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Abstract 12 
 13 
Winter wheat is a staple crop for global food security, and is the dominant vegetation 14 
cover for a significant fraction of Earth’s croplands. As such, it plays an important role in 15 
carbon cycling and land-atmosphere interactions in these key regions. Accurate 16 
simulation of winter wheat growth is not only crucial for future yield prediction under 17 
changing climate, but also for well predicting the energy and water cycles for winter 18 
wheat dominated regions. We added a winter wheat model in the Community Land 19 
Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net 20 
ecosystem exchange of CO2, and grain yield. These included schemes to represent 21 
vernalization, as well as frost tolerance and damage. We calibrated three key parameters 22 
(minimum planting temperature, maximum crop growth days, and initial value of leaf 23 
carbon allocation coefficient) and modified the grain carbon allocation algorithm for 24 
simulations at the U.S. Southern Great Plains ARM site (US-ARM), and validated the 25 
model performance at eight additional sites across North America. We found that the new 26 
winter wheat model improved the prediction of monthly variation in leaf area index, 27 
latent heat flux, and net ecosystem exchange during the spring growing season. The 28 
model accurately simulated the interannual variation in yield at the US-ARM site, but 29 
underestimated yield at sites and in regions (Northwestern and Southeastern US) with 30 
historically greater yields.  31 
 32 
Introduction 33 
 34 
Wheat is a widely grown temperate cereal (Shewry, 2009), ranked fourth among 35 
commodity crops with a global production of 711 million tonnes, and encompasses 36 
13.3% of global permanent cropland as of 2013 (http://faostat3.fao.org/home/E). Wheat 37 
provides one-fifth of the total caloric input of the world’s population (Curtis et al., 2002), 38 
and therefore plays an important role in global food security (Chakraborty and Newton, 39 
2011; Vermeulen et al., 2012). In many regions, such as the United States, winter wheat 40 
(Triticum aestivum) is the dominant wheat cultivar accounting for 74% of the total U.S. 41 
wheat production, based on data from the National Agricultural Statistics Service of the 42 
U.S. Department of Agriculture in 2013 (http://www.nass.usda.gov).  43 
 44 
Winter wheat, which is planted in fall and harvested in early summer, has a different 45 
growth cycle and responds to environmental stresses differently from summer crops. 46 
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Winter wheat may suffer less from summer drought but is subject to winter damage due 47 
to exposure to low temperatures and frequent freeze-thaw cycles (Vico et al., 2014). 48 
There are two important over-winter survival mechanisms for winter wheat: vernalization 49 
and cold tolerance. Vernalization is the process whereby winter wheat is exposed to a 50 
period of non-lethal low temperature required to fully enter the flowering stage and to 51 
produce grain in spring. Additionally, winter wheat acclimates to low temperature giving 52 
it the capability to survive cold temperatures. Both of these processes – vernalization and 53 
cold tolerance - are cumulative processes and have similar optimum temperature ranges. 54 
When the temperature is outside of the optimum range, the processes can be stopped, 55 
reversed, and restarted (Fowler et al., 1999). Damage can occur when temperatures are 56 
lower than the accumulated cold tolerance (reviewed by Barlow et al., 2015). Cold-57 
induced damage has been observed to persist through the remainder of the growing 58 
season, and its impact on yield is greater than on growth. Effectively representing these 59 
processes in crop models could improve understanding of the uncertainty in the future 60 
crop yield projections.  61 
 62 
Winter wheat also plays an important role in land-atmosphere interactions through effects 63 
on energy, water, and carbon fluxes. Winter wheat cropland has much less soil carbon 64 
loss compared to maize cropland averaged across several sites (Ceschia et al., 2010), and 65 
could either be a carbon sink (Waldo et al., 2016) or source (Anthoni et al., 2004), 66 
depending on the year and the location.  The earlier growing season can influence surface 67 
fluxes of water, energy, and momentum, and hence regional climate (Riley et al., 2009). 68 
This land surface influence is particularly strong in the U.S. Southern Great Plains, where 69 
winter wheat is a dominant land-cover type. For example, statistical analyses indicated 70 
cooler and moister near-surface air over Oklahoma’s winter wheat belt from November to 71 
April compared to adjacent grassland, due to the influence of winter wheat (McPherson et 72 
al., 2004). This influence highlights the importance of adequately representing winter 73 
wheat in land surface models used for climate projections, in order to assess both the 74 
impact of climate change on agriculture and agriculture’s influence on regional climate. 75 
 76 
The agricultural research community developed several winter wheat models during the 77 
1980s, such as the Agricultural Research Council winter wheat model (ARCWHEAT) 78 
(Porter, 1984; Weir et al., 1984) and the Crop Estimation through Resource and 79 
Environment Synthesis winter wheat model (CERES-wheat) (Ritchie and Otter, 1985). 80 
These models were designed to simulate winter wheat growth at the farm level and have 81 
well-defined winter wheat growth phenology, which is a function of thermal time and day 82 
length that are adjusted by vernalization and a photoperiod factor. Photosynthesis and 83 
respiration processes determine the dry matter for partitioning among roots, shoots, 84 
leaves, and grain. Some models (e.g., CERES-wheat) considered winter wheat loss due to 85 
extreme low temperature in winter. In contrast to their strength in representing crop 86 
growth processes, these models have simplified treatment of important upstream 87 
processes that affect crop growth. For example, the photosynthesis scheme is a linear 88 
function of intercepted photosynthetically active radiation (PAR), PAR itself is simplified 89 
as a constant fraction of incoming solar radiation, and radiation is not separated into 90 
direct and diffuse fractions. Further, these crop models were originally developed to 91 
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simulate individual, as opposed to multiple crops, making multi-crop simulations at 92 
regional and global scales difficult.  93 
 94 
To incorporate more physical processes and to simulate crop growth at regional or global 95 
scales, some agronomic crop growth models were incorporated into agro-ecosystem 96 
models. For example, CERES maize and wheat growth were added into the Decision 97 
Support System for Agrotechnology Transfer Model (DSSAT) (Jones et al., 2003). A 98 
substantial modified version of CERES Wheat (Keating et al., 2001) also has been added 99 
into the Agricultural Production Systems Simulator (APSIM) Model (Keating et al., 100 
2003). As the effects of vegetation on the atmospheric boundary layer have been 101 
increasingly appreciated, some land surface models started to also incorporate crop 102 
growth models to not only simulate crop yield, but also to simulate crop growth effects 103 
on surface carbon, water, and energy fluxes. For example, the SUCROS crop growth 104 
model was incorporated to JULES (Van den Hoof et al., 2011) and the STIC crop growth 105 
model was incorporated to ORCHIDEE (Wu et al., 2016). In the recent Agricultural 106 
Model Intercomparison and Improvement Project (AgMIP), these agro-ecosystem models 107 
and land surface models were categorized as Global Gridded Crop Models (GGCM).  108 
 109 
The Community Land Model (CLM) (Oleson et al., 2013) is one of the GGCM models  110 
included in AgMIP. It is also a state-of-the-art land surface model used in the Community 111 
Earth System Model (Hurrell et al., 2013) that simulates biogeophysical and 112 
biogeochemical processes on a spatial grid. CLM can be run online, coupled with the 113 
atmosphere model, or offline at multiple spatial scales (site, regional, and global) and 114 
resolutions. One grid cell in CLM is divided into different land units (urban, glacier, lake, 115 
wetland, vegetation), and the vegetation unit can consist of up to 14 natural vegetation 116 
types and 64 crop types in the most recent version (a developer version of CLM4.5). 117 
CLM is a community effort that incorporates scientific advances through time, such as 118 
two-leaf stomatal conductance and photosynthesis, transient land use, multilayer canopy 119 
models (Bonan et al., 2012), methane models (Riley et al., 2011), and carbon isotope 120 
models (Koven et al., 2013).  121 
 122 
In order to better represent agricultural ecosystems, Levis et al. (2012) introduced crop 123 
growth modules into CLM based on the AgroIBIS model (Kucharik, 2003). Since their 124 
introduction, the crop modules in CLM have been updated to represent more crops types 125 
(maize, soybean, cotton, wheat, rice, sugarcane, tropical maize, tropical soybean) and 126 
processes, such as soybean nitrogen fixation (Drewniak et al., 2013) and ozone impacts 127 
on yields (Lombardozzi et al., 2015). In CLM, crop growth depends on photosynthetic 128 
processes, which are limited by light, water, and nutrient availability. At each time step, 129 
photosynthesis estimations provide the potential available carbon for plant growth, which 130 
is adjusted by nitrogen supply and demand. The actual available carbon is distributed to 131 
leaf, stem, root, and grain by carbon allocation coefficients that vary based on crop 132 
growth stages. While the initial focus for incorporating crop growth into CLM was as a 133 
lower boundary condition to the atmosphere, the model also predicts crop yields and is 134 
participating in the AgMIP GGCM Intercomparison project (Elliott et al., 2015). 135 
 136 
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Although Levis et al.’s (2012) initial crop growth modules in CLM included a simplified 137 
representation of winter wheat growth, it has never been validated and some of the key 138 
winter wheat growth processes are out of date, such as vernalization, or not included 139 
(e.g., frost tolerance and damage). Our new winter wheat model adopted the same 140 
phenology phases as the original winter wheat model in CLM, but replaced the 141 
vernalization process, added frost tolerance and damage processes, slightly modified the 142 
carbon allocation algorithm, and calibrated several key parameters that affect winter 143 
wheat growth. Our work focused on improving the representation of the key growth 144 
processes for winter wheat in order to, 1) better simulate the land surface influence on 145 
surface CO2, water and energy exchanges in winter wheat-dominated regions, and 2) 146 
accurately simulate crop growth and yield so the model can be used for winter wheat 147 
yield projections. 148 
 149 
Methods 150 
 151 
Calibration data 152 
 153 
We calibrated the simulated leaf area index and yield using observations from the 154 
Atmospheric Radiation Measurement Southern Great Plains Central Facility site (US-155 
ARM) in northern Oklahoma, USA. The site has well-documented crop growth and 156 
management information, including crop types, planting and harvest dates, and fertilizer 157 
amount. The site conducts bi-weekly leaf area index (LAI) measurements with a light 158 
wand (Licor LAI-2000) during the active growing season. Using a combination of in situ 159 
LAI and site reflectance spectrum measurements, Williams and Torn (2015) generated a 160 
daily LAI product, used here to develop and calibrate the winter wheat model. Six winter 161 
wheat seasons are used from the US-ARM site: 2003, 2004, 2006, 2007, 2009, and 2010 162 
(winter wheat was not grown at the US-ARM site during 2005 and 2008). 163 
 164 
Validation data 165 
 166 
We validated the simulated leaf area index, and leaf, stem, and grain dry weight at five 167 
winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America. 168 
The experiments were originally designed to understand winter wheat response to 169 
nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes) in 170 
the Great Plains (Hubbard et al., 1988; Major et al., 1988; Reginato et al., 1988), and 171 
have been used as part of the AgMIP Wheat project. For our validations, we only 172 
validated to seven site-year rainfed plots.  173 
 174 
We validated the simulated energy, water, and CO2 flux at three additional eddy flux 175 
tower sites: (1) Ponca City (US-PON), (2) Curtice Walter-Berger Cropland (US-CRT), 176 
and (3) the Washington State University Cook Agronomy Farm conventional tillage site 177 
(CAF-CT) (Figure 1). These three sites do not have detailed crop growth measurements 178 
of tissue biomass, but have surface flux measurements that are crucial to understanding 179 
the role of winter wheat in altering land-atmosphere interactions.   180 
 181 
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We also validated the simulated US winter wheat yield with the USDA NASS county 182 
level yield data. For the sites that did not have site-level yield observations, we also 183 
validated site-level simulations with the nearest county yield.  184 
 185 
 186 
Table 1. Winter wheat validation site descriptions.  187 
Site Latitude Longitude MAT 

(oC) 
Prec 
(mm) 

Simulation 
years 

References 

US-ARM 36.61 -97.49 14.76 843 2002-2010 (Fischer et al., 
2007; Raz-
Yaseef et al., 
2015) 

US-PON 36.77 -97.13 14.94 866 1997-1999 (Hanan et al., 
2005; Hanan et 
al., 2002) 

US-CRT 41.63 -83.35 10.10 849 2012-2013 (Chu et al., 
2014) 

CAF-CT 46.78 -117.08 8.74 455 2013-2014 (Waldo et al., 
2016) 

TXLU 33.63 -101.83 8.2 531 1984-1986 (Hubbard et al., 
1988; Major et 
al., 1988; 
Reginato et al., 
1988) 
 

KSMA 39.09 -96.37 11.7 922 1984-1986 
NESA 41.37 -100.49 11.5 499 1984-1986 
NDMA 46.46 -100.55 14.2 496 1984-1986 
ABLE 49.42 -112.5 12.2 378 1984-1986 

 188 
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Figure 1. The PRISM 1981-2013 averaged annual total precipitation (mm yr-1) and the 191 
nine site locations (US-ARM, US-PON, US-CRT, CAF-CT, ABLE, NDMA, NESA, 192 
KSMA, TXLU) used in this study.  193 
 194 
 195 
Model development 196 
 197 
Similar to other crops in CLM, winter wheat has four phenological phases, including 198 
planting, leaf emergence, grain fill, and harvest. The criteria and thresholds for entering 199 
different phenology phases are listed in Table 2. Growing degree days is the key variable 200 
controlling phenology, and is measured as heat accumulation during the whole growing 201 
season or over a certain period. It was calculated by accumulating the difference (no 202 
accumulation if less than 0) between the target temperature (e.g., mean air temperature) 203 
and base temperature, and normally has a maximum daily increment. We used three 204 
different growing degree day algorithms to determine winter wheat phenology, all using 205 
the same base temperature (0 oC) and maximum daily increment (26o). The 20-year 206 
running average of growing degree days (GDD020) uses 2-meter air temperature (T2m) 207 
from September to June in the northern hemisphere (from April to September in Southern 208 
Hemisphere), and is updated each year by averaging the previous 19 years. The growing 209 
degree days for soil temperature since planting (GDDtsoi) uses averaged soil temperature 210 
from the top two model soil layers (0.71 cm and 2.79 cm). Growing degree days since 211 
planting (GDDplant) uses T2m, and is reduced by a vernalization factor (see below) after 212 
leaf emergence.  213 
 214 
Table 2. Criteria and notation for winter wheat to enter each phenological stage.  215 
 Criteria Notation 
Planting § 5 day running minimum temperature < minimum 

planting temperature 
§ and, day of year > minimum planting day of year 
§ and, 20-year running average of gdd0 > minimum gdd 

𝑇"# < 5℃ 
 

𝑑𝑜𝑦 > 	1,-𝑆𝑒𝑝 
𝐺𝐷𝐷343 > 50 

Leaf 
emergence 

§ Growing degree days of soil temperature to 2.79cm 
depth > 3% of maturity growing degree days 

𝐺𝐷𝐷-,67
> 3%𝐺𝐷𝐷:;- 

Grain fill § Growing degree days of 2m temperature since planting 
> 40% of maturity growing degree days 

𝐺𝐷𝐷<=;>-
> 40%𝐺𝐷𝐷:;- 

Harvest § Growing degree days of 2m temperature since 
planting	≥ maturity growing degree days 

§ or, the number of days past planting > maximum 
growing days 

𝐺𝐷𝐷<=;>- ≥ 𝐺𝐷𝐷:;- 
 

𝐷𝑃𝑃 > 330 

 216 
To better represent winter wheat phenology, we added two additional processes: 217 
vernalization and frost damage. We adopted a generalized winter wheat vernalization 218 
model (Streck et al., 2003). Similar to other winter crops, winter wheat must be exposed 219 
to low and nonfreezing temperature to enter the reproductive stage. Additionally, the 220 
vernalization process affects cold tolerance, as discussed below. If plants are not fully 221 
vernalized, the potential size of the flower head will be reduced. Vernalization starts after 222 
leaf emergence and ends before flowering. To model this process, daily vernalization rate 223 
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(fvn, eq. 1) is calculated based on the difference between the crown temperature (Tcrown) 224 
and the optimum vernalization temperature (Topt). In the CLM crop model, the crown 225 
temperature is the crown depth soil temperature (Aase and Siddoway, 1979), calculated 226 
as the function of 2-meter air temperature and snow depth. The crown temperature is 227 
typically warmer than the 2-meter air temperature in winter, if the plant is covered by 228 
snow, and the same as the 2-meter air temperature without snow cover. If the crown 229 
temperature is equal to the optimum temperature for a whole day, then fvn is equal to 1. 230 
Otherwise, fvn is less than 1 as calculated in eq. 1.  231 
 232 
 233 
𝑓𝑣𝑛 𝑇EF6G> =234 

4 IJKLMNOIPQN
R ILSTOIPQN

RO IJKLMNOIPQN
UR

ILSTOIPQN
UR 		𝑇:7> ≤ 𝑇EF6G> ≤ 𝑇:;W

0 𝑇 < 𝑇:7>	𝑜𝑟	𝑇EF6G> > 𝑇:;W
1 𝑇EF6G> = 𝑇6<-

(eq. 1) 235 

 236 
 237 

𝑤ℎ𝑒𝑟𝑒	𝛼 =
𝑙𝑛2

ln (𝑇:;W − 𝑇:7> /(𝑇6<- − 𝑇:7>)]
 238 

 239 
 240 
Next, the sum of fvn over sequential days is the effective vernalization days (VD, eq. 2).  241 
 242 
𝑉𝐷 = 𝑓𝑣𝑛 𝑇EF6G>       (eq. 2) 243 
 244 
This is used to calculate the vernalization factor (VF, eq. 3). VF varies from 0 to 1 (fully 245 
vernalized) to represent the vernalization stage.    246 
 247 
𝑉𝐹 = ghi

44."ikghi
  (eq. 3) 248 

 249 
Finally, VF was used in adjusting the growing degree days since planting 250 
(GDDplant=GDDplant,unadjusted  × VF) and the grain carbon allocation coefficient (𝑎nF;7> =251 
𝑎nF;7>,p>;#qp,-r#×𝑉𝐹). When winter wheat is not fully vernalized (VF < 1) then GDDplant 252 
and agrain are reduced, resulting in slowed growth and reduced yield. 253 
 254 
We quantify the impacts of low temperature damage, including from frost, using three 255 
variables: 1) temperature at which 50% of winter wheat was damaged (LT50), 2) survival 256 
probability (fsurv), and 3) winter killing degree days (WDD). Here, the calculations for 257 
the three variables are briefly summarized, but more detailed descriptions of the 258 
calculations can be found in Bergjord et al., (2008) and Vico et al., (2014). LT50 (eq. 4) 259 
depends on LT50 from the previous time step (LT50t-1), low temperature acclimation (i.e. 260 
hardening; RATEH), loss of hardening due to exposure to high temperatures (i.e. 261 
dehardening; RATED), stress due to respiration under snow (RATER), and exposure to 262 
low temperature (RATES). Lower LT50 results in greater frost tolerance for winter wheat 263 
while higher LT50 indicates lower frost tolerance. 264 
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 265 
 266 
𝐿𝑇"3- = 𝐿𝑇"3-Ot − 𝑅𝐴𝑇𝐸𝐻 + 𝑅𝐴𝑇𝐸𝐷 + 𝑅𝐴𝑇𝐸𝑆 + 𝑅𝐴𝑇𝐸𝑅  (eq. 4) 267 
 268 
𝑅𝐴𝑇𝐸𝐻 = 𝐻<;F;: 10 − max	(𝑇EF6G>, 0) 𝐿𝑇"3-Ot − 𝐿𝑇"3E 			𝑇EF6G> < 10℃ (eq. 5) 269 
 270 
 271 
The contribution of hardening to LT50 was calculated as RATEH (eq. 5), which was 272 
mainly a function of crown temperature (Tcrown) and adjusted by a hardening parameter 273 
(Hparam=0.0093), maximum frost tolerance (LT50c=-23 oC). RATEH increased rapidly 274 
when crown temperature (Tcrown) fell below 10 oC. When Tcrown fell below 0 oC, the slope 275 
of RATEH was same as Tcrown at 0 oC. RATEH is also determined by the difference 276 
between the current level of frost tolerance and the maximum level of frost tolerance 277 
(𝐿𝑇"3-Ot − 𝐿𝑇"3E). At the beginning of cold acclimation, when 𝐿𝑇"3-Ot is much higher 278 
than 𝐿𝑇"3E, RAHEH increases quickly.    279 
 280 

𝑅𝐴𝑇𝐸𝐷 = 𝐷<;F;: 𝐿𝑇"37 − 𝐿𝑇"3-Ot 𝑇EF6G> + 4 ~		𝑇EF6G>	 ≥ 10	℃	𝑤ℎ𝑒𝑛	𝑉𝐹 < 1
𝑇EF6G> ≥ −4℃	𝑤ℎ𝑒𝑛	𝑉𝐹 = 1	(eq. 281 

6)   282 
𝑤ℎ𝑒𝑟𝑒	𝐿𝑇"37 = −0.6 + 0.142𝐿𝑇"3E represents LT50 for an unacclimated plant 283 
 284 
RATED accounts for the dehardening contribution (eq. 6), which is a function of crown 285 
temperature and is adjusted by a dehardening parameter (Dparam=2.7×10-5) and LT50 for a 286 
plant that is not acclimated to cold (LT50i). Cold acclimation is a cumulative process and 287 
can reverse (dehardening) when plants are exposed to high temperature or restart 288 
(hardening) when temperature is below 10 oC. The high temperature threshold depends 289 
on the vernalization stage. Dehardening occurs when 𝑇EF6G>	 ≥ 10℃ for plants that are 290 
not fully vernalized (VF<1), and when 𝑇EF6G> ≥ −4℃ for plants that are fully vernalized 291 
(VF=1).  292 
 293 
 294 
𝑅𝐴𝑇𝐸𝑅 = 𝑅<;F;:×𝑅𝐸×𝑓 𝑠𝑛𝑜𝑤𝑑𝑒𝑝𝑡ℎ  (eq. 7) 295 

𝑤ℎ𝑒𝑟𝑒	𝑅𝐸 = r�.����.�i��JKLMNO4
t.�"

, 𝑅<;F;: = 0.54  296 
	𝑓 𝑠𝑛𝑜𝑤𝑑𝑒𝑝𝑡ℎ = min	(𝑠𝑛𝑜𝑤𝑑𝑒𝑝𝑡ℎ, 12.5)/12.5 297 
 298 
Stress due to respiration under snow also increases LT50 and was calculated as RATER 299 
(eq. 7), which is a function of snow depth and a respiration factor (RE). RE is a 300 
regression function fitted to respiration measurements (Sunde, 1996). 𝑓 𝑠𝑛𝑜𝑤𝑑𝑒𝑝𝑡ℎ  301 
ranges from 0 to 1 for snow depth up to 12.5cm, and is equal to 1 when snow depth is 302 
greater than 12.5cm.  303 
 304 
𝑅𝐴𝑇𝐸𝑆 = �Ii�T��OIJKLMN

r��S�K�P ��i�T����JKLMN ��.��  (eq. 8) 305 
𝑤ℎ𝑒𝑟𝑒	𝑆<;F;: = 1.9  306 
 307 
 308 
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Long-term exposure to near lethal temperature will also increase LT50 and was calculated 309 
as RATES (eq. 8), which is based on the winter survival model developed by (Fowler et 310 
al., 1999).  311 
 312 
The probability of survival (fsurv, eq. 9) is a function of LT50 and crown temperature. 313 
The probability of survival reaches a median value when Tcrown equals LT50, and 314 
increases when Tcrown is warmer than LT50 and decreases when Tcrown colder than LT50.  315 
 316 

𝑓,pF� 𝑇EF6G>, 𝑡 = 2O(
�JKLMN T
��i�(T) )R��K�			𝑇EF6G> ≤ 0℃	  (eq.9) 317 

 318 
Finally, we calculate winter killing degree days (WDD, eq. 10) as a function of Tcrown and 319 
fsurv. WDD not only accounts for the cumulative degree days when the crop was 320 
exposed to freezing temperatures but also accounts for the probability of death at the 321 
temperature of exposure. High WDD occurs with low temperature and low survival 322 
probability.  323 
 324 
𝑊𝐷𝐷 = max[ 𝑇�;,r − 𝑇EF6G> , 0] [1 − 𝑓,pF� 𝑇EF6G>, 𝑡 ]G7>-rF 𝑑𝑡  (eq. 10) 325 
𝑤ℎ𝑒𝑟𝑒	𝑇�;,r = 0℃	 326 
 327 
 328 
Although Bergjord et al. (2008) and Vico et al. (2014) defined the frost tolerance and 329 
damage indicators described above, they did not propose a model for the growth response 330 
to crop damage from low temperatures. Here we developed a hypothetical two-stage frost 331 
damage parameterization that includes both instant damage and accumulated damage 332 
during the leaf emergence phase of winter wheat growth. In CLM, plants tissues are 333 
represented as the mass of carbon and nitrogen per m2 ground. We simulated leaf carbon 334 
and nitrogen reduction for each of the two types of frost damage. We assumed that instant 335 
damage occurs at the beginning of the growing season (VF<0.9) when plants are not fully 336 
vernalized and have low survival probability when exposed to subzero temperatures. In 337 
this case, the growth of leaves most vulnerable to cold (e.g., new leaves or small 338 
seedlings) would slow or cease. After many sensitivity tests, we found the best fit to 339 
observations by removing an amount of leaf carbon (leafcdamage_i = 5 g C/m2) to the soil 340 
carbon litter pool, scaled by a factor of 1-fsurv (eq. 11) at each time step (half-hourly). 341 
The leaf carbon was reduced whenever fsurv was less than 1 until leaf carbon reached a 342 
minimum value (10 g C/m2).  343 
  344 
 345 
𝑙𝑒𝑎𝑓𝑐- = 𝑙𝑒𝑎𝑓𝑐-Ot − 𝑙𝑒𝑎𝑓𝑐#;:;nr_7 1 − 𝑓𝑠𝑢𝑟𝑣 	, 𝑓𝑜𝑟	𝑊𝐷𝐷 > 0, 𝑓𝑠𝑢𝑟𝑣 < 1,346 
𝑎𝑛𝑑	𝑙𝑒𝑎𝑓𝑐- > 10 (eq. 11) 347 
 348 
In addition to this instantaneous damage, we introduced an accumulated damage 349 
parameterization for when winter wheat is close to or has completed vernalization 350 
(VF>0.9) in spring. We assumed that plants would not be likely to suffer as much from 351 
instantaneous frost damage as in the early winter season due to less subzero temperature, 352 
but that an extended period of subzero temperatures (large WDD) would lead to severe 353 
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crop damage. To simulate this, we let WDD accumulate up to a set value (set to 1o days), 354 
when it triggers the accumulated damage function and we track the average fsurv for this 355 
time period. When WDD>1o days, all leaf carbon from previous time step (leafct-1, 356 
representing the damage to the whole plant), scaled by a factor of (1- averaged fsurv), 357 
was removed from the leaf carbon to the soil carbon litter pool. After leaf carbon was 358 
reduced, WDD was reset to 0, and the accumulation and tracking of the averaged fsurv 359 
was restarted. For both frost damage types, leaf nitrogen was removed to the nitrogen 360 
litter pool. The nitrogen was scaled to the reduction of leaf carbon by the fixed C:N ratio 361 
(25 for winter wheat). The results show that the simulation of LAI (Figure S1) can be 362 
improved by including a representation of frost damage in winter wheat models. 363 
However, the approach here is based on empirical indicators of frost damage. This 364 
suggests the potential for further improvement by incorporating process-level 365 
representation of frost damage in future model versions. 366 
 367 
 368 
𝑙𝑒𝑎𝑓𝑐- = 𝑙𝑒𝑎𝑓𝑐-Ot×𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑	𝑓𝑠𝑢𝑟𝑣,			𝑉𝐹 ≥ 0.9	𝑎𝑛𝑑	𝑊𝐷𝐷 > 1	  (eq. 12) 369 
 370 
 371 
CLM leaf (aleaf) and stem (alivestem) carbon allocation coefficients for winter wheat were 372 
also adjusted during the grain fill to harvest phase. The original aleaf  and alivestem changed 373 
in time as a function of growing degree days. This approach resulted in a rapid decline in 374 
the stem carbon allocation, and led to a grain carbon allocation coefficient that was too 375 
large (Figure S2), producing unrealistically high yields at the US-ARM site. We modified 376 
the leaf and stem carbon allocation coefficients to be functions of carbon allocation at the 377 
initial time of grain fill (𝑎=r;�

7,~  and 𝑎=7�r,-r:
7,~ ), and therefore alivestem gradually declines and 378 

agrain gradually increases during the grain fill phase (Table 3, Figure S2b).  379 
 380 
After the above modification of carbon allocation and addition of the new vernalization 381 
and frost damage processes, we calibrated three parameter values (indicated with * in 382 
Table 4) in the US-ARM simulation. We adjusted minimum planting temperature and 383 
maximum days for growing to better match the US-ARM site planting and harvest date, 384 
and adjusted the initial leaf carbon allocation coefficient to better match the US-ARM 385 
LAI and yield. 386 
 387 
Table 3. Carbon allocation algorithms for the leaf emergence to grain fill stage, and the 388 
grain fill to harvest stage. 389 
   390 
Phase Allocation algorithm 

Le
af

 e
m

er
ge

nc
e 

to
 g

ra
in

 fi
ll 

𝑎nF;7> = 0 

𝑎�F66- = 𝑎�F66-7 − (𝑎�F66-7 − 𝑎�F66-
� )

𝐺𝐷𝐷IUP
𝐺𝐷𝐷:;-

 

𝑎=r;� = (1 − 𝑎�F66-)
𝑓=r;�7 (𝑒O3.t − 𝑒[O3.t(�hh�UP/�)])

𝑒O3.t − 1  
𝑎=7�r,-r: = 1 − 𝑎nF;7> − 𝑎�F66- − 𝑎=r;� 
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G
ra

in
 fi

ll 
to

 h
ar

ve
st

 
𝑎=r;� = 𝑎=r;�

7,~ 	 when 𝑎=r;�
7,~ ≤ 𝑎=r;�

�  else 

𝑎=r;� = 𝑎=r;�
7,~ (1 −

𝐺𝐷𝐷IUP − ℎ
𝐺𝐷𝐷:;-𝑑� − ℎ

)#�  LJ
 ¡�¢

 

𝑎=7�r,-r: = 𝑎=7�r,-r:
7,~ 	 when 𝑎=7�r,-r:

7,~ ≤ 𝑎=7�r,-r:
�  else 

𝑎=7�r,-r: = 𝑎=7�r,-r:
7,~ (1 −

𝐺𝐷𝐷IUP − ℎ
𝐺𝐷𝐷:;-𝑑� − ℎ

)#�  LJ
�T¡P

 

𝑎�F66- = 𝑎�F66-7 − (𝑎�F66-7 − 𝑎�F66-
� )

𝐺𝐷𝐷IUP
𝐺𝐷𝐷:;-

 

𝑎nF;7> = 1 − 𝑎=7�r,-r: − 𝑎�F66- − 𝑎=r;� 
 391 
 392 
Table 4. A list of key parameters used for phenology and carbon and nitrogen allocation 393 
for the original and modified CLM winter wheat models.  394 

Parameters Description Original Modified 

Ph
en

ol
og

y 

*minplanttemp Minimum planting temperature 278.15 (K) 283.15 (K) 
*mxmat Maximum days for growing 265 (days) 330 (days) 
GDDmat Maturity growing degree days 1700 1700 
gddmin Minimum growing degree days for planting 50 50 
lfemerg Percentage of gddmaturity to enter leaf emerge phase 3% 3% 
grnfill Percentage of gddmaturity to enter grain fill phase 40% 40% 

C
N

 a
llo

ca
tio

n 

𝑎�F66-7  Initial value of root carbon allocation coefficient 0.3 0.3 
𝑎�F66-
�  Final value of root carbon allocation coefficient 0 0 

∗ 𝑓=r;�7  Initial value of leaf carbon allocation coefficient 0.425 0.6 
ℎ Heat unit threshold (grnfill x hybgdd) 680 680 
𝑑� Leaf are index decline factor 1.05 1.05 

𝑑;==6E
=r;�  Leaf carbon allocation decline factor 3 3 
𝑑;==6E,-r: Stem carbon allocation decline factor 1 1 

*indicates parameters that have different values between original and modified model. 395 
 396 
Experiment design 397 
 398 
We set up paired CLM4.5 site simulations using Levis et al.’s (2012) original winter 399 
wheat model (CLMBASE) and our modified winter wheat model (CLMWHE) at the 400 
winter wheat sites in Table 1. We forced the site simulations with half-hourly observed 401 
temperature, relative humidity, precipitation, wind, and incoming solar radiation. 402 
Incoming longwave radiation was available at the US-ARM and US-CRT sites and was 403 
also input to the simulations at those sites. Each paired simulation ran with the same 404 
initial conditions, which were generated using a spin-up of several hundred years at each 405 
site (described below). The simulated differences between the original winter wheat and 406 
the modified winter wheat are therefore due to the modified parameters and updated 407 
processes described above.  408 
 409 
Land surface models, especially those including biogeochemical components, require 410 
long-term (thousands of simulation years) spin-up for their carbon and nitrogen pools to 411 
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reach equilibrium (Shi et al., 2013). Therefore, generating initial conditions with steady-412 
state carbon and nitrogen pools is computationally time consuming and expensive if the 413 
simulation starts with no carbon and nitrogen. To accelerate the spin-up process, we 414 
generated site-level initial conditions by interpolating a global simulation that had 415 
reached carbon and nitrogen equilibrium, and then further spun up the site-level 416 
simulations for 200 years using recycled site observed meteorology for years listed in 417 
Table 1. When CLM reaches equilibrium, the averaged land surface variables during each 418 
atmospheric forcing cycle should not change or vary within a threshold (Table S1). We 419 
found latent heat flux, sensible heat flux, leaf area index, and wheat yield reached 420 
equilibrium fairly quickly (<40 years), but the total ecosystem carbon, total soil organic 421 
carbon, and total vegetation carbon took a longer time to reach the equilibrium state.  422 
 423 
We also set up a regional simulation (50km resolution, 1979-2010) over the continental 424 
U.S. to compare spatial patterns in yield predictions to the USDA NASS county level 425 
winter wheat yield. To get the winter wheat land cover percentage, we first estimated the 426 
winter wheat fraction using the USDA NASS county level acres harvested data, and then 427 
split the wheat land cover percentage in the default CLM surface file into winter wheat 428 
and spring wheat. Since the goal of the regional simulation was to validate the spatial 429 
yield and not the carbon pools, we ran a partial spin-up and allowed the crop yield to 430 
reach equilibrium while the total ecosystem (i.e., soil) carbon was not at equilibrium.  431 
 432 
Statistical analysis of yield at US-ARM site 433 
 434 
To determine the factors that contributed most strongly to yield in observations and the 435 
model, we performed statistical regressions for US-ARM observations and CLMWHE 436 
outputs separately. We had 11 observed and simulated variables including growing 437 
degree days, nitrogen fertilization, peak leaf area index, precipitation, days of grain fill, 438 
days of leaf emergence, day of peak leaf area index, 10cm soil moisture, 20cm soil 439 
moisture, planting date, and harvest date. We performed simple linear regressions with 440 
each of these variables and compared the R2 values between observational data and 441 
simulation outputs.  442 
 443 
Results 444 
 445 
Leaf area index and dry weight 446 
 447 
The modified winter wheat model (CLMWHE) showed a better seasonal growth cycle 448 
than the original model (CLMBASE) (Figure 2). In the CLMBASE simulation, the 449 
vernalization factor is too high even at the beginning of the growing season (Figure S3). 450 
Without the reduction on the growing degree days from the vernalization function, winter 451 
wheat LAI and leaf weight reached peaks in December and then declined due to the onset 452 
of the grain fill stage. The long grain fill stage (December – May) in CLMBASE did not 453 
produce a sufficiently high grain mass because of the low rate of photosynthesis with the 454 
low LAI. In the CLMWHE simulation, LAI and leaf weight reached peaks in April, and 455 
stem and grain weight reached peaks in May, which are similar to the site observations. 456 
The improvements in the seasonal variation are mainly due to the updated vernalization, 457 
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which produced a reasonable vernalization period about two-three months, reduced the 458 
growing degree days and extended the leaf emergence stage. The cold damage scheme 459 
also played a role in reasonable simulation of winter LAI and leaf weight. For example, 460 
at KSMA-1985, cold damage reduced the LAI and leaf weight in fall yielding a better 461 
match to the winter measurement (at DOY=320).  462 
 463 
The updated winter wheat model captured the grain weight temporal and spatial 464 
variations, and RMSE and the index of agreement are better in CLMWHE than 465 
CLMBASE for seven site-years.  CLMWHE showed higher grain weight in 1986 than 466 
1985 at TXLU and NESA, as did the observations, because 1986 was a wetter year for 467 
both TXLU (8% higher annual precipitation than 1985) and NESA (84% higher). In 1986, 468 
CLMWHE showed more grain weight in NESA and NDMA than TXLU and ABLE, as 469 
in the observations.   470 
 471 

 472 
Figure 2. The daily leaf area index (m2/m2), leaf dry weight (ton/ha), stem dry weight 473 
(ton/ha), and grain dry weight (ton/ha) simulations in CLMWHE (the updated winter 474 
wheat model) and CLMBASE (the original winter wheat model), and in site observations 475 
for seven site-years.  476 
 477 
For the four flux tower sites, CLMWHE also improved LAI and crop growth seasonal 478 
variations (Figure 3a-d). Both sites exhibited reduced RMSE compared to CLMBASE 479 
(Table S3). At the US-ARM site, CLMWHE underestimated peak LAI but captured the 480 
seasonal LAI variation (peak in April and then decline). At the US-PON site, CLMWHE 481 
overestimated LAI throughout the growing season but showed similar seasonal variation. 482 
Although US-CRT and CAF-CT sites have no LAI observations, CLMWHE generally 483 
increased LAI and had a more reasonable seasonal variation compared to CLMBASE.    484 

TXLU-1985

0
1

2
3

4
5

6
7

LA
I (

m
2

m
2 )

a1) obs
CLMWHE
CLMBASE

TXLU-1986
a2)

KSMA-1985
a3)

NESA-1985
a4)

NESA-1986
a5)

NDMA-1986
a6)

ABLE-1986
a7)

0.
0

0.
5

1.
0

1.
5

2.
0

Le
af

 d
ry

 w
ei

gh
t 

(to
n/

ha
) b1) b2) b3) b4) b5) b6) b7)

0
2

4
6

8
10

12

S
te

m
 d

ry
 w

ei
gh

t
 (t

on
/h

a)

c1) c2) c3) c4) c5) c6) c7)

0
1

2
3

4
5

6
7

245 325 28 86 155

d1)

G
ra

in
 w

ei
gh

t 
(to

n/
ha

)

DOY

d2)

DOY
244 324 28 86 155

d3)

DOY
245 325 28 86 155

d4)

DOY
245 325 28 86 155

d5)

DOY
244 324 28 86 155

d6)

DOY
244 324 28 86 155

d7)

DOY
244 324 28 86 155



 14 

 485 
Surface carbon, water and energy fluxes 486 
 487 
The improved simulation of LAI seasonal variation led to better monthly patterns of net 488 
ecosystem exchange of CO2 (NEE) (Figure 3e-h). In Figure 3, negative values indicate a 489 
carbon sink, where the crop gains more carbon through photosynthesis than is lost due to 490 
respiration. During the winter wheat growing season, the observed NEE is most negative 491 
coincident with peak LAI. CLMWHE captured these seasonal patterns at US-ARM and 492 
US-CRT sites, although it did underestimate the NEE magnitudes at their peak. The 493 
underestimation of peak LAI may have contributed to this bias. CLMBASE has much 494 
smaller NEE relative to CLMWHE, consistent with the lower LAI. We also observed a 495 
discrepancy after harvest, where CLMWHE (and CLMBASE, to a lesser extent) 496 
simulated a strong carbon source for the site, but observations exhibited either neutral 497 
NEE at US-ARM or a smaller NEE at US-CRT site. This discrepancy is due to the model 498 
treating the land cover as bare ground after harvest, when in reality weeds (identified by 499 
visual inspection of daily site photographs) quickly exert influence on surface fluxes of 500 
carbon.  501 
 502 
The annual net radiation (Rn) simulations (Figure 3i-l) at the four sites were slightly 503 
improved in CLMWHE. Averaged across the four sites, Rn RMSE was reduced from 504 
16.6 W.m-2 in CLMBASE to 12.9 W.m-2 in CLMWHE. The latent heat flux (LE) 505 
simulation was improved during March-May (Figure 3m-p). The spring LE RMSE was 506 
reduced by 10-70% across the four sites in CLMWHE due to the better LAI simulation in 507 
spring. However, the annual LE RMSE was only slightly reduced (up to 23% RMSE 508 
reduction in CLMWHE) at US-ARM, US-PON, and US-CRT, and showed no 509 
improvement at CAF-CT. The sensible heat flux (H) showed no obvious improvement 510 
(Figure 3q-t). 511 
 512 
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 513 
Figure 3. Monthly averaged (a)-(d) leaf area index (m2/m2), (e)-(h) net ecosystem 514 
exchange of CO2 (umol.m-2.s-1), (i)-(l) net radiation (W.m-2), (m)-(p) latent heat flux 515 
(W.m-2), and (q)-(t) sensible heat flux (W.m-2) for observations, CLMWHE, and 516 
CLMBASE across four sites. The US-ARM site data were averaged over six winter 517 
wheat years (2003, 2004, 2006, 2007, 2009, 2010), US-PON data was averaged over 518 
1997 and 1998, US-CRT data is from 2013, and CAF-CT data is from 2014. The error 519 
bars indicate the standard error for the month across years, and there are no error bars for 520 
US-CRT and CAF-CT because the values are for one year. 521 
 522 
At the US-ARM and US-PON sites, the LE monthly variation patterns were improved by 523 
better representing leaf area index, but this improvement was limited by surface energy 524 
partitioning problems in the model. The model partitioned more energy to LE than was 525 
observed during the period when LAI declines in the late growing season (May-July). 526 
The observed LE is 45% and 53% of net radiation at US-ARM and US-PON site, while 527 
LE simulated in CLMWHE is 53% and 67% of net radiation at US-ARM and US-PON 528 
site. This energy partitioning problem is reversed at the US-CRT and CAF-CT sites, 529 
where the model partitioned less energy to LE than observations. The observed LE is 68% 530 
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and 66% of net radiation at US-CRT and CAF-CT sites, while simulated LE in 531 
CLMWHE is 52% and 30% of net radiation at US-CRT and CAF-CT site. Both sites are 532 
rainfed with no irrigation applied. In addition, the month of peak LE does not coincide 533 
with the month of peak LAI in the observations at US-ARM and US-PON. In 534 
observations, LE reaches a peak at the same time when LAI is at its peak, but in 535 
CLMWHE, LE reaches peak one month later than the LAI peak. Finally, we note that the 536 
winter wheat model did not improve surface energy partitioning in summer after winter 537 
wheat harvest. 538 
 539 
We found that the overestimation of LE in summer and fall can be reduced using a new 540 
soil evaporation scheme (Swenson and Lawrence, 2014) that will be available in CLM5. 541 
In CLM, vegetation affects LE through leaf transpiration, and LE in vegetated grid cells 542 
has three components: soil evaporation, wet leaf evaporation, and dry leaf transpiration 543 
(Lawrence et al., 2007). The excessive spring soil evaporation in CLM has been reported 544 
in earlier versions of CLM (Lu and Kueppers, 2012; Stockli et al., 2008) and some effort 545 
has been made to reduce soil evaporation. For example, Sakaguchi and Zeng (2009) 546 
added a litter resistance to soil evaporation in CLM3.5 that reduced the annual averaged 547 
soil evaporation. Recent work by Swenson and Lawrence (2014) added a dry surface 548 
layer that increased the soil resistance and reduced soil evaporation. We tested the new 549 
dry surface layer scheme at the US-ARM site, and found that soil evaporation was 550 
reduced by 21% and the LE simulation was improved in May-December (Figure 4c). 551 
However, the spring LE was still underestimated and the LE peak was still one month 552 
later than LAI peak, which is due to the leaf transpiration reaching its peak one month 553 
later than the LAI peak (Figure 4c).  554 
 555 
 556 

557 
Figure 4. US-ARM site monthly averaged (across six years) a) latent heat flux (W.m-2), b) 558 
leaf transpiration (W.m-2), and c) soil evaporation (W.m-2). CLMWHE+SL14 is the same 559 
simulation as CLMWHE but with the new soil evaporation scheme by Swenson and 560 
Lawrence (2014).  561 
 562 
Yield 563 
 564 
The accuracy of the simulated yield depended on whether the region has a similar climate 565 
as the site where the model was calibrated (Figure 5). US-ARM had the smallest RMSE 566 
(0.80 ton/ha) due to calibration, and US-PON site had only a slightly higher RMSE (1.11 567 
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ton/ha) than US-ARM because the two sites have similar climate (both are located in 568 
northern Oklahoma). The yield was overestimated by 0.59 and 1.00 ton/ha for US-ARM 569 
and US-PON. However, at US-CRT and CAF-CT, which are far from US-ARM, the 570 
yield RMSE values were much higher (2.46 and 3.68 ton/ha) and yields were 571 
underestimated by 2.45 and 3.68 ton/ha. In terms of the interannual variation in yield, 572 
CLMWHE accurately simulated the yield decline at the US-ARM site from 2003-2006 573 
and captured the interannual variation from 2007-2010, but failed to simulate the lowest 574 
yield in 2007. We also note that CAF-CT is the only site where yield simulations with 575 
CLMWHE were worse than CLMBASE. Here the yield RMSE increased from 0.90 576 
ton/ha in CLMBASE to 3.86 ton/ha in CLMWHE (discussed further below).  577 
 578 

 579 
Figure 5. The annual winter wheat yield compared against the nearest county USDA 580 
NASS yield data and site observations (if available). The nearest county USDA NASS 581 
yield data is very similar to the site measured yield at the US-ARM site.  582 
 583 
CLMWHE (Figure 6b) showed a better US yield estimation (RMSE reduced by 24%) 584 
than CLMBASE (Figure 6c) but still underestimated the US winter wheat yield by 35% 585 
compared to USDA county level yield data averaged across 1979-2010 (Figure 6a), 586 
which is largely due to the underestimation of the Northwest US winter wheat yield. In 587 
the simulation, winter wheat growth in the Northwest was limited by soil water 588 
availability. Figure 7 shows that the plant wetness factor (btran, averaged across growing 589 
season) was <0.5 in much of the region. In CLM, btran varies between 0 and 1 and 590 
represents the available soil water to the plant (1 means no water stress at all). The low 591 
btran in this region limited photosynthesis and reduced crop yield in the model. We 592 
applied irrigation to a single point in the Northwest, and the yield increased from 1.98 593 
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ton/ha to 5.42 ton/ha with irrigation, which is consistent with yields in subregions of the 594 
Northwest. For the Southeast US, CLMWHE simulated a similar yield as the Southern 595 
Great Plains, but the simulated yield was lower than USDA yield for the region, which 596 
may be due to model deficiencies in the representation of fertilization, lack of regional 597 
varieties, or other forms of crop management not well captured in the model. 598 
 599 
 600 
 601 

 602 
 603 
 604 
Figure 6. 1979-2010 averaged winter wheat yield for (a) USDA county level yield, (b) 605 
the CLMWHE simulated yield, and (c) CLMBASE simulated yield.    606 
 607 

 608 
Figure 7. 1979-2010 averaged plant wetness factor between leaf emergence and harvest. 609 
Values less than 1 indicate water stress and cause photosynthesis to be reduced in the 610 
model. 611 
 612 
We quantified frost damage impacts on LAI and yield in the US domain through 613 
CLMWHE simulations with and without the frost damage function. Frost damage 614 
resulted in lower LAI and yield, with spatial variation across the U.S (Figure 8). For the 615 
domain average, frost damage reduced LAI by 27% (or 1.69 m2/m2) and reduced yield by 616 
28% (or 0.5 ton/ha). The greatest reduction (>45%) in LAI occurred in Texas and the 617 
southeastern US, which was due to insufficient hardening, producing a high LT50 and 618 
low survival rate. LAI in the cold northern US regions had less impact (<15%) from frost 619 

a) b) c)
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damage. The cold damage indirectly affects yield through reduced photosynthesis with 620 
lower LAI, but photosynthesis and yield changes were not always geographically 621 
consistent with the LAI damage. For example, the northern Great Plains and Midwest had 622 
greater percentage reductions (>45%) in yield than reductions in LAI (< 15%).623 

 624 
Figure 8. Frost damage-induced percentage difference in (a) leaf area index and (b) yield 625 
between two 1979-2010 CLMWHE simulations, one with frost damage and one without 626 

frost damage.   627 
 628 
A simple, single variable, statistical yield regression indicated that variables important in 629 
predicting CLMWHE yield may be irrelevant for predicting observed yield. The 630 
simulated yields depend most on the growing degree days (R2=0.94), which only 631 
explained 24% of observed yield variation (Figure 9). Although there are many other 632 
variables that contribute to variation in the CLMWHE yield, such as peak LAI, length of 633 
leaf emergence period, harvest date, and day of LAI peak, these variables have strong 634 
correlations with growing degree days, which suggests that crop yields in CLM depend 635 
too much on growing degree days. Soil moisture, especially the lower layer soil moisture 636 
at 20cm, is the only variable that explained a large amount of yield variation in both 637 
observations (R2=0.80) and CLMWHE (R2=0.86). So improved representation of soil 638 
hydrology, especially the interannual variability of soil moisture may improve the 639 
simulations of yield variation.   640 
 641 
 642 
 643 
 644 

∆ ∆
a) b)
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 645 
Figure 9. Comparison of the linear regression R square for yield and each of the 11 646 
variables.  647 
 648 
Discussion and conclusions 649 
 650 
We improved the winter wheat model in CLM with new vernalization, frost tolerance, 651 
and frost damage processes. We modified the grain carbon allocation algorithm and 652 
performed a calibration on three key parameters (minimum planting temperature, 653 
maximum crop growth days, and initial value of leaf carbon allocation coefficient) at the 654 
US-ARM site, and then validated the model performance at multiple other sites in North 655 
America. These model alterations led to large improvements for crop phenology 656 
(indicated by LAI), net ecosystem exchange, and spring latent heat flux. Additionally, the 657 
modeled yield RMSE is comparable to literature values (Palosuo et al., 2011). However, 658 
there are several remaining limitations of the model that need to be resolved in a future 659 
version.  660 
 661 
CLM needs to better represent the land cover after harvest to include the influence of 662 
weeds and litter on the carbon balance. Although CLM properly simulated the seasonal 663 
evolution of NEE, the NEE RMSE at US-ARM and US-CRT (2-3 umol/m2/s) is higher 664 
than the Lund-Potsdam-Jena managed Land model (LPJ-ml) simulation (Bondeau et al., 665 
2007) at the US-PON site (1.09 umol/m2/s), which is largely due to incorrect simulation 666 
of NEE after harvest. When winter wheat is not alive, CLM represents the land cover as 667 
bare ground so GPP is zero but heterotrophic respiration from litter and soil organic 668 

R
 s

qu
ar

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

obs
CLMWHE

Gro
wi

ng
 d

eg
re

e 
da

ys

Ni
tro

ge
n 

fe
rti

liz
at

ion
Pe

ak
 L

AI
Pr

ec
ipi

ta
tio

n

Le
ng

th
 o

f g
ra

in 
fill

 p
er

iod

Le
ng

th
 o

f le
af

 e
m

er
ge

 p
er

iod
Da

y o
f L

AI
 p

ea
k

Up
pe

r s
oil

 m
ois

tu
re

Lo
we

r s
oil

 m
ois

tu
re

Pl
an

tin
g 

da
te

Ha
rv

es
t d

at
e



 21 

matter is still large, which resulted in a carbon source after harvest (positive NEE). This 669 
is not true for the US-ARM site, where we observed weed growth after harvest and 670 
positive NEE (Raz-Yaseef et al., 2015). This vegetation cover after harvest resulted in a 671 
near zero NEE at US-ARM or negative NEE at US-CRT site. Appropriate simulation of 672 
the post-harvest land cover is critical for better representing the role of agriculture in 673 
global carbon fluxes.  674 
 675 
CLM needs to further increase the influence of crops and vegetation on the surface 676 
energy balance and latent heat flux (LE) in particular. The LE simulation in CLM has a 677 
R2 range from 0.62 to 0.97 across the four sites, which is better than other model 678 
simulations at the same sites. For example, Arora et al., (2003) simulated LE RMSE 22.0 679 
W/m2 at US-PON from March-May in 1997 using their coupled land surface and 680 
terrestrial ecosystem model (CLASS-Twoleaf model), and we simulated LE RMSE 10.55 681 
W/m2 at the same site from March-May averaged for 1998-1999. But our LE response to 682 
the improved LAI was not as strong as we expected. Williams and Torn (2015) showed 683 
that vegetation has stronger controls on surface heat flux partitioning than soil moisture at 684 
the US-ARM site, where LAI explained 53% of the variation in evaporative fraction 685 
(EF=LE/(LE+H)), while soil moisture only explained 11% of EF variation. For our six 686 
winter wheat years (Williams and Torn (2015) used 8 years that included other cover 687 
types), we found similar patterns in the US-ARM observations. LAI explained 40% of EF 688 
variation while soil moisture only explained 7% (not shown). However, EF in CLMWHE 689 
and CLMBASE was not as well predicted by LAI, which only explained 5% and 1%, 690 
respectively, of variation in EF. In CLM, vegetation affects LE through leaf transpiration, 691 
and LE in vegetated grid cells has three components: soil evaporation, wet leaf 692 
evaporation, and dry leaf transpiration (Lawrence et al., 2007). The wet leaf evaporation 693 
is the smallest and overall LE depends on the tradeoff between soil evaporation and leaf 694 
transpiration. Soil evaporation is dominant when LAI is small, and leaf transpiration is 695 
dominant when LAI is higher. Using the US-ARM site as an example, in CLMBASE, the 696 
leaf transpiration is very small due to low LAI but soil evaporation is very large, which is 697 
opposite in CLMWHE (Figure 4 a and b). Such a tradeoff is why the large increase in 698 
LAI in CLMWHE only increased overall LE a small amount compared to CLMBASE. 699 
We found that although the new soil evaporation parameterization (Swenson and 700 
Lawrence, 2014) in a later version of CLM reduced soil evaporation and improved the 701 
summer and fall LE simulation (Figure 4), it also reduced spring soil evaporation (Figure 702 
4b) and induced an even lower spring LE. If we assume this reduction in soil evaporation 703 
is reasonable, then further improvement of the LE simulation needs to be focused on 704 
increasing the leaf transpiration and correcting the inconsistent peak time between leaf 705 
transpiration and LAI.  706 
 707 
CLMWHE tends to underestimate the winter wheat yield but the yield RMSE is 708 
comparable to other literature values. The averaged yield RMSE across the four sites is 709 
1.96 ton/ha, which was within the range of other winter wheat models yield RMSE (1.41-710 
2.15 ton/ha) reported by (Palosuo et al., 2011), although the simulation sites and years are 711 
different. The low simulated yield may be due to the insufficient calibrations. Table 4 712 
listed the key crop growth parameters used in CLMWHE. We calibrated these parameters 713 
at the US-ARM site, and applied the same values everywhere, which is a common 714 
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approach in land surface model development. However, the US-ARM site represents a 715 
relatively low yield compared to the U.S. national average. This likely contributed to 716 
underestimated yields at sites or in regions with historically greater yields, such as at US-717 
CRT and CAF-CT, and in the Southeastern and Northwest US. The current modeling 718 
framework of CLM does not facilitate the substantial calibration required to more 719 
accurately capture the full range of observed winter wheat yields. As a gridded global 720 
crop model, gridded parameters (e.g., maximum maturity days, leaf emerge and grain fill 721 
threshold, and background litter fall factor) that allow for spatial variation in the key 722 
parameters should be considered in future versions of the model. Alternately, for 723 
parameters with spatial structure linked to environmental variation, parameters could 724 
vary with climate or soil conditions.  725 
 726 
We investigated the causes of the low yield in 2007 at the US-ARM site. The 727 
observational yield data in Figure 4 is from the county level USDA yield estimate, which 728 
is very similar (RMSE=0.11 ton/ha) to the US-ARM site-observed yield. Both the site-729 
observed yield and USDA county-level yield showed the lowest values in 2007 (1.35 730 
ton/ha), so the low yield in 2007 is not specific to the field represented by the US-ARM 731 
site.  The field notes indicate that only part of the wheat field was harvested in early July 732 
of 2007, while the remainder of the field was not harvested due to wheat sprouting in the 733 
head. Pre-harvest sprouting reduces the quality (and price) of the grain, and can occur 734 
when the crop is exposed to prolonged heavy rain. We examined the precipitation, 735 
temperature, and wind speed during May and June across the eight years and found that 736 
in 2007 there was double the mean precipitation in June (108.2% higher than the eight-737 
year June average). Such large amounts of precipitation may have caused the low 738 
observed yield. Assuming that the low yield was strongly linked to the high rainfall, the 739 
implication is that the winter wheat crop model needs to include more types of 740 
environmental damage to fully simulate interannual variation in yields.  741 
 742 
Our new winter wheat model improved the LAI and yield simulation compared to the 743 
original winter wheat model except at CAF-CT site due to 1) drier soil conditions during 744 
the grain fill phase and 2) the adjusted grain carbon allocation coefficient in CLMWHE. 745 
CLMWHE started the grain fill phase during the end of May while CLMBASE started 746 
the grain fill phase in the beginning of May. In mid-May, the higher LAI in CLMWHE 747 
resulted 30% more LE than CLMBASE and dried the soil. The plant wetness factor 748 
dropped from 0.98 on May 15 to 0.19 on May 28 in CLMWHE, but remained greater 749 
than 0.89 through May in CLMBASE. The grain carbon allocation in CLMWHE is 750 
strongly limited by soil water available to the plant, so grain carbon was much smaller in 751 
CLMWHE than in CLMBASE. The larger LAI also increased LE at the other three sites 752 
relative to the baseline simulations, but did not result in long-term water stress due to 753 
sufficient precipitation during the rainy season. The CAF-CT site has ten times less 754 
precipitation than the other three sites in May. The observed LE at CAF-CT site is much 755 
higher than the simulation given the same precipitation, suggesting the plant wetness 756 
factor in the model is too sensitive to low precipitation.  757 
 758 
Some of our modeling approaches need further improvements to the processes supported 759 
by new observations. We developed hypothetical (empirically-based) frost damage 760 
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functions that account for both small and frequent damage early in the growing season, 761 
and severe damage in winter and spring. Such a hypothetical approach is not uncommon 762 
in crop modeling when lacking observations at a process-level. For example, CERES-763 
Wheat (Ritchie and Otter, 1985) developed a hypothetical leaf senescence scheme during 764 
cold temperature that monitored a cold hardening index 765 
(http://nowlin.css.msu.edu/wheat_book/CHAPTER3.html ). We tested the CERES-Wheat 766 
leaf senescence scheme in CLM and found it produced too much reduction in LAI. This 767 
finding motivated our approach based on recently developed frost tolerance indicators. 768 
The magnitude of the leaf carbon reductions and how such reductions are linked to frost 769 
damage requires more observations, such as high frequency aboveground and 770 
belowground biomass measurements. Furthermore, the linear yield regressions showed 771 
that the yields in CLM depend too much on growing degree days, a sensitivity that is not 772 
reflected in observations. In CLM, growing degree days not only determine crop 773 
phenology but are also involved in calculation of the carbon allocation coefficients (Table 774 
3). Exploring other possible factors that control phenology and carbon allocation may 775 
improve crop simulation in CLM. Meanwhile, soil moisture, especially the deeper soil 776 
moisture, explains a large amount of the yield variation in both observations and the 777 
simulations. Fixing the current biases in soil hydrology and reducing interannual 778 
variability in the simulated soil moisture will benefit the yield simulation.  779 
 780 
In summary, we found that our new winter wheat model in CLM better captured the 781 
monthly variation of leaf area index and improved the latent heat flux and net ecosystem 782 
exchange simulation in spring. Our model correctly simulated the interannual variation in 783 
yield at the US-ARM site, but the crop growth calibration at the US-ARM site introduced 784 
a low-yield bias that produced underestimates of the yield in high-yield sites (US-CRT 785 
and CAF-CT) and regions (Northwestern and Southeastern US). Our analysis indicates 786 
that while this model of winter wheat represents a substantial step forward in simulating 787 
the processes that influence winter wheat growth and yield, further refinements would be 788 
helpful to capture the impacts of environmental stress on energy partitioning, carbon 789 
fluxes and yield, and would improve simulations of regional variation. 790 
 791 
Code Availability 792 
 793 
The winter wheat code in CLM4.5 can be requested from Yaqiong Lu 794 
(yaqiong@ucar.edu). It will be available in the next released version of Community Land 795 
Model (version 5) for public access. 796 
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