and Williams, 2015), or 19 

the addition of different timescales of information extracted from the data such as annual 20 

sums (e.g. Keenan et al., 2012). Of course, optimising the parameters of the model will not 21 

account for all the uncertainty in a model. Inaccurate or incomplete process representation is 22 

likely a key factor that may also bias the posterior values retrieved in any optimisation. 23 

Keenan et al. (2012) reflected that despite using multiple different constraints and different 24 

time increments in the cost function, the inter-annual variability and long-term trend of carbon 25 

uptake at Harvard forest FLUXNET site in the USA could not be reproduced without a 26 

temporal variation of the parameters, suggesting a missing process in the model. However, as 27 

this paper shows, the complexities of model-data fusion require that we continue to develop 28 

DA techniques alongside development of LSMs, with the hope of converging upon more 29 

reliable and accurate predictions of the global C budget in the near future. Finally we should 30 

also seek to develop collaborations with researchers in other fields who may have advanced 31 

further in a particular direction. Members of the atmospheric and hydrological modelling 32 
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communities, for example, have implemented techniques for inferring the properties of the 1 

prior error covariance matrices, including the mean and variance, but also potential biases, 2 

autocorrelation and heteroscedasticity, by including these terms as “hyper-parameters” within 3 

the inversion (e.g. Michalak et al. 2005; Evin et al., 2014; Renard et al., 2010; Wu et al. 4 

2013;). Of course this extends the parameter space – making the problem harder to solve 5 

unless sufficient prior information is available (Renard et al., 2010), but such avenues are 6 

worth exploring. 7 

 8 

5 Conclusions 9 

In this study we have attempted to highlight and discuss some of the challenges 10 

associated with using multiple data streams to constrain the parameters of LSMs, with a 11 

particular focus on the carbon cycle. We demonstrated some of the issues using two simple 12 

models constrained with synthetic observations for which the ‘true’ parameters are known. 13 

We performed a variety of tests in Section 2 to demonstrate the differences between 14 

assimilating each data stream separately, sequentially (in a step-wise approach) and together 15 

in the same assimilation (simultaneous approach). In particular we focused on difficulties that 16 

may arise in the presence of biases or inconsistencies between the data and the model, as well 17 

as non-linearity in the model equations. In Section 3 we discussed the experimental results 18 

with reference to similar difficulties that have been documented in recent C cycle assimilation 19 

studies.  20 

Many of the issues faced are inherent to all optimisation experiments, including those in 21 

which only one data stream is used. It is of upmost importance to determine if the 22 

observations contain biases, and/or if inconsistencies or incompatibilities exist between the 23 

model and the observations, and to correct for this or properly account for this in the error 24 

covariance matrices. Secondly it is crucial to understand the assumptions and limitations 25 

related to the inversion algorithm used. Without these two points being met, there is a greater 26 

risk of obtaining incorrect parameter values, which may not be obvious by examining the 27 

posterior uncertainty and model-data RMSE reduction. Furthermore it is more likely that the 28 

implementation of a step-wise versus simultaneous approach will lead to different results.  29 

This study was not able to examine an exhaustive list of all possible challenges that may 30 

be faced when assimilating multiple data streams, but we hope that this tutorial style paper 31 

will serve as a guide for those wishing to optimise the parameters of LSMs using the variety 32 
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of C cycle related observations that are available today. Furthermore we hope that by 1 

increasing awareness about the possible difficulties of model-data integration, we can further 2 

bring the modelling and experimental communities together to work more closely on these 3 

issues.  4 

 5 

Code availability 6 

The model and inversion code will be made available via the ORCHIDAS website (upon 7 

registration): https://orchidas.lsce.ipsl.fr/multi_data_stream.php. 8 

 9 
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Table 1: The optimisation set-up for both models, including the true parameter values, their 1 

range and the observation uncertainty (1 sigma). The parameter uncertainty (1 sigma) was set 2 

to 40% of the range for each parameter. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

Model Parameter value (range) Observation uncertainty 

Simple carbon p1 p2 k1 k2 s1 s2 

model 1 (0.5,5) 1 (0.5,5) 0.2 (0.03,0.9) 0.1 (0.01,0.12) 0.5 5 

Non-linear  a b s1 s2 

toy model 1 (0,2) 1 (0,2) 0.5 0.5 
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Table 2: List of experiments performed for both models with synthetic data. All parameters 1 

are optimised in all cases (therefore in both steps for the step-wise approach). 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

Test case Step 1 Step 2 Parameter error covariance 
terms propagated in step 2? 

Separate    

1a s1 - - 

1b s2 - - 

Step-wise 

2a s1 s2 yes 

2b s1 s2 no 

2c s2 s1 yes 

2d s2 s1 no 

Simultaneous 

3a s1 and s2 - - 

3b s1 and only 1 obs for  s2 - - 
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 1 

Figure 1: Prior and posterior model simulations compared to the synthetic observations for the 2 

simple carbon model for test case 3a for a) s1 and b) s2 simulations without any model bias, 3 

and c and d) with bias in the simulated s2 variable. The coloured error band on the prior and 4 

posterior represents the propagated parameter uncertainty (1 sigma) on the model state 5 

variables (in the equivalent colour as the mean curve). This is mostly visible for the prior 6 

model simulation (pink band) as there is a high reduction in model uncertainty reduction as a 7 

result of the assimilation. 8 

 9 
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 11 

 12 

 13 

Test	case	3a	–	Model	without	bias	

Test	case	3a	–	Model	with	bias	in	s2	

a)	 b)	

c)	 d)	
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 1 

Figure 2: a) Normalised posterior parameter values and b) posterior parameter error reduction 2 

for all parameters of the simple carbon model for each test case, and for both the simulations 3 

with no bias (blue) and simulations with a bias in the s2 variable that was not accounted for in 4 

the inversion (red). In a) parameters values were normalised to account for differences in the 5 

magnitude of the different parameters and their range, thus it is a measure of the distance 6 

from the true value as a fraction of the range and is calculated as: (posterior value – true value 7 

/ max parameter value – minimum parameter value). The closer the value to the zero dashed 8 

line represents a better match to the “true” parameter value. To give an indication of the 9 

optimisation performance, the following are the normalised first guess parameter values for 10 

this particular example test (compare with posterior values in Fig. 2a): p1 0.09, p2 0.29, k1 0.1, 11 

k2 0.15. 12 

 13 

a)	

b)	
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 1 

Figure 3: Reduction in RMSE for all test cases for simulations with a bias in the s2 variable: a) 2 

s1, b) s2, c) litterfall and d) heterotrophic respiration (Rh). For the step-wise cases (2a, b, c and 3 

d) the reduction after both step 1 and step 2 are shown in light and dark green respectively, 4 

and are denoted in the x-axis labels with ‘_s1’ for step 1 and ‘_s2’ for step 2. The reduction 5 

(in %) is calculated as 1 – (RMSEpost / RMSEprior). 6 
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 1 

Figure 4: Posterior parameter values of both the non-linear toy model a and b parameters for 2 

each test case for the simulations with no model bias. The y-axis range corresponds to the 3 

parameter bounds and the dashed horizontal line represents the “true” known value of both 4 

parameters. To give an indication of the optimisation performance, the following are the first 5 

guess parameter values for this particular example test (compare with posterior values in Fig. 6 

4a): a 0.87, b 1.98. b) Posterior uncertainty reduction for both parameters for all test cases.  7 
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 1 

Figure 5: Prior and posterior model simulations compared to the synthetic observations for the 2 

non-linear toy model (with no bias) for both the s1 (left column) and s2 (right column) 3 

variables for a) and b) test case 2a (1st row) – step-wise approach with s1 observations 4 

assimilated in the first step, followed by the s2 observations in the second step; c) and d) test 5 

case 2c (2nd row) – step-wise approach with s2 observations assimilated in the first step, 6 

followed by s1 observations in the second step; and e) and f) test case 3a (3rd row) – the 7 

simultaneous case in which both data streams were included. For both step-wise examples A1 8 

was propagated between the 1st and 2nd steps. The coloured error band on the prior and 9 

posterior represents the propagated parameter uncertainty (1 sigma) on the model state 10 

variables (in the equivalent colour as the mean curve). This is mostly visible for the prior 11 

a)	 b)	Step-wise	–	test	case	2a	

Step-wise	–	test	case	2c	c)	 d)	

Simultaneous	–	test	case	3a	e)	 f)	
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model simulation (pink band) as there is a high reduction in model uncertainty reduction as a 1 

result of the assimilation.  2 
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 1 

Figure 6: Reduction in RMSE for all test cases for both a) s1 and b) s2 variables for the non-2 

linear toy model simulations with no model bias. For the step-wise cases (2a, b, c and d) the 3 

reduction after both step 1 and step 2 are shown in light and dark green respectively, and are 4 

denoted in the x-axis labels with ‘_s1’ for step 1 and ‘_s2’ for step 2. The reduction (in %) is 5 

calculated as 1 – (RMSEprior / RMSEpost). 6 
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