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Abstract 13 

Data assimilation methods provide a rigorous statistical framework for constraining 14 

parametric uncertainty in land surface models (LSMs), which in turn helps to improve their 15 

predictive capability and to identify areas in which the representation of physical processes is 16 

inadequate. The increase in the number of available datasets in recent years allows us to 17 

address different aspects of the model at a variety of spatial and temporal scales. However, 18 

combining data streams in a DA system is not a trivial task. In this study we highlight some of 19 

the challenges surrounding multiple data stream assimilation for the carbon cycle component 20 

of LSMs. We give particular consideration to the assumptions associated with the type of 21 

inversion algorithm that are typically used when optimising global LSMs – namely, Gaussian 22 

error distributions and linearity in the model dynamics. We explore the effect of biases and 23 

inconsistencies between the observations and the model (resulting in non-Gaussian error 24 

distributions), and we examine the difference between a simultaneous assimilation (in which 25 

all data streams are included in one optimisation) and a step-wise approach (in which each 26 

data stream is assimilated sequentially) in the presence of non-linear model dynamics. In 27 

addition, we perform a preliminary investigation into the impact of correlated errors between 28 

two data streams for two cases, both when the correlated observation errors are included in 29 
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the prior observation error covariance matrix, and when the correlated errors are ignored. We 1 

demonstrate these challenges by assimilating synthetic observations into two simple models: 2 

the first a simplified version of the carbon cycle processes represented in many LSMs, and the 3 

second a non-linear toy model. Finally, we provide some perspectives and advice to other 4 

land surface modellers wishing to use multiple data streams to constrain their model 5 

parameters. 6 

 7 
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1 Introduction 11 

The carbon cycle is an important component of the Earth system, especially when 12 

considering the climatic impact of rising greenhouse gas concentrations from fossil fuel 13 

emissions and land use change. It is estimated that the oceans and land surface absorb 14 

approximately half of the CO2 emissions due to anthropogenic activity, but uncertainties 15 

remain in the strength and location of sources and sinks, as well as in predictions of future 16 

trends (Ciais et al., 2013). Observations allow us to understand the system up until the present 17 

day and provide inference about how ecosystems may respond to future change. However, 18 

their use in estimating model state variables and boundary conditions is limited beyond 19 

diagnostic purposes, and they can be restricted in their spatial coverage. They also do not 20 

contain all the information we may need to distinguish between the complex interactions that 21 

may occur between many different processes. Incorporating our current knowledge of 22 

physical mechanisms of biogeochemical cycles, including carbon, C, dynamics, into land 23 

surface models (LSMs) represents a promising approach for analysing these interacting 24 

effects, upscaling observations to larger regions, and making future predictions. However, the 25 

models can be limited by the lack of process representation, either due to gaps in our 26 

knowledge, or in our technical and computing capability. As a result, model evaluations 27 

reveal that not all variables are well-captured by the model under current conditions (Anav et 28 

al., 2013), and the spread between model projections is still very large (Sitch et al., 2015).  29 

Aside from model structural and forcing errors, one source of uncertainty is related to the 30 

parameter (i.e. fixed) values of a model. Model-data fusion, or data assimilation (DA), allows 31 
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the calibration, or optimisation, of these values by minimising a cost function that quantifies 1 

the model-data misfit, while accounting for the uncertainties inherent in both the model and 2 

data in a statistically rigorous framework. The C cycle component of most LSMs is complex 3 

and contains a large number of parameters; luckily however, there are an increasing number 4 

of in-situ and remote sensing-based data streams that can be used for parameter optimisation. 5 

These data bring information on different spatial and temporal scales, such as: 6 

• Atmospheric CO2 concentration data, which are measured at surface stations at 7 

continental to global scales, which provide information from synoptic timescales to 8 

inter-annual variability (IAV) and long-term trends. 9 

• Eddy covariance net CO2 (net ecosystem exchange – NEE) and latent (LE) and 10 

sensible heat fluxes, which are measured at half-hourly intervals at many sites across 11 

different ecosystems/regions, providing information at seasonal to inter-annual 12 

timescales. 13 

• Satellite-derived measures of vegetation dynamics, including “greenness” indices (i.e. 14 

the Normalised Difference Vegetation Index – NDVI), fraction of absorbed 15 

photosynthetically active radiation (FAPAR) and leaf area index (LAI), which are 16 

provided at global scales, and up to daily time steps spanning more than a decade, thus 17 

capturing IAV and long-term trends (though usually with a trade-off between spatial 18 

and temporal resolution). 19 

• Satellite-derived measurements of soil moisture and land surface temperature at the 20 

same temporal and spatial scales as the satellite-derived observations of vegetation 21 

dynamics. 22 

• Aboveground biomass measurements, which are currently taken at only one or a few 23 

points in time at plot scale up to regional scale from aircraft and satellite data, or are 24 

estimated from allometric relationships at each site.  25 

• Soil C stock estimates, which are usually only taken at one point in time at plot scale. 26 

• Ancillary data on vegetation characteristics such as tree height or budburst. Such data 27 

are only measured at certain well-instrumented sites.  28 

 29 
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Researchers are increasingly attempting to bring these sources of data together to 1 

constrain different parts of a model at different spatio-temporal scales within a multiple data 2 

stream assimilation framework (e.g. Richardson et al., 2010; Keenan et al., 2012; Kaminski et 3 

al., 2012; Forkel et al., 2014; Bacour et al., 2015). However, whilst the potential benefit of 4 

adding in extra data streams to constrain the C cycle of LSMs is clear, multiple data stream 5 

assimilation is not as simple as it may seem. This is particularly true when considering a 6 

regional-to-global scale, multiple site optimisation of a complex LSM that contains many 7 

parameters, and which typically takes on the order of minutes to an hour to run a one year 8 

simulation. When using more than one data stream there is the option to include all data 9 

streams together in the same optimisation (simultaneous approach), or to take a sequential 10 

(step-wise) approach. Mathematically, the optimal approach is the simultaneous, but 11 

complications may arise due computational constraints related to the inversion of large 12 

matrices or the requirement of numerous simulations, particularly for global datasets (e.g. 13 

Peylin et al., 2016), and/or due to the “weight” of different data streams in the optimisation 14 

(e.g. Wutzler and Carvalhais, 2014). On the other hand, in a step-wise assimilation the 15 

parameter error covariance matrix has to be propagated at each step, which implies that it can 16 

be computed. If the parameter error covariance matrix can be properly estimated and is 17 

propagated between each step, the step-wise approach should be mathematically equal to 18 

simultaneous. However, many inversion algorithms (e.g. derivative-based methods that use 19 

the gradient of the cost function to find its minimum) require assumptions of model (quasi-) 20 

linearity and Gaussian parameter and observation error distributions (Tarantola, 1987, p195). 21 

If these assumptions are violated, or the error distributions are poorly defined, it is likely that 22 

the step-wise will not be equal to the simultaneous, because information will be lost at each 23 

step due to an incorrect calculation of the posterior error covariance matrix at the end of each 24 

step. An incorrect description of the observation (– model) error distribution could result from 25 

i) the wrong assumption about the distribution of the residuals between the observation and 26 

the model, ii) a poor characterisation of the error correlations, iii) an incompatibility between 27 

the model and the data (possibly due to a model structural issue or differences in how a 28 

variable is characterised), or iv) a bias in the observations that is not unaccounted for (i.e. is 29 

treated as a random error). As mentioned, whilst a simultaneous optimisation is 30 

mathematically more rigorous, in the sense that the error correlations are treated within the 31 

same inversion, if the prior distributions are not properly characterised any bias may be 32 
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aliased to the wrong parameters (Wutzler and Carvalhais, 2014), and possibly more so than in 1 

a step-wise approach.  2 

This tutorial-style paper highlights some of the challenges of multiple data stream 3 

optimisation of carbon cycle models discussed above. Note that we do not aim to explore all 4 

possible issues related to a DA system, for example the choice of the cost function, 5 

minimization algorithm, or the characterization of the prior error distributions; indeed, 6 

previous studies have investigated such aspects at length (e.g. Fox et al., 2009; Trudinger et 7 

al., 2007), and therefore we refer the reader to these papers for more information. Section 2 8 

reviews recent carbon cycle multiple data stream assimilation studies with reference to some 9 

of the aforementioned challenges. Section 3 demonstrates some these issues related to 10 

multiple data stream assimilation with synthetic experiments using two simple models: one a 11 

simplified version of the carbon dynamics included in many LSMs, and the other a “toy” 12 

model designed to demonstrate the issues that arise with complex, non-linear models. Finally 13 

Section 4 provides some advice to land surface modellers wishing to carry out multiple data 14 

stream assimilation to constrain the parameters of their model.  15 

 16 

 17 

2 Review of existing multiple data stream carbon cycle data assimilation 18 

studies 19 

2.1 Extra constraint from multiple data streams 20 

Most site-based carbon cycle data assimilation studies have used eddy covariance 21 

measurements of NEE and LE fluxes to constrain the relevant parameters of ecosystem 22 

models. However, a few studies have also made use of chamber flux soil respiration data and 23 

field measurements of vegetation characteristics (e.g. tree height, budburst, LAI) or estimates 24 

of litterfall and carbon stocks as ancillary information (e.g. Fox et al., 2009; Keenan et al., 25 

2012; Thum et al., in review; Van Oijen et al., 2005; Richardson et al., 2010; Williams et al., 26 

2005). Two recent studies combined high-resolution satellite-derived FAPAR data with in-27 

situ eddy covariance measurements to optimize parameters related to carbon, water and 28 

energy cycles of the ORCHIDEE and BETHY LSMs at a couple of sites (Bacour et al., 2015; 29 

Kato et al., 2013, respectively).  30 
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At global scales the number of studies that use multiple data streams from satellites or 1 

large-scale networks to optimise LSMs has been increasing in recent years, although this 2 

remains a relatively new area of research. CCDAS-BETHY was the first global carbon cycle 3 

data assimilation system (CCDAS) to make use of the high-precision measurements of the 4 

atmospheric CO2 concentration flask sampling network (Rayner et al., 2005; Scholze, 2003) 5 

to constrain parameters of the terrestrial carbon cycle model BETHY (Knorr, 2000). Since its 6 

first application using only atmospheric CO2 concentration data, CCDAS-BETHY has been 7 

further developed to consistently assimilate multiple data streams both at local and global 8 

scales. In particular, Kaminski et al. (2012) optimised 70 process parameters, plus one initial 9 

condition, by simultaneously assimilating a satellite-derived FAPAR product derived from the 10 

Medium Resolution Imaging Spectrometer (MERIS; Gobron et al., 2008) and flask samples 11 

of atmospheric CO2 at two sites from the GLOBALVIEW product (GLOBALVIEW-CO2, 12 

2008) at coarse resolution. More recently, Scholze et al. (2016) demonstrated the added value 13 

of assimilating remotely sensed soil moisture data in addition to atmospheric CO2 14 

concentration data. They used the same coarse resolution set-up of CCDAS-BETHY as 15 

Kaminski et al. (2012) and CO2 observations from 10 sites of the GLOBALVIEW product 16 

(GLOBALVIEW-CO2, 2012) together with the SMOS L3 daily soil moisture product 17 

(version 246; CATDS-L3, 2012).  18 

Three other global CCDAS based on LSMs that are part of earth system models (ESMs) 19 

have been developed in recent years (Peylin et al., 2016; Raoult et al., 2016; Schürmann et al., 20 

2016). Two of these used multiple data streams as constraints. Schürmann et al. (2016) 21 

optimized model parameters and initial conditions of the land component, JSBACH (Raddatz 22 

et al. 2007), of the MPI ESM (Giorgetta et al. 2013) using atmospheric CO2 concentration 23 

data from 28 sites and the TIP-FAPAR product (Pinty et al., 2007) as joint constraints over a 24 

5-year period. As part of their study they evaluated the mutual benefit of each data stream in a 25 

fully factorial design. Peylin et al. (2016) used three different data streams as global 26 

constraints for the ORCHIDEE LSM (Krinner et al., 2005), which forms the land surface 27 

component of the IPSL ESM (Dufresne et al., 2013), in a multi-site, step-wise assimilation 28 

approach. First, satellite-derived NDVI data from the MODIS instrument were used in a 29 

similar manner to FAPAR as a proxy for vegetation greenness, in order to constrain the 30 

phenology parameters at 60 sites for 4 temperate and boreal deciduous PFTs (MacBean et al., 31 

2015), followed by NEE and LE observations at 78 FLUXNET sites for 7 PFTs to optimise 32 

all the carbon-related parameters (Kuppel et al., 2014), and finally atmospheric CO2 33 
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concentration measurements from 53 sites in the GLOBALVIEW network (GLOBALVIEW-1 

CO2, 2013), which predominantly provided a constraint on the initial magnitude of the soil 2 

carbon reserves in the model. The three global multiple data stream CCDAS have allowed an 3 

improvement in both the mean seasonal cycle as well as the trend of net land surface CO2 4 

exchange, especially with the inclusion of the atmospheric CO2 data (Kaminski et al., 2012; 5 

Peylin et al., 2016; Schürmann et al., 2016). Atmospheric CO2 concentration observations are 6 

one of the most accurate, long-term data sets in environmental science and they provide 7 

important information about the global CO2 sink capacity by the land and ocean.  8 

Many of the aforementioned studies reported that adding extra data streams helped to 9 

constrain unresolved sub-spaces of the total parameter space. Richardson et al. (2010) and 10 

Keenan et al. (2012) concluded that using ancillary information (e.g. woody biomass 11 

increment, field-based LAI and chamber measurements of soil respiration) as in addition to 12 

NEE data provided a valuable extra constraint on many model parameters, which improved 13 

both the bias in model predictions and reduced the associated uncertainties. The results of the 14 

REFLEX model-data fusion inter-comparison project also indicated that observations of the 15 

different carbon pools would help to constrain parameters such as root allocation and woody 16 

turnover that were not well resolved using NEE and LAI data alone (Fox et al., 2009). 17 

Similarly at global scale, Scholze et al. (2016) found that assimilating SMOS soil moisture 18 

data in addition CO2 observations reduced the ambiguity in the solution space compared to 19 

assimilating CO2,alone; about 30 parameters out of the 101 were resolved compared to 15 20 

without SMOS data. Bacour et al. (2015) and Schürmann et al. (2016) both reported that the 21 

addition of FAPAR data bought extra information on the phenology-related processes in the 22 

model, and therefore retrieved different posterior C flux-related parameter values than when 23 

assimilating NEE or atmospheric CO2 data alone. An interesting aspect of the Kaminski et al. 24 

(2012) study was that the inclusion of FAPAR in addition to atmospheric CO2 concentration 25 

samples resulted in a particular improvement for the hydrological fluxes in the model, thus 26 

demonstrating the importance of assessing the potential benefit for model variables that may 27 

not have been the main target of optimisation. 28 

On the other hand, Williams et al. (2005) observed that one-off, or rarely taken, 29 

measurements of carbon stocks were unable to constrain components of the carbon cycle to 30 

which they were not directly related. This raises the issue of the relative influence of different 31 

data streams in a joint assimilation, particularly if the number of observations for each is 32 
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vastly different, which will be the case when assimilating both half-hourly C flux data in 1 

addition to C stock observations that are typically available at an annual time scale or greater. 2 

The spatial distribution of each data stream is also important, especially for heterogeneous 3 

landscapes (Barrett et al., 2005; Alton, 2013).  4 

Although a number of multiple data stream assimilation studies exist at various scales, 5 

very few studies have specifically investigated the added benefit of different combinations of 6 

data streams in a factorial study, with a few notable exceptions (Barrett et al., 2005; 7 

Richardson et al., 2010; Kato et al., 2013; Keenan et al., 2013; Bacour et al., 2015; 8 

Schürmann et al., 2016). Kato et al. (2013) and Bacour et al. (2015) both evaluated the 9 

complementarity of eddy covariance and FAPAR data streams at site level, i.e. the impact of 10 

assimilating one individual data stream on the other model state variable, as well as when 11 

both data streams were included in the optimization (see discussion in Section 2.2). The study 12 

of Keenan et al. (2013) was particularly notable in its aim to quantify which data streams 13 

provide the most information (in terms of model-data mismatch) and how many data streams 14 

are actually needed to constrain the problem. They reported that of the 17 field-based data 15 

streams available, projections of future carbon dynamics were well-constrained with only 5 of 16 

the data sources, and crucially, not with eddy covariance NEE measurements alone. These 17 

results may be specific to this site or type of ecosystem, but their study highlights the need for 18 

further research in this area, and in particular, for synthetic data experiments that allow us to 19 

understand which data will be the most useful for a given scientific question. This will also 20 

enable researchers to plan more efficient measurement campaigns with experimentalists, as 21 

also pointed out by Keenan et al. (2012).  22 

 23 

2.2 Issue of bias and inconsistencies between the observations and the 24 

model 25 

Despite the theoretical benefit of adding data streams into an assimilation system as 26 

additional constraints, several of the aforementioned studies at both site and global scale have 27 

reported a bias or inconsistency either between the different observation data streams, or 28 

between the observations and the model. This is easily detected when the optimisation of one 29 

data stream results in a worse fit than the prior in one or more of the other data streams. Thum 30 

et al. (in review) found that the addition of aboveground biomass stocks brought a longer-31 
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term constraint on allocation parameters, but they noted an incompatibility when assimilating 1 

both annual increment and total biomass data to optimise the longer timescale 2 

mortality/turnover parameter. This was due to the fact the total stocks take into account losses 3 

related to disturbance and management (e.g. canopy thinning) – processes that were not 4 

included in that version of the model.  5 

Kato et al. (2013) assimilated SeaWiFS FAPAR (Gobron et al., 2006) and eddy 6 

covariance LE measurements at the FLUXNET site in Maun, Botswana. They showed that 7 

the individual assimilation of each the two data streams resulted in a perfect (i.e. within the 8 

observational uncertainty) fit to the assimilated data set, but a considerable degradation of the 9 

fit to the non-assimilated data set compared to the prior. A comparison against eddy 10 

covariance measurements of gross carbon uptake (gross primary production – GPP) pointed to 11 

a bias in the FAPAR data because the fit to the independent GPP data was degraded after 12 

assimilating FAPAR data only, while the fit improved after assimilating the LE data only. 13 

Nevertheless, the simultaneous assimilation of both data streams achieved a compromise 14 

between the two suboptimal results achieved after assimilating only one data stream. The 15 

calibration further limited the number of parameters with correlated errors, and yielded a 16 

higher theoretical reduction in parameter uncertainty and a decrease in the RMS difference by 17 

16% for the GPP data compared to the prior. 18 

Bacour et al. (2015) also noted that when assimilating both in-situ and satellite-derived 19 

FAPAR data (from the SPOT and MERIS instruments) and in-situ NEE and LE flux data 20 

from two French FLUXNET sites into the ORCHIDEE LSM both separately and together, the 21 

posterior parameter values changed significantly for the photosynthesis and phenology-related 22 

parameters, depending on the bias between the model and the observations and the correlation 23 

between the parameter errors. If NEE data were assimilated alone there was an even stronger 24 

positive bias (model–observations) in the start of leaf onset in the FAPAR data than in the 25 

prior simulations, and no improvement in the maximum value. This was likely due to the fact 26 

that there were enough degrees of freedom to fit the NEE without changing the phenology-27 

related parameters. Similarly, the fit to the NEE was degraded when the model was only 28 

optimized with FAPAR data. The model was able to fit the maximum FAPAR but this 29 

resulted in an adverse effect on the carbon assimilation capacity of the vegetation. The 30 

authors argued this was related to incompatibilities between the FAPAR and both the model 31 

and NEE measurements, possibly due to the larger spatial footprint of the satellite-derived 32 
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FAPAR data and/or inaccuracies in the retrieval algorithm. However, given that assimilating 1 

in-situ FAPAR also degraded the fit to the NEE, they also speculated that the culprit may be 2 

an inconsistency between the model and the data due to the different characterisation of 3 

FAPAR or LAI in the model compared to the satellite retrieval algorithm. For example, 4 

satellite-derived greenness measures (FAPAR/NDVI) also contain information on the non-5 

green elements of vegetation, but the model only simulates green LAI. Furthermore 6 

parameters and processes in models have been developed at certain temporal and spatial 7 

scales; vegetation is often simply represented as a “big leaf” model in LSMs, taking no 8 

account of vertical canopy structure or the spatial heterogeneity in a scene, thus presenting an 9 

additional source of inconsistency compared to what is measured. The joint (simultaneous) 10 

assimilation of all three data streams in Bacour et al. (2015) reconciled the different sources 11 

of information, with an improvement in the model-data fit for NEE, LE and FAPAR.  12 

However, the compromise achieved in the joint assimilation was only possible when the 13 

FAPAR data were normalised to their maximum and minimum values, which partially 14 

accounted for any bias in the magnitude of the FAPAR or inconsistency with the model.  15 

The story of biases and apparent inconsistencies in FAPAR data does not end there. A 16 

bias correction was also necessary in the study by Kaminski et al. (2012) with CCDAS-17 

BETHY using the MERIS FAPAR product in addition to atmospheric CO2 data (see above). 18 

They found that optimisation procedure failed when using the original FAPAR product 19 

because the FAPAR data were biased towards higher values. Only after applying a bias 20 

correction on the FAPAR data prior to assimilation was the optimisation successful. 21 

Schürmann et al. (2016) also reported the need to reduce a prior model bias in FAPAR. Even 22 

though the assimilation successfully corrected for this FAPAR bias, the impact of the prior 23 

bias was evident in the spatial patterns of the modelled heterotrophic respiration. Assimilating 24 

FAPAR data alone therefore resulted in a slight degradation in the net C flux and 25 

consequently led to incorrect simulations of the atmospheric CO2 growth rate. The addition of 26 

CO2 as a constraint prevented this degradation and resulted in a compromise in which FAPAR 27 

helped to disentangle these processes and find different parameter values compared to the 28 

CO2-only case, thus improving the fit to both data streams. Forkel et al. (2014) discovered an 29 

apparent inconsistency between satellite-derived FAPAR and GPP data in tundra regions 30 

when using these data (plus satellite-derived albedo) to optimise the LPJmL LSM. They too 31 

speculated that the data might be positively biased, in this case due to issues with satellite 32 

measurements taken at high sun zenith angles. However, they gave alternative suggestions, 33 
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one being that an inadequate model structure may be at fault – for example, LPJmL does not 1 

include vegetation classes corresponding to shrub, moss and lichen species that are dominant 2 

in these ecosystems. They also noted that the GPP product they used, which is based on a 3 

model tree ensemble up-scaling of FLUXNET data (Jung et al., 2011), might contain 4 

representation-related biases, given that there are very few FLUXNET stations in tundra 5 

regions. The issue of representation errors of sites has been touched upon before (e.g. 6 

Raupach et al., 2005). Alton (2013), who performed a global multi-site optimisation of the 7 

JULES LSM with a diverse range of data including satellite-derived LAI, FLUXNET, soil 8 

respiration and global river discharge, raised the point that FLUXNET sites are known to be 9 

large carbon sinks, which could potentially result in biased global NEE estimates.  10 

Resolving these apparent inconsistencies was beyond the scope of most of these 11 

studies, aside from applying a bias correction where one was evident. Aside from simple 12 

corrections, Quaife et al. (2008) and Zobitz et al. (2014) suggested that LSMs should be 13 

coupled to radiative transfer models to provide a more realistic and mechanistic observation 14 

operator between the quantities simulated by the model and the raw radiance measured by 15 

satellite instruments. This proposition follows experience gained in the case of atmospheric 16 

models for several decades (Morcrette, 1991). 17 

 18 

2.3 Step-wise versus simultaneous assimilation  19 

The paper by Alton (2013) documents the only previous study to have used a step-wise 20 

assimilation approach with more than two data streams, and they found that the final 21 

parameter values were independent of the order of data streams assimilated. No studies in the 22 

LSM community to date have explicitly examined a step-wise versus simultaneous 23 

assimilation framework with the same optimisation system and model. The step-wise 24 

assimilation with the ORCHIDEE-CCDAS detailed in Peylin et al. (2016) has been compared 25 

to a simultaneous optimisation using the same three data streams (as well as the same model 26 

and inversion algorithm) as part of an on-going study. In the simultaneous optimisation, the 27 

addition of NEE or atmospheric CO2 concentration measurements resulted in a smaller 28 

reduction in the fit to MODIS NDVI compared to the step-wise approach presented in Peylin 29 

et al. (2016). As the NDVI data were normalised to the 95th percentile range this was not a 30 

result of a simple bias in the magnitude of the data. Rather, it was likely due to 31 
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inconsistencies between the model and data, as discussed by Bacour et al. (2015, and see 1 

above). It is important to reiterate that there should be no difference between the step-wise 2 

and the simultaneous given an adequate description of the error covariance matrices and 3 

compliance with the assumptions associated with the inversion algorithm used. However, in 4 

practice it is very difficult to define a probability distribution that properly characterises the 5 

model structural uncertainty and observation errors accounting for biases and non-Gaussian 6 

distributions. This can lead to issues within a simultaneous assimilation, as described above, 7 

and a greater risk of differences between a step-wise and simultaneous assimilation. 8 

Nevertheless a step-wise assimilation may be useful on a provisional basis for dealing with 9 

possible inconsistencies, as discussed in the introduction. For example in the step-wise 10 

approach of Peylin et al. (2016) the uncertainty (variance) of the phenology-related 11 

parameters was strongly constrained by the satellite data in the first step (and was propagated 12 

to the second step), and therefore the later optimisations using NEE and atmospheric CO2 data 13 

in steps 2 and 3 found alternative solutions for the C flux-related parameters that provided a 14 

better fit to all data streams. Wherever possible however, a simultaneous optimisation is 15 

favourable because the strong parameter linkages between different processes are maintained, 16 

and therefore biases and inconsistencies between the model and observations should be 17 

addressed prior to optimisation. 18 

 19 

 20 

3 Demonstration with two simple models and synthetic data 21 

The three sub-sections in Section 2 highlight examples within a carbon cycle modeling 22 

context of the three main challenges faced when performing a multiple data stream 23 

assimilation, namely, i) the possible negative influence of including additional data streams 24 

on other model variables; ii) the impact of bias in the observations, missing model processes 25 

or inconsistency between the observations and model (as discussed in Section 2.2), and iii) the 26 

difference between a step-wise and simultaneous optimization (and the order of data stream 27 

assimilation) if the assumptions of the inversion algorithm are violated, which is more likely 28 

to be the case with non-linear models when using derivative-based algorithms and least-29 

squares formulation of the cost function (as discussed in Section 2.3). The latter point is 30 

important because derivative methods (compared to global search) are the only viable option 31 

for large-scale, complex LSMs given the time taken to run a simulation. In addition to the 32 
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above three challenges we have performed a preliminary investigation into the impact of 1 

correlated errors between the data streams, which is a topic that has not yet been studied in the 2 

context of carbon cycle models to our knowledge. 3 

This section aims to demonstrate these challenges using simple toy models and synthetic 4 

experiments where the true values of the parameters are known. Thus the following sections 5 

include a description of the toy models together with the derivation of synthetic observations, 6 

the inversion algorithm used to optimise the model parameters and the experiments 7 

performed, followed by the results for each test case.  8 

3.1 Methods 9 

3.1.1 Simple carbon model 10 

To demonstrate the challenges of multiple data stream assimilation in a carbon cycle 11 

context, we have chosen a test model that represents a simplified version of the carbon cycle 12 

dynamics typically implemented in most LSMs. The model has been well-documented in 13 

Raupach (2007) and has been used previously in the OptIC DA inter-comparison project 14 

(Trudinger et al., 2007). It is based on two equations that describe the temporal evolution (on 15 

a daily time step) of two living biomass (carbon) stores, s1 and s2, and the biomass fluxes 16 

between these two stores: 17 

ds1
dt

= F(t) s1
p1 + s1

⎛

⎝
⎜

⎞

⎠
⎟

s2
p2 + s2

⎛

⎝
⎜

⎞

⎠
⎟− k1s1 + s0                                               (1) 18 

ds2
dt

= k1s1 − k2s2                                                         (2) 19 

In this model formulation, s1 and s2 are approximately equivalent to above- and belowground 20 

biomass stocks. The unknown parameters p1, p2, k1 and k2 will be optimised in the inversions. 21 

The first term on the right-hand side of Eq. (1) corresponds to the Net Primary Production 22 

(NPP) i.e. the carbon input to the system as a function of time, represented by F(t), weighted 23 

by factors (the two fractions in parentheses) that account for the size of both pools, in order to 24 

introduce a limitation on NPP. The F(t) forcing term is a random function of time (“log-25 

Markovian” random process) representing the effect of fluctuating light and water availability 26 

due to climate on the NPP (Raupach, 2007 – Section 5.3). The litterfall is an output of s1 27 

(aboveground biomass store) and an input to s2 (belowground biomass store) and is calculated 28 

as a constant fraction (k1) of s1 (defined by k1s1). Heterotrophic respiration (Rh) is a constant 29 
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fraction (k2) of the belowground carbon reserve s2 and is represented k2s2. The constant s0 is a 1 

“seed production” term set to 0.01 (i.e. not optimised) to ensure the model does not verge 2 

towards zero. A more detailed description of the properties of the model is given in Trudinger 3 

et al. (2007 – Section 2.1) and an in-depth analysis of the dynamical behaviour of the model is 4 

provided in Raupach (2007). Synthetic observations of both s1 and s2 variables were used to 5 

optimise all the unknown parameters in the model (see Section 3.1.5).  6 

 7 

3.1.2 Non-linear toy model  8 

Although the simple carbon model contains a non-linear term it is essentially still a 9 

quasi-linear model. In order to illustrate the challenges associated with multiple data stream 10 

data assimilation for more complex non-linear models, especially when using derivative 11 

methods, we defined a simple non-linear toy model based on two equations with two 12 

unknown parameters:  13 

s1 = aexp
b+ at2                                                                   (3) 14 

s2 = sin(10a+10b)+10t
2

                                                        (4) 15 

where s1 and s2 also correspond to two model state variables (as for the simple C model), a 16 

and b are the unknown parameters included in the optimisation, and t is the independent 17 

variable, which could represent time in a real-world scenario. Note that this model is not 18 

based on any particular physical process associated with land surface biogeochemical cycles, 19 

but it does contain typical mathematical functions that are observed in reality and 20 

implemented in LSMs. For example, the sinusoidal function (Eq. (4)) could represent diurnal 21 

variations of various processes such as photosynthesis and respiration. Exponential response 22 

functions (such as in Eq. (3)) are also observed for certain processes, including the 23 

temperature sensitivity of soil microbial decomposition. As for the simple carbon model, 24 

synthetic observations corresponding to the s1 and s2 variables were used to optimise both 25 

parameters (see Section 3.1.5).  26 

 27 

3.1.3 Bayesian inversion algorithm  28 

Most data assimilation approaches follow a Bayesian formalism which, simply put, 29 

allows prior knowledge of a system (in this case the model parameters) to be updated, or 30 
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optimised, based on new information (from the observations). In order to achieve this we 1 

define a “cost function” that describes the misfit between the data and the model, taking into 2 

account their respective uncertainties, as well as the uncertainty on the prior information. If 3 

we follow a Bayesian formalism and least-squares minimisation approach, and assume 4 

Gaussian probability distributions for the model parameter and observation error 5 

variance/covariance, we derive the following cost-function (Tarantola, 1987):  6 

J(x) = 1
2
[(H (x)− y)T .R−1.(H (x)− y)+ (x− xb )T .B−1(x− xb )]                        (5) 7 

where y is the observation vector, H(x) the model outputs given parameter vector x, R the 8 

observation error covariance matrix (including measurement and model errors), xb the a priori 9 

parameter values, and B the prior parameter error covariance matrix. This framework leads to 10 

a Gaussian posterior parameter probability distribution function and requires that the model 11 

and its observation operator are linear. 12 

The aim of the inversion algorithm is to find the minimum of this cost function, 13 

thereby achieving the best possible fit between the model simulations and the measurements, 14 

conditioned on their respective uncertainties and prior information. For cases where there is a 15 

strong linear dependence of the model to the parameters (at least for variations in x of the size 16 

of those expected in the data assimilation system), and where the dimensions of the problem 17 

are not too large, the solution can be derived analytically. If not, as is usually the case with 18 

LSMs, there are different numerical methods to find the most optimal parameter values. 19 

These include global search methods that randomly search the parameter space and test the 20 

likelihood of the parameter set at each iteration, and derivative methods, which calculate the 21 

gradient of the cost function at each iteration in order to find its minimum. In this study we 22 

use the latter class of methods. More specifically we use a quasi-Newton algorithm that uses 23 

both the gradient of the cost function and its derivative (Hessian) to evaluate if the minimum 24 

has been reached (i.e. where the gradient is zero). Thus we obtain the following algorithm for 25 

iteratively finding the minimum (Tarantola, 1987, p195):  26 

xi+1 = xi −εi (H
TR−1H+B−1)−1(HTR−1(y−H (x))+B−1(xi − x

b ))                         (6) 27 

where i is the iteration number and H is the Jacobian, or first-order derivatives, of H, which in 28 

this study is determined using a finite difference method. Note that as we are potentially 29 

dealing with non-linear models, the quasi-Newton method has been slightly adapted to 30 
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include the constant scaling factor εi (with a value <1.0) to ensure that the algorithm will 1 

converge.  2 

 Of course no inversion algorithm is perfect, and therefore if the characterisation of the 3 

error distribution is inaccurate, or when optimising strictly non-linear models, it is possible 4 

that the true “global” minimum of the cost function has not been found. Derivative methods in 5 

particular can get stuck in so-called “local minima”, preventing the algorithm from finding the 6 

true minimum. To address this issue we carry out a number of assimilations with different 7 

random first guess points in the parameter space. If they all result in the same reduction in 8 

cost function value, we can have more confidence that the true minimum has been found.  9 

Once the minimum of the cost function has been found, the posterior parameter error 10 

covariance can be approximated (using the linearity assumption) from the inverse Hessian of 11 

the cost function around its minimum, which is calculated using the Jacobian of the model at 12 

the minimum of J(x) (for the set of optimized parameters), H∞, following Tarantola (1987): 13 

A = [H∞
TR−1H∞ +B

−1]−1                                                       (7) 14 

Note that the posterior error covariance matrix can be propagated into the model space to 15 

determine the posterior uncertainty on the simulated state variables as a result of the 16 

parametric uncertainty (as shown in the coloured error bands in the time series plots – Figures 17 

1 and 5) using the following matrix product and the hypothesis of local linearity (Tarantola, 18 

1987): 19 

R post =H∞.A.H∞
T                                                              (8) 20 

 21 

3.1.4 Step-wise versus simultaneous assimilation  22 

Step-wise approach 23 

In the step-wise approach each data stream (in our cases s1 and s2, see above) is 24 

assimilated sequentially, and the posterior error covariance matrix of Eq. (7) is propagated to 25 

the next step as the prior in Eq. (6). Note that the error covariance matrix can only be 26 

propagated if it is calculated within the inversion algorithm, which is the case here but may 27 

not be possible in other studies. The following details an example for two data streams. 28 
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Step 1:  Assimilation of the first data stream, s1. The prior parameters, including their values 1 

and error covariance (xb and B), are optimised to produce a first set of posterior 2 

optimised parameters x1 with error covariance A1.  3 

Step 2:  Assimilation the second data stream, s2. The parameters, x1, and their error 4 

covariance, A1, are used as a prior to the optimisation system and further optimised 5 

to produce the second (and final) set of posterior optimised parameters, xpost, and the 6 

associated error covariance A.  7 

Simultaneous approach 8 

Both data streams s1 and s2 are included in the optimisation and all parameters are optimised 9 

at the same time. The prior parameters, including their values and error covariance (xb and B) 10 

are optimised to produce the posterior parameter vector (xpost) and associated uncertainties A. 11 

 12 

3.1.5 Optimisation set-up: parameter values and uncertainty, and generation 13 

of synthetic observations 14 

In this study we used synthetic observations that were generated by running the model 15 

with known (or ‘true’) parameter values and adding random Gaussian noise corresponding to 16 

the defined observation error for both s1 and s2 (see Table 1). We optimised a ten-year time 17 

window for the simple carbon model, in order to capture the dynamics of the s1 and s2 pools 18 

over a time period compatible with typically available observations. For the non-linear toy 19 

model, which did not correspond to physical processes in the terrestrial biosphere, we ran a 20 

simulation over a window of 100 integrations (steps) of the equations.  The observation 21 

frequency was daily, corresponding to the time-step of the simple carbon model (a value of 1 22 

for the non-linear toy model), and the observation error was set to 10% of the mean value for 23 

each set of pseudo-observations derived from multiple first guesses of the model. 24 

The true values of all parameters for both models are given in Table 1, together with 25 

their upper and lower bounds (following Trudinger et al., 2007). We have not performed a 26 

prior sensitivity analysis to decide to which parameters are important to include in the 27 

optimisation, as the model variables are sensitive to all of the (small set of) parameters. 28 

However, in the case of a more complex, large-scale LSM it is advisable to carry out such an 29 

analysis, particularly given the computational burden of optimising many parameters. In this 30 



 18 

study the parameter uncertainty (1 sigma) was set to 40% of the parameter range following 1 

recent studies (e.g. Bacour et al., 2015). Prior values were chosen from a uniform random 2 

distribution bounded by the parameter bounds.  3 

 4 

3.1.6 Experiments 5 

The specific objective of the following experiments was to test the impact of a bias in the 6 

observations that is not accounted for in the R matrix, and the impact of using derivative 7 

methods with non-linear models (as may be necessary with large-scale LSMs), particularly in 8 

reference to the differences that may arise between step-wise and simultaneous optimisations. 9 

Table 2 details the experiments that were carried out based on all possible combinations 10 

for assimilating the two data streams. Three approaches were compared: i) separate – where 11 

only one data stream was included in the optimisation; ii) step-wise – where each data stream 12 

was assimilated sequentially; and ii) simultaneous – where both data streams were included in 13 

the optimisation. All parameters for both models were optimised in all experiments, therefore 14 

in the step-wise cases the parameters were optimised twice. The step-wise assimilations were 15 

also carried out with and without the propagation of the full posterior parameter error 16 

covariance matrix, A1, in between steps 1 and 2 (test cases 2b and d – see Table 2); only the 17 

For the tests in which the full posterior covariance matrix was not propagated only the 18 

posterior variance was propagated. An additional test was included for the simultaneous 19 

assimilation in order to test the impact of having a substantial difference in the number of 20 

observations for the data stream included in the optimisation, as may be the case for 21 

belowground (e.g. soil) biomass observations in reality. Therefore in test case 3b, only one 22 

observation was included for data stream s2.  23 

The differences in the parameter values and the theoretical reduction in their uncertainty 24 

(1 – (σpost / σprior)) were examined for all eight test cases, as well as the fit (RMSE) to both 25 

data streams after the optimisation. For the step-wise approach we investigated if the fit to the 26 

first data stream is degraded in the second step by comparing the RMSE after each step. Note 27 

that the reduction in uncertainty is a theoretical, or approximate, estimate of the real 28 

uncertainty reduction because of the assumptions made in the inversion scheme.   29 

In a second stage the impact of an unknown, un-accounted for bias in the model was 30 

examined. This bias could be a systematic bias in the observations due to the algorithm used 31 
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for their derivation, the result of missing or incomplete processes in the model, or an 1 

incompatibility between the observations and the model, for example due to differences in 2 

spatial resolution or an inconsistent characterisation of a variable between the model and the 3 

observations. To test the impact of such an occurrence, we introduced a constant scalar bias 4 

into the modelled s2 variable with a value of 10 (i.e. twice the magnitude of the defined 5 

observation uncertainty). All eight experiments were repeated, but a bias was introduced into 6 

the model calculation of s2 that was not accounted for in the cost function (i.e. the error 7 

distributions retained a mean of zero). This was treated as an unknown bias, and therefore not 8 

corrected or accounted for in the inversion scheme and the defined observation uncertainty 9 

(Table 1) was not changed for this set of experiments.  10 

In all experiments for both models, we used fifteen iterations of the inversion algorithm, 11 

and twenty assimilations were performed starting from different random “first guess” points 12 

in the parameter space. As discussed in Section 3.1.3, this was done to test the ability of the 13 

algorithm to converge to the global minimum of the cost function. Note that the global 14 

minimum and possible reduction in J(x) will be different for each experiment, as each is based 15 

on a different cost function. 16 

For all the above tests wee assumed independence (i.e. uncorrelated errors) for both the 17 

observation and parameter prior error covariance matrices, thus the R and B matrices were 18 

diagonal. In a final test we performed a simultaneous optimisation to examine the impact of 19 

having correlated errors between the s1 and s2 observations. Thus the random Gaussian noise 20 

added to s1 for each time step was correlated to the noise added to s2. The correlated 21 

observation errors were generated following the method used by Trudinger et al. (2007 – 22 

paragraph 22). We first defined the covariance matrix, R, using the prescribed observation 23 

error and correlation between s1 and s2. The correlated error that is added to the synthetic 24 

observations is then a multiplication of a vector of Gaussian random noise (variance of 1) by a 25 

matrix, X, that corresponds to the Cholesky decomposition of R (so that R = XTX). The added 26 

noise was time invariant, i.e. there was no correlation between one time step and the next, as 27 

we were specifically looking at correlations between the two data streams (see Pinnington et 28 

al. (2016) for an analysis of the impact of correlations in the matrix and temporal error 29 

correlation in the observations). We tested both accounting for the correlated errors by 30 

populating the corresponding off-diagonal elements of the R (observation error covariance) 31 

matrix, and ignoring the correlated errors by keeping R diagonal. The reason for performing 32 

both tests was to demonstrate the possible real world scenario where correlated observation 33 
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errors exist but that information is not included in the optimisation, likely due to a lack of 1 

knowledge as to how to characterise the errors. For both tests we performed optimisations 2 

using a combination of different of observation error and correlation magnitudes 3 

(observations errors between 0.05 and 20 in 9 uneven intervals, and observation correlations 4 

between -0.9 and 0.9 with an interval of 0.4), in order to test the hypothesis that observations 5 

with lower uncertainty (therefore higher information content) were less affected by the 6 

presence of error correlations. As in the above experiments, 20 random first guesses in the 7 

parameter space were used and 15 iterations of the inversion algorithm were performed. 8 

 9 

3.2 Results 10 

The 20 random first guess assimilations were examined for each set of experiments for 11 

both models (before the results for each test were examined in more detail), in order to check 12 

that the algorithm converged to a global minimum. As shown in the supplementary 13 

information (Fig. S1), a high proportion of the 20 first guess assimilations across all test cases 14 

for both models resulted in a similar reduction in J(x), even though the overall magnitude of 15 

the reduction was sometimes different between tests. This indicates that the algorithm does 16 

not easily get stuck in any local minima (if they exist). The examples shown in the results 17 

below were taken from one first guess parameter set for each model that belonged to the 18 

cluster that had the highest cost function reduction. Any differences seen in the parameter 19 

values, their posterior uncertainty or the resultant RMSE reduction described below therefore 20 

are due to the specific details of each test and not the inability of the algorithm to find the 21 

minimum.  22 

 23 

3.2.1 Typical performance with a quasi-linear model and no bias 24 

Figures 1a and b show the simple carbon model simulations for test case 3a (in which 25 

both data streams are assimilated simultaneously) for the s1 and s2 variables. A large reduction 26 

in RMSE is achieved after optimisation (blue curve) with respect to the observations (black 27 

curve). Overall, there is a good reduction in RMSE for all test cases (including the individual 28 

assimilations 1a and 1b) with a reduction of ~80% for s1 and s2. In addition, the optimisation 29 

of the s1 and s2 variables resulted in a good or moderate reduction in RMSE for variables not 30 

included in any assimilation: ~60% for the litterfall (Eqn. 1) and ~16% for the heterotrophic 31 
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respiration (Rh – Eqn. 2) across all test cases (not shown), although there was already a good 1 

prior fit to the data. As would be expected from these results, the parameter values and the 2 

theoretical reduction in parameter uncertainty do not vary between the tests (Figures 2a and b 3 

blue symbols), except for a slight difference in the value of the k2 parameter in test cases 1a 4 

and 3b, for which there is also a lower reduction in uncertainty (~82% compared to >95%). 5 

Note that Fig. 2a shows the normalised parameter values to account for differences in the 6 

magnitude of the different parameters and their range (the zero line represents the “true” 7 

parameter value – see caption). In this situation therefore, where we have a relatively simple 8 

linear model and two data streams to which the model parameters are highly sensitive, we see 9 

that the differences between the step-wise and simultaneous approaches are minimal. This is 10 

even the case when the error covariance is not propagated between the two steps (test cases 2b 11 

and d), suggesting that under this assimilation set-up with this model both s1 and s2 12 

individually contain enough spatio-temporal information to retrieve the true values of all 13 

parameters, as we can see from the separate test cases 1a and b. However, we cannot 14 

definitively say whether this is due to the simplicity or relative linearity of the model – it is 15 

possible that observations of variables in more complex linear model would not be able to 16 

retrieve the true values of all parameters. 17 

 18 

3.2.2 Impact of unknown bias in one data stream – example with a simple 19 

carbon model 20 

In Section 3.2.1 we saw that there is little difference between a step-wise and 21 

simultaneous optimisation if there is no bias in the model or observations, and if the model is 22 

quasi-linear and therefore the critical assumptions behind the inversion approach were not 23 

violated. However, it is not uncommon to have a bias between your observations and model 24 

that is not obvious, and therefore not accounted for in the optimisation, as the cost function 25 

used in most inversion algorithms (and in this study) assume Gaussian error distributions with 26 

a mean of zero. Note that this is also the case when defining a likelihood function for 27 

accepting or rejecting parameter values in a global search method. To test the impact of a 28 

bias, we added a constant value to the simulated s2 variable in a second test (see Section 3.1.6) 29 

that was treated as an unknown bias, and therefore not corrected or accounted for in the 30 

inversion scheme. The impact of this bias on s1 and s2 is shown in Figures 1c-d, and the 31 

reduction in RMSE between the model and observations is seen in Fig. 3 for all variables 32 
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(including Rh and litterfall). The red symbols in Fig. 2 show the resultant parameter values 1 

and theoretical reduction in uncertainty as a result of the bias. The inversion cannot accurately 2 

find the correct values for all parameters in any test case and there are now considerable 3 

differences between the simultaneous and step-wise approach. Furthermore the order in which 4 

the data streams are assimilated in the step-wise cases also results in different posterior 5 

parameter values (test cases 2a and b versus 2c and d in Fig. 2a and Fig. 3). Nevertheless the 6 

optimisation results in a similar reduction in uncertainty on the parameters, except in test case 7 

1b where only s2 data are assimilated (Fig. 2b).  8 

The main impact of the bias in the modelled s2 variable is on the value of k2 parameter 9 

(Fig. 2a), which is consistently offset from the true value (dashed line in Fig. 2a) in all test 10 

cases. This was expected given that it is the parameter most directly related to the calculation 11 

of s2. However, in test cases 2a and 3a, the values of p1 and p2 are also incorrect (and p1 for 12 

test case 2b). Note that these parameters only indirectly influence the s2 pool in the model, 13 

and therefore we might have expected that they would be less affected by the bias. This nicely 14 

demonstrates one issue that could arise in all DA studies, where the bias in a particular 15 

variable (in the observations or the model) is aliased onto another process in the model 16 

(Wutzler and Carvalhais, 2014). Such an aliasing of bias onto indirectly related parameters is 17 

even more evident when only s2 is included in the assimilation and s1 does not provide any 18 

constraint (test case 1b) – in this case all parameters are incorrect but the p2 parameter in 19 

particular shows a strong deviation from the true value (Fig. 2a). As a result we see a 20 

deterioration in the RMSE for the s1, litterfall and Rh variables in test case 1b and in the step-21 

wise cases where s2 is assimilated in the second step (Figures 3a, c and d – test case 1b, 2a 22 

and 2b). However, the RMSE reduction remains high for the s2 variable for these test cases 23 

(Fig. 3b), as the inversion has found a solution that accounts for the bias even though all 24 

inferred parameter values are incorrect. The assimilation of s1 in the second step lowers the 25 

reduction in RMSE for s2 gained in the first step to ~70%, but it is not a considerable 26 

degradation. 27 

Even though the posterior parameter values are incorrect, and despite the fact that the 28 

first step results in a degradation, the final reductions in RMSE are largely the same as the 29 

situation with no bias for all variables when s1 is included in a simultaneous assimilation or 30 

optimised in the second step (test cases 2c, d and 3a in Fig. 3). This shows that the inclusion 31 

of s1 observations can find a solution to counter the bias in s2 and prevents a degradation in 32 
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the fit to the data. If s2 is assimilated in the second step there is a negative impact on all other 1 

variables, as discussed above, demonstrating again that the order of data stream assimilation 2 

can matter when biases or inconsistencies between the data and the model are present.  3 

The analysis of the impact of the bias presented here is specific to this model and the 4 

type and magnitude of the bias that was added, but the broader findings can be generalised to 5 

any situation in which there is a bias or inconsistency between a model and data that is not 6 

accounted for in the assigned error distributions. Exactly what might constitute a bias or 7 

inconsistency is discussed more in Section 2.2. Note also that it is important to examine the 8 

impact on the other variables. For the separate test case 1b in which only s2 data are used to 9 

optimise the model, the negative impact on the other variables (Fig. 3) would have been 10 

concealed if we had only examined the posterior reduction in RMSE for the s2 variable. 11 

Again, this is a concern that is inherent to all DA experiments, whether single- or multiple-12 

data stream, but we can see from these results (i.e. by comparing the separate test cases 1b 13 

with 2a and b) that adding another data stream in a multiple-constraint approach does not 14 

always reduce the problem.  15 

 16 

3.2.3 Difference between the step-wise and simultaneous approaches in the 17 

presence of a non-linear model  18 

As discussed in Section 3.2.1, there is little difference between the step-wise and the 19 

simultaneous assimilation approaches for simple, relatively linear models, unless the 20 

observation error (including measurement and model errors) distribution deviates strongly 21 

from the Gaussian assumption. However in reality, large-scale, complex LSMs may contain 22 

highly non-linear responses to certain model parameters. To demonstrate the impact of non-23 

linearity in a multiple data stream assimilation context we used a non-physically based toy 24 

model chosen for its non-linear characteristics (see Section 3.1.2).   25 

Fig. 4a shows the posterior parameter values for both the a and b parameters of the 26 

non-linear toy model for all test cases. The values were not normalised as both parameters had 27 

the same range. The horizontal dashed line shows the “true” known values of the parameters 28 

(both equal to 1.0) that were used to generate the synthetic observations. Note that no bias has 29 

been introduced into the model in the results described here. The prior and posterior model s1 30 

and s2 simulations for the non-linear toy model are compared to the synthetic observations in 31 
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Fig. 5 for both step-wise cases in which the posterior error covariance matrix from step 1 (A1 1 

– see section 3.1.4) was propagated to step 2 (experiments 2a and c – Fig. 5a-d) and both 2 

simultaneous cases 3a and b (Fig. 5 e-h). Finally Fig. 6 summarises the reduction in RMSE 3 

between the simulated and observed s1 and s2 variables for the non-linear toy model for all 4 

test cases and, in the step-wise cases, the reduction in RMSE after both the first and second 5 

steps (light versus dark green bars).  6 

Assimilating each data stream individually (test cases 1a and b) does not result in an 7 

accurate retrieval of the posterior parameters (Fig. 4a), nor in a strong constraint on either 8 

parameter, as shown by the lack of theoretical reduction in the parameter uncertainty after the 9 

optimisation (Fig. 4b). Despite this, there is a ~90% reduction in RMSE for the data stream 10 

that was included in the optimisation (i.e. for s1 in test case 1a – Fig. 6a, and s2 in test case 1b 11 

– Fig. 6b). However, the improvement on the other data stream is much less (28% reduction 12 

in RMSE for s1 when s2 is assimilated) or even results in a degradation compared to the prior 13 

fit (e.g. in the case of s2 when s1 is assimilated – Fig. 6b). Lack of improvement, or even 14 

degradation, in the RMSE of other variables in the model is a common issue for data 15 

assimilation in general, one that is not often evaluated in model-data fusion studies. It is also 16 

is not necessarily the result of a bias or incompatibility between the observations and the 17 

model. 18 

Only the simultaneous case, in which all s1 observations have been included in the cost 19 

function (test case 3a), manages to retrieve the correct parameter values after the optimisation. 20 

The posterior parameter values for all other test cases are incorrect, and are considerably 21 

different between each case, unlike for the simple carbon model (without a model bias). Most 22 

step-wise test cases (particularly 2b-d) do not result in the same parameter values as the 23 

simultaneous test case 3a in which all the observations are included (Fig. 4a). This highlights 24 

that strong non-linearity in the model sensitivity to parameters, together with the use of an 25 

algorithm that is only adapted to weakly non-linear problems, can result in differences 26 

between a step-wise and simultaneous approach in multiple – data stream assimilation (see 27 

Section 1).  28 

In the simultaneous optimisation in which all observations are included (test case 3a), 29 

the posterior fit to the data dramatically improves for both the s1 and s2 data streams after the 30 

assimilation (blue dashed line in Fig. 5e and f). This was expected given that the correct 31 

values of the parameters were found. For the step-wise cases (test case 2a in Figures 5a and b, 32 
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and test case 2c in Fig. 5c and d), the black dashed line shows the prior, and the posterior after 1 

step 1 is shown by green dashed line. In the step-wise assimilation we see two different 2 

scenarios depending on which data stream was assimilated first. In the first step the results are 3 

the same as the case where each individual data stream is assimilated separately. In both cases 4 

the first step results in a good fit to the data that was included in the optimisation in that step. 5 

When the s1 data was assimilated in the first step (Fig. 5 first row), the fit to s2 deteriorated 6 

after the optimisation (Fig. 5b green dashed line and Fig. 6b – test case 2a_s1), but when the 7 

s2 data were assimilated first (Fig. 5 second row) the optimisation step did manage to achieve 8 

an improvement in the s1 data stream (Fig. 5c green dashed line and Fig. 6a – test case 2c_s1).  9 

In the second step the optimisation of s2 in test cases 2a and b does not degrade the fit 10 

to s1 when the full parameter error covariance matrix (A1) is propagated between step 1 and 2 11 

(Figures 5a blue curve and 6a 2a_s2). Furthermore optimising s2 in the second step reverses 12 

the deterioration in s2 caused by assimilating s1 in the first step (Figures 5b blue curve and 6b 13 

2a and b dark green bars). However, when s1 data were assimilated in the second step (test 14 

cases 2c and d), we found that the good fit achieved with s2 observations in the first step was 15 

effectively reversed (Fig. 5d blue curve). Therefore assimilating s1 in the second step 16 

degraded the fit to the s2 observations, even compared to the prior case (Fig. 6b, dark green 17 

bars for test cases 2c and d). This nicely highlights one of the main possible issues with a 18 

step-wise assimilation framework. 19 

The fact that the final reduction in RMSE values after both steps was ~90% for most 20 

cases, even though the values were not correct for all but case 3a (Fig. 4), indicates that the 21 

error correlation between the two parameters (~ -1.0 – calculated from the posterior error 22 

covariance matrix but not shown) led to alternative sets of values that resulted in a similar 23 

improvement to the data – a phenomenon known as model equifinality. 24 

 25 

3.2.4 Order of assimilation of data streams and propagation of parameter 26 

error covariance matrices in a step-wise approach 27 

Comparing the step-wise cases 2a and b with 2c and d for the non-linear toy model 28 

reveals that neither order in the assimilation, s1 then s2, or s2 then s1, results in the correct 29 

posterior parameter values that match the simultaneous test case (Fig. 4a). This is not a result 30 

that can be generalised to all step-wise assimilations as it will depend on the data stream 31 



 26 

involved and whether they contain enough spatio-temporal information to accurately 1 

constrain all the parameters included in the optimisation, as well as any biases in the model or 2 

observations (as discussed in Section 3.2.2) or model non-linearity (section 3.2.3). In the case 3 

of the non-linear toy model, neither s1 nor s2 find the right parameter values when assimilated 4 

individually, therefore it is not surprising that neither order manages to achieve the right 5 

posterior parameter values. Nevertheless, the theoretical uncertainty of both parameters is 6 

reduced by >95% for the step-wise cases in which A1 from step 1 is propagated between step 7 

1 and 2 (test cases 2a and c – Fig. 4b), even though the posterior values for the step-wise 8 

cases are incorrect. This demonstrates that a good theoretical reduction in uncertainty is not 9 

always indicative that the right parameters have been found by the optimisation. The lower 10 

theoretical reduction in parametric uncertainty for cases 2b and d (Fig. 4b) demonstrates that 11 

information is lost between the steps if the posterior error covariance terms of A1 are not 12 

propagated to step 2.  13 

From a mathematical standpoint the most rigorous approach is to propagate the full 14 

parameter error covariance matrices between each step. Without that constraint not only is 15 

information lost in the second step, but the information contained in the second data stream 16 

may have a stronger influence compared to a simultaneous assimilation, or step-wise case 17 

with a propagated error covariance matrix. The inversion may therefore be more vulnerable to 18 

any strong biases or incompatibilities between the model and the observations of the second 19 

data stream, or indeed the particular sensitivity of its corresponding model state variable to 20 

the parameters. This is one possible explanation for the degradation seen in s1 in the non-21 

linear toy model when s2 is optimised in the second step and A1 is not propagated between the 22 

steps (Fig. 6a test case 2b_s2). The same was also true for the simple carbon model for test 23 

case 2b when a bias was introduced into the s2 simulation (see Section 3.2.2 and Fig. 3a). 24 

However, the reverse is also true – if the first data stream contains strong biases then 25 

the associated error correlations will be also propagated with A1. If autocorrelation in the 26 

observation errors, or indeed correlation between the errors of the data streams, is not 27 

accounted for, it is likely that the posterior simulations are over-tuned, i.e. we will 28 

overestimate the reduction in parameter uncertainty. If this is the case and the first step results 29 

in incorrect parameter values, the propagation of A1 could restrict the parameter values to the 30 

wrong location in the parameter space, and thus inhibit the ability of the inversion to find the 31 

correct global minimum. These issues are likely to be more considerable for non-linear 32 
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models, as seen by the lack of difference between test cases 2a-d in the simple carbon model 1 

example (Fig. 2). 2 

 3 

3.2.5 Impact of accounting for correlated observation errors in the prior 4 

observation error covariance matrix 5 

In a final test we introduced time invariant correlated noise between the two data streams 6 

(see Section 3.1.6). We investigated the impact of ignoring cross-correlation between two 7 

data streams by comparing the results of i) an optimisation in which the correlated errors were 8 

included in the off-diagonal elements of the prior observation error covariance matrix, R, to 9 

ii) an optimisation in which the correlated observation errors were excluded (i.e. R was kept 10 

diagonal). Note that this experiment is only relevant to simultaneous multiple data stream 11 

assimilation, as it is not possible to account for cross-correlation between data streams when 12 

one is assimilated after the other in a step-wise approach.  13 

The presence of correlated errors increases observation redundancy in the inversion, 14 

which would therefore reduce the expected theoretical error reduction compared to 15 

uncorrelated observations (experiments not shown). We would expect a further limitation on 16 

the expected error reduction with a sub-optimal system, as represented by optimisation ii) in 17 

which there was cross-correlation between the data streams, but the correlated observation 18 

errors were ignored in the R matrix (as seen in Chevallier, 2007).  19 

Figure 7 shows the difference between the two optimisations, (i.e. including off-diagonal 20 

elements in the R matrix minus only diagonal elements in the R matrix), for the reduction in 21 

the cost function value (Figures 7a and d) and posterior s1 and s2 observation errors (1 sigma – 22 

Figures 7b, c, e and f), for both the simple C model (top row) and the non-linear toy model 23 

(bottom row) and for a range of observation error and correlation. The plot shows the median 24 

difference across all twenty random first guess parameters, and the reduction is calculated as 25 

1 – (posterior/prior).  26 

At low observation error there is no discernible difference between accounting for the 27 

correlated observation errors in the R matrix or not. This is likely because there is enough 28 

information in the observations to find the global minimum of the cost function. Trudinger et 29 

al. (2007) also found that similar posterior values were obtained when comparing 30 

observations with correlated and uncorrelated Gaussian errors. However, at a certain point as 31 
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observation error increases along the x-axis (i.e. decreasing information content) there is a 1 

difference in the cost function and observation error reduction between the two optimisations 2 

for both models (Figure 7). As expected, the optimal optimisation that includes off-diagonal 3 

correlated errors in R results in a higher reduction (blue cells in Figure 7) in the cost function 4 

and posterior observation error than the sub-optimal optimisation (in which the correlated 5 

errors are ignored) in all cases except for the s1 data stream in the simple C model (see 6 

below). Furthermore we see a pattern emerging suggesting that the difference between the 7 

two optimisations increases with higher observation correlation for the same error magnitude. 8 

However, for some combinations of observation error and correlation, the pattern is opposite 9 

to what we expect (red cells in Figure 7), particularly for the s1 data stream in the simple C 10 

model (Figure 7b). This is likely because the accuracy of the solution becomes limited by 11 

observation uncertainty at higher observation errors, and also due to presence of model non-12 

linearity, which prevents a fully accurate characterisation of the posterior error covariance 13 

matrix with the inversion algorithm we have used.  14 

The key finding of this preliminary investigation into the impact of correlated 15 

observation errors is that it becomes increasingly important to properly characterise and 16 

account for correlations between data streams if the observations do not contain enough 17 

information (i.e. high observation uncertainty or a limited number of observations). However, 18 

this is a wide topic that has received little-to-no attention in the carbon cycle data assimilation 19 

literature to date, aside from the 2 out of 21 experiments in the wider-ranging study of 20 

Trudinger et al. (2007). We therefore suggest that an investigation such as this should be 21 

extended in order to fully understand the impact of cross-correlation between data streams; 22 

however, this is beyond the scope of this paper. 23 

 24 

 25 

4 Perspectives and advice for Land Surface Modellers  26 

Although it is clear that in many cases the addition of different observations in a model 27 

optimisation provides additional constraints, challenges remain that need to be addressed. 28 

Many of the issues that we have investigated are relevant to any data assimilation study, 29 

including those only using one data stream. However, most are more pertinent when 30 

considering more than one source of data. Based on the simple toy model results presented 31 
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here, in addition to lessons learned from existing studies, we recommend the following points 1 

when carrying out multiple data stream carbon cycle data assimilation experiments: 2 

• If technical constraints require that a step-wise approach be used, it is preferable 3 

(from a mathematical standpoint) to propagate the full parameter error covariance 4 

matrix between each step. Furthermore, it is important to check that the order of 5 

assimilation of observations does not affect the final posterior parameter values, 6 

and that the fit to the observations included in the previous steps is not degraded 7 

after the final step (e.g. Peylin et al., 2016).  8 

• Devote time to carefully characterising the parameter and observation error 9 

covariance matrices, including their correlations (Raupach et al., 2005), although 10 

we appreciate this is not an easy task (but see Kuppel et al., 2013 for practical 11 

solutions). In the context of multiple data stream assimilation, accounting for the 12 

error correlations between data streams is increasingly important with higher 13 

observational uncertainty (or a limited number of observations), though note that 14 

this is not possible in a step-wise assimilation. 15 

• The presence of a bias in a data stream, or an incompatibility between the 16 

observations and the model, will limit the utility of using multiple observation 17 

types in an assimilation framework. Therefore it is imperative to analyse and 18 

correct for biases in the observations and to determine if there is an incompatibility 19 

or inconsistency between the model and data. Alternatively, it may be possible 20 

account for any possible bias/inconsistency in the observation error covariance 21 

matrix, R, using the off-diagonal terms or inflated errors (see Chevallier, 2007), or 22 

by using the prior model-data RMSE to define the observation uncertainty.  23 

• Most optimisation studies with a large-scale LSM require the use of derivative-24 

based algorithms based on a least-squares formulation of the cost function, and 25 

therefore rely on assumptions of Gaussian error distributions and quasi–model 26 

linearity. However, if the these assumptions are not met it may not be possible to 27 

find the true global minimum of the cost function and the resultant calculation of 28 

the posterior probability distribution will be incorrect. This is a particular problem 29 

if the posterior parameter error covariance matrix is propagated multiple times in a 30 

step-wise approach, although these issues are relevant to both step-wise and 31 

simultaneous assimilation. Therefore it is important to assess the non-linearity of 32 
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your model, and if the model is strongly non-linear, use global search algorithms 1 

for the optimisation – although at the resolution of typical LSM simulations 2 

(≥0.5x0.5°) this will likely only be computationally feasible at site or multi-site 3 

scale. Note also that performing a number of tests starting from different random 4 

“first guess” points in parameter space can help to diagnose if the global minimum 5 

has been reached, (as outlined in Section 3.1.6 and discussed at the beginning of 6 

Section 3.2), and therefore whether the chosen inversion algorithm is appropriate 7 

for optimising your model. 8 

 9 

In addition to the above points we note the following related to a situation in which 10 

there is a considerable difference in the number of observations for each data stream. We 11 

investigated such a situation in this study with test case 3b, in which only one observation was 12 

included for the s2 data stream instead of the complete time-series. For both models, test case 13 

3b showed that a substantial difference in number of observations between the data streams 14 

could influence the resulting parameter values and posterior uncertainty (compare test cases 15 

3a and b in Fig. 2 for the simple C model and Fig. 4 for the non-linear toy model) as each data 16 

stream will have a different overall “weight” in the cost function. Different arguments abound 17 

on this issue. Some authors have mentioned the possible need to weight different observation 18 

terms in the cost function to increase the influence of data streams with a limited number of 19 

observations (e.g. Xu et al., 2006), while others contend that the cost function should not be 20 

weighted by the number of observations because the error covariance matrices (B and R) 21 

should already define this weight in an objective way (e.g. Keenan et al., 2013); we would 22 

agree with this assertion. Indeed Wutzler et al. (2014) showed that this approach could lead to 23 

an overestimate of the posterior uncertainty. As an alternative they proposed a “parameter 24 

block” approach in which each data stream only optimises the parameters to which they are 25 

most sensitive. We therefore advise modellers not to weight the cost function by the number 26 

of observations; instead we suggest adopting an approach such as proposed in Wutzler et al. 27 

(2014) and/or ensuring that B and R matrices are adequately defined. It should not be 28 

necessary to weight by the number of observations in the cost function if there is sufficient 29 

information to properly build the prior error covariance matrices 30 

Several diagnostic tests exist to help infer the relative level of constraint brought about 31 

by different data streams, including the observation influence and degrees of freedom of 32 
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signal metrics (Cardinali et al., 2004). Performing these tests was beyond the scope of this 1 

study, particularly given that the simple toy models contained so few parameters, but such 2 

tests may be instructive when optimising many hundreds of parameters in a large-scale LSM 3 

with a number of different data streams. Furthermore, we strongly suggest performing 4 

synthetic experiments with pseudo observations, as in this study, as such tests can help  5 

determine the possible constraint brought by different data streams, and the impact of a 6 

possible bias and observation or observation–model inconsistency.  7 

Aside from multiple data stream assimilation, other promising directions could also be 8 

considered to constrain the problem of lack of information in resolving the parameter space 9 

within a data assimilation framework, including the use of other ecological and dynamical 10 

“rules” that limit the optimisation (see for example Bloom and Williams, 2015), or the 11 

addition of different timescales of information extracted from the data such as annual sums 12 

(e.g. Keenan et al., 2012). Finally we should also seek to develop collaborations with 13 

researchers in other fields who may have advanced further in a particular direction. Members 14 

of the atmospheric and hydrological modelling communities, for example, have implemented 15 

techniques for inferring the properties of the prior error covariance matrices, including the 16 

mean and variance, but also potential biases, autocorrelation and heteroscedasticity, by 17 

including these terms as “hyper-parameters” within the inversion (e.g. Michalak et al. 2005; 18 

Evin et al., 2014; Renard et al., 2010; Wu et al. 2013). Of course this extends the parameter 19 

space – making the problem harder to solve unless sufficient prior information is available 20 

(Renard et al., 2010), but such avenues are worth exploring. 21 

 22 

5 Conclusions 23 

In this study we have attempted to highlight and discuss some of the challenges 24 

associated with using multiple data streams to constrain the parameters of LSMs, with a 25 

particular focus on the carbon cycle. We demonstrated some of the issues using two simple 26 

models constrained with synthetic observations for which the ‘true’ parameters are known. 27 

We performed a variety of tests in Section 3 to demonstrate the differences between 28 

assimilating each data stream separately, sequentially (in a step-wise approach) and together 29 

in the same assimilation (simultaneous approach). In particular we focused on difficulties that 30 

may arise in the presence of biases or inconsistencies between the data and the model, as well 31 



 32 

as non-linearity in the model equations and the importance of accounting of observation error 1 

correlations. 2 

Many of the issues faced are inherent to all optimisation experiments, including those in 3 

which only one data stream is used. It is of upmost importance to determine if the 4 

observations contain biases, and/or if inconsistencies or incompatibilities exist between the 5 

model and the observations, and to correct for this or properly account for this in the error 6 

covariance matrices. Secondly it is crucial to understand the assumptions and limitations 7 

related to the inversion algorithm used. Without these two points being met, there is a greater 8 

risk of obtaining incorrect parameter values, which may not be obvious by examining the 9 

posterior uncertainty and model-data RMSE reduction. Furthermore it is more likely that the 10 

implementation of a step-wise versus simultaneous approach will lead to different results. 11 

Finally, we  note that the consequence of not accounting for cross-correlation between data 12 

streams in the prior error covariance matrix becomes more critical with higher observation 13 

uncertainty. 14 

This study was not able to examine an exhaustive list of all possible challenges that may 15 

be faced when assimilating multiple data streams, but we hope that this tutorial style paper 16 

will serve as a guide for those wishing to optimise the parameters of LSMs using the variety 17 

of C cycle related observations that are available today. We also hope that by increasing 18 

awareness about the possible difficulties of model-data integration we can bring the modelling 19 

and experimental communities more closely together to focus on these issues.  20 

 21 
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Table 1: The optimisation set-up for both models, including the true parameter values, their 1 

range and the observation uncertainty (1 sigma), which was set to 10% of the mean value for 2 

each set of pseudo-observations derived from multiple first guesses of the model. The 3 

parameter uncertainty (1 sigma) was set to 40% of the range for each parameter. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

Model Parameter value (range) Observation uncertainty 

Simple carbon p1 p2 k1 k2 s1 s2 

model 1 (0.5,5) 1 (0.5,5) 0.2 (0.03,0.9) 0.1 (0.01,0.12) 0.5 5 

Non-linear  a b s1 s2 

toy model 1 (0,2) 1 (0,2) 0.5 0.5 
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Table 2: List of experiments performed for both models with synthetic data. All parameters 1 

are optimised in all cases (therefore in both steps for the step-wise approach). 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

Test case Step 1 Step 2 Parameter error covariance 
terms propagated in step 2? 

Separate    

1a s1 - - 

1b s2 - - 

Step-wise 

2a s1 s2 yes 

2b s1 s2 no 

2c s2 s1 yes 

2d s2 s1 no 

Simultaneous 

3a s1 and s2 - - 

3b s1 and only 1 obs for  s2 - - 
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 1 

Figure 1: Prior and posterior model simulations compared to the synthetic observations for the 2 

simple carbon model for test case 3a for a) s1 and b) s2 simulations without any model bias, 3 

and c and d) with bias in the simulated s2 variable. The coloured error band on the prior and 4 

posterior represents the propagated parameter uncertainty (1 sigma) on the model state 5 

variables (in the equivalent colour as the mean curve). This is mostly visible for the prior 6 

model simulation (pink band) as there is a high reduction in model uncertainty reduction as a 7 

result of the assimilation. 8 

 9 

 10 

 11 

 12 

 13 

Test	case	3a	–	Model	without	bias	

Test	case	3a	–	Model	with	bias	in	s2	

a)	 b)	

c)	 d)	
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 1 

Figure 2: a) Normalised posterior parameter values and b) posterior parameter error reduction 2 

for all parameters of the simple carbon model for each test case, and for both the simulations 3 

with no bias (blue) and simulations with a bias in the s2 variable that was not accounted for in 4 

the inversion (red). In a) parameters values were normalised to account for differences in the 5 

magnitude of the different parameters and their range, thus it is a measure of the distance 6 

from the true value as a fraction of the range and is calculated as: (posterior value – true value 7 

/ max parameter value – minimum parameter value). The closer the value to the zero dashed 8 

line represents a better match to the “true” parameter value. To give an indication of the 9 

optimisation performance, the following are the normalised first guess parameter values for 10 

this particular example test (compare with posterior values in Fig. 2a): p1 0.09, p2 0.29, k1 0.1, 11 

k2 0.15. 12 

 13 

a)	

b)	
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 1 

Figure 3: Reduction in RMSE for all test cases for simulations with a bias in the s2 variable: a) 2 

s1, b) s2, c) litterfall and d) heterotrophic respiration (Rh). For the step-wise cases (2a, b, c and 3 

d) the reduction after both step 1 and step 2 are shown in light and dark green respectively, 4 

and are denoted in the x-axis labels with ‘_s1’ for step 1 and ‘_s2’ for step 2. The reduction 5 

(in %) is calculated as 1 – (RMSEpost / RMSEprior). 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

a)	 b)	

c)	 d)	

Model	with	
bias	in	s2	
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 1 

Figure 4: Posterior parameter values of both the non-linear toy model a and b parameters for 2 

each test case for the simulations with no model bias. The y-axis range corresponds to the 3 

parameter bounds and the dashed horizontal line represents the “true” known value of both 4 

parameters. To give an indication of the optimisation performance, the following are the first 5 

guess parameter values for this particular example test (compare with posterior values in Fig. 6 

4a): a 0.87, b 1.98. b) Posterior uncertainty reduction for both parameters for all test cases.  7 
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 12 

a)	

b)	
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 1 

Figure 5: Prior and posterior model simulations compared to the synthetic observations for the 2 

non-linear toy model (with no bias) for both the s1 (left column) and s2 (right column) 3 

variables for a) and b) test case 2a (1st row) – step-wise approach with s1 observations 4 

assimilated in the first step, followed by the s2 observations in the second step; c) and d) test 5 

case 2c (2nd row) – step-wise approach with s2 observations assimilated in the first step, 6 

followed by s1 observations in the second step; and e) and f) test case 3a (3rd row) – the 7 

simultaneous case in which both data streams were included. For both step-wise examples A1 8 

was propagated between the 1st and 2nd steps. The coloured error band on the prior and 9 

posterior represents the propagated parameter uncertainty (1 sigma) on the model state 10 

variables (in the equivalent colour as the mean curve). This is mostly visible for the prior 11 

a)	 b)	Step-wise	–	test	case	2a	

Step-wise	–	test	case	2c	c)	 d)	

Simultaneous	–	test	case	3a	e)	 f)	
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model simulation (pink band) as there is a high reduction in model uncertainty reduction as a 1 

result of the assimilation.  2 

 3 
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 1 

Figure 6: Reduction in RMSE for all test cases for both a) s1 and b) s2 variables for the non-2 

linear toy model simulations with no model bias. For the step-wise cases (2a, b, c and d) the 3 

reduction after both step 1 and step 2 are shown in light and dark green respectively, and are 4 

denoted in the x-axis labels with ‘_s1’ for step 1 and ‘_s2’ for step 2. The reduction (in %) is 5 

calculated as 1 – (RMSEprior / RMSEpost). 6 
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 1 

Figure 7: Median difference (across 20 first guess parameters) between including correlated 2 

observation errors in the R matrix (off-diagonal elements) minus ignoring the correlated 3 

observation errors (keeping R diagonal) for the reduction cost function (a and d: left column) 4 

and the reduction in s1 and s2 observation errors (b, c, e and f: middle and right columns), for 5 

both the simple C model (a, b and c: top row) and the non-linear toy model (d, e and f: bottom 6 

row) for a range of observation errors (x-axes) and correlation (y-axes) – see Section 3.1.6. 7 

The reduction is calculated as 1 – (posterior/prior). 8 

 9 

 10 
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Supplementary material 1 

 2 

Figure S1: Reduction in the cost function (J/Jo) for each model and each test for all 20 3 

assimilations with different random “first guess” points in the parameter space (i.e. each cross 4 

represents the 20 random “first guess” tests). Top panel – simple C model without bias (left) 5 

and with bias added to the simulated s2 variable (right). Bottom panel – non-linear toy model 6 

with no added bias. Note that the majority of the random “first guess” assimilations achieve 7 

the same reduction in the cost function even though the final value is different for each test, 8 

which is to be expected as each test (for each model) has a different cost function. 9 

Simple	C	model	–	no	bias	 Simple	C	model	–	
bias	in	model	s2	

Non-linear	toy	model	
–	no	bias	


