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Abstract. Improving international food security under a changing climate and increasing human population will be greatly

aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal

are either process based models of crop physiology or statistical analyses of yield datasets, both of which suffer from various

sources of error. In the current paper we present a generic process based crop model which we parametrise using a Bayesian

model fitting algorithm to three different sources of data - space based vegetation indices, eddy covariance productivity mea-5

surements and regional crop yields. We show that the model parametrised without data, based on prior knowledge of the

parameters, can largely capture the observed behaviour but the data constrained model greatly improves both the model fit and

reduces prediction uncertainty. We investigate the extent to which each dataset contributes to the model performance and show

that while all data improves on the prior model fit, the satellite based data and crop yield estimates are particularly important

for reducing model error and uncertainty. Despite these improvements, we conclude that there are still significant knowledge10

gaps, in terms of available data for model parametrisation, but our study can help indicate the necessary data collection to

improve our predictions of crop yields and crop responses to environmental changes.

1 Introduction

Improving food security is one of the greatest challenges currently facing humanity (Schmidhuber and Tubiello, 2007; Rosegrant and Cline,

2003). The increasing and developing human population is driving up food demand and changing demand patterns. This is oc-15

curring alongside increasing anthropogenic threats to supply such as climate change. Predicting and understanding how crops

respond to changes in their environment through the use of mathematical models is needed to help address such threats, en-

abling advanced warning of potential threats and predictions of what alterations to agricultural practices might help prevent

or mitigate problems. A continual challenge when developing models is knowing the generality of their predictions, either

applied to multiple crops or across different space and time scales (Rosenzweig et al., 2014). Having one model to cover all20

circumstances is obviously unrealistic, as is tailor-making models to every conceivable circumstance. Thus, a challenge in

developing models to help address the current food security crisis is identifying those that can be said to be generally useful

over particular scales of application. In the current study we present a proof of concept that such an aim can be reached through

using a process-based crop model, parametrised to available data using a model fitting algorithm.
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Most crop models to date can be put into one of two broad categories: process-based or statistical. Process-based crop

models have some representation of the mechanisms that determine how plants grow in their formulation (e.g. Jamieson et al.,

1998; Jones et al., 2003; Stackle et al., 2003). Processes included can cover crop phenology, carbon assimilation and biomass

allocation responses to the internal plant state and the external environment. Such models have traditionally been specific to a

particular crop, partly because of the nature of studies that employ process-based crop models, which have tended to focus on5

individual crops and often describe growth phases specific to a particular crop type within their formulation. However it is also

partly because of the difficulty in developing generally applicable process based crop models; it can be unclear which aspects

of the model formulation can be said to be general versus crop specific and obtaining data to assess model generality continues

to be a challenge. Some studies have avoided making crop-specific models by using broad crop categories such as C3 and C4

crops, based on the functional plant type concept (Bondeau et al., 2007; Osborne et al., 2015). Other models group a family of10

crop-specific parametrisations into one single framework, which limits generality but does facilitate use across different scales

and crops (Brisson et al., 2003; Stackle et al., 2003).

Statistical crop models aim to capture relationships between various predictor variables and crop properties without using

any information of how such factors should be related from biology or ecology. For example, studies have predicted crop

yields based on observed simple relationships between yield data and climate inputs (Lobell et al., 2011; Lobell and Field,15

2007; Schlenker and Roberts, 2009); these have then been used to help understand past long-term trends in yields at large

spatial scales and to make forward projections under climate change scenarios. Often statistical models are developed to be

generally applicable to multiple crops and apply over multiple space and timescales, as these do not need to include any plant

specific concepts.

Both the process-based and statistical approaches have their disadvantages when it comes to obtaining general insights.20

Process-based models have often only been shown to be applicable at the individual field scale, making it unclear if their pre-

dictions might provide information about crop responses at larger spatial scales. Process-based models can also be sensitive to

chosen parameter values and formulation, which has rarely been identified as applicable over multiple crop types or locations

(Challinor et al., 2009). Statistical models are limited by the extent to which the relationships they capture are useful in predict-

ing crop properties outwith the circumstances that they have been verified for. This becomes a particularly important limitation25

given that one of the leading questions being addressed in food security is how different crops might grow in environments and

under circumstances that we have not yet observed. For example, correlative models based on mean annual values of environ-

mental variables are unlikely to capture the impacts of changes in extreme weather events or increases in atmospheric CO2,

which have been shown to be essential to understanding changes in crop yield under climate change (Porter and Semenov,

2005; Deryng et al., 2014). Furthermore, simple statistical analyses rarely incorporate information on management agricul-30

tural practices such as planting and harvest dates, irrigation and fertiliser application, which account for a large proportion of

variations in yield across the globe (Calvino et al., 2003; Zwart and Bastiaanssen, 2004).

An alternative to the extremes of either purely process-based or purely statistical crop models is to apply statistical methods

to process-based models to data-constrain their parameters. This technique, which is increasingly used in in earth system and

vegetation modelling studies (Fox et al., 2009; Raupach et al., 2005), involves allowing some parameters to have undefined35
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values and inferring those values by comparing the model predictions to data (hence the technique is called parameter inference,

or inverse modelling). The specific methods used vary but the aim is often commonly to deduce parameters that yield the best

model predictive performance (another common aim is to deduce insight about the underlying processes from the inferred

parameter values). The result is typically a model with improved model predictive ability (Knorr et al., 2010; Ziehn et al.,

2012) when assessed using empirical data. Importantly, formally data-constraining model parameters is a technique that can5

be used to increase the general applicability of a given model formulation, and for that general applicability to be assessed.

The main problem with data-constraining process based models is data availability. Datasets of annual yield such as those

used in statistical modelling studies are unlikely to be sufficient when data-constraining the parameters of physiologically

explicit model because, to put it simply, they are unlikely to carry enough information to enable identification of what the

different model parameters should be. However two other sources of data, widely used in the global vegetation modelling but10

to a lesser extent in agricultural modelling, could be of use in data constraining crop model parameters. Space based remote

sensing data can provide spatially and temporally continuous information on vegetation greenness at a variety of spatial and

temporal scales (Glenn et al., 2008; Tucker et al., 2005). Such data has previously been used for crop classification purposes

(Wardlow et al., 2007; Howard et al., 2012) and for simple yield estimation (Doraiswamy et al., 2003; Lobell et al., 2003).

The second data source is flux tower eddy covariance (EC) data which provides high resolution CO2 fluxes at point locations15

(Baldocchi and Wilson, 2001). Previously, data assimilation methods have been used for an ecosystem model in croplands with

earth observation data (Revill et al., 2013; Sus et al., 2013), but both studies focused on ecosystem carbon fluxes and leaf area

index and included no estimates of yield.

Sites where intensive data collection has taken place do exist and can be very useful in exploring certain aspects of

crop physiology, for example in the context of the agricultural model intercomparison and improvement project, AgMIP20

(Rosenzweig et al., 2013). However, here we aim to explore a general model-data integration system that could be applied

to generic farm locations with generally available data. This makes the problem more difficult but the conclusions can be more

useful to a general application of the concepts.

In this paper we present a newly developed general, non-crop specific process based model and use parameter inference to

infer the most likely parameters for 15 locations for winter wheat and maize using a combination of space-based vegetation25

indices, eddy covariance flux data and reported agricultural yields. We aim to answer the following questions:

1. Does our model with data constrained parameters predict empirical data better than a model with prior parameters?

2. Are the data constrained parameters similar among different sites and what are the impacts on model predictive accuracy

of having site-specific versus site-shared parameters?

3. To what extent does the inclusion of the different types of data in the model fitting process influence the uncertainty in30

the inferred parameters and model predictions?

We expect the qualitative answer to the first question to be that utilising empirical data does enable the model to make better

predictions because that’s a typical outcome of our parameter estimation approach. However we are more interested in the
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quantitative answer; i.e. how much? For example, the generation of a model that could make extremely precise and accurate

predictions would suggest that data-constraining general models with the datasets we identify could provide an extremely useful

tools for agricultural predictions and forecasts. Alternatively, the generation of a model that makes very imprecise predictions

would suggest that more data collection and model improvement is needed for the model to have practical applications.

In addition to our aims above, our goal with this paper is to provide a proof of concept data-constrained process-based5

crop model that could be of use in practical agricultural systems. To this end we include a more description discussion of the

methods than otherwise necessary as well as a more broad discussion of the paper’s applicability.

While our study is part of a boarder scientific objective to enable more accurate field scale predictions, the lack of availability

of field scale datasets to train and validate our model means that the scale of model evaluation for our study here is a mix of

field (flux tower) and regional scales (county and country level for yield estimates and 3 by 3 km scale for photosynthetic10

activity).

2 Datasets used

2.1 Study sites

Our analysis focusses on 15 sites for which we can obtain the combination of eddy-covariance data, satellite data and crop yield

data for specific crops (summarised in Table 1), of which 7 sites were growing maize (Zea mays) and 8 sites were growing15

winter wheat (Triticum aestivum; we refer to this simply as wheat). Most of these sites grow maize or wheat on a rotation

with other crops and we identify the time period over which the species of interest is growing from the metadata associated

with the eddy-covariance data. All of the maize sites are based in the United States. All but one of the wheat sites are based in

western Europe, with one site in the United States. For the site where information was available, the crops were not irrigated

with the exception of the US-Me1 site (Suyker et al., 2004). All sites have been tilled to a certain degree, generally in accord20

with agricultural practices in the area. European sites have received a moderate amount of fertiliser (Moors et al., 2010).

2.2 Space-based vegetation indices

We use data on vegetation greenness from the MODIS (Moderate Resolution Imaging Spectroradiometer) Terra instrument.

MODIS fraction of absorbed photosynthetically active radiation (fAPAR data) from the MOD15A product was downloaded

(https://lpdaac.usgs.gov/) for geographic regions corresponding to each of the study sites (Table 1) for the period 2000-2010.25

This data was subsequently filtered using the quality assurance (QA) indices provided so that only data points calculated using

the main algorithm were retained and pixels classified as cultivated land were identified using the MODIS landcover product

(MOD12A) IGBP classification.

Using the pixel closest to the flux tower site was infeasible because of data noise and gaps resulting in an uneven timeseries.

Instead, we aggregated all pixels within a 3 km by 3 km square centred on the tower site in a single timeseries. The untested30

assumption behind this aggregation is that farming practices are constant across this scale. To separate between different crops
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we use a crop phenology approach (Wardlow et al., 2007). Pixels that a reach maximum fAPAR before day 150 are classed as

winter crops (specifically, winter wheat), while crops that peak after that date are classified as summer crops. This procedure

is applied for individual years to account for crop rotations.

2.3 Eddy-covariance data

We use eddy covariance data for 15 sites across Europe and the United States (Table 1), consisting of 19 data years. The data5

was obtained from the Ameriflux (http://ameriflux.lbl.gov/) and the European Fluxes Database Cluster (http://www.europe-

fluxdata.eu/). We use level 4 data of CO2 fluxes partitioned into gross primary productivity (GPP) and gap filled using the mDS

method (Reichstein et al., 2005). Sites that have a crop rotation were filtered to obtain single species timeseries. These include

the maize-soybean rotation sites and European mix rotation sites that include winter wheat.

2.4 Crop yield data and agricultural dates10

To obtain information on crop yield we use data provided by the US Department for Agriculture (USDA) yearly, at the county

level, available for the entire study period (https://www.nass.usda.gov/). For the European sites we used country level data

provided by the EC Eurostat database, available from 2004 onwards (http://ec.europa.eu/eurostat).

Sowing and harvest dates are required as model inputs and were extracted from the crop calendar global dataset (Sacks et al.,

2010). We chose this rather than local level dates for greater model generality.15

Fertilizer input data were obtained from the published site descriptions (see Table 1 for references) or from the Nitrogen

Fertilizer Application database ((Potter et al., 2010). The model implemented in this study does not require any additional

information on irrigation or soil properties.

2.5 Environmental input data

We use NASA’s Modern-Era Retrospective Analysis for Research and Application (MERRA) dataset (Rienecker et al., 2011) at20

a spatial resolution of 0.5 degrees latitude by 0.66 degrees longitude and a temporal resolution of 3 hours which we average to a

day. Temperature and direct and diffuse photosynthetically active radiation (PAR) data were extracted for each site. Comparison

with tower based meteorological data has shown this to be an accurate estimation of conditions at the tower site for all variables

and we use MERRA data for the greater generality of the model as this would allow the model to be applied at any location on

the globe.25

3 Model description

Our new general model of crop growth is based on the single plant model of Guilbaud et al. (2014) and, like that model,

assumes that annual plants show optimal biomass allocation during vegetative growth and optimal flowering in order to achieve

maximum reproductive mass given available resources. Plant growth is divided into three stages, starting at sowing date and

ending at harvest: germination, vegetative growth and reproductive growth.30
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3.1 Germination

The germination process is described as a degree day function with a fixed base temperature of 0◦C up to a parameter germina-

tion limit germlim. The initial seed mass is prescribed and is expressed as grams per metre squared, incorporating information

about both seed size and planting density. When the germination limit is reached, all seed mass is allocated to above- and

below-ground pools according to the optimality criteria described below. Initial model runs have shown that for values of the5

germination base temperature Tb and seed mass within realistic ranges, the model is largely insensitive to the values of these

parameters, which is why they have been fixed.

3.2 Vegetative growth

During vegetative growth, biomass is allocated to either above or below-ground fractions to achieve an optimal carbon to

nitrogen (C:N) ratio at the plant level (ρ). The net daily growth is calculated as the minimum of a nitrogen limited growth,10

Groot and a carbon limited growth Gleaf .

Nitrogen limited growth is considered to be a function of root mass Mroot and available soil nitrogen N :

Groot(t) = θN(t)Mroot(t− 1)ρ, (1)

where θ is the nitrogen uptake capacity of the roots expressed as gN g−1 soil N g−1 root C day−1, N(t) is soil nitrogen at

time t (g) and Mroot(t− 1) is the root mass (g) at the previous timestep. Carbon limited growth is considered to be equal to15

potential net carbon uptake, calculated as the difference between whole canopy photosynthesis and respiration. Photosynthesis

is calculated using the model for C3 plants developed by Farquhar et al. (1980) as described in dePury and Farquhar (1997)

and the alternative model for C4 species (Collatz et al., 1992; Von Caemmerer, 2000):

Gleaf (t) = f(Vcmax,Jm,T (t), I(t),pCO2,LAI(t− 1))−Rplant (2)

Here Vcmax is a parameter representing photosynthetic Rubisco capacity (µmol m−2 s−1), Jm is potential electron transport20

rate and T , I and pCO2 are environmental inputs (temperature, solar radiation and atmospheric CO2 partial pressure respec-

tively). Total absorbed solar radiation I is calculated for direct and diffuse photosynthetically active radiation (PAR) using a

sun-shade model (dePury and Farquhar, 1997). Partial pressure of CO2 inside the leaf is calculated assuming a constant optimal

ratio λ between internal and atmospheric CO2 in the absence of water stress (Haxeltine and Prentice, 1996). Leaf area index

(LAI) is calculated from leaf mass Mleaf using the leaf mass per area (LMA) parameter. Whole plant respiration is calculated25

as a linear function of total plant mass:

Rplant = rtot(Mleaf +Mroot) (3)

Here rtot represents average respiration per unit plant mass (g g−1 day−1). This total respiration component accounts for

growth costs and maintenance including active nutrient uptake by the roots and is a function of temperature. Given the optimal

whole plant C:N ratio that drives the vegetative biomass allocation, this formulation is ultimately equivalent to the nitrogen30
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dependent function commonly used in vegetation models without the need to introduce further parameters for root and leaf

specific C:N ratios.

Actual biomass growth is then the minimum between nitrogen and carbon limited growth:

Gnet =min(Groot,Gleaf ) (4)

This biomass is allocated to the limiting fraction, either aboveground or belowground in order to adjust the C:N supply. Crops5

are considered to be not water limited, as all sites are in areas with a high annual precipitation. We lacked any information on

soil water availability and initial trials to data-constrain a model that included the effects of varying soil water availability led

to poorly constrained parameters related to soil water constraints (see section 7).

3.3 Optimal flowering and reproductive growth

Reproductive growth starts at a point where the supply of any of the resources, carbon or nitrogen, reaches a maximum, which10

we term ’peak resource’. This is the point in time which will result in the maximum final reproductive mass as further increase

in vegetative fractions would not result in an overall increase in growth rate and lead to suboptimal growth (see Guilbaud et al.

(2014) for an in depth discussion of this).

The peak nitrogen condition is achieved when an increase in root mass does not result in an increase in nitrogen uptake. This

condition is achieved in nitrogen limited environments where the nitrogen available in the soil is depleted through the period15

of vegetative growth. This assumption can be considered valid in agricultural systems where the major nitrogen input into the

system during the growing period comes solely from agricultural fertilisers. Soil nitrogen decays monotonically through the

season in our model due to the simplicity with which we model nitrogen uptake and so detecting the peak nitrogen condition is

straightforward. Similarly, the peak carbon flowering condition is triggered when the addition of aboveground biomass would

not lead to an increase in net carbon gain, due to self-shading in the canopy. To calculate the peak carbon trigger we use the20

environmental variables averaged over p days, to avoid flowering being triggered by short-term environmental fluctuations. We

infer p alongside the other parameters in our model.

During the reproductive phase all new biomass produced is assigned to reproductive tissues. Nitrogen and carbon are translo-

cated to reproductive organs at a constant rate, mtrans. As all biomass within the model is calculated as mass of carbon and

agricultural yield data is reported as total dry mass we use a conversion parameter to account for the carbon fraction, Cfrac.25

This parameter also accounts for the differences in total reproductive mass and actual mass harvested and reported as yield.

4 Parameter estimation technique

We use Bayesian parameter inference techniques to infer the parameters for the model described above. The technique involves

solving Bayes’ theorem which in this context states

P (θ|obs) = P (obs|θ)P (θ)∫
P (obs|θ)P (θ)dθ

, (5)30
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where P denotes a probability, obs is the empirical data, and θ is the set of parameters to be inferred (Gilks, 1996.). The

term in the denominator can be treated as a normalising constant in our study and so we omit it here. Thus our problem reduces

to P (θ|obs)≈ P (obs|θ)P (θ) where P (obs|θ) is usually referred to as the likelihood of the data given the model and P (θ) is

the prior probability of the parameters. Prior probabilities of parameters can be determined by previous empirical evidence,

such as field measurements. In our case we do not have any prior expectations about what the prior parameter values should5

be and so we specify that each parameter is equally likely to fall within a wide range of values (flat priors). This means that

our study reduces to inferring the joint probability distribution of the parameters based on the likelihood of the data given all

possible parameter combinations. We cannot solve this inference problem exactly. Instead we use Markov-Chain Monte Carlo

techniques with the Metropolis Hastings algorithm to approximate the likelihood and its associated joint parameter probability

distribution, which we implemented using the Filzbach inference library as detailed in (Caldararu et al., 2012). This algorithm10

works by iteratively making random mutations to an existing parameter set, computing the likelihood associated with the new

set of parameters, and then replacing the existing parameter set with the new set based on the ratio of their likelihoods according

to the Metropolis-Hastings algorithm (Gilks, 1996.).

Three different datasets were used in combination to infer our model parameters - MODIS fAPAR, flux tower GPP and crop

yield data. Each dataset contributes to the assessment of the model likelihood but each one of these has different temporal15

resolutions and covers different time periods, resulting in a variable number of data points. To prevent our inferred parameters

from being overly-based towards explaining the datasets with the greatest quantity of data points we down-weighted the con-

tributions to our likelihood estimates from each data point according to the quantity of data in each data set. The likelihood

function used in Filzbach is therefore:

l(Zx|θx) =
∑
D

1

Nx,D

∑
t(x,D)

ln[n(Yobs(x,D,t),Ypred(x,D,t,θx),σx,D)], (6)20

where θx is the vector of model parameters at site x, Nx is the number of data points in each dataset D at each location and

n(Yobs(x,D,t),Ypred(x,D,t,θx),σx) denotes the probability density for observing Yobs(x,D,t) given a normal distribution

with mean Ypred(x,D,t,θx) and standard deviation σx,D which expresses the magnitude of unexplained variation in the

variable Y . Y refers to the model variables corresponding to the three datasets. Note that with this definition of the likelihood

we are treating every data point as independent, that is the likelihood of a value at time t is treated independently from the25

likelihoods at preceding times. This is only an approximation but is commonly used in parameter estimation studies because

the additional mathematical and computational complexity of accounting for non-independent data.

We adopt different techniques to estimate the standard deviationσx,D above, depending on the dataset D at each location.

Generally, we assume that the variation in the model predictions about the data is solely due to uncertainty in the data. The GPP

data do not have an estimate of uncertainty and so we infer the uncertainty associated with those data as the parameter σx,D.30

In the case of MODIS fAPAR data we explicitly incorporate a measure of variation in the data within the geographical area

used to compute the mean fAPAR as well as inferring a parameter representing additional unexplained variation. We include
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this parameter to account for known issue in space based remotely sensed data, such as background soil reflectance. The crop

yield data already have estimates of observational uncertainty associated with them and so we use those data to define σx,D.

5 Experimental protocol

In order to assess whether the model with data constrained parameters predicts empirical data better than a model with prior

parameters we infer the parameters for each site individually using all of the empirical data and compare the model predictive5

performance to one in which the parameter values are sampled randomly from the prior range.

We compare the inferred parameters and predictive performance of models with parameters inferred using data from indi-

vidual sites (the one site model) or from multiple sites together (all sites model), always keeping maize and winter wheat sites

separate, to assess the effects of allowing parameters to differ between the sites. Preliminary investigations revealed that similar

model parameter distributions were inferred once data from more than 3 sites were used in combination when inferring the10

parameters. We therefore also take the opportunity to assess the performance of the models with parameters shared between

sites in predicting data that has not been used in parameter inference (evaluation model).

To assess the importance of different types of data-constraints we perform a data knock out experiment and we infer the

model parameters for individual sites using only one or two of the different empirical datasets and assess inferred model

parameters and model performance.15

In general we assess model predictive performance by quantifying the root mean squared error between the model predictions

and the empirical data to access model precision and the mean error to assess model bias. We normalise both these metrics by

the mean value of the different empirical dataset types to aid in comparison. We calculate parameter uncertainty as the 95th

percentile confidence interval from the posterior distribution (Section 4).

To calculate uncertainty for the model predictions we sample parameter values from their respective posterior distribution20

and compute predictions with each parameter combination, which results in a corresponding distribution of model predictions.

We report this prediction distribution uncertainty using 95th percent confidence intervals. This predicted distribution does not

include the prescribed or inferred uncertainty about observations, σx,D, our predicted distributions correspond to the state

being predicted and not the observations of that state.

6 Results25

6.1 Prior and posterior model predictions

In general and as expected, the predictive accuracy of both the wheat and maize models is improved by inferring their param-

eters; the root mean squared error and bias of the model predictions is reduced for predicting all empirical datasets compared

to the prior model (Table 3). These improvements are about a 40% reduction in RMSE for both GPP and fAPAR and an 80%

reduction in RMSE for yield. Visual inspection of the predicted time series for the models with prior and posterior parameter30

distributions (e.g. Figure 1 for wheat in one site) highlights that the model with prior parameters predicts the same quali-
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tative behaviour as the model with inferred parameters but that parameter inference reduces the posterior uncertainty in the

predictions of the model.

In terms of uncertainty, the posterior models show a large reduction when compared to the prior of aboveground biomass

(86%) and yield (97%), but a smaller reduction for the belowground variables (67% for root biomass and 20% for soil nitrogen),

as there is no data in the fitting procedure to directly constrain these. Visual inspection also emphasises the importance of model5

structural constraints on the model dynamics e.g. the model predicts a narrow range of dynamics in some properties at certain

times of the year (e.g. biomass in leaves, roots and reproductive parts soon after sowing) irrespective of the parameter values.

6.2 One site vs. all sites fit

On average the RMSEs are very similar between the models with parameters inferred for individual sites to when parameters

are inferred for all sites together (Table 3). In general, we expect that if we were to infer a single set of parameters for10

individual sites then the predictive performance of that model will always be at least as good as when the set of parameters

has been inferred for all sites. This may not necessarily be the case when inferring parameter probability distributions: the

lower quantity of data could result in greater parameter uncertainty which may on average lead to a lower predictive accuracy

than that using the more constrained parameter distributions obtained by inferring parameters from all sites. This explains why

some of the mean RMSE scores are higher for the model with parameters inferred from individual sites. The bias scores are15

also very similar although the bias tends to be smaller on average for the models with parameters inferred using all sites.

As expected, the uncertainty in the predicted GPP, fAPAR and yield is lower for the models with parameters inferred using

all sites because more data is used to infer the parameter values for those models, leading to lower uncertainty in the inferred

parameter distributions (Figure 2). When parameters are inferred for individual sites uncertainty is around 134% for GPP,

121% for fAPAR and 33% for yield, with similar values at wheat sites (Table 3). This is reduced to around 45% for GPP, 100%20

for fAPAR and 12% for yield estimates when parameters are inferred using data for all sites. Visual inspection of the change

in uncertainty over time highlights that prediction uncertainty due to parameter uncertainty is highest at the start and end of the

season (over 100%) but decreases to 50% on average for all variables in the middle of the growing period (Fig. 4).

Inspection of the inferred parameter distributions (Fig. 2) shows, as expected, that the posterior parameter uncertainty tends

to be higher when parameters are inferred using data from individual sites versus using all sites together, although these25

distributions overlap for almost every site and every parameter. In general, these inferred parameter distributions show greater

differences between winter wheat crops and maize crops than they do as a result of using more sites for inference. One exception

is the sole winter wheat site in the United States; inferred to have lower soil nitrogen, respiration rate and translocation rate of

mass from vegetative to reproductive tissue. These inferred differences are probably due to differences in winter wheat crops

between the USA site and the European sites such as different crop varieties or agronomic practices.30

Visual inspection of the predicted time series of GPP, fAPAR and yield for maize and winter wheat predominantly show very

similar predictions between the models with parameters estimated from one site versus all sites (Figure 3 shows predictions

for representative sites. Appendix A shows timeseries for all sites with associated uncertainty). There tends to be greater

differences between the model predictions and the empirical data when the model has site-specific parametrisations than when
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parametrisations are shared between sites. The one notable exception is again the winter wheat site in the US, for which

inferring parameters for the specific site leads to much more accurate predictions compared to the model with parameters

inferred for all sites (Fig. A1). Other than that that site, the time series for GPP, fAPAR and yield for maize show larger

discrepancies between the data and the model predictions than from the predictions of different models. GPP tends to be

reproduced well, relative to the other time series, with an average correlation coefficient of around r2=0.7. fAPAR is predicted5

less well (around r2=0.4) which is at least partly due to a systematic under prediction of fAPAR at the start and end of the year.

We attribute this to the fact that the fAPAR data reflects the light absorption by plants in a region that includes vegetated areas

out with just the fields whereas the model is predicting only light absorption by the crop (discussed further below). Annual

yields are predicted least well by our models (around r2=0.1) and we attribute this at least in part to the data itself having a

relatively high uncertainty (discussed further below).10

We evaluate the model transferability by inferring the model parameters using a subset of the sites and assessing model

predictive performance against the remaining sites (Fig. 3 and Table 3). In general, the model RMSE and bias do not differ

between the sites that were used for parameter estimation and those that were not. Moreover, the model predictive performance

is similar to that resulting when fitting to all sites. The uncertainty for GPP, fAPAR and yield at maize sites is similar to that

obtained by fitting to all sites, but for the wheat sites the uncertainty in GPP and fAPAR increases, while the yield uncertainty15

remains at the level obtained when fitting to all sites (Table 3).

6.3 Impacts of using different data types

Our data type hold out experiments show clear differences in the roles played by different data types in improving model

predictive accuracy, but the effects are similar for both crop types (Figure 5, this figure only shows model RMSE and bias

when parameters are inferred using data for individual sites but the results are similar when all sites are used to infer model20

parameters). The largest effect of adding a given data type is when yield data is included, which significantly reduces RMSE

and bias for predicting yield. This makes intuitive sense, although interestingly including yield data alone and as part of a

combination also tends to improve model predictive performance for GPP and fAPAR. Counter intuitively, including GPP data

alone or fAPAR data alone only has subtle effects on the model RMSE and bias for predicting those variables and yield, but

including those datasets in combination does indeed lead to improvements in RMSE and bias.25

The greatest improvements in model predictive performance for all response variables is obtained when all data types are

used for parameter inference. This is not inevitable as an overall more likely model might be achieved by sacrificing predictive

accuracy for one data type in order to improve predictive accuracy for another. For example, adding fAPAR data alone slightly

improves model RMSE for fAPAR data, but makes it worse for GPP and yield predictions when compared to the model with

prior parameter distributions. Indeed the crops do not flower for maize or wheat when only fAPAR data is used for parameter30

inference. Comparing knockouts with and without fAPAR data included implies a trade-off between predicting the fAPAR data

well and predicting GPP well (Figure 5). Interestingly, all models underestimate GPP, although this bias is least when all data

is used to infer the model parameters.
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The uncertainty in model predictions (Figure 6) follows a similar pattern to model error, with the fAPAR only model having

the highest uncertainty (up to 900% for GPP) while the GPP and fAPAR model performs best with uncertainty values of 123%,

128% and 32% for GPP, fAPAR and yield respectively, values which are close to those obtained through fitting to all the data.

The GPP and yield model also has relatively low uncertainty values for GPP and fAPAR estimates but fails to produce any

yield at the wheat sites (the plants do not proceed to the flowering stage).5

7 Discussion

7.1 Model performance

We show that a process-based crop model constrained using EC data, satellite fAPAR observations and regional yield estimates

can improve model performance compared to the model run with prior parameter ranges and greatly reduces the uncertainty in

model output. However, the resulting uncertainty in both state variables and model parameters is still relatively high.10

Model uncertainty is difficult to compare with previous crop modelling studies, as models with fixed parameter values do not

often provide uncertainty estimates. In fact, providing uncertainty values for all model variables and parameters is one of the

advantages of a data constrained model. In the current model, uncertainty is highest at the start of the season for all variables but

decreases rapidly and final yield uncertainty is much lower. This is due to thresholds: abrupt changes from one growing stage

to another when small differences in parameters can lead to large differences in resulting variables. It is, however, important to15

note that the uncertainty in our yield predictions remains high and the model in its current form is unlikely to provide accurate

predictions for practical applications without the addition of new data (Section 7.4). We have however shown that the use of

three different data types does reduce prediction uncertainty - pointing to an avenue for future model improvement.

In terms of the posterior parameter distributions, resulting parameters show a similar degree of constraining to that observed

in previous model parametrisation studies for natural ecosystems (Keenan et al., 2012). The photosynthesis related parameters20

are badly constrained despite the fact that GPP estimates have a relatively low uncertainty. This can be explained by the

structure of the photosynthesis component which is rigid compared to other components of the model as these processes are

better understood. In contrast, belowground processes are both poorly understood and lack the data to properly constrain model

parameters (Pendall et al., 2004).

In terms of model performance, the model correctly predicts seasonal trajectories of GPP and final yield data. We cannot25

however capture the interannual variability in yields, which is most likely due to the fact that our model does not include a

response to water limitation or heat damage. The fact that we use regional yield data can also lead to discrepancies between the

yield at each specific flux tower site and the yield data. The model does not capture the fAPAR seasonal cycle well, especially

at the maize sites, which is due to the low spatial resolution of the data. However, the predicted model fAPAR is more realistic

than the fAPAR data, which is one of the advantages of using a process-based model with a more rigid structure than a statistical30

one.

One additional complication is the different spatial scales of the three datasets - while the eddy covariance data is at the scale

of the flux tower footprint, which can be seen as equivalent to the individual field scale, the fAPAR and yield data correspond

12



to larger scales (county and country level for the yield data and a 3 by 3 km scale for the fAPAR data). The assumption behind

our analysis is that the conditions at field scale are representative of the regional scale, so that there would be no discrepancy

between model predictions at these different scales. This is obviously a source of error, especially at the wheat sites in Europe,

which will be located over a much more heterogeneous landscape. Further sources of data at the field scale would be required

to identify the model error caused by the discrepancy in spatial scales.5

7.2 Use of the different datasets

Eddy covariance data is to date the most widely used data set for parametrisation of vegetation models (Fox et al., 2009;

Xiao et al., 2011). We show that removing this data from the fitting procedure does not radically decrease model performance.

If we consider what information content this data provides - primary productivity and CO2 flux seasonality, this fact is maybe

not surprising. The seasonality information is already contained in the fAPAR dataset, while the primary productivity is highly10

constrained by the structure of the biochemical photosynthesis model. Furthermore, the GPP only fit results in an underestima-

tion of the final yield, indicating that the sole use of EC data in crop models is not sufficient to accurately predict yields. Unlike

most studies using EC data we have used sites with only one year of data as these were the only available agricultural sites and

it is possible that more GPP data at one site could increase its importance in the fitting. EC data could also be a valuable tool

for independent model evaluation as it provides information about plant function not included in the other available data.15

Space based vegetation data has the main advantage of a large spatial and temporal coverage, so that it can be used irre-

spective of the local monitoring infrastructure, providing a general data source. However, the quality of the data is relatively

low, especially at the high spatial resolutions needed for crop modelling. This problem is particularly obvious in the case of

the maize data, which lacks the expected seasonality and is reflected in the very high error in the fAPAR only fit. However, the

model fits without fAPAR (GPP and yield only) show a high error as well, indicating that the information content in vegetation20

indices is needed for constraining the model but not sufficient.

Some of these limitations are not general for remote sensed data, but can be attributed to the spatial and spectral resolu-

tion of the MODIS instrument. The 1 km spatial resolution can be too coarse for agricultural fields, especially in areas with

heterogeneous landcover. Other existing instruments, specifically the Landsat family, have a better spatial resolution (30 m),

but a much poorer temporal resolution which we have found unsuitable for fitting a plant growth model where developmental25

changes can be abrupt. More recent missions, such as Sentinel-2 will have more suitable spatial and temporal resolutions for

use with this type of model (Herrmann et al., 2011). Some of the error in the data can also be attributed to misclassification

of pixels. We use a simple phenology based approach which is one of the only ones available for data with a relatively wide

bandwidth such as MODIS. This method is useful for winter crops which have different timing compared to the natural vege-

tation, but less useful for summer crops such as maize where there is no clear separation in phenology between cropland and30

the surrounding vegetation. Hyperspectral data can be used more accurately for crop identification (Thenkabail, 2001) but to

date no space-based instrument is available that has the required bandwidth, the spatial and temporal coverage and the spatial

and temporal resolution. However, such data can be used at local scales if the measurements were available.
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Crop yield is the data that is traditionally used for evaluating agricultural models and is arguably the most important to

predict correctly, given that the purpose of the model is to predict crop productivity. We have used county and country level

reported yields rather than field level measured yield because of both the availability of the data and the generality of the

method. The model fitted with yield data only gives a good fit to yields, but higher errors for the GPP and fAPAR estimates

which raises questions about the correctness of models which only use final yields to assess performance and the ability of5

such models to predict crop yields under different conditions. Crop yield data provides the final point of plant crop growth but

there is potentially a multitude of model structures and parameter combinations that can result in that yield.

In addition to the three datasets used for parametrisation, the model also requires input data in the form of sowing and

harvest dates and fertiliser inputs. Additional uncertainty is associated with these datasets which is not available nor accounted

for in our analyses. For example, the crop calendar (Sacks et al., 2010) and Nitrogen Fertilizer Application ((Potter et al.,10

2010)) datasets are global data collections that will imperfectly represent the value for any given location. Alternatives to

these global datasets would be to use location-specific data, or to infer the values. Location specific data has the advantage

of more accurately reflecting the situation at a given site and would therefore be useful when the model is applied at the field

scale, but such data is unlikely to be available for all sites. Successful inference of the values would depend on if there is

enough information in the datasets used to infer the model parameters. If there is inadequate data then there would be excessive15

degrees of freedom for inference, leading to the wrong parameter values begin inferred and the model performing poorly in

novel situations. Therefore the decision whether to obtain more data or infer unknown quantities in future applications of our

model and inference framework depends on the data availability and the intended scales of application.

7.3 Choice of model

Here we have chosen a given model structure and extensively tested the way in which constraining the parameters with dif-20

ferent datasets in different configurations. The question that arises is to what extent the chosen model itself affects the present

results. We have chosen a novel, physiology based model which includes plant optimality concepts, which on one hand has

the advantage that it is more general than some of the older models and lacks artificially set thresholds between growth stages,

but does have the disadvantage of being less thoroughly tested against field observations. An ideal companion paper to this

study would be a comparison of different model structures with a constant data constraining framework, providing greater25

insights into which parts of the model lead to high errors or uncertainty. However, given the limitations of the current study, we

acknowledge this limitation and report most error metrics as relative to prior model runs in an attempt to isolate errors created

by the data and model fitting from those caused by the model itself.

7.4 Future data needs

The fact that our model shows a relatively good fit when constrained at multiple sites indicates that it would be possible to30

obtain a single parameter set for one cultivar given the same agricultural practices, so that the model can be fitted at a small

number of locations and then applied more widely. However, the parameters are badly constrained and part of the data we have

used is not sufficiently accurate to allow the use of the model at a wider variety of locations and climate conditions. Accurate
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yield data is essential but not sufficient and must be accompanied by a growth timeseries. Our results indicate that additional

EC data is not necessary, especially given the cost of installing and maintaining a flux tower. Instead, either biomass or LAI (or

fAPAR or other VIs) data could be easier to obtain at multiple locations. The belowground part of the model, describing root

nitrogen uptake, is only indirectly constrained by the existing data and any observation of root mass and function would have

the capacity to add extra information, especially timeseries information (Johnson et al., 2001).5

The model in the version presented in this paper does not include any water limitation to growth due mainly to a lack of data

constraint on any water related parameters, as we found that latent heat data from EC towers is not sufficient. Below-ground

measurements of not only root growth but also soil water properties would again provide some of the necessary informa-

tion.Such belowground data, especially if supplemented by nutrient concentrations can also help constrain a more complex

version of the nitrogen uptake scheme, which could be improved to include more explicit soil-plant interactions and additional10

processes such as biological nitrogen fixation for legumes.

If this model, or any other similar process-based data constrained crop model, is to be used for scientific purposes to under-

stand the response of crops to climate across the globe, the ideal data would be a global data set, such as space-based vegetation

observations, combined with high quality field level data that would ideally include growth timeseries, final grain yield and

information about agricultural practices. However, if the model is to be used for agricultural purposes, to aid decision making15

at the local level, high quality field level data would be sufficient. A valuable evaluation in such studies, not conducted here

for brevity and due to a lack of location-specific data, would be to compare the predictive accuracy of the model against the

predictive accuracy of a statistical average over the data. Such an analysis would reveal whether and how much benefit is gained

by using a data constrained model for predictions.

8 Conclusions20

In this paper we present a method for data constraining a process-based agricultural model to three sources of data: eddy

covariance flux measurements, space-based fAPAR and regional yield estimates. We show that the data constrained model

performs better than the model with prior parameter estimates, especially in terms of uncertainty and even though the data used

is in some cases not sufficient to fully constrain posterior parameters it has sufficient information value to be used for model

parametrisation. We apply the model to both maize and wheat sites and show that the model performs equally well for both25

species. Parameters can be shared between sites of the same species with a similar performance to local parameters and reduced

uncertainty. We have also investigated the impact of the different data sets on constraining the model and we show that all three

types of data contribute to the model performance, but that if in a data limited world one of the data types was not available,

the model can be constrained reasonably well with fAPAR and yield data only. There are still gaps in the data available for

model parametrisation, which are also a limitation to the models which can be parametrised, in particular in relation to water30

limitation on crops and we believe that a model parametrisation framework such as that presented here can help identify those

gaps and the data needed to further our capacity to model crops.
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9 Code availability

All model code used in this paper is available from the authors upon request.

10 Data availability

All data used in this paper is freely available and has been fully referenced in the text.

Appendix A: Site level model simulations5

Figures A1-A3 show site level predictions for the one site and all site model parametrisation. Figures A4=A6 show results

from the site knock out evaluation.
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Table 1. Study sites. All sites correspond to eddy covariance measurement sites

Site name Coordinates Crop Country Irrigation Reference

Mead 1 41.1651,-96.4766 Maize United States Irrigated Suyker et al. (2004)

Mead 2 41.1651,-96.4766 Maize rotation United States Irrigated Suyker et al. (2004)

Mead3 41.1651,-96.4766 Maize rotation United States Rainfed Suyker et al. (2004)

Bondville 40.0062,-88.2904 Maize rotation United States Rainfed Meyers and Hollinger (2004)

Rosemount 1 44.7217,-93.0893 Maize rotation United States N/A Griffis et al. (2007)

Rosemount 3 44.7217,-93.0893 Maize rotation United States N/A Griffis et al. (2007)

Fermi 41.8593,-88.2227 Maize rotation United States N/A -

ARM Great Plains 36.6058,-97.4889 wheat United States N/A Fischer et al. (2007)

Risbyholm 55.5303,12.0972 Wheat rotation Denmark Rainfed Moors et al. (2010)

Auralde 43.5494,1.1078 Wheat rotation France N/A Moors et al. (2010)

Gebesee 51.1001,10.9143 wheat rotation Germany Rainfed Moors et al. (2010)

Grignon 48.844,1.9524 wheat rotation France Rainfed Moors et al. (2010)

Klingenberg 50.8929,13.5225 wheat rotation Germany Rainfed Moors et al. (2010)

Lonzee 50.5522,4.7448 wheat rotation Belgium Rainfed Moors et al. (2010)

Lutjewad 53.3833,6.3667 wheat rotation Netherlands Rainfed Moors et al. (2010)

Zwart, S. J. and Bastiaanssen, W. G.: Review of measured crop water productivity values for irrigated wheat, rice,

cotton and maize, Agricultural Water Management, 69, 115 – 133, doi:http://dx.doi.org/10.1016/j.agwat.2004.04.007,

http://www.sciencedirect.com/science/article/pii/S0378377404001416, 2004.
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Figure 3. GPP, fAPAR and yield model predictions at one maize (US-Ro3) and one wheat(DE-Gri) site. Figure shows posterior mean

predictions for the one site, all site and evaluation model fit. Neither site has been included in the evaluation fitting.
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Figure 5. Model RMSE and bias for all data hold out experiments averaged over all wheat and maize sites respectively. Error bars represent

variation across sites. All values have been normalised to the mean value of that variable at each site.Black bars indicate models that do not

reach flowering.
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Table 2. Model parameters

Symbol Units Description

germlim
◦C Number of degree days required for germination

Tbgerm
◦C Base temperature for germination

ρ - Optimal carbon to nitrogen ratio in vegetative tissue

N0 g Initial N content of the soil

θ g N g−1N g−1 C day−1 Root nitrogen extraction factor

V 25 µmol m−2 s−1 Photosynthetic carboxylation capacity at 25◦C

λ0 - Ratio of atmospheric and leaf CO2 concentration

lma g m−2 Leaf mass per area

rtot g g−1 Average plant respiration rate

mtrans g day−1 Mass translocation rate from vegetative to reproductive tissue

Cfrac - Carbon fraction of reproductive tissue

p days Time period for averaging environmental conditions for flowering trigger

Table 3. Model RMSE, bias and uncertainty for the one site and all site parametrisation as well as the model evaluation run

RMSE RMSE RMSE Bias Bias Bias Uncertainty Uncertainty Uncertainty

GPP fAPAR yield GPP fAPAR yield GPP fAPAR yield

Maize

Prior 0.18 0.27 0.83 -0.77 -0.79 -0.82 7.07 5.15 9.87

One site 0.11 0.14 0.12 -0.16 0.10 -0.03 1.34 1.21 0.33

All sites 0.08 0.16 0.10 -0.12 -0.04 -0.00 0.45 1.02 0.12

Evaluation 0.09 0.15 0.11 -0.10 -0.09 -0.00 0.47 1.08 0.15

Wheat

Prior 0.27 0.25 0.67 -0.64 -0.83 -0.83 7.92 5.46 12.27

One site 0.19 0.08 0.06 -0.44 -0.25 -0.01 1.68 1.21 0.16

All sites 0.17 0.08 0.07 -0.21 0.02 0.02 0.51 0.45 0.06

Evaluation 0.17 0.09 0.07 -0.05 -0.26 0.02 0.75 0.89 0.08
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Table 4. RMSE, bias and uncertainty values the data knock out experiments for wheat and maize.

Data RMSE RMSE RMSE Bias Bias Bias Uncertainty Uncertainty Uncertainty

fitted to GPP fAPAR yield GPP fAPAR yield GPP fAPAR yield

Maize

Prior 0.18 0.26 0.85 -0.75 -0.79 -0.85 6.91 5.19 9.25

All data 0.11 0.14 0.12 -0.16 0.10 -0.03 1.34 1.21 0.33

fAPAR 0.31 0.21 1.00 -0.90 -0.86 -1.00 8.99 3.53 -

GPP 0.12 0.20 0.80 -0.28 0.20 -0.79 1.66 1.24 2.83

yield 0.17 0.17 0.12 -0.48 0.30 -0.05 3.61 1.42 0.33

GPP+yield 0.12 0.18 0.79 -0.30 0.08 -0.78 1.58 1.26 2.72

fAPAR+yield 0.11 0.15 0.11 -0.17 0.07 -0.03 1.23 1.28 0.31

fAPAR+GPP 0.18 0.15 0.11 -0.50 0.07 -0.04 3.69 1.57 0.32

wheat

Prior 0.28 0.25 0.70 -0.66 -0.84 -0.88 8.49 5.90 12.98

All data 0.19 0.08 0.06 -0.44 -0.25 -0.01 1.68 1.21 0.16

fAPAR 0.37 0.19 0.80 -0.92 -0.82 -1.00 8.02 3.59 -

GPP 0.32 0.12 0.73 -0.81 -0.48 -0.92 4.04 2.21 -

yield 0.28 0.08 0.06 -0.60 -0.23 -0.01 3.55 1.67 0.16

GPP+yield 0.28 0.11 0.69 -0.73 -0.40 -0.86 3.38 1.94 -

fAPAR+yield 0.21 0.09 0.06 -0.50 -0.28 -0.02 1.63 1.21 0.16

fAPAR+GPP 0.25 0.08 0.06 -0.58 -0.27 -0.01 3.05 1.55 0.16
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