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Abstract 11 
 12 
Winter wheat is a staple crop for global food security, and is the dominant vegetation 13 
cover for a significant fraction of earth’s croplands. As such, it plays an important role in 14 
carbon cycling and land-atmosphere interactions in these key regions. Accurate 15 
simulation of winter wheat growth is not only crucial for future yield prediction under 16 
changing climate, but also for understanding the energy and water cycles for winter 17 
wheat dominated regions. We developed a new winter wheat model in the Community 18 
Land Model (CLM) to better simulate wheat growth and grain production. These 19 
included schemes to represent vernalization, as well as frost tolerance and damage. We 20 
calibrated three key parameters (minimum planting temperature, maximum crop growth 21 
days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon 22 
allocation algorithm for simulations at the U.S. Southern Great Plains ARM site (US-23 
ARM), and validated the model performance at three additional sites across the 24 
continental US. We found that the new winter wheat model improved the prediction of 25 
monthly variation in leaf area index, latent heat flux, and net ecosystem exchange during 26 
the spring growing season. The model accurately simulated the interannual variation in 27 
yield at the US-ARM site, but underestimated yield at sites and in regions (Northwestern 28 
and Southeastern US) with historically greater yields.  29 
 30 
Introduction 31 
 32 
Wheat is a widely grown temperate cereal (Shewry, 2009), ranked fourth among 33 
commodity crops with a global production of 711 million tonnes, and encompasses 34 
13.3% of global permanent cropland as of 2013 (http://faostat3.fao.org/home/E). Wheat 35 
provides one-fifth of the total caloric input of the world’s population (Curtis et al., 2002), 36 
and therefore plays an important role in global food security (Chakraborty and Newton, 37 
2011; Vermeulen et al., 2012). In many regions, such as the United States, winter wheat 38 
(Triticum aestivum) is the dominant wheat cultivar accounting for 74% of the total U.S. 39 
wheat production, based on data from the National Agricultural Statistics Service of the 40 
U.S. Department of Agriculture in 2013 (http://www.nass.usda.gov).  41 
 42 
Winter wheat, which is planted in fall and harvested in early summer, responds to 43 
environmental stresses and influences biogeochemical cycling and the atmosphere 44 
differently from summer crops. Winter wheat may suffer less from summer drought but is 45 
subject to winter damage due to exposure to low temperatures and frequent freeze-thaw 46 
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cycles (Vico et al., 2014). Winter wheat cropland has much less soil carbon loss 47 
compared to maize cropland averaged across several sites (Ceschia et al., 2010), and 48 
could either be a carbon sink (Waldo et al., 2016) or source (Anthoni et al., 2004), 49 
depending on the year and the location.  The earlier growing season can influence surface 50 
fluxes of water, energy, and momentum, and hence regional climate (Riley et al., 2009). 51 
This land surface influence is particularly strong in the U.S. Southern Great Plains, where 52 
winter wheat is a dominant land-cover type. For example, statistical analyses indicated 53 
cooler and moister near-surface air over Oklahoma’s winter wheat belt from November to 54 
April compared to adjacent grassland, due to the influence of winter wheat (McPherson et 55 
al., 2004). This influence highlights the importance of adequately representing winter 56 
wheat in land surface models used for climate projections, in order to assess both the 57 
impact of climate change on agriculture and agriculture’s influence on regional climate. 58 
 59 
The agricultural research community developed several winter wheat models during the 60 
1980s, such as the Agricultural Research Council winter wheat model (ARCWHEAT) 61 
(Porter, 1984; Weir et al., 1984) and the Crop Estimation through Resource and 62 
Environment Synthesis winter wheat model (CERES-wheat) (Ritchie and Otter, 1985). 63 
These models were designed to simulate winter wheat growth at the farm level and have 64 
well-defined winter wheat growth phenology, which is a function of thermal time and day 65 
length that are adjusted by vernalization and a photoperiod factor. Photosynthesis and 66 
respiration processes determine the dry matter for partitioning among roots, shoots, 67 
leaves, and grain. Some models (e.g., CERES-wheat) considered winter wheat loss due to 68 
extreme low temperature in winter. To extend the capability of initial models to simulate 69 
crop growth at regional or global scales, some agronomic crop growth models were 70 
incorporated into agro-ecosystem models. For example, CERES maize and wheat growth 71 
were added into Decision Support System for Agrotechnology Transfer Model (DSSAT) 72 
(Jones et al., 2003). Agro-ecosystem models vary in their complexity of representation of 73 
radiation transfer, photosynthesis, soil carbon and nitrogen cycling, and soil hydrology. 74 
As compared in Palosuo et al. (2011), simple models simulate radiation transfer with an 75 
albedo parameter, determine photosynthesis by light use efficiency, and simulate soil 76 
hydrology with a simple water bucket model, while the more complex models consider 77 
canopy radiative transfer, coupled photosynthesis-stomatal conductance, and soil 78 
hydrology with more detailed and mechanistic parameterizations. In the recent 79 
Agricultural Model Intercomparison and Improvement Project (AgMIP), both simple and 80 
complex agro-ecosystem models were categorized as Global Gridded Crop Models 81 
(GGCM).  82 
 83 
The Community Land Model (CLM) (Oleson et al., 2013) is one of the GGCM models  84 
included in AgMIP. It is a state-of-the-art gridded land surface model used in the 85 
Community Earth System Model (Hurrell et al., 2013) that simulates biogeophysical and 86 
biogeochemical processes on a spatial grid. CLM can be run online, coupled with the 87 
atmosphere model, or offline at multiple spatial scales (site, regional, and global) and 88 
different resolutions. One grid cell in CLM is divided into different land units (urban, 89 
glacier, lake, wetland, vegetation), and the vegetation unit can consist of up to 14 natural 90 
vegetation types and 64 crop types in the most recent version (a developer version of 91 
CLM4.5). In order to better represent agricultural ecosystems, Levis et al. (2012) 92 
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introduced crop growth modules into CLM based on the AgroIBIS model (Kucharik, 93 
2003). Since their introduction, the crop modules in CLM have been updated to represent 94 
more crops types (maize, soybean, cotton, wheat, rice, sugarcane, tropical maize, tropical 95 
soybean) and processes, such as soybean nitrogen fixation (Drewniak et al., 2013) and 96 
ozone impacts on yields (Lombardozzi et al., 2015). In CLM, crop growth depends on 97 
photosynthetic processes, which are limited by light, water, and nutrient availability. At 98 
each time step, photosynthesis estimations provide the potential available carbon for plant 99 
growth, which is adjusted by nitrogen supply and demand. The actual available carbon is 100 
distributed to leaf, stem, root, and grain by carbon allocation coefficients that vary based 101 
on crop growth stages. While the initial focus for incorporating crop growth into CLM 102 
was as a lower boundary condition to the atmosphere, the model also predicts crop yields 103 
and is participating in the AgMIP GGCM Intercomparison project (Elliott et al., 2015). 104 
 105 
Although Levis et al.’s initial crop growth modules in CLM included a simplified 106 
representation of winter wheat growth, it has never been validated and some of the key 107 
winter wheat growth processes are out of date, such as vernalization (winter crops must 108 
be exposed to a period of non-lethal low temperature to produce grain), or not included 109 
(e.g., frost tolerance and damage). Our new winter wheat model adopted the same 110 
phenology phases as the original winter wheat model in CLM, but replaced the 111 
vernalization process, added the frost tolerance and damage processes, slightly modified 112 
the carbon allocation algorithm, and calibrated several key parameters that affect winter 113 
wheat growth. Our work focused on improving the representation of the key growth 114 
processes for winter wheat in order to, 1) better simulate the land surface influence on 115 
surface CO2, water and energy exchanges in winter wheat-dominated regions, and 2) 116 
accurately simulate crop growth and yield so the model can be used for winter wheat 117 
yield projections. 118 
 119 
Methods 120 
 121 
Site descriptions 122 
 123 
We calibrated the model at the Atmospheric Radiation Measurement Southern Great 124 
Plains Central Facility site (US-ARM) in northern Oklahoma and validated the model at 125 
three additional sites: (1) Ponca City (US-PON) (2) Curtice Walter-Berger Cropland (US-126 
CRT) and (3) the Washington State University Cook Agronomy Farm conventional 127 
tillage site (CAF-CT) (Figure 1). Site simulations were forced with half-hourly site-128 
observed meteorology (temperature, humidity, precipitation, wind, and downwelling 129 
solar radiation). The annual mean temperature at US-ARM is 14.76 oC and annual mean 130 
precipitation is 843 mm (Table 1). Energy fluxes and meteorological observation data are 131 
available since 2002. The site has well-documented crop growth and management 132 
information, including crop types, planting and harvest dates, and fertilizer amount. The 133 
site conducts bi-weekly leaf area index (LAI) measurements with a light wand (Licor 134 
LAI-2000) during the active growing season. Using a combination of in situ LAI and site 135 
reflectance spectrum measurements, Williams and Torn (2015) generated a daily LAI 136 
product, used here to develop the winter wheat model. Six winter wheat seasons are used 137 
at the US-ARM site: 2003, 2004, 2006, 2007, 2009, and 2010 (winter wheat was not 138 
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grown at the US-ARM site during 2005 and 2008). The US-PON site is also located in 139 
northern Oklahoma and has very similar climate as the US-ARM site (mean annual 140 
temperature is 14.94 oC and precipitation is 866 mm). At this site, observations were 141 
available for 1997-2000. Additionally, the site has LAI measurements but no crop growth 142 
documentation. The US-CRT site is located in Northern Ohio and has a cooler climate 143 
than US-ARM and US-PON. The annual mean temperature is 10.10 oC and precipitation 144 
is 849 mm. Data from this site were available for 2011-2013, but there were no LAI 145 
measurements or crop reports for winter wheat. The CAF-CT site is located in 146 
Washington state, and has lower annual precipitation (mostly in winter) and cooler 147 
climate than the other three sites (Table 1). There are also no LAI measurements 148 
available for this site.  149 

Table 1. The four winter wheat sites description.  150 
Site Latitude Longitude MAT 

(oC) 
Prec 
(mm) 

Simulation 
years 

References 

US-ARM 36.61 -97.49 14.76 843 2002-2010 (Fischer et al., 
2007) 

US-PON 36.77 -97.13 14.94 866 1997-1999 (Hanan et al., 
2005; Hanan et 
al., 2002) 

US-CRT 41.63 -83.35 10.10 849 2012-2013 (Chu et al., 
2014) 

CAF-CT 46.78 -117.08 8.74 455 2013-2014 (Waldo et al., 
2016) 

 151 

   152 
Figure 1. The PRISM 1981-2013 averaged annual total precipitation (mm yr-1) and the 153 
four site locations (US-ARM, US-PON, US-CRT, CAF-CT) used in this study.  154 
 155 
 156 
Model development 157 
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 158 
Similar to other crops in CLM, winter wheat has four phenological phases, including 159 
planting, leaf emergence, grain fill, and harvest. The criteria and thresholds for entering 160 
different phenology phases are listed in Table 2. Growing degree days is the key variable 161 
controlling phenology, and is measured as heat accumulation during the whole growing 162 
season or over a certain period. It was calculated by accumulating the difference (no 163 
accumulation if less than 0) between the target temperature (e.g., mean air temperature) 164 
and base temperature, and normally has a maximum daily increment. We used three 165 
different growing degree day algorithms to determine winter wheat phenology, all using 166 
the same base temperature (0 oC) and maximum daily increment (26o). The 20-year 167 
running average of growing degree days (GDD020) uses 2-meter air temperature (T2m) 168 
from September to June in the northern hemisphere (from April to September in Southern 169 
Hemisphere), and is updated each year by averaging the previous 19 years. The growing 170 
degree days for soil temperature since planting (GDDtsoi) uses averaged soil temperature 171 
from the top two model soil layers (0.71 cm and 2.79 cm). Growing degree days since 172 
planting (GDDplant) uses T2m, and is reduced by a vernalization factor (see below) after 173 
leaf emergence. To better represent winter wheat phenology, we added two additional 174 
processes: vernalization and frost damage processes. 175 
 176 
Table 2. Criteria and notation for winter wheat to enter each phenological stage.  177 
 Criteria Notation 
Planting § 5 day running minimum temperature < minimum 

planting temperature 
§ and, day of year > minimum planting day of year 
§ and, 20-year running average of gdd0 > minimum gdd 

𝑇"# < 5℃ 
 

𝑑𝑜𝑦 > 	1,-𝑆𝑒𝑝 
𝐺𝐷𝐷343 > 50 

Leaf 
emergence 

§ Growing degree days of soil temperature to 2.79cm 
depth > 3% of maturity growing degree days 

𝐺𝐷𝐷-,67
> 3%𝐺𝐷𝐷:;- 

Grain fill § Growing degree days of 2m temperature since planting 
> 40% of maturity growing degree days 

𝐺𝐷𝐷<=;>-
> 40%𝐺𝐷𝐷:;- 

Harvest § Growing degree days of 2m temperature since 
planting	≥ maturity growing degree days 

§ or, the number of days past planting > maximum 
growing days 

𝐺𝐷𝐷<=;>- ≥ 𝐺𝐷𝐷:;- 
 

𝐷𝑃𝑃 > 330 

 178 
We adopted a generalized winter wheat vernalization model (Streck et al., 2003). Similar 179 
to other winter crops, winter wheat must be exposed to low and nonfreezing temperature 180 
to enter the reproductive stage. Additionally, the vernalization process affects cold 181 
tolerance, as discussed below. If plants are not fully vernalized, the potential size of the 182 
flower head will be reduced. Vernalization starts after leaf emergence and ends before 183 
flowering. To model this process, daily vernalization rate (fvn, eq. 1) is calculated based 184 
on the difference between the crown temperature (Tcrown) and the optimum vernalization 185 
temperature (Topt). In the CLM crop model, the crown temperature is the air temperature 186 
at the top of shoot. The crown temperature is typically warmer than the air temperature in 187 
winter, if the plant is covered by snow, and the same as the air temperature without snow 188 
cover. If the crown temperature is equal to the optimum temperature for a whole day, 189 
then fvn is equal to 1. Otherwise, fvn is less than 1 as calculated in eq. 1.  190 
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 191 
 192 
𝑓𝑣𝑛 𝑇EF6G> =193 

4 IJKLMNOIPQN
R ILSTOIPQN

RO IJKLMNOIPQN
UR

ILSTOIPQN
UR 		𝑇:7> ≤ 𝑇EF6G> ≤ 𝑇:;W

0 𝑇 < 𝑇:7>	𝑜𝑟	𝑇EF6G> > 𝑇:;W
1 𝑇EF6G> = 𝑇6<-

(eq. 1) 194 

 195 
 196 

𝑤ℎ𝑒𝑟𝑒	𝛼 =
𝑙𝑛2

ln (𝑇:;W − 𝑇:7> /(𝑇6<- − 𝑇:7>)]
 197 

 198 
 199 
Next, the sum of fvn over sequential days is the effective vernalization days (VD, eq. 2).  200 
 201 
𝑉𝐷 = 𝑓𝑣𝑛 𝑇EF6G>       (eq. 2) 202 
 203 
This is used to calculate the vernalization factor (VF, eq. 3). VF varies from 0 to 1 (fully 204 
vernalized) to represent the vernalization stage.    205 
 206 
𝑉𝐹 = ghi

44."ikghi
  (eq. 3) 207 

 208 
Finally, VF was used in adjusting the growing degree days since planting 209 
(GDDplant=GDDplant,unadjusted  × VF) and the grain carbon allocation coefficient (𝑎nF;7> =210 
𝑎nF;7>,p>;#qp,-r#×𝑉𝐹). When winter wheat is not fully vernalized (VF < 1) then GDDplant 211 
and agrain are reduced, resulting in slowed growth and reduced yield. 212 
 213 
We quantify the impacts of low temperature damage, including from frost, using three 214 
variables: 1) temperature at which 50% of winter wheat was damaged (LT50), 2) survival 215 
probability (fsurv), and 3) winter killing degree days (WDD). Here, the calculations for 216 
the three variables are briefly summarized, but more detailed descriptions of the 217 
calculations can be found in Bergjord et al., (2008) and Vico et al., (2014). LT50 (eq. 4) 218 
depends on LT50 from the previous time step (LT50t-1), low temperature acclimation (i.e. 219 
hardening; RATEH), loss of hardening due to exposure to high temperatures (i.e. 220 
dehardening; RATED), stress due to respiration under snow (RATER), and exposure to 221 
low temperature (RATES). Lower LT50 results in greater frost tolerance for winter wheat 222 
while higher LT50 indicates lower frost tolerance. 223 
 224 
 225 
𝐿𝑇"3- = 𝐿𝑇"3-Ot − 𝑅𝐴𝑇𝐸𝐻 + 𝑅𝐴𝑇𝐸𝐷 + 𝑅𝐴𝑇𝐸𝑆 + 𝑅𝐴𝑇𝐸𝑅  (eq. 4) 226 
 227 
𝑅𝐴𝑇𝐸𝐻 = 𝐻<;F;: 10 − max	(𝑇EF6G>, 0) 𝐿𝑇"3-Ot − 𝐿𝑇"3E 			𝑇EF6G> < 10℃ (eq. 5) 228 
 229 
 230 
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The contribution of hardening to LT50 was calculated as RATEH (eq. 5), which was 231 
mainly a function of crown temperature (Tcrown) and adjusted by a hardening parameter 232 
(Hparam=0.0093), maximum frost tolerance (LT50c=-23 oC). RATEH increased rapidly 233 
when crown temperature (Tcrown) fell below 10 oC. When Tcrown fell below 0 oC, the slope 234 
of RATEH was same as Tcrown at 0 oC. RATEH is also determined by the difference 235 
between the current level of frost tolerance and the maximum level of frost tolerance 236 
(𝐿𝑇"3-Ot − 𝐿𝑇"3E). At the beginning of cold acclimation, when 𝐿𝑇"3-Ot is much higher 237 
than 𝐿𝑇"3E, RAHEH increases quickly.    238 
 239 

𝑅𝐴𝑇𝐸𝐷 = 𝐷<;F;: 𝐿𝑇"37 − 𝐿𝑇"3-Ot 𝑇EF6G> + 4 ~		𝑇EF6G>	 ≥ 10	℃	𝑤ℎ𝑒𝑛	𝑉𝐹 < 1
𝑇EF6G> ≥ −4℃	𝑤ℎ𝑒𝑛	𝑉𝐹 = 1	(eq. 240 

6)   241 
𝑤ℎ𝑒𝑟𝑒	𝐿𝑇"37 = −0.6 + 0.142𝐿𝑇"3E represents LT50 for an unacclimated plant 242 
 243 
RATED accounts for the dehardening contribution (eq. 6), which is a function of crown 244 
temperature and is adjusted by a dehardening parameter (Dparam=2.7×10-5) and LT50 for a 245 
plant that is not acclimated to cold (LT50i). Cold acclimation is a cumulative process and 246 
can reverse (dehardening) when plants are exposed to high temperature or restart 247 
(hardening) when temperature is below 10 oC. The high temperature threshold depends 248 
on the vernalization stage. Dehardening occurs when 𝑇EF6G>	 ≥ 10℃ for plants that are 249 
not fully vernalized (VF<1), and when 𝑇EF6G> ≥ −4℃ for plants that are fully vernalized 250 
(VF=1).  251 
 252 
 253 
𝑅𝐴𝑇𝐸𝑅 = 𝑅<;F;:×𝑅𝐸×𝑓 𝑠𝑛𝑜𝑤𝑑𝑒𝑝𝑡ℎ  (eq. 7) 254 

𝑤ℎ𝑒𝑟𝑒	𝑅𝐸 = r�.����.�i��JKLMNO4
t.�"

, 𝑅<;F;: = 0.54  255 
	𝑓 𝑠𝑛𝑜𝑤𝑑𝑒𝑝𝑡ℎ = min	(𝑠𝑛𝑜𝑤𝑑𝑒𝑝𝑡ℎ, 12.5)/12.5 256 
 257 
Stress due to respiration under snow also increases LT50 and was calculated as RATER 258 
(eq. 7), which is a function of snow depth and a respiration factor (RE). RE is regression 259 
function fitted to respiration measurements (Sunde, 1996). 𝑓 𝑠𝑛𝑜𝑤𝑑𝑒𝑝𝑡ℎ  ranges from 0 260 
to 1 for snow depth up to 12.5cm, and is equal to 1 when snow depth is greater than 261 
12.5cm.  262 
 263 
𝑅𝐴𝑇𝐸𝑆 = �Ii�T��OIJKLMN

r��S�K�P ��i�T����JKLMN ��.��  (eq. 8) 264 
𝑤ℎ𝑒𝑟𝑒	𝑆<;F;: = 1.9  265 
 266 
 267 
Long-term exposure to near lethal temperature will also increase LT50 and was calculated 268 
as RATES (eq. 8), which is based on the winter survival model developed by (Fowler et 269 
al., 1999).  270 
 271 
The probability of survival (fsurv, eq. 9) is a function of LT50 and crown temperature. 272 
The probability of survival reaches a median value when Tcrown equals LT50, and 273 
increases when Tcrown is warmer than LT50 and decreases when Tcrown colder than LT50.  274 
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 275 

𝑓,pF� 𝑇EF6G>, 𝑡 = 2O(
�JKLMN T
��i�(T) )R��K�			𝑇EF6G> ≤ 0℃	  (eq.9) 276 

 277 
Finally, we calculate winter killing degree days (WDD, eq. 10) as a function of Tcrown and 278 
fsurv. WDD not only accounts for the cumulative degree days when the crop was 279 
exposed to freezing temperatures but also accounts for the probability of death at the 280 
temperature of exposure. High WDD occurs with low temperature and low survival 281 
probability.  282 
 283 
𝑊𝐷𝐷 = max[ 𝑇�;,r − 𝑇EF6G> , 0] [1 − 𝑓,pF� 𝑇EF6G>, 𝑡 ]G7>-rF 𝑑𝑡  (eq. 10) 284 
𝑤ℎ𝑒𝑟𝑒	𝑇�;,r = 0℃	 285 
 286 
 287 
Although Bergjord et al. (2008) and Vico et al. (2014) defined the frost tolerance and 288 
damage indicators described above, they did not propose a model for the growth response 289 
to crop damage from low temperatures. Here we developed a hypothetical two-stage frost 290 
damage parameterization that includes both instant damage and accumulated damage 291 
during the leaf emergence phase of winter wheat growth. In CLM, plants tissues are 292 
represented as the mass of carbon and nitrogen per m2 ground. We simulated leaf carbon 293 
and nitrogen reduction for each of the two types of frost damage. We assumed that instant 294 
damage occurs at the beginning of the growing season (VF<0.9) when plants are not fully 295 
vernalized and have low survival probability when exposed to subzero temperatures. In 296 
this case, the growth of leaves most vulnerable to cold (e.g., new leaves or small 297 
seedlings) would slow or cease. After many sensitivity tests, we found the best fit to 298 
observations by removing an amount of leaf carbon (leafcdamage_i = 5 g C/m2) to the soil 299 
carbon litter pool, scaled by a factor of 1-fsurv (eq. 11) at each time step (half-hourly). 300 
The leaf carbon was reduced whenever fsurv was less than 1 until leaf carbon reached a 301 
minimum value (10 g C/m2).  302 
  303 
 304 
𝑙𝑒𝑎𝑓𝑐- = 𝑙𝑒𝑎𝑓𝑐-Ot − 𝑙𝑒𝑎𝑓𝑐#;:;nr_7 1 − 𝑓𝑠𝑢𝑟𝑣 	, 𝑓𝑜𝑟	𝑊𝐷𝐷 > 0, 𝑓𝑠𝑢𝑟𝑣 < 1,305 
𝑎𝑛𝑑	𝑙𝑒𝑎𝑓𝑐- > 10 (eq. 11) 306 
 307 
In addition to this instantaneous damage, we introduced an accumulated damage 308 
parameterization for when winter wheat is close to or has completed vernalization 309 
(VF>0.9) in spring. We assumed that plants would not be likely to suffer as much 310 
instantaneous frost damage as in the early winter season due to less subzero temperature, 311 
but that an extended period of subzero temperatures (large WDD) would lead to severe 312 
crop damage. To simulate this, we let WDD accumulate up to a set value (set to 1o days), 313 
when it triggers the accumulated damage function and we track the average fsurv for this 314 
time period. When WDD>1o days, all leaf carbon from previous time step (leafct-1, 315 
representing the damage to the whole plant), scaled by a factor of (1- averaged fsurv), 316 
was removed from the leaf carbon to the soil carbon litter pool. After leaf carbon was 317 
reduced, WDD was reset to 0, and the accumulation and tracking of the averaged fsurv 318 
was restarted. For both frost damage types, leaf nitrogen was removed to the nitrogen 319 
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litter pool. The nitrogen was scaled to the reduction of leaf carbon by the fixed C:N ratio 320 
(25 for winter wheat). The results show that the simulation of LAI (Figure S1) can be 321 
improved by including a representation of frost damage in winter wheat models. 322 
However, the approach here is based on empirical indicators of frost damage. This 323 
suggests the potential for further improvement by incorporating process-level 324 
representation of frost damage in future model versions. 325 
 326 
 327 
𝑙𝑒𝑎𝑓𝑐- = 𝑙𝑒𝑎𝑓𝑐-Ot×𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑	𝑓𝑠𝑢𝑟𝑣,			𝑉𝐹 ≥ 0.9	𝑎𝑛𝑑	𝑊𝐷𝐷 > 1	  (eq. 12) 328 
 329 
 330 
 331 
 332 
 333 
CLM leaf (aleaf) and stem (alivestem) carbon allocation coefficients for winter wheat were 334 
also adjusted during the grain fill to harvest phase. The original aleaf  and alivestem changed 335 
in time as a function of growing degree days. This approach resulted a rapid decline in 336 
the stem carbon allocation, and led to a grain carbon allocation coefficient that was too 337 
large (Figure S2), producing unrealistically high yields at the US-ARM site. We modified 338 
the leaf and stem carbon allocation coefficients to be functions of carbon allocation at the 339 
initial time of grain fill (𝑎=r;�

7,~  and 𝑎=7�r,-r:
7,~ ), and therefore alivestem gradually declines and 340 

agrain gradually increases during the grain fill phase (Table 3, Figure S2b). We also 341 
modified parameter values for phenological and carbon allocation functions (Table 4). 342 

 343 
 344 
Table 3. Carbon allocation algorithms for the leaf emergence to grain fill stage, and the 345 
grain fill to harvest stage. 346 
   347 
Phase Allocation algorithm 

Le
af

 e
m

er
ge

nc
e 

to
 g

ra
in

 fi
ll 

𝑎nF;7> = 0 

𝑎�F66- = 𝑎�F66-7 − (𝑎�F66-7 − 𝑎�F66-
� )

𝐺𝐷𝐷IUP
𝐺𝐷𝐷:;-

 

𝑎=r;� = (1 − 𝑎�F66-)
𝑓=r;�7 (𝑒O3.t − 𝑒[O3.t(�hh�UP/�)])

𝑒O3.t − 1  
𝑎=7�r,-r: = 1 − 𝑎nF;7> − 𝑎�F66- − 𝑎=r;� 

G
ra

in
 fi

ll 
to

 h
ar

ve
st

 

𝑎=r;� = 𝑎=r;�
7,~ 	 when 𝑎=r;�

7,~ ≤ 𝑎=r;�
�  else 

𝑎=r;� = 𝑎=r;�
7,~ (1 −

𝐺𝐷𝐷IUP − ℎ
𝐺𝐷𝐷:;-𝑑� − ℎ

)#�  LJ
 ¡�¢

 

𝑎=7�r,-r: = 𝑎=7�r,-r:
7,~ 	 when 𝑎=7�r,-r:

7,~ ≤ 𝑎=7�r,-r:
�  else 

𝑎=7�r,-r: = 𝑎=7�r,-r:
7,~ (1 −

𝐺𝐷𝐷IUP − ℎ
𝐺𝐷𝐷:;-𝑑� − ℎ

)#�  LJ
�T¡P

 

𝑎�F66- = 𝑎�F66-7 − (𝑎�F66-7 − 𝑎�F66-
� )

𝐺𝐷𝐷IUP
𝐺𝐷𝐷:;-

 

𝑎nF;7> = 1 − 𝑎=7�r,-r: − 𝑎�F66- − 𝑎=r;� 
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 348 
 349 
Table 4. A list of key parameters used for phenology and carbon and nitrogen allocation 350 
for the original and modified winter wheat models.  351 

Parameters Description Original Modified 

Ph
en

ol
og

y 

minplanttemp Minimum planting temperature 278.15 (K) 283.15 (K) 
mxmat Maximum days for growing 265 (days) 330 (days) 
GDDmat Maturity growing degree days 1700 1700 
gddmin Minimum growing degree days for planting 50 50 
lfemerg Percentage of gddmaturity to enter leaf emerge phase 3% 3% 
grnfill Percentage of gddmaturity to enter grain fill phase 40% 40% 

C
N

 a
llo

ca
tio

n 

𝑎�F66-7  Initial value of root carbon allocation coefficient 0.3 0.3 
𝑎�F66-
�  Final value of root carbon allocation coefficient 0 0 

𝑓=r;�7  Initial value of leaf carbon allocation coefficient 0.425 0.6 
ℎ Heat unit threshold (grnfill x hybgdd) 680 680 
𝑑� Leaf are index decline factor 1.05 1.05 

𝑑;==6E
=r;�  Leaf carbon allocation decline factor 3 3 
𝑑;==6E,-r: Stem carbon allocation decline factor 1 1 

 352 
Experiment design 353 
 354 
We set up paired CLM4.5 site simulations using Levis et al.’s original winter wheat 355 
model (CLMBASE) and our modified winter wheat model (CLMWHE) at the four winter 356 
wheat sites. We forced the site simulations with half-hourly observed temperature, 357 
relative humidity, precipitation, wind, and incoming solar radiation. Incoming longwave 358 
radiation was available at the US-ARM and US-CRT sites and was also input to the 359 
simulations at those sites. Each paired simulation ran with the same initial conditions, 360 
which were generated using a spin-up of several hundred years at each site (described 361 
below). The simulated differences between the original winter wheat and the modified 362 
winter wheat are therefore due to the modified parameters and updated processes 363 
described above.  364 
 365 
Land surface models, especially those including biogeochemical components, require 366 
long-term (thousands of simulation years) spin-up for their carbon and nitrogen pools to 367 
reach equilibrium (Shi et al., 2013). Therefore, generating initial conditions with steady-368 
state carbon and nitrogen pools is computationally time consuming and expensive if the 369 
simulation starts with no carbon and nitrogen. To accelerate the spin-up process, we 370 
generated site-level initial conditions by interpolating a global simulation that had 371 
reached carbon and nitrogen equilibrium, and then further spun up the site-level 372 
simulations for 200 years using recycled site observed meteorology for years listed in 373 
Table 1. When CLM reaches equilibrium, the averaged land surface variables during each 374 
atmospheric forcing cycle should not change or vary within a threshold (Table S1). We 375 
found latent heat flux, sensible heat flux, leaf area index, and wheat yield reached 376 
equilibrium fairly quickly (<40 years), but the total ecosystem carbon, total soil organic 377 
carbon, and total vegetation carbon took a longer time to reach the equilibrium state.  378 
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 379 
We also set up a regional simulation (50km resolution, 1979-2010) over the continental 380 
U.S. to compare spatial patterns in yield predictions to the USDA NASS county level 381 
winter wheat yield. To get the winter wheat land cover percentage, we first estimated the 382 
winter wheat fraction using the USDA NASS county level acres harvested data, and then 383 
split the wheat land cover percentage in the default CLM surface file into winter wheat 384 
and spring wheat. Since the goal of the regional simulation was to validate the spatial 385 
yield and not the carbon pools, we ran a partial spin-up and allowed the crop yield to 386 
reach equilibrium while the total ecosystem carbon was not at equilibrium.  387 
 388 
Statistical analysis of yield at US-ARM site 389 
 390 
To determine the factors that contributed most strongly to yield in observations and the 391 
model, we performed statistical regressions for US-ARM observations and CLMWHE 392 
outputs separately. We had 11 observed and simulated variables including growing 393 
degree days, nitrogen fertilization, peak leaf area index, precipitation, days of grain fill, 394 
days of leaf emergence, day of peak leaf area index, 10cm soil moisture, 20cm soil 395 
moisture, planting date, and harvest date. We performed the simple linear regressions 396 
with each of these variables and compared the R2 values between observational data and 397 
simulation outputs.  398 
 399 
Results 400 
 401 
Leaf area index 402 
 403 
The modifications to the winter wheat model improved simulation of leaf area index 404 
(LAI) seasonal variation at US-ARM and US-PON sites (Figure 2). Both sites exhibited 405 
reduced RMSE compared to CLMBASE (Table 6). At the US-ARM site, CLMWHE 406 
underestimated peak LAI but captured the seasonal LAI variation (peak in April and then 407 
decline). At the US-PON site, CLMWHE overestimated LAI throughout the growing 408 
season but showed similar seasonal variation. Although US-CRT and CAF-CT sites have 409 
no LAI observations, CLMWHE generally increased LAI and had a more reasonable 410 
seasonal variation compared to CLMBASE.    411 
 412 
 413 
Table 6. Statistical comparison of leaf area index (LAI, m2/m2) between observations and 414 
simulations at US-ARM and US-PON sites. 415 

 LAI (m2/m2) 

 Bias IOA r RMSE 

 WHE BASE WHE BASE WHE BASE WHE BASE 
US-ARM -0.26 -0.99 0.85 0.5 0.76 0.72 0.71 1.29 
US-PON 1.17 -1.43 0.79 0.5 0.78 0.73 1.65 2.05 

Note: Bias, mean difference between simulation and model; IOA, index of agreement 416 
(Willmott et al., 1985); r, Pearson’s correlation coefficient; RMSE, root mean square 417 
error. The WHE columns are the modified winter wheat model, while the BASE columns 418 
are the original winter wheat model.  419 
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 420 
 421 
 422 
 423 
 424 
 425 

 426 
Figure 2. Monthly leaf area index comparison at the four sites. The error bars indicate the 427 
standard error for the month across years. There are no error bars for US-CRT and CAF-428 
CT because the values are for one year. There are no LAI observations at US-CRT and 429 
CAF-CT. 430 
 431 
Surface carbon, water and energy fluxes 432 
 433 
The improved simulation of LAI seasonal variation led to better monthly patterns of net 434 
ecosystem exchange of CO2 (NEE) (Figure 3a-d). In Figure 3, negative values indicate a 435 
carbon sink, where the crop gains more carbon through photosynthesis than is lost due to 436 
respiration. During the winter wheat growing season, the observed NEE is most negative 437 
coincident with peak LAI. CLMWHE captured these seasonal patterns at US-ARM and 438 
US-CRT sites, although it did underestimate the NEE magnitudes at their peak. The 439 
underestimation of peak LAI may have contributed to this bias. CLMBASE has much 440 
smaller NEE relative to CLMWHE, consistent with the lower LAI. We also observed a 441 
discrepancy after harvest, where CLMWHE (and CLMBASE, to a lesser extent) 442 
simulated a strong carbon source for the site, but observations exhibited either neutral 443 
NEE at US-ARM or a smaller NEE at US-CRT site. This discrepancy is due to the model 444 
treating the land cover as bare ground after harvest, when in reality weeds (identified by 445 
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visual inspection of daily site photographs) quickly exert influence on surface fluxes of 446 
carbon.  447 
 448 
The annual net radiation (Rn) simulations (Figure 3e-h) at the four sites were slightly 449 
improved in CLMWHE (Figure 3e-h). Averaged across the four sites, Rn RMSE was 450 
reduced from 16.6 W.m-2 in CLMBASE to 12.9 W.m-2 in CLMWHE. The latent heat flux 451 
(LE) simulation was improved during March-May (Figure 3i-l). The spring LE RMSE 452 
was reduced by 10-70% across the four sites in CLMWHE due to the better LAI 453 
simulation in spring. However, the annual LE RMSE was only slightly reduced (up to 23% 454 
RMSE reduction in CLMWHE) at US-ARM, US-PON, and US-CRT, and showed no 455 
improvement at CAF-CT. The sensible heat flux (H) showed no obvious improvement 456 
(Figure 3m-p). 457 
 458 

 459 
Figure 3. Monthly averaged (a)-(d) net ecosystem exchange of CO2 (umol.m-2.s-1), (e)-(h) 460 
net radiation (W.m-2), (i)-(l) latent heat flux (W.m-2), and (m)-(p) sensible heat flux 461 
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(W.m-2) for observations, CLMWHE, and CLMBASE across four sites. The US-ARM 462 
site data were averaged over six winter wheat years (2003, 2004, 2006, 2007, 2009, 463 
2010), US-PON data was averaged over 1997 and 1998, US-CRT data is from 2013, and 464 
CAF-CT data is from 2014. The error bars indicate the standard error for the month 465 
across years, and there are no error bars for US-CRT and CAF-CT because the values are 466 
for one year. 467 
 468 
At the US-ARM and US-PON sites, the LE monthly variation patterns were improved by 469 
better representing leaf area index, but this improvement was limited by surface energy 470 
partitioning problems in the model. The model partitioned more energy to LE than was 471 
observed during the period when LAI declines in the late growing season (May-July). 472 
The observed LE is 45% and 53% of net radiation at US-ARM and US-PON site, while 473 
LE simulated in CLMWHE is 53% and 67% of net radiation at US-ARM and US-PON 474 
site. This energy partitioning problem is reversed at the US-CRT and CAF-CT sites, 475 
where the model partitioned less energy to LE than observations. The observed LE is 68% 476 
and 66% of net radiation at US-CRT and CAF-CT sites, while simulated LE in 477 
CLMWHE is 52% and 30% of net radiation at US-CRT and CAF-CT site. Both sites are 478 
rainfed with no irrigation applied. In addition, the month of peak LE does not coincide 479 
with the month of peak LAI in the observations at US-ARM and US-PON. In 480 
observations, LE reaches a peak at the same time when LAI is at its peak, but in 481 
CLMWHE, LE reaches peak one month later than the LAI peak. Finally, we note that the 482 
winter wheat model did not improve surface energy partitioning in summer after winter 483 
wheat harvest. 484 
 485 
We found that the overestimation of LE in summer and fall can be reduced using a new 486 
soil evaporation scheme (Swenson and Lawrence, 2014) that will be available in CLM5. 487 
In CLM, vegetation affects LE through leaf transpiration, and LE in vegetated grid cells 488 
has three components: soil evaporation, wet leaf evaporation, and dry leaf transpiration 489 
(Lawrence et al., 2007). The excessive spring soil evaporation in CLM has been reported 490 
in earlier versions of CLM (Lu and Kueppers, 2012; Stockli et al., 2008) and some effort 491 
has been made to reduce soil evaporation. For example, Sakaguchi and Zeng (2009) 492 
added a litter resistance to soil evaporation in CLM3.5 that reduced the annual averaged 493 
soil evaporation. Recent work by Swenson and Lawrence (2014) added a dry surface 494 
layer that increased the soil resistance and reduced soil evaporation. We tested the new 495 
dry surface layer scheme at the US-ARM site, and found that soil evaporation was 496 
reduced by 21% and the LE simulation was improved in May-December (Figure 4c). 497 
However, the spring LE was still underestimated and the LE peak was still one month 498 
later than LAI peak, which is due to the leaf transpiration reaching its peak one month 499 
later than the LAI peak (Figure 4b).  500 
 501 
 502 
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503 
Figure 4. US-ARM site monthly averaged (across six years) a) soil evaporation (W.m-2), 504 
b) leaf transpiration (W.m-2), and c) latent heat flux (W.m-2). CLMWHE+SL14 is the 505 
same simulation as CLMWHE but with the new soil evaporation scheme by Swenson and 506 
Lawrence (2014).  507 
 508 
Yield 509 
 510 
The accuracy of the simulated yield depended on whether the region has a similar climate 511 
as the site where the model was calibrated. US-ARM had the smallest RMSE (11.88 512 
bu/ac) due to calibration, and US-PON site had only a slightly higher RMSE (16.53 bu/ac) 513 
than US-ARM because the two sites have similar climate (both located in north of 514 
Oklahoma). The yield was overestimated at the two sites by 7.34 and 14.8 bu/ac for US-515 
ARM and US-PON. However, at US-CRT and CAF-CT, which are far away from US-516 
ARM, the yield RMSE values were much higher (36.54 and 54.79 bu/ac) and yields were 517 
underestimated by 36.49 and 54.79 bu/ac. In terms of the interannual variation in yield, 518 
CLMWHE accurately simulated the yield decline at the US-ARM site from 2003-2006 519 
and captured the interannual variation from 2007-2010, but failed to simulate the lowest 520 
yield in 2007. We also note that CAF-CT is the only site where yield simulations with 521 
CLMWHE were worse than CLMBASE. Here the yield RMSE increased from 13.35 522 
bu/ac in CLMBASE to 54.79 bu/ac in CLMWHE (discussed further below).  523 
 524 
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 525 
Figure 5. The annual winter wheat yield validation against the nearest county USDA 526 
NASS yield data. The nearest county USDA NASS yield data is very similar to the site 527 
measured yield at the US-ARM site.  528 
 529 
CLMWHE underestimated the US winter wheat yield by 35% compared to USDA county 530 
level yield data averaged across 1979-2010 (Figure 6), which is largely due to the 531 
underestimation of the Northwest US winter wheat yield. In the simulation, winter wheat 532 
growth in the Northwest was limited by soil water availability. Figure 7 shows that the 533 
plant wetness factor (btran, averaged across growing season) was <0.5 in much of the 534 
region. In CLM, btran varies between 0 to 1 to represent the available soil water to plant 535 
(1 means no water stress at all). The low btran in this region limited the photosynthesis 536 
and reduced the crop yield in the model. We applied irrigation to a single point in the 537 
Northwest, and the yield increased from 29.5 bu/ac to 80.6 bu/ac with irrigation, which is 538 
consistent with yields in subregions of the Northwest. For the Southeast US, CLMWHE 539 
simulated a similar yield as the Southern Great Plains, but the simulated yield was lower 540 
than USDA yield for the region, which may be due to model deficiencies in the 541 
representation of fertilization, lack of regional varieties, or other forms of crop 542 
management not well captured in the model. 543 
 544 
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 547 
 548 
Figure 6. 1979-2010 averaged winter wheat yield for (a) USDA county level yield and (b) 549 
the simulated yield.   550 
 551 

 552 
Figure 7. 1979-2010 averaged plant wetness factor between leaf emergence and harvest. 553 
Values less than 1 indicate water stress and cause photosynthesis to be reduced in the 554 
model. 555 
 556 
 557 
A simple, single variable, statistical yield regression indicated that variables important in 558 
predicting CLMWHE yield may be irrelevant for predicting observed yield. The 559 
simulated yields depend most on the growing degree days (R2=0.94), which only 560 
explained 24% of observed yield variation (Figure 8). Although there are many other 561 
variables that contribute to variation in the CLMWHE yield, such as peak LAI, length of 562 
leaf emergence period, harvest date, and day of LAI peak, these variables have strong 563 
correlations with growing degree days, which suggests that crop yields in CLM depend 564 
too much on growing degree days. Soil moisture, especially the lower layer soil moisture 565 
at 20cm, is the only variable that explained a large amount of yield variation in both 566 
observations (R2=0.80) and CLMWHE (R2=0.86). So improved representation of soil 567 
hydrology, especially the interannual variability of soil moisture may improve the 568 
simulations of yield variation.   569 
 570 
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 571 
 572 
 573 

 574 
Figure 8. Comparison of the linear regression R square for yield and each of the 11 575 
variables.  576 
 577 
 578 
Discussion and conclusions 579 
 580 
We improved the winter wheat model in CLM with new vernalization, frost tolerance, 581 
and frost damage processes. We modified the grain carbon allocation algorithm and 582 
performed a calibration on three key parameters (minimum planting temperature, 583 
maximum crop growth days, and initial value of leaf carbon allocation coefficient) at the 584 
US-ARM site, and then validated the model performance at three other sites in the 585 
continental US. These model alterations led to large improvements for crop phenology 586 
(indicated by LAI), net ecosystem exchange, and spring latent heat flux. Additionally, the 587 
modeled yield RMSE is comparable to literature values (Palosuo et al., 2011). However, 588 
there are several remaining limitations of the model that need to be resolved in a future 589 
version.  590 
 591 
CLM needs to better represent the land cover after harvest to include the influence of 592 
weeds and litter on the carbon balance. Although CLM properly simulated the seasonal 593 
evolution of NEE, the NEE RMSE at US-ARM and US-CRT (2-3 umol/m2/s) is higher 594 
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than the Lund-Potsdam-Jena managed Land model (LPJ-ml) simulation (Bondeau et al., 595 
2007) at the US-PON site (1.09 umol/m2/s), which is largely due to incorrect simulation 596 
of NEE after harvest. When winter wheat is not alive, CLM represents the land cover as 597 
bare ground so GPP is zero but heterotrophic respiration from litter and soil organic 598 
matter is still large, which resulted in a carbon source after harvest (positive NEE). This 599 
is not true for the US-ARM site, where we observed weed growth after harvest and 600 
positive NEE (Raz-Yaseef et al., 2015). This vegetation cover after harvest resulted in a 601 
near zero NEE at US-ARM or negative NEE at US-CRT site. Appropriate simulation of 602 
the post-harvest land cover is critical for better representing the role of agriculture in the 603 
global carbon balance.  604 
 605 
CLM needs to further increase the influence of crops and vegetation on the surface 606 
energy balance and latent heat flux (LE) in particular. The LE simulation in CLM has a 607 
R2 range from 0.62 to 0.97 across the four sites, which is better than other model 608 
simulations at the same sites. For example, Arora et al., (2003) simulated LE RMSE 22.0 609 
W/m2 at US-PON from March-May in 1997 using their coupled land surface and 610 
terrestrial ecosystem model (CLASS-Twoleaf model), and we simulated LE RMSE 10.55 611 
W/m2 at the same site from March-May averaged for 1998-1999. But our LE response to 612 
the improved LAI was not as strong as we expected. Williams and Torn (2015) showed 613 
that vegetation has stronger controls on surface heat flux partitioning than soil moisture at 614 
the US-ARM site, where LAI explained 53% of the variation in evaporative fraction 615 
(EF=LE/(LE+H)), while soil moisture only explained 11% of EF variation. For our six 616 
winter wheat years (Williams and Torn used 8 years that included other cover types), we 617 
found similar patterns in the US-ARM observations. LAI explained 40% of EF variation 618 
while soil moisture only explained 7% (not shown). However, EF in CLMWHE and 619 
CLMBASE was not as well predicted by LAI, which only explained 5% and 1%, 620 
respectively, of variation in EF. In CLM, vegetation affects LE through leaf transpiration, 621 
and LE in vegetated grid cells has three components: soil evaporation, wet leaf 622 
evaporation, and dry leaf transpiration (Lawrence et al., 2007). The wet leaf evaporation 623 
is the smallest and overall LE depends on the tradeoff between soil evaporation and leaf 624 
transpiration. Soil evaporation is dominant when LAI is small, and leaf transpiration is 625 
dominant when LAI is higher. Using the US-ARM site as an example, in CLMBASE, the 626 
leaf transpiration is very small due to low LAI but soil evaporation is very large, which is 627 
opposite in CLMWHE (Figure 4 a and b). Such a tradeoff is why the large increase in 628 
LAI in CLMWHE only increased overall LE a small amount compared to CLMBASE. 629 
We found although the new soil evaporation parameterization (Swenson and Lawrence, 630 
2014) in a later version of CLM reduced soil evaporation (Figure 4), the spring LE was 631 
still lower than observation, which suggesting further improvements to the vegetation 632 
controls on leaf transpiration are critical for accurate seasonal simulation of the latent 633 
heat flux.  634 
 635 
CLMWHE tends to underestimate the winter wheat yield but the yield RMSE is 636 
comparable to other literature values. The averaged yield RMSE across the four sites is 637 
29.09 bu/ac, which was within the range of other winter wheat models yield RMSE (21-638 
32 bu/ac) reported by (Palosuo et al., 2011), although the simulation sites and years are 639 
different. The low simulated yield may be due to the insufficient calibrations. Table 4 640 
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listed the key crop growth parameters used in CLMWHE. We calibrated these parameters 641 
at the US-ARM site, and applied the same values everywhere, which is a common 642 
approach in land surface model development. However, the US-ARM site represents a 643 
relatively low yield relative site compared to the U.S. national average. This likely 644 
contributed to underestimated yields at sites or in regions with historically greater yields, 645 
such as at US-CRT and CAF-CT, and in the Southeastern and Northwest US. The current 646 
modeling framework of CLM does not facilitate the substantial calibration required to 647 
more accurately capture the full range of observed winter wheat yields. As a gridded 648 
global crop model, gridded parameters (e.g., maximum maturity days, leaf emerge and 649 
grain fill threshold, and background litter fall factor) that allow for spatial variation in the 650 
key parameters should be considered in future versions of the model. Alternately, for 651 
parameters with spatial structure linked to environmental variation, parameters could 652 
vary with climate or soil conditions.  653 
 654 
We investigated the causes of the low yield in 2007 at the US-ARM site. The 655 
observational yield data in Figure 4 is from the county level USDA yield estimate, which 656 
is very similar (RMSE=1.6 bu/ac) to the US-ARM site-observed yield. Both the site-657 
observed yield and USDA county-level yield showed the lowest values in 2007 (20 658 
bu/ac), so the low yield in 2007 is not specific to the field represented by the US-ARM 659 
site.  The field notes indicate that only part of the wheat field was harvested in early July 660 
of 2007, while the remainder of the field was not harvested due to wheat sprouting in the 661 
head. Pre-harvest sprouting reduces the quality (and price) of the grain, and can occur 662 
when the crop is exposed to prolonged heavy rain. We examined the precipitation, 663 
temperature, and wind speed during May and June across the eight years and found that 664 
in 2007 there was double the mean precipitation in June (108.2% higher than the eight-665 
year June average). Such large amounts of precipitation may have caused the low 666 
observed yield. Assuming that the low yield was strongly linked to the high rainfall, the 667 
implication is that the winter wheat crop model needs to include more types of 668 
environmental damage to fully simulate interannual variation in yields.  669 
 670 
Our new winter wheat model improved the LAI and yield simulation compared to the 671 
original winter wheat model except at CAF-CT site due to 1) drier soil conditions during 672 
the grain fill phase and 2) the adjusted grain carbon allocation coefficient in CLMWHE. 673 
CLMWHE started the grain fill phase during the end of May while CLMBASE started 674 
the grain fill phase in the beginning of May. In mid-May, the higher LAI in CLMWHE 675 
resulted 30% more LE than CLMBASE and dried the soil. The plant wetness factor 676 
dropped from 0.98 on May 15 to 0.19 on May 28 in CLMWHE, but remained greater 677 
than 0.89 through May in CLMBASE. The grain carbon allocation in CLMWHE is 678 
strongly limited by soil water available to the plant, so grain carbon was much smaller in 679 
CLMWHE than in CLMBASE. The larger LAI also increased LE at the other three sites 680 
relative to the baseline simulations, but did not result in long-term water stress due to 681 
sufficient precipitation during the rainy season. The CAF-CT site has ten times less 682 
precipitation than the other three sites in May. The observed LE at CAF-CT site is much 683 
higher than the simulation given the same precipitation, suggesting the plant wetness 684 
factor in the model is too sensitive to low precipitation.  685 
 686 
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Some of our modeling approaches need further improvements to the processes supported 687 
by new observations. We developed hypothetical (empirically-based) frost damage 688 
functions that account for both small and frequent damage early in the growing season, 689 
and severe damage in winter and spring. Such a hypothetical approach is not uncommon 690 
in crop modeling when lacking observations at a process-level. For example, CERES-691 
Wheat (Ritchie and Otter, 1985) developed a hypothetical leaf senescence scheme during 692 
cold temperature that monitored a cold hardening index 693 
(http://nowlin.css.msu.edu/wheat_book/CHAPTER3.html ). We tested the CERES-Wheat 694 
leaf senescence scheme in CLM and found it produced too much reduction on LAI. This 695 
finding motivated our approach based on recently developed frost tolerance indicators. 696 
The magnitude of the leaf carbon reductions and how such reductions are linked to frost 697 
damage requires more observations, such as high frequency aboveground and 698 
belowground biomass measurements. Furthermore, the linear yield regressions showed 699 
that the yields in CLM depend too much on growing degree days, a sensitivity that is not 700 
reflected in observations. In CLM, growing degree days not only determine crop 701 
phenology but are also involved in calculation of the carbon allocation coefficients (Table 702 
3). Exploring other possible factors that control phenology and carbon allocation may 703 
improve crop simulation in CLM. Meanwhile, soil moisture, especially the deeper soil 704 
moisture, explains a large amount of the yield variation in both observations and the 705 
simulations. Fixing the current biases in soil hydrology and reducing interannual 706 
variability in the simulated soil moisture will benefit the yield simulation.  707 
 708 
In summary, we found that our new winter wheat model in CLM better captured the 709 
monthly variation of leaf area index and improved the latent heat flux and net ecosystem 710 
exchange simulation in spring. Our model correctly simulated the interannual variation in 711 
yield at the US-ARM site, but the crop growth calibration at the US-ARM site introduced 712 
a low-yield bias that produced underestimates of the yield in high-yield sites (US-CRT 713 
and CAF-CT) and regions (Northwestern and Southeastern US). Our analysis indicates 714 
that while this model of winter wheat represents a substantial step forward in simulating 715 
the processes that influence winter wheat growth and yield, further refinements would be 716 
helpful to capture the impacts of environmental stress on energy partitioning, carbon 717 
fluxes and yield, and would improve simulations of regional variation. 718 
 719 
Code Availability 720 
 721 
The winter wheat code in CLM4.5 can be requested from Yaqiong Lu 722 
(yaqiong@ucar.edu). And it will be available in the next released version of Community 723 
Land Model (version 5) for public access. 724 
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