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Abstract.

Accurate modelling of land-atmosphere carbon fluxes is essential for future climate projections. However, the exact re-

sponses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments

complemented with a steadily evolving body of mechanistic theory provides the main basis for developing the respective

models. The strongly increasing availability of measurements may complicate the traditional hypothesis driven path to devel-5

oping mechanistic models, but it may facilitate new ways of identifying suitable model structures using machine learning as

well. Here we explore the potential to derive model formulations automatically from data based on gene expression program-

ming (GEP). GEP automatically (re)combines various mathematical operators to model formulations that are further evolved,

eventually identifying the most suitable structures. In contrast to most other machine learning regression techniques, the GEP

approach generates models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially10

generated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed

functions with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (Random

Forests, Support Vector Machines, Artificial Neural Networks, and Kernel Ridge Regressions). The case of real observations

explores different components of terrestrial respiration at an oak forest in south-east England. We find that GEP retrieved

models are often better in prediction than established respiration models. Furthermore, the structure of the GEP models offers15

new insights to driver selection and interactions. We find previously unconsidered exponential dependencies of respiration on

seasonal ecosystem carbon assimilation and water dynamics. However, we also noticed that the GEP models are only partly

portable across respiration components; equifinality issues possibly preventing the identification of a “general” terrestrial res-
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piration model. Overall, GEP is a promising tool to uncover new model structures for terrestrial ecology in the data rich era,

complementing the traditional approach of model building.

Highlights

– We explore if the process of model building for describing ecosystem CO2 fluxes can be automatized.

– We show that Gene Expression Programming combined with parameter optimization can be a useful algorithm to auto-5

matically derive models from ecological time series.

– We propose alternative models for the influence of key environmental variables on various respiratory fluxes CO2 in an

oak forest.

– Conventional ecosystem response functions can be revised by new models identified with GEP.

1 Introduction10

One prerequisite to understand and anticipate the global consequences of anthropogenic climate change is an accurate quanti-

tative description of the terrestrial carbon cycle (Bonan, 2008; Heimann and Reichstein, 2008; Luo et al., 2015). However, the

description of the mechanisms underlying the total terrestrial efflux of CO2 (Peng et al., 2014a), often referred to as “terrestrial

ecosystem respiration" (Reco), varies across the scientific literature and existing global models. This is partly because Reco does

not originate from a single process but is the sum of fluxes from different autotrophic and heterotrophic respiration processes15

that operate across different temporal and spatial scales and compartments (e.g. soil depths). Hence, it is experimentally very

difficult to disentangle the main abiotic and biotic factors driving respiratory processes at the ecosystem level (Trumbore, 2006)

and to derive suitable models for the individual respiration processes. In the remaining manuscript we use the term “model" as

an equivalent of “response functions" i.e. some analytic description of how environmental drivers influence ecosystem fluxes.

Traditionally, respiration models have been based on some theoretical considerations but largely remain empirical in nature20

(e.g. Reichstein and Beer, 2008; Gilmanov et al., 2010; Hoffmann et al., 2015). Conventional model building (Fig. 1) is primar-

ily hypothesis driven and capitalizes both on some understanding of the system and reported scaled experiments (Migliavacca

et al., 2012; Richardson et al., 2008). Gupta et al. (2012) describe this common paradigm of model development as a four

step approach involving a) observational, b) conceptual, c) mathematical and, d) computational phases (see also e.g. Bennett

et al., 2010; Williams et al., 2009). During the observational phase, the system under scrutiny is monitored and observations are25

assembled, ideally representing process responses to hypothesized driving variables. Based on these observations, a conceptual

model is proposed, which is subsequently guiding the formulations of mathematical representations of the system states and

dependencies. The mathematical description then provides the basis for computational models that are used for simulations

(Jakeman et al., 2006). Model-data integration may additionally lead to iterative structural revisions or parameter optimizations
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(Williams et al., 2009). This conventional approach to model development is also characteristic to ecological model building

of different kind, including the development of biogeochemical models (Williams et al., 2009).

The fundamental question addressed in this paper is whether models can be constructed more objectively, i.e. reducing the

need for human intuition and expert knowledge. Specifically, we explore the possibility of reverse engineering offering an

automated alternative to model development for predicting terrestrial carbon fluxes (Fig. 1). In reverse engineering, the work5

flow is fundamentally different (Bongard and Lipson, 2007): a) database set-up phase, b) computational phase, c) mathematical

phase and a d) conceptual phase (Gupta et al., 2012). The rationale behind reordering the key phases is to minimize the human

influence and perception biases that might shape the formulation of new hypotheses. Reverse engineering is aiming at iden-

tifying some mathematical representation of a system that is to a large degree independent from a priori conceptualizations;

in the current case, the respiratory response of terrestrial ecosystems to environmental drivers. Reverse engineering leaves the10

model construction up to an algorithm and is therefore a way to empirically learn from observations with minimal user input.

Therefore, reverse engineering is related to machine learning based regression techniques, where various candidate model for-

mulations and specifications are explored in order to minimize the prediction error. The fundamental difference is that reverse

engineering typically provides a symbolic regression, that is, the resulting structures are ideally directly readable as mathemat-

ical functions (i.e. response functions) and can be interpreted. Further, one can scientifically consider the applicability of the15

derived structures in other system domains (Ashworth et al., 2012). Here, we focus on the “Gene Expression Programming"

(GEP, Ferreira, 2002) reverse engineering approach. GEP is an evolutionary algorithm that evolves mathematical response

functions. The structural design of GEP allows for its use in a wide range of empirical modelling problems (Peng et al., 2014b;

Khatibi et al., 2013; Traore and Guven, 2013), including (soil) hydrology (Fernando et al., 2009; Hashmi and Shamseldin,

2014). To the best of our knowledge the potential of GEP has not yet been explored for modelling biogeochmical fluxes in20

terrestrial ecosystems.

We seek to understand as well whether automating model development can provide new insights in understanding the

dynamics of terrestrial respiration processes. We investigate if automatically derived model structures differ substantially from

models conventionally used in the study of Reco and its components or, if they are consistent with established theory. We base

our study on data from a long-term monitoring experiment of Reco components i.e. above ground respiration, root respiration,25

mycorrhiza respiration, soil autotrophic, and soil heterotrophic respiration. The monitoring was done separately but in a time-

synchronized way over two years and is described in detail by Heinemeyer et al. (2012). The separation of Reco into its

components also allowed to test the portability of individual model structures across different respiration components. In

this sense, we investigate whether a generic “respiration" response can be derived, or if specific formulations for a range of

respiration components are required.30

Our study is structured as follows: First we introduce the GEP methodology and explore its performance for symbolic

regression type of problems using an artificial experiment under varying degrees of noise contamination designed to resemble

Reco. Second, we apply GEP to model the various respiration observations provided by Heinemeyer et al. (2012). This is

an exceptional data record, as typically only integrated measurements of either soil (Heinemeyer et al., 2012) or ecosystem

respiration are continuously and regularly measured, and the components measured offer a perfect test case for the GEP35
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methodology. For both the artificial experiment and real world observations, we systematically confront the prediction error of

GEP with other state-of-the-art machine learning regression approaches. In addition, we adjust the modelling approach such

that the objective function (or fitness function) accounts not only for absolute or relative error, but also reduces structure in the

residuals. The discussion focuses on the comparison of the various GEP derived models, their equifinality, and performance

compared to widely used literature models. Conclusions and outlook focus on the potential of the discussed GEP approach for5

the further applications in this branch of research.

2 Method

We rely on the GEP method (Ferreira, 2002) which automatically derives model structures from a set of given observations. As

the models we want to obtain are mathematical structures, their extraction can be achieved by solving a symbolic regression

(Kotanchek et al., 2013) type of problem. The general GEP approach in solving symbolic regressions is presented in the10

following section and is illustrated in Fig. 2.

2.1 Gene Expression Programming, GEP

In GEP the structure building process starts with a set of possible explanatory variables and a set of elementary functions

that are given as input (e.g. sin,+,−,×). The variables and functions are subsequently mapped to a set of characters (e.g.

a,b,c,+,−) according to an internal coding language called “Karva language"(Ferreira, 2006). The mapping process generates15

sets of strings that represent the basis for a manipulative evolution of operations. The mapped letters are randomly combined

into fixed length strings called “genes" (Fig. 1 of suppl.). The use of fixed length linear strings for representing expression trees

(ET) of varied shapes and sizes, simplifies the evolutionary process of GEP (Ferreira, 2002).

A set number of genes is aggregated into a chromosome with the help of a binary function (e.g. +,−,×). The resulting

chromosomes can be translated into expression trees encoding mathematical structures. The chromosomes are the objects20

involved in the evolution (extraction) of the final solution. The total sum of combinations of functions and variables, i.e.

mathematical structures formed during an evolution time step make up a generation. The maximum number of generations

needed to reach a solution is often used as a stopping criterion.

One deciding factors in constructing a model during an evolutionary algorithm is the selection process. Since the chro-

mosomes can be translated into mathematical expressions that can be evaluated, “fitness values" (i.e. measures of model25

performance) are assigned to each chromosome during each generation. Depending on the fitness function, the fitness values

can be crucial as they give a measure of how distant each of the current structure based predictions is from the observations.

The fitness measures are assigned to the chromosomes by means of a fitness function that is optimized, usually by minimizing

prediction error. Based on the fitness values, the chromosomes in a generation are sorted and a selection for a new time step

generation is made.30

The best chromosome, which is also replicated once for the subsequent generation, and the remaining selected chromosomes

can go through a set of genetic manipulations that produce new individuals with new associated fitness measures. The manip-
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ulation rate is an important hyper-parameter (Tab. 1) in GEP (as in other genetic programming approaches) since it is decisive

in the amount of new individuals created from a generation to the other. For example, if the mutation rate (one of genetic

variation operators) is too large, it can become disruptive and lead to loss of the information acquired along the previous evo-

lutionary time steps and reduce the convergence of the algorithm. Conversely, if the rate is too low, one may not identify new

relevant model structures in due time. The process of selection and genetic manipulation is repeated until a stopping criterion5

is reached (i.e. best fitness achieved, maximum number of unimproved generations is reached, etc.), and a solution in the form

of a mathematical structure is returned.

The current implementation of the GEP approach does not contain an explicit population diversity management component.

However in order to reduce stochastic bias and avoid getting stuck in local optima and produce over-fit results, we chose a

practical approach of multi-start (multiple runs with the same settings) as proposed by Ferreira (2006).10

The GEP method presented in this paper was implemented by the first author in the C++ language and is available on

demand. All the experiments reported in this work were executed on a cluster containing 51 nodes, running SuSE SLES 11

SP1 and StorNEXT (global file system running on the IO nodes). In summary 868 CPU cores, 14.5 TB RAM, 1.2 PB file

space. All the nodes are attached via GB LAN and OPENLAVA 3.1 is used as queueing system.

2.2 Fitness measure15

In our study, the fitness measure is reported in terms of Nash–Sutcliffe modelling efficiency (MEF) coefficient (Nash and

Sutcliffe, 1970; Bennett et al., 2010) which is often used in the context of quantifying the performance of terrestrial biosphere

models (Mitchell et al., 2009; Migliavacca et al., 2015). The MEF is computed as

MEF = 1−

n∑
i=1

(oi− pi)2

n∑
i=1

(oi− ō)2
(2.1)

where oi is the observed value at step i and pi is the predicted value at step i and ō is the mean of observed values. MEF20

values range between −∞ and 1, where an MEF value of 1 corresponds to the case where the predicted and observed values

are identical. A negative MEF value means that the predictions are worse than the mean of the observations in recreating the

observed signal. MEF=0 indicates that the models prediction are as good as a prediction by ō.

Although the MEF metric offers a straightforward interpretation, it does not take number of parameters of the models into

account. In real-world applications, it might be desirable to derive models with lower number of parameters if those are not25

(much) worse in terms of prediction capacity than models with higher number of free terms. Thus, we include in our cost

(fitness) function a normalized term related to number of parameters (ratio of current number of parameters to maxim number

of possible parameters given the GEP run settings).

Moreover, any systematic signature in the model residuals (the differences of model predictions and observations) needs to

be reduced as the latter should ideally only represent uncorrelated noise. To meet this criterion, we complement the fitness30

function with a term related to the information content (entropy) in the residual time series, i.e. derived from information-

theoretic considerations. Entropy values would thus be maximized for data without structure (i.e. white noise), and lower
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entropy values would be obtained for structured data, e.g. correlated stochastic or deterministic processes (Rosso et al., 2007)

. The information content in a time series is typically quantified by the Shannon Entropy (SE, C. E. Shannon (1948)) , i.e. a

term of the form

S[P ] = −
N∑

i=1

pi ln [pi] . (2.2)

Here, P = {pi; i = 1, . . . ,N} denotes a probability distribution with
∑N

i=1 pi = 1 and N possible states. To calculate Shan-5

non’s entropy measure from a time series, the series thus has to be adequately partitioned into a suitable probability distribution.

As our aim is to minimize structure in the residuals, the temporal order becomes important . Here, we extract ordinal patterns

from the time series and derive a (discrete) probability distribution through counting the occurrence probabilities of each pat-

tern, following Bandt and Pompe (2002). This approach is fully based on the temporal dynamics in the residuals (i.e. the order

within the time series) and largely non-parametric, as only the window length has to be specified. This parameter is set to10

ndemb = 4 throughout the paper, following previous work on ecosystem gross primary productivity dynamics (Sippel et al.,

2016).

The final normalized form the fitness function further used in our work is:

CEM =
√

(1−MEF)2 + (
P

Pmax
)2 + (1−SE)2 (2.3)

15

Pmax = gN ×h (2.4)

where, CEM will stand from here on for complexity corrected efficiency in modelling, P is the number of parameters present

in a model structure, Pmax is the maximum numbers of parameters possible for each individual from a GEP run set-up, gN is

the number of genes in a chromosome and h is the length of a gene (Fig. 1 of suppl.).

2.3 Parameter optimization20

The GEP algorithm does not have a specific treatment of constants in the building of model formulations but mutations can

change both the model structure and constants. However, the scaling of constant values (model parameters) might be a decisive

factor in adequately determining the fitness of a formulation. Without this, a model structure might be discarded regardless of

potentially being a very powerful candidate. Furthermore, model parameters are often very informative regarding a system’s

sensitivity to some modifications of the drivers. These aspects have led to the addition of a final parameter optimization step at25

the end of each GEP run.

In order to obtain an optimal set of parameters for the GEP extracted model structures, an approach that would be ap-

plicable in a large set of generated search spaces was necessary. Here we use the “Covariance Matrix Adaptation Evolution

Strategy"(CMA-ES) (Hansen et al., 2003) for optimization. The CMA-ES is a stochastic optimization algorithm that seeks to

minimize a fitness function by estimating and adapting a covariance matrix according to a sampling from a multivariate normal30
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distribution (Beyer and Schwefel, 2002; Auger and Hansen, 2005). According to Hansen (2006), one of the main arguments in

favour of the CMA-ES approach is that it has shown good results even in the case of ill-posed problems (Kabanikhin, 2008),

which may very well be the case for some of the GEP structures that are automatically generated.

The CMA-ES version used for the final step of optimization is the Hansen Python implementation available at "https://pypi.python.org/pypi/cma".

3 Experimental design5

For exploring the possibility of using GEP in developing relevant model structures for describing the terrestrial carbon fluxes,

two case studies were designed: Firstly, an experiment based on artificially generated data to better understand and present the

general properties and capacities of GEP. Secondly, we explored the use of GEP on real measurements of various respiratory

flux components monitored continuously over two years in an oak forest (Heinemeyer et al., 2011).

3.1 Artificial experiments10

These experiments were designed to explore whether our implementation of the GEP method is suitable for symbolic regression

type of problems, and how robust/vulnerable it is across various signal to noise ratios. We explored a set of functions with

increasing levels of non-linearity to generate data points.

f(x1) = 2x1 + 1 (3.1)

f(x1) = x2
1 + 3x1 + 5 (3.2)15

f(x1) = ex1 + 1 (3.3)

f(x1) = e−x1 −x1 (3.4)

f(x1) = x2
1− 4sin(x1) (3.5)

f(x1) = x3
1 + 6x2

1 + 11x1− 6 (3.6)

f(x1,x2) = x2x1 (3.7)20

f(x1,x2) = x2x1− 3cos(x1) (3.8)

f(x1,x2) = 2x2
1 + 3x2

2 (3.9)

f(x1,x2,x3) = 2x2
1 + 3x2

2 + 2sin(x3) (3.10)

2000 data points were randomly generated with x1 ∈ [1,20];x2 ∈ [1,5];x3 ∈ [1,100] and each functional values were com-

puted based on these. Out of the 2000 data points, 1000 data points were used for training, while 1000 data points were reserved25

for validation. The GEP settings used for each of the 20 runs are given in Table 1.

In order to investigate the response of the GEP approach to noise contaminated data, we simulated Gaussian noise that scales

with signal amplitude as often observed in the case of terrestrial ecosystem fluxes (Lasslop et al., 2012). The signal-to-noise

ratio (SNR, measured as ratios of standard deviations) was varied between 10 and 1 in six steps.
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For each of these functions and SNR levels, 20 GEP runs were performed and the retrieved model structure with the highest

MEF values at the validation points was chosen. If a returned structure was identical to the originally prescribed function or if

(1−MEF)≤ 1e05 at validation, the retrieval of the original structure was considered to be a success.

As the choice of fitness function was crucial for the construction of structures in a GEP type of approach, we also investigated

in one experiment the effects of minimizing the CEM values (eq. 2.3) as opposed to using MEF (eq. 2.1) as acceptance criteria.5

3.1.1 Alternative Machine Learning Methods

The prediction performance of the best GEP derived models was compared with the prediction performance of four commonly

used state-of-the-art machine learning methods (MLM), i.e Artificial Neural Networks, ANN, (Yegnanarayana, 2009), Support

vector Machines, SVM (Hearst, 1998), Random Forests, RF (Breiman, 2001) and Kernel Ridge Regressions, KRR (Hoerl and

Kennard, 1970). The toolboxes used for generating the predictions of the ANN and KRR methods are described by Tramontana10

et al. (2016), the predictions of the SVM were obtained by using the LIBSVM package (Chang and Lin, 2011) and the RF

predictions were given by the Matlab statistics toolbox implementation. All the runs were performed with default settings.

3.2 Measured ecosystem CO2 fluxes

In the second experiment we tried to reverse engineer model structures Reco and its components based on measured data.

Specifically, we explored GEP derived model structures for various components of terrestrial ecosystem respiration fluxes15

collected in an 80 year old deciduous oak plantation in the Alice Holt forest in SE England as described in (Heinemeyer et al.,

2012; Wilkinson et al., 2012).

3.2.1 Alice Holt in-situ data

The particular strength of the Alice Holt data set is that component fluxes of Reco were measured separately. Reco and the total

influx of CO2 to the ecosystem as mediated via photosynthesis (gross primary production, GPP ) were estimated from eddy20

covariance measurements of the forest net CO2 exchange (NEE, Eq. 3.11), and the various soil respiration components were

measured separately for two years with hourly time resolution for total soil respiration (Rsoil), root respiration (Rroot), myc-

orrhiza respiration (Rmyc), soil autotrophic respiration (Rsoila ) and soil heterotrophic respiration (Rsoilh ) and above ground

respiration (Rabove) estimated by difference (Eq. 3.12). Additionally, we have access to derived measurements of GPP , as

well as direct measurements of soil moisture (SWC), air temperature, surface temperature, and soil temperature taken at 2, 1025

and 20 cm depth.

Reco and GPP were obtained from a micro-meteorological measurement tower at the same site that reports half hourly in-

tegrals of net ecosystem exchange (NEE) with the eddy covariance (EC) methodology (Moncrieff et al., 1997). The Reichstein

et al. (2005) procedure was used for gap-filling and separation of NEE into GPP and Reco. Given that Rsoil is a fraction of

Reco, above ground respiration can calculated as the difference between Reco and Rsoil. For an in-depth description of other30

site conditions and measurements see Heinemeyer et al. (2012).
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A multiplexed chamber system was used for measuring Rsoil , using a continuous sampling method at fixed locations. In

order to partition the Rsoil flux into its components, mesh-bags that are not penetrable by roots, but allow for mycorrhizal

hyphae development were installed. Deep steel collars were applied to stop both root and mycorrhizae in-growth. As a result,

Rroot is given by the difference of Rsoil and the respiration recorded in the mesh bag chambers, Rmyc is given by subtracting

the steel collar flux from the mesh bag chamber flux, and the Rsoilh is given by the CO2 efflux at the steel collar chambers and5

(Rsoila is the sum of Rmyc and Rroot (Eq. 3.13 and 3.14) .

Reco = NEE + GPP (3.11)

Rabove = Reco−Rsoil (3.12)

Rsoila = Rroot + Rmyc (3.13)

Rsoil = Rsoila + Rsoilh (3.14)10

The computation of Rabove as difference between Reco and Rsoil might be highly uncertain because of the different tech-

niques used to compute the two respiration components, the completely different footprints, and the typical high flux under-

estimation and low flux overestimation of Reco from EC (Wehr et al., 2016). The limitations of the separation of Reco into its

components and the uncertainty of the estimates are further discussed by Heinemeyer et al. (2011), Heinemeyer et al. (2012)

and Wilkinson et al. (2012).15

3.2.2 Data processing

We used the following candidate driver variables: soil volumetric moisture measurements, air temperature (from micro-

meteorological station), and temperatures at different soil depths, and GPP . A number of recent studies have shown a tight

linkage between GPP and Rsoil, reflecting dynamics of respiratory substrate supply to roots and mycorrhizal fungi from

recently assimilated C in plants. (Moyano et al., 2008; Mahecha et al., 2010; Migliavacca et al., 2011, amongst others). We20

use GPP obtained from EC measurements at the site, but acknowledge the conceptual problem that Reco and GPP were

derived from the same observations of NEE. In order to minimize the potential spurious correlation between Reco and GPP

as well as redundancy of possible GPP influence with the meteorological drivers, we considered low-frequency variability

of GPP only (i.e. low-pass filtered modes of GPP which corresponds to variability beyond a 60 days periodicity only, see

Mahecha et al., 2010). “Singular Spectrum Analysis" as described and implemented by Buttlar et al. (2014) was used to obtain25

a smooth GPP signal. The seasonal cycle was extracted with the SSA method as the assumption is that GPP affects mainly

the seasonality of the respiration while the variability at the high frequency is assumed to be more related to meteorological

drivers (e.g. temperature, Mahecha et al., 2010).

To reduce the skewness and the search space that the GEP evolution would have to cover in order to construct valuable

solutions (Keene, 1995), we log-transformed the seven target respiration data sets (see Figure 2 in supplemental material) and30

applied a back-transformation when reporting the respective model structures. The time series used for the candidate drivers

remain unchanged.

9

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-242, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 7 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



3.2.3 GEP set-up

For each combination of respiration target and possible drivers, 50 subsets of 500 target time steps each were randomly selected

and used for the training of GEP models using the settings found in Table 1. The 50 subsets of the remaining 113 time steps are

used for cross-validation and the model with the lowest average validation CEM value is finally selected for each respiration

type.5

We were particularly interested in determining the general character of each extracted model with respect to the different

respiration fractions. We therefore re-optimized the parameters of all extracted model structures when applying one extracted

model as the candidate function for a different respiration term. For example, the model formulation extracted for Reco is

re-calibrated for all the other types of respiration, creating six parameter sets (one for each respiratory flux) per equation. To

cross-validate parameter sets, we computed performances for each train–validation data set pair and report averaged MEF10

values.

As in the artificial example, we compared the returned GEP solutions predictions performance with that of other common

MLM such as SVN, KRR, ANNs, and RF. All methods were used for generating 50 subsets of 113 prediction values, after

training on the 50 subsets of 500 time steps of observations presented in the start of section 3.2.3. Then, a mean MEF value

was computed for all methods for all respiration components and the best mean MEF values were reported and compared with15

those of the GEP extracted models. The comparison is done in terms of MEF as number of model parameters were not available

and CEM could not be computed.

3.2.4 GEP in the context of other known ecological models: Real observational data

A comparison was done between the GEP built models and some common literature respiration models with different structures

and driving variables that were also optimized using CMA-ES. The optimization was performed for each respiration dataset20

and its candidate drivers and parameters (Table 2). The structures and prediction performances of the GEP models were then

compared with those of the optimized literature models.

4 Results

4.1 Artificial experiments

In the first artificial experiment the GEP approach is used to verify if it can reconstruct prescribed functions. Following the25

training of the 20 independent GEP runs, the initial functions were successfully reconstructed for all 10 equations defined in

section 3.1.

MEF values for the GEP extracted models and for the predictions generated by ANN, RF, KRR and SVM are illustrated in

Fig. 3a. These MEF values were obtained through cross validation against independent, yet equally noise contaminated data

points (the SNR values are given on the x axis in reverse order for visualizing the increase in noise levels). There is a clear30
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pattern of decreasing MEFs with increasing noise contamination. This was expected, as none of the methods should fit the

noise added to the signal.

Figure 3b shows MEF values equivalent to fig. 3a, but applied to noise-free data points of the validation set, in order to

compare GEP outputs to the “true" structure underlying the artificial data set. In this set-up, the MEF values remained relatively

constant across SNR values above 2. When SNR level was set to 1, predictions for all investigated machine learning methods,5

except for GEP predictions, show decreased fitness, with MEF values decreasing to a minimum of 0.8.

Figure 3c compares the two validation approaches described above - SNR is now represented by a colour code. This figure

suggests that we may not expect MEF values of '0.9 under real scenarios (where no noise-free validation is possible).

In order to verify the effects of changing the fitness function from MEF to CEM, we compare the distributions of MEF values

for all runs for all studied SNR. Figure 4 exemplifies outputs for equation 3.10; panel a shows a drop of prediction capacity of10

the GEP models with noise increase for all types of fitness functions when compared with noise-infused data. This contrasts

the reduced MEF assessed against original data, where a slight drop in MEF with noise increase for the MEF optimization

structures was seen, and where the CEM optimized structures show stability in MEF with noise. The new CEM leads to a

reduced number of returned parameters compared to MEF (Fig.4c), as well.

4.2 Measured ecosystem CO2 fluxes15

Applying GEP on the Alice Holt data set yielded a series of model structures for each respiration type. The returned model

structures are illustrated in equations 4.1-4.7.

Reco = log(T−10)× e
( GP Ps

T−10
) (4.1)

Rabove = 0.9SWC0.2× e(0.1GPPs) (4.2)

Rsoil = e(1.2T 0.4
−10+1.3SWC−3.1) (4.3)20

Rroot = e
(0.9 1.2GP Ps−8.1

T−10
) (4.4)

Rmyc = 1.8T−10× e(1.2T SW C
−10 −7.4) (4.5)

Rsoila = e(1.2T 0.5
−10+2.5SWC−4.9) (4.6)

Rsoilh = e
(−0.3+0.6 1.1GP Ps−3.6

T−10
) (4.7)

where, GPPs is gross primary production that has been smoothed using the SSA method with a 60 day window ; T−1025

is soil temperature measured at 10 cm depth; and SWC is volumetric soil water content. The corresponding cross-validation

MEF values are given in Table 3, indicating a range of capacities for GEP models to represent different respiration types.

Whilst GEP-derived models may differ between respiration types, there are a number of equivalent models for different

respiration components. Rsoil and Rsoila were described by identical model structures (but distinctive parameter values), and

Rroot and Rsoilh were described by similar (but not identical) models. Overall, the most common selected drivers were T−10,30

SWC and GPP .
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The highest performance in terms of MEF value was recorded for Rsoila and for Rsoil, that is 0.82 and 0.81 respectively. The

lowest capacity of process representation, with an MEF value of 0.28, was recorded for Rabove (Table 3), possibly because this

specific component would need to include active versus inactive periods determined by dormancy and leaf fall (i.e. seasonality

in this deciduous forest). A comparison of the predicted values and observed fluxes for all types of respiration can be seen in

Figures 5 and 6. In order to explore the capacity of the GEP models generated for the Reco components to recreate the larger,5

across compartmental sum fluxes, we summed the predictions of the models and compare them with the original fluxes. We

find that the global modelling performance of the derived models remained in a very small range of the initial trained for the

sum fluxes GEP models (Fig. 7), indicating that the larger fluxes actually exhibit sensitivity to some of the non-selected drivers,

except that the sensitivity is present only in a certain compartment.

The residuals depict some remaining patterns (Fig 8 and Fig 3 of suppl.) and the null hypothesis of normal distribution10

was rejected for all seven respiration component residuals at 5% significance level with the one-sample Kolmogorov-Smirnov

test. Hence, we might expect additional information that could be extracted from the residuals. In order to check whether the

remaining structure was missed in the first training routine because of imposing a multiplicative form in the models by log-

transforming the target data, we performed GEP runs on the residuals and combined the models. The improvement in overall

modelling performance is minimal, yet model structures become overly complex. The capacity of the GEP approach to retrieve15

new information from the residuals is illustrated in Fig. 10 in comparison with that of the other MLM presented in section 3.1.1.

When correlation values were computed between the candidate drivers and the residuals, no significant linear correlations were

found (Fig. 5 of suppl.).

4.2.1 Model transferability

We investigated the capacity of each extracted model structure (equations 4.1-4.7) to represent a component of Reco not seen20

in the training procedure. This was done by means of new CMA-ES optimization steps. The new prediction performances are

illustrated in Tab. 4.

After optimization, none of the structures show an overall best MEF for all the Reco components (i.e. we clearly cannot

identify an optimal general model). However, we identify certain model structures that tend to perform overall better than

others. This is the case for the Rmyc model (eq. 4.5). It can also be seen that after the individual model optimizations, the25

structures for Reco and that for Rsoila have similar prediction capacities.

The prediction capacity of the GEP generated models in the context of other commonly utilized MLMs was assessed as well.

KRR, ANN, SVM and, RF were used for generating 113 predicted data points as described in section 3.2 (Fig. 9). The predic-

tion performance of GEP, KRR, ANN, SVM and, RF are shown in Fig. 10. Panel a contains the average MEF values computed

for all MLM methods predicted values when compared to the original observations for Reco,Rabove,Rsoil,Rroot,Rmyc,Rsoila ,Rsoilh .30

For all other cases, the performance is in the same range for all methods, but the GEP derived models having the lowest mean

MEF values. Panel b shows that when all MLM were trained on the residuals obtained from comparing the GEP outputs with

the observations, the GEP approach has the lowest capacity of capturing new relevant signals and is strongly outperformed by
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the rest of the MLM, indicating that amount of information retrievable by GEP with the current fitness and settings is limited

and captured already in the first run.

4.2.2 Comparing with literature models

Lastly, the GEP generated models were compared with some of the most commonly used literature models for describing

respiration. The resulting MEF values obtained after individual parameter optimization using the CMA-ES procedure for each5

literature model are given in Tab. 5. The literature model structure that performed best overall in terms of prediction capacity

measured as MEF is the WaterQ10 model (Fig. 11). Figure 11 shows as well that certain types of respiration are easier to

represent by all models, including the models GEP generated, whilst other types of respiration are poorly predicted by all

models. Nevertheless, for all respiration types, the highest MEF values are generally recorded by the GEP models.

As the studied literature models performed best in modelling Rsoil, we focus on contrasting GEP model results to literature10

model outcomes for this ecosystem respiration component. Of all models included, the GEP model and Q10 model including

SWC dependency captured seasonal variability best, but no model satisfactorily represented short-term CO2 flux variations

(Fig. 12, panel a). All models show the largest range of residuals for the months May to July in 2008, and June/July in 2009

(Fig. 12, panel b), with the two best-performing models (GEP and WaterQ10) having the narrowest range of absolute residuals.

Monthly mean average errors (MAE) indicate a systematic underestimation of soil CO2 efflux in the first year (Fig. 4 of suppl.).15

5 Discussion

5.1 On the GEP method

In this work, the primary reason for the artificial experiments was obtaining a better understanding of the capacity of GEP to

solve symbolic regression types of problems. We put an emphasis on GEP performance in the presence of noise. This aspect

was important, given that monitoring data from terrestrial ecosystem CO2 effluxes are typically contaminated by sometimes20

substantially large random uncertainties and measurement noise. In the case of NEE flux measurements, Lasslop et al. (2008)

and Richardson et al. (2008) show that the measurement error typically scales with the magnitude of the flux, leading us to

simulate that type of situation by adding noise that scales with signal to an already known function, equation 3.10. The results

show that all the studied methods are stable to presence of noise in the training set. These results increase our confidence

in the predictions generated by studied machine learning methods; in particular GEP derived modes can tolerate SNRs of 1.25

Considering that the SNR in the Reco observations (if noise is only considered as random error) is probably larger than 4

which is where the curve starts decreasing in Fig 3, the noise presence in the data should not influence the automated model

construction process and the real signals should be accurately captured when data uncertainties follow the pattern described

here. On the other hand, for Rsoil and other CO2 fluxes measured with other techniques the magnitude and the distribution of

the uncertainty can be different (Ryan and Law, 2005; Pérez-Priego et al., 2015), and we cannot state what the response of the30

present MLM is in the presence of different types of uncertainties and measurement noise.
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Our findings illustrate that selection of CEM over MEF as a fitness function for optimization has a minor effect on the global

mean MEF (Fig. 4a). We also notice that due to the constraints on presence of structure in the residuals and the length of the

parameter vector, the final mean number of parameters is lower when CEM is chosen.

5.1.1 Limitations5

One of the critical aspects in our work is that GEP, as implemented here, can only represent and derive “n→ 1" type of

response functions. We are not able to generate model structures that encode e.g. system-intrinsic dynamics like feedback

loops, which are expected from our current understanding of biogeochemical cycles in terrestrial ecosystems (Ehrenfeld et al.,

2005; Friedlingstein et al., 2006). Hence, we believe GEP is suitable to e.g. understand and describe the sensitivities and non-

linear responses to changes in hydro-meteorological drivers, but fails to represent more complex carbon or water reservoir10

dynamics. Pools and pool transfers cannot be introduced currently in the input, unless the depletion/repletion equations are

known and can be included in the set of functions that can participate in the evolution.

Lagged responses can only be detected if the number of lags from a driver is correctly included in the input, which already

implies sufficient knowledge of their existence and behaviour. Whilst in the current implementation of the GEP algorithm,

shifts in conditions and responses cannot be encoded or detected; these could be addressed with the inclusion of a conditional15

operator in the set of functions encoded in the GEP evolution individuals.

Nevertheless, it would be fair to mention that the same limitations can affect the results of the other MLM and empirical

models presented in this paper.

5.2 The value of GEP for modelling ecosystem respiration fluxes

We generated a series of model structures to describe terrestrial CO2 respiration fluxes (equations 4.1-4.7). Most of these20

structures (5 out of 7) were of rather low complexity i.e. requiring 4 free parameters (which is certainly an effect of the chosen

cost function CEM). The most complex structure is found for the Rmyc model, which is in line with previous findings (Shi

et al., 2012). Nevertheless, there is need for more in-depth analysis for determining whether the described processes make

actual biological sense and the selected drivers and their interactions represent real processes and responses.

Interestingly, the models derived for Reco and Rsoil are structurally very similar. That is also the case of Rroot and het-25

erotrophic respiration, where the difference lies in the set of parameters and the added presence of an intercept in the for-

mulation of the Rsoilh model. This finding suggests a consistency in the response of the Rsoil components to their drivers,

considering that the separation of the Rsoil into its components might still lack accuracy (e.g. P. J. Hanson, N. T. Edwards and

Andrews, 2000; Kuzyakov, 2006; Subke et al., 2006; Heinemeyer et al., 2011). However, all selected GEP generated models

led to an underestimation of the high respiration fluxes (Fig. 6) and typically do not capture the peaks (fast responses). This30

phenomenon is in some cases a systematic pattern, and sometimes affects only certain times of the year. We suspect that is

partly due to surface moisture affecting litter decomposition and fungal activity, as soil moisture was only monitored over

the average 8 cm surface but the top few centimetres were most likely the most active and partly due to some potential pro-
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cesses/drivers like lags between GPP and respiration (Hölttä et al., 2011) or phenology (Migliavacca et al., 2015) that were

not specifically included in the learning process.

However, semi-empirical models similarly struggle to adequately simulate CO2 flux peaks and in some cases monthly flux

averages (Fig. 12). Structurally, the GEP-derived models share some key features with the semi-empirical approaches for

temperature dependencies of CO2 fluxes, which are typically captured by exponential relationships. A major difference is that5

when SWC has been chosen as driver, GEP often also identifies some exponential dependency, i.e. there are only certain parts

of the signal that are strongly sensitive to varying SWC. This is a very intuitive pattern, which has not yet been reported in the

literature and requires further exploration.

5.3 Data quality

During our study, it was apparent that the highest MEF values were obtained for all the studied methods in the case of the10

respiration types that had direct measured observations and were not derived. It might be the case that when fluxes are obtained

from derivations, the measurement error will also increase, and the partition of clear signal existing in the observations is not

sufficient for constructing a good model with GEP.

5.4 High frequency variability

For some of the modelled respiration components (e.g. Reco) a large amount of high frequency variability present in the15

observations was lost (Fig. 5). The question is whether the GEP method lacks the ability to build models that correctly represent

the processes and their dynamic responses, or whether the candidate drivers and the observations used for their representation

are simply not sufficient for generating representative models. In the end, the response of Rsoil and Reco to external drivers

might be too complex to describe solely with the currently available measurements and with the selected drivers.

Another explanation for missing some of the (high flux) variability could be in our choice of fitness function. As we decided20

to penalize during the learning process for structures with many parameters, it is likely that some structures were eliminated

early-on during this process, even though they may be well-suited for describing a given process from a modelling efficiency

point of view. However, this is a case of trade-off between a good fit and structural simplicity, and in our approach, we decided

that simplicity of structure, i.e. the possibility of interpretation is a very important asset.

We suspected as well that the underestimation of the carbon flux variability was caused by the log-transformations we did on25

the observations. That could have introduced a bias that excluded interesting components of the model structures by forcing the

method to build multiplicative models. However, when the GEP was run again on the residuals, without log-transforming, no

new meaningful information was retrieved, indicating that multiplicative models were sufficient for reconstructing the studied

Reco components.
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5.5 Equifinality30

Table 4 shows that when optimizing the parameters for all structures, the prediction performance becomes similar, which leads

to the question of equifinality of dynamical systems, where different models that try to capture their structure, might have

different formulations, but represent the same response.

A critical question for the applicability of any ecosystem model is whether the model structure is more important than the

parametrisation of a given “best" model. For this question to be addressed, however, we need a larger sample of ecosystem5

types representative for different types of responses where we can explore the importance of the obtained structures and their

parameter sets.

5.6 GEP models in the context of other machine learning methods

The comparison of GEP generated models machine-learning methods showed a narrow range of predicted fluxes (Fig. 10). The

analysis of training all the MLM on the GEP residual output showed that the GEP approach is not able to retrieve any new10

meaningful structural components, but that the remaining MLM are much better at reconstructing the signal left in the residuals.

This indicates that although the GEP is actually a reliable MLM when it comes reconstructing the underlying Reco fluxes and

is not prone to over-fitting, it could be that the current set-up of the GEP is not sufficient for an exhaustive description of those

fluxes, or that might be overly strict on complexity of models compared to other MLM. The GEP approach has, nevertheless,

the benefit of producing mathematical model structures that can be basis for future interpretation.15

6 Conclusions and Outlook

Overall, our results suggest that the GEP approach is a potentially powerful tool of reverse engineering, particularly helpful for

building ecological models when there is a minimum of a priori system understanding. We exemplified this conceptually using

artificial data, but also show that GEP always yields as good or better results compared to conventionally used models in the

case of ecosystem respiration. Based on data from a long-term monitoring site of different respiratory fluxes, and using GEP20

as a reverse engineering tool, we found new structures for modelling Reco components. The GEP derived models outperform

conventionally used models and generally differ by the way temperature and GPP , but also SWC are interpreted, indicating

that conventional respiration models might have to be revised. At the same time, we found that when the GEP derived models

are mutually compared, there are sufficient structural particularities for each terrestrial respiration type as to not allow for the

formulation of a general Reco law. More research is needed on a larger set of sites to identify widely usable models and for25

their interpretation. A particular matter of concern is the apparent equifinality of selected model structures, indicating that many

response functions are yielding predictions of almost similar quality. A study of multiple sites would enable an investigation of

whether specific ecosystem types result in similar model structures, or if whether response functions apply across contrasting

ecosystem types.
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The current study has also revealed methodological aspects that could be improved. In particular, we found the inclusion30

of a parameter optimization step very helpful to further test the transferability of model structures. But this approach could

be potentially integrated into the GEP evolution. More specifically, we think that the next development of GEP could include

the parameter optimization as an intermediate step before selection during each evolution generation (Ilie et al.). In this way, a

model structure could be chosen according to not only the current state of parameters but also on its potential and convergence

to a global solution might be achieved faster.5
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Glossary

chromosome individual used in automatically evolving an optimal solution comprised of a set of genes that are connected

with a binary operation (e.g. +×−). 4

CMA-ES covariance matrix adaptation evolutionary strategy. 6

expression tree binary tree used to represent algebraic expressions. 4

gene set of characters of fixed length that encodes an expression tree. 4

generation time step of an evolution. 4

genetic manipulation change produced in the structure of a chromosome and the expression tree it encodes by altering

the strings composing the genes (e.g. mutation, inversion, recombination, etc.) . 4

GEP gene expression programming, machine learning method that evolves chromosome structures with the purpose of

minimizing a cost function. 3

ill-posed problem a problem for which the solutions might not be unique or unstable, also known as an inverse problem.

7

manipulation rate probability of a genetic manipulation to occur during a generation. 4
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Table 1. GEP settings

Parameter Artificial data Real observations

Number of chromosomes 2000 2000

Number of genes 3 2

Head length 5 6

Functions +,−,/,∗,xy,√, ln,exp,sin,cos +,−,/,∗,xy,√, ln,exp

Terminals x1,x2,x3 GPPs,TAir,T−10,SWC

Link function + +

Max run time 1200 seconds 1800 seconds

Fitness function CEM CEM

Selection method for replication tournament(Coello and Montes, 2002) tournament

Mutation probability 0.2 0.2

IS and RIS transpositions probabilities 0.05 0.05

Two-point recombination probability 0.3 0.3

Inversion probability 0.05 0.05

One point recombination probability 0.4 0.4

Table 2. Respiration model formulations commonly used in the environmental science community

Model Formulation1 Reference

Arrhenius a× e−E0/RT (Lloyd and Taylor, 1994)

Q10 φ1×φ(
T−Tref

10 )

2 (Reichstein and Beer, 2008)

Water Q10 φ1×φ(
T−Tref

10 )

2 × SWC
SWC+φ3

× φ4
SWC+φ4

(Richardson et al., 2008)

LinGPP (R0 + k2GPP )× eE0( 1
Tref−T0

− 1
TA−T0

)× αk+SWC(1−α)
k+SWC(1−α)

(Migliavacca et al., 2011)

ExpGPP [R0 +R2(1− ek2GPP )]× eE0( 1
Tref−T0

− 1
TA−T0

)× αk+SWC(1−α)
k+SWC(1−α)

(Migliavacca et al., 2011)

addLinGPP R0× e
E0( 1

Tref−T0
− 1

TA−T0
)× αk+SWC(1−α)

k+SWC(1−α)
+ k2GPP (Migliavacca et al., 2011)

addExpGPP R0× e
E0( 1

Tref−T0
− 1

TA−T0
)× αk+SWC(1−α)

k+SWC(1−α)
+R2(1− ek2GPP ) (Migliavacca et al., 2011)

Where

a,E0,φ1,φ2,φ3,φ4,R0,R2,k,k2 and α are model parameters that can be optimized
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Table 3. Modelling performance for all extracted model structures after cross validation over 90 cases.

Respiration type MEF σMEF Equation

Reco 0.56 0.14 4.1

Rabove 0.28 0.13 4.2

Rsoil 0.81 0.13 4.3

Rroot 0.59 0.10 4.4

Rmyc 0.42 0.13 4.5

Rsoila 0.82 0.13 4.6

Rsoilh 0.51 0.11 4.7

Table 4. Average validation MEF performance for all extracted model structures when re-optimized against all other respiration CO2 flux

observations.

trained for/ opt. for Reco Rabove Rsoil Rroot Rmyc Rsoila Rsoilh

Reco (Eq. 4.1) 0.56 0.25 0.77 0.51 -0.06 0.67 0.42

Rabove (Eq. 4.2) 0.56 0.27 0.69 0.52 0.01 0.62 0.47

Rsoil (Eq. 4.3) 0.50 0.13 0.81 0.35 0.29 0.82 0.40

Rroot (Eq. 4.4) 0.34 0.22 0.61 0.57 0.03 0.65 0.51

Rmyc (Eq. 4.5) 0.54 0.16 0.81 0.50 0.43 0.84 0.51

Rsoila (Eq. 4.6) 0.50 0.13 0.81 0.35 0.29 0.82 0.40

Rsoilh (Eq. 4.7) 0.55 0.23 0.76 0.53 -0.03 0.67 0.51
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Table 5. Average validation MEF performance for CMA-ES optimized selected literature model formulations when compared with respira-

tion CO2 flux observations.

Model formulation Reco Rabove Rsoil Rroot Rmyc Rsoila Rsoilh

Arrhenius 0.41 0.15 0.65 0.50 0.07 0.61 0.38

Q10 0.47 0.19 0.69 0.52 0.09 0.62 0.46

Water Q10 0.50 0.20 0.79 0.55 0.40 0.81 0.43

LinGPP 0.55 0.25 0.74 0.57 0.17 0.70 0.49

ExpGPP 0.58 0.30 0.76 0.57 0.20 0.72 0.54

addLinGPP 0.55 0.27 0.73 0.56 0.12 0.67 0.48

addExpGPP 0.56 0.27 0.73 0.54 0.20 0.69 0.49
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Figure 1. Direct approach and reverse engineering in model development for describing dynamical systems. Existing and possible

steps needed in the process of building a model. For the direct approach, the process starts with the building of hypothesis from existing

knowledge, the hypothesis is then subject of abstraction and summarized in a mathematical model that has two components: the structure and

the parameters. The mathematical model can be translated into a computational form that will generate predictions. Depending on how well

the predicted values manage to recreate the available observations, the model’s parameters are calibrated or if the general trends are missed,

there might be need for structural reformulation. On the other hand, in the reverse engineering approach, a machine learning method is used

to generate a set of candidate models that are then compared with the available observations and which according to the prediction capacity

may have to go through structural changes by automatic evolution or through a final parameter adaptation. From the set of evolved models,

the best model in terms of prediction capacity is chosen and its structure will be the basis for hypothesis building, as an expert would try to

explain why a specific structure was automatically evolved and whether the structure of the model can be explained from the studied system

intrinsic processes. If that will be the case, and the structure has not emerged randomly, the conclusions can be compared with the existing

knowledge which can be either reconfirmed or new aspects of the studied system might be brought into light.
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Fitness based selection 

and saving of best individual

NO
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Figure 2. The work flow used in solving symbolic regression problems with GEP.. The process of evolving an optimal solution from

observations starts with randomly generating a set number of evolution individuals called chromosomes. The chromosomes are composed of

genes that are sets of strings encoding expression trees that can be translated into mathematical expressions in the subsequent step. Following

the mathematical expression comes the evaluation of each emerging individual (model) against the target variable values and for each one a

fitness values is assigned. If the stopping criterion has not been reached (e.g.. best fitness possible, highest number of generations allowed,

convergence etc.) the best individual in terms of fitness is saved and the remaining set of chromosomes are selected for genetic manipulation.

When the stop criterion is reached, the parameters of the best chromosome is calibrated against the training data with an optimization

approach, the CMA-ES, and the best solution is returned.
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(b) Validating against noise-free datasets.
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Figure 3. Effect of adding noise to original signal on prediction capacity for GEP, KRR, RF, SVM and ANN. The first panel contains

the evolution of mean MEF values from 20 independent runs for each increasing level of noise. MEF is computed after learning from a data

set of 200 data points and validating against 1000 data points containing noise. The second panel shows the evolution of mean MEF values

from 20 independent runs for each increasing level of noise where MEF is computed after after learning from a data set of 200 data points

and validating against 1000 data points generated from equation 3.10. Panel c shows the compared individual MEF evolutions of the studied

machine learning methods with noise.
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(a) Mean MEF when validation against noisy data after

20 GEP runs with different fitness functions.

(b) Mean MEF when validation against noise-free data

after 20 GEP runs with different fitness functions.

(c) Ratio of predicted number of parameters to true num-

ber of parameters after 20 GEP runs with different fit-

ness functions.

Figure 4. Effects on modelling performance and parameter number caused by choice of fitness function during GEP training for

artificial noisy data generated by equation 3.10, where MEF is defined in equation 2.1 and CEM is defined in equation 2.3.
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Figure 5. Observed and predicted outgoing CO2 fluxes. 613 time steps of daily averaged CO2 effluxesvfor two years at the Alice Holt

oak forest site. The predicted values are generated with the models extracted by the GEP approach with the settings given in table 1 for the

following types of respiration: Reco,Rabove,Rsoil,Rroot,Rmyc,Rsoila ,Rsoilh . The models are given in equations: 4.1-4.7
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Figure 6. Observed and predicted outgoing CO2 fluxes.613 time steps of daily averaged CO2 effluxes for two years at the Alice Holt

oak forest site. The predicted values are generated with the models extracted by the GEP approach with the settings given in table 1 for the

following types of respiration: Reco,Rabove,Rsoil,Rroot,Rmyc,Rsoila ,Rsoilh . The models are given in equations: 4.1-4.7
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Figure 7. Observed versus predicted Reco components fluxes, where predicted values are computed as derived fluxes.
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Figure 8. Residuals computed for the GEP models after training on log-transformed data.
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Figure 9. Observed CO2 fluxes and one set of 113 predicted values given by the some common machine learning methods (MLM)

after training on 500 data points.
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Figure 10. Machine learning methods (MLM) prediction performance for all respirations components (left) and for the resid-

uals (right) resulting from the GEP trained models. The MEF values obtained for validation by all the MLM methods for

Reco,Rabove,Rsoil,Rroot,Rmyc,Rsoila ,Rsoilh
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Figure 11. MEF validation values for literature models and for the best GEP model in terms of MEF at each respiration level. Each

Reco flux component is shown in a separate colour.
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Figure 12. DailyRsoil fluxes illustrated in the context of the two studied years and residual values of the total soil daily CO2 outgoing

fluxes as simulated by the investigated literature models and the GEP emerged model. The fluxes shown here are the real flux measured

at the site and the predicted fluxes generated according to the GEP model and some of the models used in the environmental science

community. The scale of the fluxes is given in gC/day/m2.
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