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Abstract. This paper describes the rpe library which has the capability to emulate the use of arbitrary reduced floating-point

precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced

floating-point precision affects the result of their simulations without having to make extensive code changes or port the model

onto specialised hardware. The software can be used to identify parts of a program that are problematic for numerical precision

and to guide changes to the program to allow a stronger reduction in precision.5

The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be

reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be

reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption.

For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model

simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions.10

rpe was developed with particular focus on the community of weather and climate modelling, but the software could be used

with numerical simulations from other domains.

1 Introduction

Users of high performance computing (HPC) have historically enjoyed a steady increase in computing power according to

Moore’s Law, allowing the complexity of HPC applications to increase steadily over time. In recent years, advances in super-15

computing power have not come from increasingly fast processors, but from increasing the number of individual processors in

a system. This has led to HPC applications being redesigned so that they scale well when run on many thousands of processors,

and effort will be required to make sure models are efficient on the massively-parallel supercomputing architectures of the

future. However, even for massively-parallel supercomputers a continuation of the exponential growth of computational power

that has been observed in the past appears to be out of reach with current technologies, primarily since power consumption20

scales linearly with the number of processors such that power demand of future supercomputers will become excessive.

One approach to reducing the energy requirements of the next-generation supercomputer is to use so-called approximate

computing or inexact hardware. This is hardware that makes some trade-off between accuracy and/or reproducibility, and speed

and/or efficiency. A number of studies have shown the promising nature of such hardware implementations (see Hamilton et al.,

2014; Xu et al., 2016, for an overview). One of the most promising avenues for inexact computing is the use of a reduction25
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in numerical precision. The precision of a floating-point number can be reduced by decreasing the number of bits used to

represent the number. Storing and operating on fewer bits reduces the space in memory required for storage and could speed up

computations on suitably designed hardware. Therefore using a reduced-precision representation for floating-point numbers

could be a viable option for reducing the computational cost of complex numerical models, provided the results at reduced

precision are acceptable.5

The recognized standard for floating-point arithmetic is IEEE 754 floating-point (IEEE Computer Society, 2008). This

standard specifies a format using a 32-bit representation for floating-point numbers (often referred to as single precision) and

an additional option for a 64-bit double-precision representation. These representations are ubiquitous on modern consumer

CPUs. It is possible to trade numerical precision for performance on existing hardware by switching from double to single

precision. Using single-precision representations does not necessarily mean computation will be faster, often floating-point10

units are designed to perform optimally for 64-bit calculations, but for code that can be vectorized it is possible to process

single precision at twice the speed as double precision. A key advantage of using a smaller representation is that more data

can fit in memory and importantly in cache which can speed up memory-bound computations, and a smaller data volume is

beneficial for parallel applications that communicate between processors via message passing. Significant savings in compute

time are observed in many applications when precision is switched from double to single (e.g., Berger and Stamatakis, 2010;15

Rüdisühli et al., 2013; Vana et al., 2017). A representation using 16-bits has also been standardised upon by the IEEE, referred

to as half precision. It is less common to find support for half precision on consumer hardware, although it is supported on

some general purpose GPU hardware. Although consumer CPUs and GPUs typically offer only precision levels supported by

IEEE 754, in principal hardware architectures are not limited to these three precision levels, and custom hardware (e.g., based

on FPGAs) could be produced that uses an arbitrary number of bits to represent floating-point numbers.20

Whilst aiming to understand the performance of complex numerical models on new hardware architectures with inexact

processing capabilities it is useful to be able to experiment with different precision levels, including those that are not supported

natively by currently available hardware. Programmable hardware could be used to study a reduction in precision for an

application of interest (e.g., Düben et al., 2015a). However, this will require a total rewrite of the model to run on such

hardware, which will often be a serious programming effort. For most applications it will be much easier to use software to25

emulate the behaviour of possible inexact hardware for a model of interest, thus avoiding the cost of re-engineering code for a

new hardware platform without knowing what the results might be.

Tools for understanding rounding error in numerical simulations have been developed already. For example the CADNA

library (Scott et al., 2007; Jézéquel and Chesneaux, 2008) can be used to estimate the contribution of round-off error in

numerical calculations, and hence determine the likely accuracy of the solution. Along a similar line, the specialised compiler30

Verificarlo (Denis et al., 2016) is capable of estimating the number of real bits of precision in a calculation given the errors

introduced by round-off errors at various “virtual” precisions. This approach has some problems when investigating rounding

errors in weather and climate predictions. For example, for short term weather simulation an ensemble of forecasts is typically

produced, and each member may have different small scale features such as the location of a particular thunderstorm, but

all members are valid realisations of the state of the atmosphere. This forecasting methodology may allow us to predict if35
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thunderstorms are likely or not, but not the exact location of an individual storm. If the position of a particular storm is

different in model using high precision and a model using lower precision, results can still be valid for both simulations (as

with for different ensemble members) but the amount of local precipitation in each model can vary by orders of magnitude.

This suggests that identifying the number of bits that are influenced by rounding errors may not be able to tell us what precision

we need to make a useful prediction.5

A variety of tools also exist for automatically tuning floating point precision, and producing mixed precision versions of

double precision programs. Tools such as SAM (Graillat et al., 2011), Precimonious (Rubio-González et al., 2013), CRAFT

(Lam et al., 2013) and PROMISE (Graillat et al., 2016) all provide automated methods for producing a correct mixed precision

implementation. The automated tuning approach usually requires the specification of an appropriate error threshold used to

determine the suitability of a particular automatically generated implementation of a program. This can be straightforward for10

problems where a numerical method is expected to converge to an exact solution, but becomes difficult for models geophysical

flows. For these models there is typically considerable uncertainty in both the formulation of the model and the initial condi-

tions. When we consider chaotic models, that when slightly perturbed will quickly diverge from each other (with the rate of

divergence dependent on the weather regime of the initial conditions, and varying with time), it becomes difficult to specify

such a condition. Two solutions may differ in the most significant bits of the results, yet still represent physically meaningful15

realisations of the model. In this situation it becomes necessary to perform explicit simulations, and for evaluation of the re-

sults to be performed by a domain scientist who understands the physical behaviour of the model, in order to determine the

suitability of a particular reduced precision implementation.

This paper introduces the rpe (reduced precision emulator) software, which provides the capability to emulate calculations

in arbitrary reduced floating-point precision, so that model developers may understand how reduced floating-point precision20

affects the result of their simulations. The rpe software allows modellers to study the impact of numerical precision in complex

model simulations, while making only small changes to the model code. The software can also be used to identify parts of

a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in

precision. We refer to this as software co-design, and present an example of the co-design of a shallow water model in Sect. 3.

rpe was developed with particular focus for the community of weather and climate modelling, but the software could be used25

with other numerical simulations from different domains to answer the same kind of questions.

Weather and climate models are becoming increasingly important in society. Even though weather and climate models are

often run on some of the fastest computing hardware available, this is still not enough computational power to allow them to

run at small scales that are believed to be important, for example resolving individual convective systems (Shukla et al., 2010;

Prein et al., 2015). For weather and climate modelling, it was recently proposed that the use of reduced numerical precision30

may allow a significant reduction of computing cost (Palmer, 2014). Savings due to increased performance or reduced power

consumption could be reinvested into larger computing systems and used to allow simulations at higher spatial resolution.

To this end, a number of studies have already been performed on the use of reduced floating point precision in atmospheric

applications that have used ancestors of the rpe tool that is presented in this paper (Düben et al., 2013, 2014; Düben and Palmer,
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2014; Düben et al., 2015b, a; Thornes et al., 2017). Results show that numerical precision can be reduced significantly for the

applications that have been considered.

Section 2 presents the rpe library including an overview on how to use rpe, how rpe works, how floating point truncation is

realised within rpe, how to control numerical precision with rpe, and the basic software architecture. Section 3 presents results

for simulations with reduced numerical precision in a shallow water model that serves as an example for a possible application5

of rpe, and Section 4 provides the conclusions.

2 An emulator for reduced floating-point precision

In this section we introduce the rpe library and explain how to use the emulator, details on how the emulator truncates floating-

point numbers, and how precision will propagate through a simulations. Details of the software architecture and possible pitfalls

and limitations of the emulator are also discussed.10

2.1 How it works and how to use it

The rpe software is implemented as a Fortran library. This choice of language is due to the prevalence of Fortran in geophysical

modelling. The emulator is implemented as a Fortran module that can be included in existing projects via the standard Fortran

90 modules mechanism. The module defines a new derived type named rpe_var (reduced precision emulator variable)

which can be substituted for the built-in Fortran real type in user code. The intention is to make the rpe_var type a drop-in15

replacement for the real type, allowing the introduction of reduced precision in complex numerical models to be manageable.

The emulator’s core functionality comes from overloading the assignment (=) operator for rpe_var variables to ensure

they are stored with a reduced precision. Overloaded versions of the remaining arithmetic and logic operators (+, -, *, /, **,

==, /=, >, <, >=, <=) that accept rpe_var instances as inputs are provided, along with overloaded versions of many of the

Fortran intrinsic functions that normally accept real types as input. Overloaded definitions that would normally return real20

types make use of the overloaded assignment internally to reduce the precision of their output appropriately (depending on

the precision of the input) and return rpe_var types. Compound expressions are handled implicitly, with each intermediate

operation involving rpe_var instances returning rpe_var instances of appropriate precision, before computing the next

terms. Reduction of precision is applied after each operator or intrinsic function call. For intrinsics like sin we only reduce

the precision of the final result of the function application, even though the implementation of the intrinsic may internally25

consist of many individual floating-point operations. This provides a reasonable approximation to hardware reduced precision,

while avoiding the complexity of reimplementing all numerical intrinsic functions from scratch.

Let us consider the program listed in Fig. 1a, which is implemented using single-precision floating-point. This program per-

forms a simple numerical computation with a final value P=118.081879. This program could be rewritten to use a reduced

precision with 10 explicit significand bits by changing the type of the variables, as in Fig. 1b. The program using reduced30

precision computes the final value P=118.0625. The following operations are computed when this program executes:
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Algorithm 1 Operations performed by the reduced-precision program (Fig. 1b).

rho←R10 (1.2041)

g←R10 (9.80665)

h←R10 (10)

P←R10 (h×R10 (rho×g))

The notation Rn (. . .) refers to an operator that reduces the precision of a floating-point value to n significand bits and ←
indicates an assignment. The reduced precision is a consequence of using the rpe_var type instead of the real type. The

reduced-precision type rpe_var has its own assignment operator that truncates values to the required number of significand

bits before storing in memory, causing the values stored in the variables rho, g, and h to be truncated to 10 significand bits.

The multiplication operator is also modified for rpe_var types, causing the expression for P to be evaluated by multiplying5

rho by g, truncating the result to 10 explicit significand bits, then multiplying this value by the value of h and once again

truncating the result to 10 explicit significand bits. The assignment to P will also ensure truncation to 10 significand bits, but

in this case it makes no change to the value stored, since it has already been truncated.

The reduced-precision program (Fig. 1b) sets a global default number of explicit significand bits for all rpe_var instances

to 10 using RPE_DEFAULT_SBITS=10. It is also possible to control the precision for each variable independently as in the10

program listed in Fig 2, which produces the final value P=118.0. The operations performed by this program are listed below:

Algorithm 2 Operations performed by the mixed precision program (Fig. 2).

rho←R8 (1.2041)

g←R9 (9.80665)

h←R10 (10)

P←R7 (R10 (h×R9 (rho×g)))

This example demonstrates a more complex situation where multiple precisions are used, resulting in each multiplication

casting to the precision of its most precise input (individual precision values are assigned using the sbits component). The

behaviour of mixed-precision operations is described in detail in Sect. 2.3, including details of potential problems that may

arise from the use of mixed precision.15

2.2 Truncation of floating point numbers

Floating-point numbers consist of 3 parts: a sign bit that determines the sign of the number, an exponent that determines

the magnitude of the number, and a significand that determines the digits precision of the number. The approach to reduced

floating-point precision taken in this paper is a truncation of the significand. This truncation removes less significant bits from

the floating-point significand, by setting them to zero, resulting in reduced precision. A naïve truncation that simply sets the20

least significant bits of the significand to zero would introduce a bias, since such a truncation is equivalent to always rounding
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toward zero to the nearest representation with the desired number of remaining significand bits. We have encountered situations

where such biases can have a significant impact on conservation properties when running simulations of computational fluid

dynamics. Therefore it is necessary to apply rounding as well as truncation. The method used for reduction of precision in rpe

emulates IEEE 754 rounding, where numbers are rounded to the nearest representation with the given number of bits, with

the additional requirement that numbers exactly halfway between two representations are rounded to the representation with5

a 0 in the least significant bit. This scheme is unbiased, and thus avoids introducing bias errors as well as truncation errors.

Figure 3 demonstrates the truncation process for the different rounding scenarios. The present implementation of our reduction

of precision scheme only alters the significand (except where the exponent is changed due to rounding in accordance with

IEEE 754 specifications), it does not currently implement a general emulation of exponent size. The exception to this is for

IEEE 16-bit floating-point representations (half precision), where an optional strict emulation mode is provided. This option10

emulates half precision by adding extra checks to ensure the size of a truncated value is within the valid range for a 16-bit float

with 5 exponent bits and 10 significand bits, and includes handling of subnormal values.

2.3 Controlling precision

An rpe_var instance is a structure that stores a floating-point value, along with an integer specifying the number of explicit

significand bits the instance uses for storage. The rpe library supports mixed precision levels, allowing the precision of indi-15

vidual variables to be controlled independently, using a%sbits=n where a is an rpe_var and n is the number of bits that

should be used. The number of explicit significand bits stored by an rpe_var instance can be set on a per-variable basis, or

left unspecified in which case a default value will be used. The default number of significand bits is controlled by a module-

level variable (RPE_DEFAULT_SBITS). This mechanism allows for different parts of a code to use different precision levels,

and provides the ability to change the precision level used without recompiling.20

When an operation is performed on an rpe_var instance the number of significand bits the instance has is looked up and

used to determine the precision required in the resulting value. For operations on values with different precisions, the output

has the same number of significand bits as the input with the largest number of significand bits (i.e., the input with the highest

precision). This behaviour was chosen to mimic the familiar behaviour when performing a binary operation with a 32-bit and

a 64-bit floating-point number, where the 32-bit number is promoted to a 64-bit number and the result is a 64-bit floating-point25

number. For example, multiplying an rpe_var instance that has 10 significand bits by an rpe_var instance that has 12

significand bits will produce a value that has 12 significand bits. This analogous behaviour is extended to operations that mix

rpe_var instances and intrinsic types. For the purposes of determining the precision of the result of such an operation 32-

and 64-bit real instances are considered to have their actual number of explicit significand bits (23 and 52 respectively),

while other compatible types are deemed to have zero significand bits. This choice ensures that rpe_var types interact30

with real types in a way that is predictable and consistent with how mixing intrinsic real types with different precision

behaves, whilst ensuring that performing an operation involving an rpe_var and an integer will preserve the precision of the

rpe_var instance. For example, multiplying a rpe_var instance with 10 significand bits by a 32-bit real type will produce
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an rpe_var instance with a value truncated to 23 significand bits (the number in a single-precision float), but multiplying the

same rpe_var instance by an integer will yield an rpe_var instance still having only 10-bits in its significand.

Because compound expressions are evaluated as separate intermediate terms care must be taken to ensure computations are

expressed at the required precision. For example, consider the computation b * (a + 2.0), where the variables a and b

are instances of the type rpe_var with 10 significand bits. The literal floating point value 2.0 is treated as a single-precision5

floating-point number, and therefore the result of the expression a + 2.0 has 23 bits of precision in the significand (single

precision), which in turn carries more precision than is desired into the multiplication with b, the result of which will also

have 23 bits of precision in the significand. This type of computation can be described as “leaking” higher precision into the

expression through implicit casting. The rpe library provides a convenient way to resolve this for the case of literal numeric

values, the previous computation could be written as b * (a + rpe_literal(2.0, 10)) which converts the value10

2.0 to an rpe_var type instance with 10 significand bits and thus the intermediate term a + 2.0 would also be evaluated

at 10 significand bit precision. This example uses floating-point literals, since this is a common ‘gotcha’ when implementing

code with rpe, but the same problem can occur when performing compound operations on rpe_var instances that have

different precision levels, and thus this issue should always be considered when utilising mixed precision.

It is possible to change precision at runtime, either by changing the module-level variable RPE_DEFAULT_SBITS or by15

changing the sbits component of an rpe_var instance. However, doing so is likely to introduce subtle problems. The main

issue with this is that changing the number of bits in the significand of a variable to a smaller number of bits does not truncate

the value of the variable to the new number of significand bits automatically. This problem can be mitigated by manually

truncating variables whose precision has changed, although this may not be straightforward if precision is changed by setting

RPE_DEFAULT_SBITS. Therefore we generally discourage users from changing precision at run time.20

The result of truncating double-precision values to 23 significand bits (the number used by IEEE single precision) with the

emulator is the same as casting from double to single precision using built-in types. The emulator internally uses a 64-bit real

type to store all values, which contains 11 exponent bits rather than the 8 used in single precision, and therefore it is possible

to store values in almost the full range of double precision using a truncated significand.

2.4 Software architecture25

The emulator software consists of a relatively small hand-coded core. This core implements the rpe_var derived type, func-

tions and subroutines implementing the algorithms for reduction of floating-point precision, and the overloading of assignment

operators. The rest of the library, including the overloaded operator and intrinsic function definitions, is computer generated

using a code generator supplied as part of the software. Using a code generator to produce the Fortran code for overloaded

definitions has a number of advantages. Firstly it allows a developer to introduce changes to the way the overloaded definitions30

are implemented without having to modify each individual definition by hand. This is beneficial from the point of view of

software quality, as it is less likely that errors will be made resulting in the reduction of precision being handled differently

by different operators. Secondly this design makes extending the set of overloaded intrinsic functions simpler to manage and

maintain. Adding a new overloaded definition requires adding a short definition to a configuration file in JSON format (a
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human-readable text format; ECMA, 2013) that the code generator uses to write the necessary Fortran code to implement it,

something which could be done easily by someone not familiar with the structure of the emulator code.

The software is provided with a suite of tests to verify its functionality. These tests are used for development, and can be run

by the end user to verify their build of the software is functioning as expected. The tests are divided into two categories: unit

tests and integration tests. The unit tests test the functionality of individual components of the emulator, isolated from other5

components. The integration tests verify the performance of the emulator by running a simple Lorenz attractor model. These

tests also serve as a useful example on how to use the emulator.

3 Example application: A shallow-water model with reduced numerical precision

In this section, we present a precision analysis for a shallow water model, a typical medium-sized model setup that is often

studied in the development of atmosphere and ocean models, in a Munk double-gyre configuration. The model under inves-10

tigation is a standard approach to implement the shallow water equations on an Arakawa-C grid (Arakawa and Lamb, 1977),

based on the model used in Marshall et al. (2013). The same model has been studied in detail on FPGA hardware (Targett et al.,

2015). However, this required the model to be completely re-written to run on the specific hardware. We use the rpe library

to make simple tests to determine if precision can be reduced beyond single precision, and how the model can be modified to

make it more resilient at lower precisions.15

The prognostic parameters in the shallow water model follow the equations:

∂tu−
(
f + ζ̄y

)
v̄xy + ∂xB = ν∇2u+ τx, (1)

∂tv−
(
f + ζ̄x

)
ūxy + ∂yB = ν∇2v+ τy, (2)

∂th+ ∂x
(
(h0 + h̄x)u

)
+ ∂y

(
(h0 + h̄y)v

)
= 0, (3)

where B = gh+ 1
2 (ūx)

2
+ 1

2 (v̄y)
2 is the Bernoulli potential, ζ = ∂xv− ∂yu is relative vorticity, u and v are the zonal and20

meridional components of the velocity, f is the Coriolis parameter, g is the gravitational acceleration, h0 is the mean fluid

depth, h is the surface elevation, and τx and τy represent the wind forcing in zonal and meridional direction. The over-bars

indicate averaging in x or y direction on the C-grid to map field values between edges and cell centres. The Munk double-gyre

test case is a standard model setup in oceanography, and the specific configuration for this paper is based on model simulations

in Cooper and Zanna (2015). The domain size is 3,480× 3,480 km, resolved on a grid with 100× 100 points. We use a mean25

fluid depth h0 = 500 m, a viscosity of ν = 470.23 m2 s−1, the Coriolis parameter describes a beta plane (f = f0 +βy with

f0 = 4.46× 10−5 s−1 and β = 2.0× 10−11 m−1 s−1). The wind forcing is zero in the y-direction (τy = 0) and τx ranges

from −0.4 to 0.2 Pa, varying with latitude in a sinusoidal structure to force the double gyre. A third order Adams-Bashforth

time-stepping scheme with a time-step of 25 s is used for time integration.

A double-precision experiment acts as a reference, we are aiming to reproduce this reference as closely as possible using re-30

duced precision. A first-order estimation of the effect of reduced precision is achieved by running a single-precision simulation

using native 32-bit representation (although a version emulating 23-bit precision has also been run, and is of similar quality).
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Two runs with reduced precision are produced using rpe, one with 15 bits of precision in the floating-point significand, and

one with 10 bits (the number of significand bits in an IEEE half-precision float).

Each simulation is spun-up for 5 million time-steps to reach equilibrium, then integrated for a further 15 million time-steps.

Figure 4 shows a snapshot of the model simulations for each of the experiments some time after spin-up. The simulation using

single precision (Fig. 4b) is qualitatively similar to the reference double-precision simulation (Fig. 4a) in that it shows height5

variations with similar magnitudes, with no suggestion of numerical stability problems. These snapshots are not expected to be

identical between the different precision configurations due to the chaotic nature of the simulations, but similar flow behaviour

would be expected. The simulation with emulated 15-bit significands (Fig. 4c) also shows smooth fields with height features

of similar magnitude as in the double-precision reference simulation. The surface height field in the simulation with 10-bit

significands (Fig. 4d) has smaller magnitude variations than the reference simulation, and some small-scale noise features can10

be seen as jagged contours, particularly noticeable in the lower part of the domain. These features suggest the dynamics of the

simulation with 10-bit significands are being perturbed by a lack of precision. The problem in the 10-bit experiment is that the

increment of the time-step is typically much smaller than the magnitude of the prognostic variable. In general, adding a small

floating-point number to a large floating-point number can result in a loss of precision. We can avoid this error by maintaining

a higher-precision prognostic variable, while computing the expensive right-hand-side tendency with emulated half precision.15

This scheme is illustrated in Algorithm 3. In this co-designed 10-bit experimental configuration, all floating-point numbers

are half precision except for the prognostic fields and a few parameters used for model initialisation (which don’t affect the

running cost). A snapshot of this experiment is shown in Fig. 4e. Unlike the original 10-bit experiment, the co-designed 10-bit

experiment has a smooth height field showing no indications of numerical stability problems.

Algorithm 3 Time-stepping of a prognostic variable with mixed precision, using a simple forward in time scheme.

while time-stepping do

Plow← Phigh

x← COMPUTERHS (Plow)

Phigh← Phigh + ∆t×x

end while

Figure 5 shows the mean height field from the reference double-precision simulation, the 15-bit significand simulation,20

and the co-designed half-precision simulation. The mean height field is qualitatively similar in all 3, suggesting a reduction

in floating-point precision is acceptable for this model. We have used the rpe software to determine that the shallow water

model can accept a strong reduction in numerical precision, and thus trading numerical precision against performance appears

to be a reasonable approach for this model. In practice we could now continue to consider implementations of this model on

real reduced-precision hardware, such as GPUs supporting 16-bit floating-point arithmetic, or an application specific hardware25

implementation.

The shallow water model provides a good context to discuss the effect of rounding on conservation properties. The surface

height integrated over the model domain is conserved in the shallow water equations. However in a numerical approximation
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we expect that there will be some error introduced due to truncation. For the reference double precision simulation the mean

surface height of the fluid changes by ∼ 10−17 m over 20 million time-steps, in the single precision simulation the change is

∼ 10−7 m, and in the co-designed half precision simulation it is ∼ 10−3 m. Although the height error at lower precision is

increased greatly over the double precision simulation, the absolute amount of fluid lost is small compared to the domain size.

If this is a concern then a mass-fixing scheme could be introduced to mitigate. Perhaps more interesting is the influence of5

the rounding scheme used when truncating floating-point significands. If we truncate without rounding (equivalent to always

rounding towards zero), a large bias is introduced into the simulation, to the point where it will fail to complete due to numerical

errors. If instead we choose to round to the nearest representation (as IEEE but without the special case for numbers half way

between two representations illustrated in Fig. 3d) we see a height error of ∼ 10−2 m. The difference between the round-

to-nearest and the round-to-nearest with tie-to-even rounding schemes is not negligible, highlighting the value of unbiased10

rounding on computing conserved properties.

4 Discussion and Conclusions

A tool for running numerical simulations at emulated reduced floating-point precision has been described and documented.

The efficacy of this tool has been demonstrated on a simplified geophysical model, and in particular the value of using rpe to

co-design a model for lower precision is demonstrated.15

There are a few notable limitations of the emulator, which may affect how it can be applied. The lack of support for emulating

different exponent sizes may be relevant to certain applications. In principle it would be possible to extend the software to

support emulation of arbitrary exponent sizes below the 11-bit significand of IEEE double precision. This could be done by

enforcing a check on the size of each truncated value as it is produced by the truncation procedure. However, these checks will

create additional computational overheads.20

It is also worth noting that the solution obtained with the emulator is unlikely to be bit-reproducible compared to a solution

obtained using native hardware support for a given significand size. There are several factors contributing to this, such as the

treatment of intrinsics as atomic operations when they may actually be composed of multiple floating-point operations and the

ability of compilers to optimize code using the emulator. The emulator operates at the Fortran source level, before compiler

optimizations, and therefore code compiled with the emulator is likely to be optimized differently than code not using native25

reduced precision. For example, the compiler may take advantage of a fused-multiply-add (FMA) operation that performs a

multiply and an add operation in one step with a single rounding at the end, as opposed to rounding an intermediate product

to a given number of significand digits before computing the addition and rounding the final result. Such an optimisation is

unlikely to be available when using the rpe_var type due to the complexity of the overloaded multiply and add operators.

However, bit-reproducibility can also not be guaranteed between simulations that use IEEE double or single precision on30

different computing hardware or even different compiling flags, so this may not be a primary concern.

Using the emulator for reduced-precision simulations will introduce a significant overhead for all floating-point operations,

and will result in poorer performance. While the emulator is designed to be used to study a possible precision reduction to

10



allow simulations that run faster on real hardware, it is important to realise that the focus of the software is being able to verify

the output of a model at reduced precision rather than to emulate the actual efficiency gains one might expect from reduced

precision. The overhead introduced by the emulator may vary depending on its application. In our experience the overhead of

the library in terms of execution time is at least a factor of 10. Tests on the simple chaotic dynamical system of Lorenz (1963)

suggest an execution time penalty of approximately 30 times, compared to a double precision simulation, and the co-designed5

shallow water model detailed in Sect. 3 experiences an execution time penalty of approximately 70 times compared to the

double precision implementation, both tested using gfortran 4.8 with optimization level 2 to compile both the models and rpe

itself.

The rpe software can, in principle, be used as a basis to emulate other hardware setups, such as hardware that shows bit flips

occasionally. For most hardware setups, a simple replacement of the function that is actually realising the bit truncation will be10

sufficient. It can also be anticipated that it is possible to change the emulator to mimic the behaviour of specific error patterns

of specific reduced-precision hardware (e.g., Düben et al., 2014).

5 Code availability

The rpe software is freely available under the Apache 2.0 license and may be accessed at http://github.com/aopp-pred/rpe. The

repository contains the source code for the Fortran emulator, the code generator, the unit and integration test suites, and the15

source code for the documentation. Rendered documentation for recent versions is available to view at http://rpe.readthedocs.

io. The code for the shallow water model configurations discussed in Sect. 3 are available at http://github.com/aopp-pred/

rpe-examples.
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(a)
1 program full_precision
2 real :: rho, g, h, P
3 rho = 1.2041
4 g = 9.80665
5 h = 10
6 P = rho * g * h
7 write (*, *) P
8 end program

(b)
1 program reduced_precision
2 use rp_emulator
3 type(rpe_var) :: rho, g, h, P
4 RPE_DEFAULT_SBITS = 10
5 rho = 1.2041
6 g = 9.80665
7 h = 10
8 P = rho * g * h
9 write (*, *) P%val

10 end program

Figure 1. A simple numerical program using (a) standard single-precision arithmetic, and (b) reduced-precision arithmetic with 10 significand

bits.

1 program mixed_precision
2 use rp_emulator
3 type(rpe_var) :: rho, g, h, P
4 rho%sbits = 8
5 g%sbits = 9
6 h%sbits = 10
7 P%sbits = 7
8 rho = 1.2041
9 g = 9.80665

10 h = 10
11 P = rho * g * h
12 write (*, *) P%val
13 end program

Figure 2. A simple numerical program utilising emulated mixed precision arithmetic.
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Significand Exponent Sign 

set to zero(0 in last bit)
retained

00000000000000101101100011011100

(0.0023689270)10-bit significand

00000000000010101101100011011100

(0.0023698807)Full precision(d)

set to zero(into exponent)
rounded

00000000000000000000000111011100

(0.003906250)10-bit significand

10110001110011111111111011011100

(0.003905508)Full precision(c)

set to zerorounded

00000000000000011101100011011100

(0.0023727417)10-bit significand

00101101101111101101100011011100

(0.0023726048)Full precision(b)

set to zerosignificand bits
retained

00000000000001101101100011011100

(0.0023708344)10-bit significand

00101101101101101101100011011100

(0.0023716511)Full precision(a)

Figure 3. Examples of different rounding scenarios when truncating 32-bit floating-point numbers to 10 significand bits. (a) Bit 13 (counted

from the right; the left-most bit being truncated) is a zero, therefore no rounding is necessary. (b) Bit 13 is a 1 which triggers rounding.

(c) Bit 13 is a 1 which triggers rounding, in this case the rounding reaches the exponent, which is permitted by IEEE 754. (d) The number

is exactly halfway between two 10-bit significand representations, this is a special case in IEEE 754, and always results in rounding to the

representation with a 0 in the least significant bit.
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Figure 4. Snapshot of the surface height field for simulations of the shallow water model. (a) Double-precision reference simulation,

(b) single-precision simulation, (c) reduced precision with 15-bit significand for all floating-point numbers, (d) reduced precision with 10-bit

significand for all floating-point numbers, and (e) simulation co-designed for half precision.
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Figure 5. Time-mean surface height field for simulations of the shallow water model calculated over 15 million time steps. (a) Double-

precision reference simulation, (b) reduced precision with 15-bit significand for all floating-point numbers, and (c) simulation co-designed

for half precision.
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