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1 Response to Reviewer 1

In the following, we denote comments by the reviewer in bold and our own re-
ponses in standard fonts.

The manuscript proposes to automatically derive model structures using
Gene Expression Programming (GEP) introduced by Ferreira (2001). The
authors apply GEP to different components of terrestrial CO2 fluxes mea-
sured in an 80 year old deciduous oak plantation in the Alice Holt forest in
SE England. The goal is to compare automatically derived model structures
with predictions by other machine learning methods and from other pub-
lished models of ecosystem respiration. The paper is in the scope of the jour-
nal and the topic could be interesting for a broad audience of geoscientists.
In the present form, I cannot recommend publishing and ask the authors to
thoroughly review their manuscript taking the below mentioned points into
account. Additionally, the manuscript would benefit from a proofreading by
a native speaker.

We would like to thank the reviewer for the evaluation and detailed comments
on our manuscript. We further provide responses for the posed questions and de-
tails on how we revised the manuscript. Please note that our UK based co-authors
had revised the original paper, and have been involved as well in the submission
of the revised manuscript.

We would like to mention that all page and line numbers for specifying changes
in the manuscript are given based on the difference mark-up file. Major com-
ments

1. The goals stated in the introduction are scattered over page 3 (ll. 34, 11
2325, 11. 2830). Please state them clearly at the end of the introduction.

e The section was re-organized as suggested by the reviewer in the re-
vised manuscript. The goals of this study are now concisely stated (p4
11 11-19).

2. GEP is the key part of the manuscript. It is not a standard modelling
framework and needs a clear introduction. In the present form, Section
2.1 is difficult to understand for someone not familiar with GEP. Please
define clearly what is a gene, a chromosome and an expression tree and
how they are related. Use examples for illustration. The original paper
by Ferreira (2001) is written for a broad readership and can serve as an
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example. How are the mathematical statements coded in chromosomes
evaluated to generate predictions?

e Thank you for pointing this out here. We included a figure explain-
ing the most important processes of the GEP evolution in the revised
version of the manuscript (Fig. 3).

We described more carefully what we understand here as “gene”, “chro-
mosome” and an “expression tree” and added the definitions in the
glossary. We agree that this is absolutely key to the readers (Section

2.1).

3. The use of the fitness measures is inconsistent throughout the manuscript.
In section 2.2 you derive a composite fitness measure CEM and state
that this is your final normalized form of the fitness function (eq. 2.3).
However, later in the results you report MEF or MEF+NP (that was
never property introduced). Explain clearly which function was used
to measure the fitness. Also p. 8 1. 45 shows that CEM is apparently not
your final fitness function.

e We apologize that we have not been sufficiently clear in our descrip-

tions: CEM=MEF+NP+SE (modelling efficiency +number of param-
eters+ signal complexity measure) is the final fitness function used for
optimizing the solutions for all GEP results presented in this paper.
The MEF values are reported for quantifying the model-data misfit
which is more natural to “read”.
More explanations on MEF+NP were added to the revised manuscript
as well. This function is a fitness function similar to CEM, but where
the entropy component is missing. This function was introduced in
the manuscript in order to better illustrate the effect of each fitness
function component for the final GEP solutions performance (p 9 11
11-15).

4. What were the functions that were coded in GEP and could thus form
algebraic expressions? How did you chose them?

e Usually in genetic programming type of approaches, the identification
of input functions depends on the type of problem which we try to
solve. If we tackle symbolic regressions, as is the case here, most of-
ten a set of primitive functions is proposed, such as addition, multipli-
cation, exponential and so on. More complex functions could increase

2



70 model complexity too much and risk over fitting. We added a more

71 detailed explanation in the revised manuscript (p 5 11 18-23).

72 5. Section 3.1.1: You state the the machine learning methods (Artificial
73 Neural Networks, Support Vector Machines, Random Forests and Ker-
74 nel Ridge Regression) were used without tuning the hyperparameters.
75 I have a serious objection here. While some of the hyperparameters
76 could be safely set to default values, others have to be tuned and do
7 affect the performance of those models (e.g. the C2 cost parameter of
78 Support Vector Machines). I recommend that you consult the techni-
79 cal literature here and tune hyperparameters for a fair comparison. A
80 good point to start is the book by Kuhn and Johnson (2013).

81 e We are sorry for the confusion here: we wrote that “All the runs were
8 performed with default settings” e.g. regarding the choice of their
83 Kernels. But we did, of course allow the hyper parameters to vary and
84 adjusted them in a cross-validation approach as described in Camps-
85 Valls2012.

86 The only approach run with default settings was the RF approach from
87 the Matlab statistics toolbox implementation.

88 The paragraph should say:

89 “The toolboxes and settings used for generating the predictions of the
% ANN and KRR methods are described by Tramontana2016 and found
o1 in the “simpleR” regression toolbox Lazaro-Gredilla2014, the pre-
% dictions of the SVM were obtained by using the “LIBSVM” library
03 Chang2011 from the “simpleR” regression toolbox where the regular-
o ization term, the insensitivity tube (tolerated error) and a kernel length
% scale are automatically adjusted. Lastly, the RF predictions were given
% by the Matlab statistics toolbox implementation running with default
o7 settings. ”

% Was corrected in the manuscript (p 8 11 20-25).

% 6. Which predictors did you use for the machine learning methods on the
100 artificial data?

101 e Thank you for pointing this aspect out. All the machine learning meth-
102 ods (GEP, KRR, ANN, SVM and RF) learn based on the same input
103 data set for all artificial problems, which contains 3 candidate variables
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(x1, x2 and x3), which means that all methods are allowed to perform
a feature selection as well. We apologize that this was no made clear
in the manuscript but we have now corrected that p7 125-26.

7. p. 91. 2932 You state that you log-transformed the fluxes before mod-
elling and back-transformed the model structures. Did you also back-
transform the predictions? At least in standard regression, back-transformations
need particular attention. When back-transforming from the log trans-
formation, the variance of the residuals has to be considered in order to
avoid a bias. Please explain what and how you back-transformed. How
did you take care of a possible bias?

e For the GEP solutions, we trained on log-transformed target data. That
gave us a set of solutions. But of course, in order to obtain the initial
fluxes an exponential function was applied to these solutions. From
the exponential functions we obtained predictions which are further
compared with the original target data and MEF values were reported.
So, yes - we back-transformed the resulting structures.

e For the remaining machine learning approaches (ANN, SVM, RF and
KRR) the exponential is applied directly to the predictions obtained
after learning from the log-transformed target and the resulting pre-
dicted fluxes are compared with the original target by means of MEF.

e We don’t exactly understand the issue of the bias - it would actually
matter during the optimization as the cost-function deals with the log-
transformed data. But after back transforming, the data are in original
space and the evaluation with the MEF should be fine. This means
also that the model selection should be unbiassed.

8. Fig 8 shows a lot of dynamics in residuals from the GEP approach.
Because you are dealing with time series, reporting MEF only is not
satisfactory. A more in depth comparison of the different models at
different time scales is appropriate (e.g. Mahecha et al., 2010). Which
temporal patterns can be well reproduced by the different models?

e We agree that reporting only MEF values is a bit superficial. However,
Figure 13 reveals that model-data miss-match is not only an issue of a
certain fast time scale, but clearly also occurs on seasonal time scales.
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The Mahecha2010 approach is very useful if we would be able to ad-
ditionally deal with e.g. trends etc. But for this kind of analysis the
time-series are simply too short. These aspects and more are discussed
in section 5.4.

9. From Fig 10 we learn that the machine learning algorithms performed

better than GEP. In Section 5.2 you state that GEP underestimates high
fluxes as do the published semi-empirical models. So what is the advan-
tage of using a GEP approach? What can we learn from it? I suggest
that you restructure your discussion such that this aspect becomes re-
ally clear. In the present form Section 5.2 is somehow lost.

e Thank you for pointing this out. Indeed, this discussion is at the heart
of our philosophical approach: We argue that if GEP identifies struc-
turally very different models that, however, yield equivalent model
performance, it puts at question the validity of the conventional semi-
empirical models. GEP models reveal that certain dynamics that are
typically unconsidered in approaches of this kind, for instance the ex-
ponential influence of SWC to respiration components or the seasonal
influence of GPP. This section of the discussion was restructured in
the revised manuscript for increased clarification of where we see the
added value of such an approach (section 5.2, p 19 11 4-16).

Detailed comments

e p. 31. 14 Explain briefly symbolic regression here and in more details

in the method section (p. 4 1l. 9ff). C3

A symbolic regression is a type of regression where not only the parameters
of a known (linear) function are optimized based on data, but where the
functional form itself is also constructed based on data as a combination of
basic linear and non-linear mathematical functions. Further expanded in the
method section.

p. 4 1. 1417 You state that the variables and functions are subsequently
mapped to a set of characters, then that the mapping process generates
sets of strings. . . And then in the next sentence the mapped letters are
randomly combined . . . . This is confusing. State clearly what is the al-
phabet used to map functions and variables. They cannot be randomly
combined: a binary function has to have two inputs, for example, and

5
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this is taken care of in the coding sequence. The initial chromosomes
are generated randomly, however, the genes must be valid mathemati-
cal expressions.

The input variables and functions are indeed mapped to characters that are
combined into strings which encode the mathematical expressions. The va-
lidity of encoded mathematical expression is insured by the internal trans-
lation language and by the equation: tail=head*2+1. Thus although each
of the sections, head and tail are generated based on random selection from
the input characters sets (functions+variables sets for head and variables for
tail), there are still rules that insure validity of mathematical expressions
(except for cases where a solution can only be deemed invalid by evaluating
the expression, such as division by 0, etc)

p- 4 1. 32 explain individual.

The individual is a component of the evolution population which encodes
a specific mathematical expression. It is the same as chromosome. Added
better definition in glossary.

p- 5 1. 1 How is the hyper-parameter tuned?

The hyper-parameter has either some commonly used default values in the
community, especially for the genetic operators rations, or some values that
have been empirically established with experience, depending on the prob-
lem we are looking at.

p- 5 1. 89 How is the population diversity related to stochastic bias?

Once diversity is insured in the evolution population, we can be more confi-
dent that a certain solution does not appear just by chance, as it would have
to be good enough to beat a larger pool of solutions.

p- 6 1. 2 and eq. 2.2 inconsistent names: SE or S[P]?
SE is the name we use for the Shannon entropy. S[P] is changed as well to

SE in the manuscript.

Give more details on the calculation of the permutation entropy (Bandt
and Pompe, 2002). A reader not familiar with the method should be
able to understand what you calculated.

In short, the calculation of an entropy as a measure for randomness from
a time series (e.g. Shannon’s entropy) requires to determine a probability

6
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distribution that underlies the time series (or dynamical system), which is
usually done by a partitioning step (also called phase space reconstruction
in other contexts). This is a fundamental step in the methodology, and var-
ious methods have been used to arrive at this probability distribution, for
instance frequency or histogram-based measures, procedures based on am-
plitude statistics, or symbolic dynamics (see e.g Kowalski et al 2011 for an
overview). In recent years, the Bandt Pompe approach has become popu-
lar, because it directly takes sequences in time into account: The technique
hence divides the time series into ordinal sequences (i.e. ordinal patterns,
or symbolic sequences), and then computes entropy measures directly from
the probability distribution of these ordinal patterns Bandt2002. This ap-
proach has a number of advantages, namely that it is robust to noise (no
sensitivity to numeric outliers) and to trends or drift in the data, it is an
(almost) non-parametric method and no prior assumptions about the data
are needed (the only parameter that has to be specified is the embedding
dimension, i.e. window length), and allows to disentangle various possible
states of the system that are then encoded in the probability distribution (see
e.g. Zanin2012 for a review of the method and applications). We described
the method in more detail, and give a few examples of its application in the
revised manuscript (p 8 126—p 91 3).

Eq. 2.3. I dont understand the last term in your derivation of CEM.
Why 1 SE? The permutation entropy varies between 0 and log(n!), n
being the order of permutation (n = 4 in your case). Did you normalise
SE by its maximum?

SE is indeed normalized by its maximum; hence SE varies between 0 and
1, where 1 indicates no correlated structure in the residuals. Furthermore,
the best CEM value can take, and towards which the optimized values tend
tois 0.

Is CEM maximized or minimized?
Throughout the entire paper, the optimization is done by minimization of
the fitness function value.

p. 6 1. 22 Why are model parameters constant values? This term for an
entity being optimized is confusing.
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GEP as a method does not offer a specific optimization of parameters, as it
evolves entire mathematical formulations. So until there is a special treat-
ment in terms of optimisation for the parameters, they are considered con-
stants. Once a final solution is reached, a specific optimization algorithm is
used for

p- 7 1. 26 and Tab1: You never explained head and tail of genes.
We apologise for the slip. Added to glossary.

p- 9 1. 25 Explain briefly how the Singular Spectrum Analysis works
and give references to the original publications (Broomhead and King,
1986, for example).

The SSA method is a very useful tool used mainly in time series analysis
with the purpose of decomposing an original time series into the sum of its
components, such as trends, seasonality and high frequency components.
More details and the references are added to the revised manuscript (p 13 11
16-18).

p. 10 1. 12 I dont understand how your split you data in training and
test data sets. According to p. 8 1. 21 you have two years of hourly
observations. So what are the 500 target time steps and why are there
613 time steps in total? How did you calculate the subsets?

Thank you for pointing this aspect out. It seems that we have not been clear
enough in the description. Data is available with hourly resolution, however,
we use daily means for model constructions. So for two years, we should
have 732 data points, but after filtering we are left with a gapped set of 613
observations. Those 613 d.p. are split into two sets of 500 and 113 d.p 50
times. For each of this split we then learn a model and the best over-all at
validation is finally selected and presented in the results section. Section is
revised for clarity.

p. 12 1. 2022 What do you mean by a component of Reco not seen in the
training procedure? Which components were not modelled?

Each component was separately modelled and a solution is built with GEP.
Then, the parameters of each of these solutions are re-calibrated using CMA-
ES for the rest of the components for a fair comparison of modelling capac-

1ty.
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p. 14 1. 10 Which water reservoir do you refer to? Soil water? Then
reservoir is misleading.

Indeed we refer to soil water. We apologize for the confusion and water
reservoir has been changed to soil water in throughout the revised manuscript.

e p. 16 1. 13 You state that GEP is not prone to overfitting. How did you
analyse this?

This was concluded for the results of the increase of signal to noise ratio ex-
ercise, as the MEF values of the solutions reconstructed when compared to
original, noise free data do not change significantly with addition of noise.

e What are the error bars in Fig3(a), (b) and fig4 (c)? The error bars are the
standard errors of the mean MEF values at validation computed over the 10
validation sets (p11 118-10). Unfortunately, not visible enough at the scale
of the plot. For that, two tables with the concrete values given in the plots
was added to the supplementary material of the revised manuscript.

e Fig3(c) is not necessary.

Removed from manuscript as suggested.

e Figl2 is never discussed in the text.

The figure is mentioned in p. 1515. However we agree that it needs more
clarification in the manuscript.
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1 Response to Reviewer 2

In the following, we denote comments by the reviewer in bold and our own re-
ponses in standard fonts.

Review of Reverse engineering model structures for soil and ecosystem
respiration: the potential of gene expression programming

We would like to thank the reviewer for the evaluation and detailed comments
on our manuscript. We further provide responses for the posed questions and
details on how we revised the manuscript.

Please note that all page and line numbers for specifying changes in the manuscript

are given based on the difference mark-up file.

In this manuscript Ilie et al. explore the use of gene expression program-
ming (GEP) to select empirical models for soil and ecosystem respiration.
The authors make a case that GEP is a technique for reverse engineering
model structures by elucidating underlying mechanisms, rather than depend-
ing on hypothesis-driven experiments to identify these mechanisms.

e Indeed, this is our main motivation. But clearly also other methods for
reverse engineering may be usable.

I have several concerns about the conceptual framework the authors used
to present GEP. I am convinced that GEP is an interesting and worthwhile
approach to automate model selection. However, I think it is over-reaching
to suggest that GEP can reverse engineer model development. It seems to me
that the value of GEP is simply to automate the process of exploring a large
number of regression models. I am not convinced that GEP reorganizes the
model development process, because regression already is often the first step
in model development.

e Thank you for challenging our fundamental ideas. The motivation of this
work was indeed to automatize model development. And we believe that
a GEP type of approach can help in such an endeavour. But we also agree
that GEP is basically doing a selection after rejecting a large number of
potential regression models. And this is still very different from classical
model building. Although the analyst still has a crucial role in identifying
plausible models, and controlling/selecting the parameters of the GEP ap-
proach, the cost function and driving variables; the algorithm can assist the
analyst by identifying model structures that can be deemed plausible in the
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first place given the signals present in the data. The proposal of the regres-
sion model structure is not made directly by the analyst and rather by the
algorithm. The points discussed here were added to the revised manuscript
(p 31118-26.).

Further, I find that the claim that GEP minimizes human influence and per-
ception bias to be strong, as the authors seemingly arbitrarily select the driv-
ing variables for the model, regardless of how the model’s functional form is
derived. From other work we know that selecting a single soil temperature
at 5 cm soil depth can give a very different model from selecting a temper-
ature from 15 cm soil depth (Graf et al., Biogeosciences doi:10.5194/bg-5-
1175-2008). Similarly selecting to use VWC rather than a parameter like
matric potential could be the difference between being able to predict rapid
increases in flux with rainfall and not.

e We have provided an initial series of candidate predictors among and GEP
automatically does a feature selection. Hence the model development re-
mains a more objective approach. Moreover, GEP is meant to select not
only the driver but also the model. Therefore, GEP should be able to deal
with cases as the one suggested by the reviewer: different 7j,; measure-
ment depth can lead to different models. And this was clearly illustrated in
the analysis with artificial data. Nevertheless, we agree with the fundamen-
tal argument of the reviewer, namely that the initial selection of variables
is done by humans and by the availability of data (because we will never
have ”perfect” driving variables...), but this plagues all types of modelling
approaches, not only reverse (p 3 11 18-22).

In the end, the functions selected by GEP suffer from the same problems
as previously used formulae shown in Table 2. All of these functions tend to
underestimate large fluxes (hot spots and hot moments). While the form of
the functions may hold-up from training datasets to prediction datasets, the
specific parametrizations often do not. I believe the authors have done a good
job discussing limitations of GEP, and empirical approaches in general, in
section 5.1.1. We know biogeochemical fluxes integrate multiple pools, reser-
voir dynamics and lags, and these are difficult to detect using semi-empirical
models. The largest gains recently in representing soil respiration have come
from simulating enzyme kinetics and solute diffusion (e.g. DAMM model) as
well as simulating microbial growth dynamics. These advances have come
from implementing expert knowledge, not from expediting regression model
selection.
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e We agree that we cannot show yet or beat expert knowledge as encoded
e.g. in the DAMM model. Still, we believe that our paper is a first step in
this direction. And therefore it is important to showcase this opportunity to
the relevant scientific community. The field of reverse engineering is young
and cannot look back to half a century of experimental and conceptual work
aiming at understanding soil respiration modelling.

Overall I would recommend that this manuscript be rejected in the cur-
rent form, and the authors re-evaluate the presentation of the GEP method
both in terms of creating certainty within the biogeosciences community that
the approach is effective and accessible, as well as readily applicable to field
data as was demonstrated with the data from Alice Holt.

e We do believe that our model approach is readily applicable and a novel tool
offering the same accuracy as classical semi-empirical models but crucial
with new opportunities of interpretation.

As was mentioned, I believe the GEP method has considerable potential, but
as the manuscript is currently written my concern is that it will pass un-
noticed by the community as a whole due to poor accessibility rather than
scientific merit.

e We disagree with this comment, aligning with the other reviewer and also
with the overall statement of the strong potential of this novel approach.
However, the important step is to get this approach integrated into the mod-
elling community (which is rather small) and allow it to be tested and mod-
ified. We do believe that a more general approach and presentation actually
will promote its wider usage.

General Comments:

1. I do not agree with Figure 1, that model development starts with ex-
pert knowledge. Expert knowledge does not come about on its own,
but comes from observations, and regressions are critical to making
sense of observations. By helping to identify which variables among
a large number of potential explanatory variables correlate to a phe-
nomenon, regression-type analyses lead to the second step in the scien-
tific process: manipulative experiments to confirm hypothesized cause-
and-effect relationships. Demonstrating cause-and-effect relationships
limits the number of processes that need to be represented in models. 1
am not convinced that GEP provides a short-cut to this process.
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e We thank the reviewer for his valuable point-of view. Maybe the ques-
tion is rather what one would call “expert knowledge”? We do see ob-
servation as one key element of expert knowledge (Fig 1 now includes
” including observations”) , leading to a first empirically driven (i.e.
regression style) approach to model formulation. Yet, once a model
could not be immediately rejected it is propagated and used time and
again and refined with including more processes etc. This is a tedious
process. And here we see that GEP offers a considerable potential in-
deed. Maybe we have overstated the value of GEP in the manuscript
and we revised it accordingly ( p3 11 19-26), but once again - our mo-
tivation was thinking and exploring methods that elegantly bypass this
approach. For instance, several of the co-authors have worked on the
(Migliavacca et al 2011) paper to build a better model for ecosystem
respiration in deciduous forests and come to the conclusion that this
should be a job realized by a computer. Figure 1 was changed in the
manuscript in order to capture and illustrate the points discussed here
as well.

2. Section 3.1 and 4.1, which outline artificial experiments with the GEP
method could be strengthened considerably if the authors were to use a
simple, mechanistic model of soil or ecosystem respiration rather than
a seemingly random set of algebraic expressions. Using such a respi-
ration model would allow the authors to attempt to recover the model
basis functions and, if successful, enhance the readers confidence with
respect to the data from the site at Alice Holt.

e In this sections we mean to show the capacity of GEP to reconstruct
functions from relatively simple example in order to shortly explore
the effects of increasing non-linearity and number of variables. As
ecological models tend to be more complex and the increase in non-
linearity and complexity would no be so clear we chose to stick to
some known genetic programming benchmark functions.

Nevertheless we agree with the reviewer that adding a known ecolog-
ical respiration model structure in the set of functions to be recon-
structed would give more confidence in the application of GEP to eco-
logical modelling. Thus the Q19 model is added to the GEP benchmark
function set. (p 4125 and p 10 11 27-28).
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3. I am concerned about the evaluations of GEP presented in Figs. 3 and

4. Fig 3 compares alternate machine learning techniques by comparing
the MEF of the final model selected by each approach. It seems to
me also important to compare the actual model structures, not just the
fitness score. Did all the techniques recover the original models? If not,
is variation in the MEF meaningful?

e In this study, GEP is the only approach which gives a readable model
structure back. SVM, ANN, RF and KRR lack that property. Thus the
comparison is done on the accuracy of predictions, by comparing the
modelling scores and residuals.

. Figure 4c suggests that GEP was only able to recover about 30-55% of

the correct number of parameters. If so, it seems GEP did NOT do a
good job of recovering the original models.

e We agree that at first glance, it would seem bad that the model re-
trieval with GEP based on the 3 different fitness functions gives a
lower number of parameters than the initial number. However con-
sidering the high values of MEF when validating against original data,
MEF> 0.96, we can draw the conclusion that the GEP performed a
feature selection, eliminating “low impact” parameters and returned a
more simple equivalent solution.

5. Another major concern is the exercise shown in figure 7. The authors

have examined whether summing predicted component fluxes gives pre-
dicted total fluxes that resemble observations. This is an interesting
idea, but ultimately not that useful for two reasons:

(a) The observed fluxes were not independently measured, e.g. Rauto
was not measured independently, but was calculated by measuring
the total flux (Rsoil) minus RH. I think you want to test whether
all the variability simulated for the components can explain the
variability observed for the total flux, but you dont have a measure
of the component fluxes independent from the total flux.

(b) We would like to see that the predictions for total flux are no worse
than the predictions for the component fluxes. But in several cases
the prediction for component fluxes are pretty poor. E.g. Pre-
dictions for RECO wont turn out any better than predictions for
Rabove, which themselves were poor. Thats not so interesting.

5
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(a) We agree that because of learning from derived fluxes, it would be
hard make a clear statement regarding the capacity of GEP to learn the
variability of the studied sum and component fluxes.

(b) We believe that nevertheless the exercise is useful as it shows that
when we use GEP to learn models for each of the flux, sometimes
the low-complexity pressure in the fitness functions make that the fi-
nal solution has a lower number of parameters and a slightly lower
modelling capacity as well. However we see that when we sum up
the models of the component fluxes and compare the predictions of
these derived models with the original data, although the models have
become more complex, the model performance is not significantly im-
proved. This give us more confidence to state that the more simple
models retrieved by GEP in the first place have a sufficient capacity to
capture the meaningful information present in the data as well.

6. The manuscript is figure heavy, consider condensing figures or remov-

ing. For example can Figures 5 and 9 be combined in an effective way?
Are there other figures that may be unnecessary to the reader if they
were described in the text or in a table?

e Although we agree that the manuscript contains many figures, we be-
lieve most are necessary (or at least helpful) for reflecting the full pic-
ture presented in the text.

Specific comments:

e Abstract is long, introduces a lot of terminology. Consider distilling

to the most important take-homes, and make more approachable for a
general audience.

The abstract was be shortened and simplified as suggested.

p.3 1. 8. The rationale for reordering should also be to try more options,
things that people might miss

We would like to thank the reviewer for pointing this out. We agree that the
increase in the option pool is a large aspect of our approach and somehow
we believed that it would be self-explanatory, however it makes sense to
state clearly as well. The aspect is added to the manuscript (p 3 1 13-15).
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e p. 3. L. 30. Why would we expect the functions to be portable across

scales? Provide an ecological justification, otherwise this is not an in-
teresting or useful exercise.

We believe that this would be more of a wider discussion of the way in
which scaling of ecological models is at all interesting and relevant (Urban
2005).

What we started exploring here is whether a larger grain model would be
capable to capture some very strongly influential divers, even by losing spe-
cific information and if such processes indeed appear across scales.

p. 3. L. 22-35. When reading initially I found it difficult to understand
what hypotheses the authors were testing. I think all of this information
is there but needs to be re-organized to make it stand out to the reader.

Hypotheses and scope of the paper have been re-organized for clarity as it
was suggested by other referee as well (p4 11 11-19).

p-4 1l. 5.No need to introduce the conclusions. Consider shortening this
to reduce repetition.

Thank you for you suggestion. Paragraph removed.

2.1 This section was not clearly written, I suggest more careful editing
by co-authors. Please avoid including extra words in parantheses, they
add complexity without clarity.

Section 2.1 was re-written for more flow clarity in the revised manuscript
as suggested.

p.4 11.15. Is the process of mapping operations to strings relevant to
model fitting? I dont think so. Either this is excessive detail about the
internal workings of GEP, or you need to explain how this is relevant.

The process is relevant as it is one of the characteristics of the GEP ap-
proach. We apologize for not making this clear in the manuscript already,
however this aspect and the effects of mapping have been explained in more
detail in the method section (2.1) of the revised manuscript (p 5 11 24-27).

p. 4. L. 20, what do you mean by solution The final selected model?
Or the respiration predicted by that model? Genes and chromosomes
should be presented in quotations initially.
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Solution is the final selected model structure. Quotations are added as sug-
gested.

p. 4 1. 30 I think you can shorten this paragraph to one sentence,
simply state that in each generation, the best variants of a chromosome
are determined by a fitness function described below.

The paragraph could be shortened, however the suggested line is not accu-
rate as in a generation, there is only a variant for each chromosome , and
the fitness function determines the ranking of all chromosomes in that gen-
eration.

p. 41. 32, what is an individual? Do chromosomes make up individuals?
An individual is a chromosome that encodes a mathematical formulation,
made up by a set of strings called genes.

p- 5,1. 1 What is a hyper-parameter? Again, please try to avoid paren-
thetical phrases in this paragraph.

A hyper-parameter is a set of parameters which need to be set for the runs of
a certain approach. Definition is added to glossary and further parentheses
are avoided.

p. 5, 1. 12 upon request rather than on demand.

Changed as suggested.

p. 5, 1. 11-14 most of this information doesnt appear useful, for exam-

ple, does it actually matter that the cluster had 51 nodes? If someone
ran it on a cluster with 12 nodes would it also work but be slower?
Either explain the relevance of these details or remove them.

The description of the system on which all experiments should be relevant
as the results might be influenced by the hardware set-up, due to the initial-
ization of the random seed, speed of solution return and so on. Nevertheless,
all non-necessary specification are removed.

p- 5, 1. 31 Consider omitting derived from information-theoretic con-
siderations.

Thank you for the suggestion. Omitted.



271

272

273

274

275

276

277

278

279

288

289

290

291

292

293

294

295

296

297

298

299

300

301

p- 6, 1. 20-25. I didnt understand the reason for this additional opti-
mization. This sounds very much like ordinary regression model selec-
tion; does this undermine the unique value of GEP? The original GEP
gives a solution in the form of a general mathematical structure. For accu-
rate scaling a further parameter optimization would be recommended. The
value of GEP lays in the capacity of constructing the structure based on the
on information found in the input data.

p. 6, 1. 27 Scaling noise with signal amplitude: This is good to include!
This has been shown for soil respiration too (Lavoie et al. 2015, JGR-
Biogeosciences, doi: 10.1002/2014JG002773)

Thank you for providing the reference. Added to paragraph.

Section 3.2.1 The first two paragraphs are repetitive in describing com-
putation of GPP.Consider omitting or shortening the section on soil flux
measurements, since these methods were reported previously. Section
3.2.1 re-organized and shortened as suggested.

Section 3.2.4 This paragraph can be removed to shorten. Figure 3c,
consider omitting. It is repetitive, and the manuscript already has a
large number of figures.

Figure 3c removed. However we believe that the paragraph is needed for
anticipating the comparison done on real observation between established
models for terrestrial respiration in the community and the GEP based mod-
els.

p.-12, 1. 7 Sentence starting We find that the global modelling perfor-
mance. . . Please reword, I dont understand this statement.

Reworded for clarity as suggested (p 16 11 1-8).

Figure 12, is there a reason that this is presented in a polar plot? It
seems on first glance that it could equally be presented as a 4-pane set
of cartesian time series plots.

By using polar plots, we reveal that the seasonal biases of the studied fluxes
and the capacity of the models to capture/or not some of the variations in
specific times of the year. But yes, it is a matter of taste as well.
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Abstract.

Aeceurate-modelling-

Accurate model representation of land-atmosphere carbon fluxes is essential for future-climate projections. However, the
exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from ex-
periments, complemented with a steadily evolving body of mechanistic theory provides the main basis for developing the
respeetive-such models. The strongly increasing availability of measurements may complicate-the-traditional-hypothesis-driven

path-to-developing-mechanistie-models;-butit-may-facilitate new ways of 1dent1fy1ng suitable model structures using machine
learningas-wel—Here. Here, we explore the potent1al i

expression programming (GEP) -

are-furtherevolved;eventually-identifying-the-most-suitable-to derive relevant model formulations based solely on the signals

resent in data by automatically applying various mathematical transformations to potential predictors and repeatedly evolvin
the resulting model structures. In contrast to most other machine learning regression techniques, the GEP approach generates

“readable” models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially gen-
erated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed
functions with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (Random
Forests, Support Vector Machines, Artificial Neural Networks, and Kernel Ridge Regressions). The-case-of real-observations
explores-Based on real observations we explore the responses of the different components of terrestrial respiration at an oak

forest in south-east England. We find that the GEP retrieved models are often better in prediction than some established res-
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piration models.

Based on their structures, we find previously unconsidered exponential dependencies of respiration on seasonal ecosystem

carbon assimilation and water dynamics. Hewever,—we-also-We noticed that the GEP models are only partly portable across

respiration components; eguifinality-issaes—possibly-preventing-the identification of a “general” terrestrial respiration model
ossibly prevented by equifinality issues. Overall, GEP is a promising tool te-uneover-for uncovering new model structures for

terrestrial ecology in the data rich era, complementing the-traditional-appreach-ef-medel-butldingmore traditional modellin
approaches.

Highlights

We explore if the process of model building for describing ecosystem CO fluxes can beautomatized, to a large extent,

automated .

We show that Gene Expression Programming combined with parameter optimization can be a useful algorithm to auto-

matically derive models from ecological time series.

We propose alternative models for the influence of key environmental variables on various respiratory fluxes CO5 in an

oak forest.

Conventional ecosystem response functions can be revised by new models identified with GEP.

1 Introduction

One prerequisite to understand and anticipate the global consequences of anthropogenic climate change is an accurate quanti-
tative description of the terrestrial carbon cycle (Bonan, 2008; Heimann and Reichstein, 2008; Luo et al., 2015). However, the
description of the mechanisms underlying the total terrestrial efflux of COy (Peng et al., 2014a), often referred to as “terrestrial
ecosystem respiration” (R..,), varies across the scientific literature and existing global models. This is partly because R.., does
not originate from a single process but is the sum of fluxes from different autotrophic and heterotrophic respiration processes
that operate across different temporal and spatial scales and compartments (e.g. soil depths). Hence, it is experimentally very
difficult to disentangle the main abiotic and biotic factors driving respiratory processes at the ecosystem level (Trumbore, 2006)
and to derive suitable models for the individual respiration processes. In the remaining manuscript we use the term “model" as
an equivalent of “response functions" i.e. some analytic description of how environmental drivers influence ecosystem fluxes.

Traditionally, respiration models have been based on some theoretical considerations but largely remain empirical in nature
(e.g. Reichstein and Beer, 2008; Gilmanov et al., 2010; Hoffmann et al., 2015). Conventional model building (Fig. 1) is primar-
ily hypothesis driven and capitalizes both on some understanding of the system and reported scaled experiments (Migliavacca
et al., 2012; Richardson et al., 2008). Gupta et al. (2012) describe this common paradigm of model development as a four

step approach involving a) observational, ) conceptual, ¢) mathematical and, d) computational phases (see also e.g. Bennett
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et al., 2010; Williams et al., 2009). During the observational phase, the system under scrutiny is monitored and observations are
assembled, ideally representing process responses to hypothesized driving variables. Based on these observations, a conceptual
model is proposed, which is subsequently guiding the formulations of mathematical representations of the system states and
dependencies. The mathematical description then provides the basis for computational models that are used for simulations
(Jakeman et al., 2006). Model-data integration may additionally lead to iterative structural revisions or parameter optimiza-
tions (Williams et al., 2009). This conventional approach to model development is also characteristic to-of different kinds of

ecological model buildingef-differentkind, including the development of biogeochemical models (Williams et al., 2009).

“We explore the possibility of reverse engineering offering an
automated alternative to model development for predicting terrestrial carbon fluxes (Fig. 1). In reverse engineering, the work
flow is fundamentally different (Bongard and Lipson, 2007): a) database set-up phase, b) computational phase, c) mathematical
phase and a d) conceptual phase (Gupta et al., 2012). The rationale behind reordering the key phases is firstly to minimize the
human influence and perception biases that might shape the formulation of new hypotheses, and secondly to increase the
chance for novel model structures to automatically emerge from the available data and that would not be so obvious from a
direct analysis. Reverse engineering is aiming at identifying some mathematical representation of a system that is to a large
degree independent from a priori conceptualizations; in the current case, the respiratory response of terrestrial ecosystems

to environmental drivers. Reverse engineering leaves the model construction up to an algorithm and is therefore a way to

empirically learn from observations with minimal user input. Fherefore;reverse-engineering-isrelated-

Of course, expert knowledge still has a large influence on the modelling process, as only a certain set of variables can
be measured and even a smaller subset is indeed available for model development, which includes the restriction to a certain
plausible number of time lags, and hence full objectivity of automatic model development cannot be truly achieved. Furthermore,
expert knowledge comes into play when the algorithm is set for running, by tuning the set of parameters according to the
problem needed to be solved and as well during the observation collection and during the final decision on whether the
solution returned by the algorithm actually makes sense at all and whether it can be further used. Nevertheless, we believe
that by shifting the moment when the analyst make the decision regarding the selected model, a larger degree of objectivity in

modelling is achieved.
Reverse engineering is close to machine learning based regression techniques, where various candidate model formula-

tions and specifications are explored in order to minimize the prediction error. The fundamental difference from typical model
building is that reverse engineering typically provides a symbolic regression, that is, the resulting structures are ideally directly
readable as mathematical functions (i.e. response functions) and can be interpreted. Further-one-eanseientificatty The readable
character of the returned solutions allows to consider the applicability of the derived structures in other system domains (Ash-
worth et al., 2012).

Here, we focus on the “Gene Expression Programming" (GEP, Ferreira, 2001) reverse engineering approach. GEP is an
evolutionary algorithm that evelves—constructs mathematical response functions. Fhestructural-designof-GEP-aHowsfor-its
use-In its essence, GEP basically converges to a solution after rejecting a large number of potential regression models over a
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certain amount of evolutionary steps. Due to its structural design, GEP can be applied in a wide range of empirical modelling
problems (Peng et al., 2014b; Khatibi et al., 2013; Traore and Guven, 2013), including (soil) hydrology (Fernando et al., 2009;

Hashmi and Shamseldin, 2014). To the best of our knowledge the potential of GEP has not yet been explored for modelling
biogeochmieal-biogeochemical fluxes in terrestrial ecosystems.
We seek to understand as well whether automating model development can provide new insights in understanding the

dynamics of terrestrial respiration processes. We investig

our study on data from a long-term monitoring experiment of R.., components i.e. above ground respiration, root respiration,

mycorrhiza respiration, soil autotrophic, and soil heterotrophic respiration. The monitoring was done separately but in a time-

synchronized way over two years and is described in detail by Heinemeyer et al. (2012). Fhe-

The fundamental question addressed in this paper is whether regression models can be constructed more objectively by
leaving the task of proposing a final regression model to an algorithm rather than directly to an analyst. The need for human
intuition during the actual process of constructing a regression model becomes reduced, and the input of expert knowledge
shifts towards identifying input variables, parameters, a suitable cost function and model plausibility.

With the current study we investigate as well if automatically derived model structures differ substantially from models

conventionally used in the study of R.., and its components or, if they are consistent with established theory. The separation
of R, into its components also allowed us to test the portability of individual model structures across different respiration

components. In this sense, we investigate whether a generic “respiration” response can be derived, or if specific formulations

for a range of respiration components are required.

()ﬂf f‘tﬂdy 1'51 f‘fﬁ]etﬂfed as fe OWS Fiff‘f
L1 Study structure

First, we introduce the GEP methodology and explore its performance for symbolic regression type of problems using an
artificial experiment under varying degrees of noise contamination designed to resemble R..,. Second, we apply GEP to model
the various respiration observations provided by Heinemeyer et al. (2012).

The observational record provided by Heinemeyer et al. (2012) is exceptional, because measurements of soil or ecosystem
respiration are-that are typically only integrated, are here continuously and regularly measured, and the components measured

offer a perfect test case for the GEP methodology.

For both the artificial experiment and real world observations, we systematically confront the prediction error of GEP with
other state-of-the-art machine learning regression approaches. In addition, we adjust the modelling approach such that the
objective function (or fitness function) accounts not only for absolute or relative error, but also reduces structure in the residuals.
The discussion focuses on the comparison of the various GEP derived models, their equifinality, and performance compared to

widely used literature models.
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2 Method

We rely on the GEP method (Ferreira, 2001) which automatically derives-model-struetures—from-constructs model structures
based on a set of given observations. As the models we want to obtain are mathematical structures, their extraction-construction

can be achieved by solving a symbolic regression (Kotanchek et al., 2013) type of problem. That is, we are not only interested

in determining an optimal set of parameters for a known regression, but here, we want to discover the symbolic form of the

regression itself by identifying the most important predictors and their functional transformations. The general GEP approach
in solving symbolic regressions is presented in the following section and is illustrated in Fig. 2.

2.1 Gene Expression Programming, GEP

i i The process of finding the most suitable model structure based on signal present in data in GEP starts

with an initial generation of n possible model structures (Fig. 3a). These can be called evolution individuals and in GEP, the

are known as “chromosomes". The chromosomes are composed of a set number of “genes" that are connected by a binar
mathematical operator. Each gene is encoded in a string with a set fixed length that contains specific characters that map to
either a set of possible predictors, e.g. si i i

={a,b}l — A, = {x1, 22} or a set of

The choice of input functions used for applying mathematical transformations on the predictors depends on the type of
problem we try to solve with GEP. When the problem is a symbolic regression type of problem, as here, most often a set
of primitive functions is proposed; such as addition, multiplication, exponential and so on. More complex functions could
increase model complexity too much and risk over fitting. However if there are already known functional transformations of
certain predictors that could be part of the final desired solution, the user can define a new function and introduce it in the set

of input functions.
All genes are made up of a *“ gene head"

“genes, containing a combination of characters mapping to both predictors and functional transformations and a “ gene tail",

with characters that map only to predictors. The gene length is given b = h; +1;, where t; = — 1) x hy+ 1, with

as gene length, fy head length, 7 tail length and f,4, as the maximum parity of a functional transformation.

As in biology evolution, regardless of the actual length, the GEP genes have active sections of variable length called
“open reading frames” (Fig—2??-of suppk)—The ORF) that can encode various expression trees which can be evaluated into
mathematical expressions (Ferreira, 2006). The lengths of the ORFESs are determined only after the encoded expression trees
are translated using an internal reading language (see Fig, 3b). Ferreira (2001) argues that, the power of GEP lies in its use of
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fixed length linear strings for representing expression trees (ET) of varied shapes and sizes ;-that simplifies the evolutionary

processef-GEP-(Ferreira; 2004

mathematical-structuresformed-during-an-evelutiontime-, and helps reach a final solution faster.

The total number of chromosomes generated over each evolution step make up a—generationthe GEP population. The
evolution steps are also known as “generations”. The maximum number of generations needed-to-reach-allowed to run until

reaching a solution is often used as a stopping criterion.

One decidingfactors-inconstructing-a-model-during-of the crucial components of model developing within an evolutionary

algorithm is the selection process. Sinee-In GEP, the chromosomes can be translated into mathematical expressions that can

be evaluated, <

between the current structure based predictions i

and the original target is computed. The measures are known as “fitness values” and are assigned to all the chromosomes in the
population at each generation by means of a fitnessfunetion-that is-optimizedpredefined fitness function. The evolution of the
final solution with GEP is done based on optimizing the fitness function values after each generation, usually by minimizing
prediction error-Based-or, but more complex criteria can be taken into account as well.

Once all the fitness values have been computed and assigned, the chromosomes in a generation are sorted and-a-seleetion-for

a-Rew-time-step-generation-is-made—from best to worst fit.

ha ha me oF h O-Fran ad-oneefo

an-importantIf no stop criteria has been met, preparations for the reproduction of new chromosomes for the next generation
are made. The chromosome with the best fitness value is reproduced unchanged in the first position of the new generation.
For filling the remaining n-1 positions, chromosomes are selected from the entire population for the new generation with a
tournament procedure, n-1 times.

In tournament selection, 2 chromosomes are randomly selected from the entire population and the individual with the better
fitness value one goes through.

For insuring that novel material is introduced in the pool of possible model structures, and n-1 newly selected chromosomes
are subject to genetic operators, such as: mutation, recombination, transposition and inversion as presented in Fig. 3d, that can
fully change the encoded mathematical expressions (see Fig. 3¢).

Once the population of chromosomes is ready for the new generation, the evolution procedure is repeated until a stop
criterion is reached, such as best fitness achieved, maximum number of unimproved generations is reached, time limit, etc.
The hyper-parameter needed for a GEP run has either components with recommended default values, especially for the
genetic operator rates considered when applying the available genetic operators (Ferreira, 2006), or has components for which
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the values have been established empirically after experience in working with the GEP approach. The latter typically depend
on the requirements of the problem looked to solve.

Such is the case for setting the length the gene head, or the number of genes in a chromosome that can be lower if the interest
is in obtaining more compact solutions, with larger values possibly leading to a fast expansion of solution length which can
convergence too soon to a unique solution that might lack the ability to capture meaningful signals present in the training data,
due to low diversity of the encoded expression trees.

Another important component of the hyper-parameter

rate (one of genetic variation operators) is too large, it can become disruptive and lead to loss of the information acquired along

the previous evolutionary time steps and reduce the convergence of the algorithm. Conversely, if the rate is too low, one may

not identify new relevant model structures in due time. The-process-of-selection-and-genetic-manipulation-isrepeated-until-a

The current implementation of the GEP approach does not contain an explicit population diversity management component

—Hewever-in-which could increase the confidence that a certain solution did not just appear by chance, but that it was actuall
selected over a larger pool of possible model structure types. In order to reduce stochastic bias and avoid getting stuck in local
optima and-produece-over-fit-that would produce over-fitted results, we chose a-the practical approach of multi-start (multiple

runs with the same settings) as proposed by Ferreira (2006).

The version of the GEP method presented in this paper was implemented by the first author in the C++ language and
is available-on-demandf{reely available upon request. All the experiments reported in this work were executed on a cluster
containing-Stnedes;running SuSE SLES 11 SP1 and StorNEXT (global file system running on the IO nodes) —In-summary
and that contains 868 CPU cores, 14.5 TB RAM, 1.2 PB file space. All-the-nodes-are-attached-via-GB-LAN-and-OPENEAVA
3-Hs-used-as-queueing systemThe large performance capacity of the cluster allowed for multiple parallel runs and speed in

2.2 Fitness measure

In our study, the fitness measure is reported in terms of the Nash—Sutcliffe modelling efficiency (MEF) coefficient (Nash and
Sutcliffe, 1970; Bennett et al., 2010) which is often used in the context of quantifying the performance of terrestrial biosphere

models (Mitchell et al., 2009; Migliavacca et al., 2015). The MEF is computed as

Zn:(oi —pi)?
MEF=1-= (2.1)
> (0i—0)?

1
where o; is the observed value at step ¢ and p; is the predicted value at step ¢ and 0 is the mean of observed values. MEF

values range between —oo and 1, where an MEF value of 1 corresponds to the case where the predicted and observed values
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are identical. A negative MEF value means that the predictions are worse than the mean of the observations in recreating the
observed signal. MEF=0 indicates that the models prediction are as good as a prediction by o.
During the GEP learnin

rocess, however we use the (1-MEF) measure as we want to minimize the fitness function values.

Although the MEF metric offers a straightforward interpretation, it does not take the number of parameters of the models
into account. In real-world applications, it might be desirable to derive models with lewernumber-of-fewer parameters if those
are not (much) worse in terms of prediction capacity than models with higher number of free terms. Thus, we include in our
cost (fitness) function a normalized term related to number of parameters (ratio of current number of parameters to maxim
maximum number of possible parameters given the GEP run settings).

Moreover, any systematic signature in the model residuals (the-differences-of model-predictions-and-observations)yneeds to be
reduced as the latter should ideally only represent uncorrelated noise. To meet this criterion, we complement the fitness function
with a term related to the information content (entropy) in the residual time series;+—e—derived-from-information-theoretic
constderations—,Entropy values would thus-be maximized for data without structure (i.e. white noise), and lower entropy
values would be obtained for structured data, e.g. correlated stochastic or deterministic processes (Rosso et al., 2007) . The

information content in a time series is typically quantified by the Shannon Entropy (SE, C. E. Shannon (1948)) , i.e. a term of

the form
N

SSEP(X) = = piln[pi] . 2.2)
=1

Here, P="{pi=t+—-A}X = ..V} denotes a probability distribution with Zi\il p; =1 and N possible

states. To calculate Shannon’s entropy measure from a time series, the series thus has to be adequately partitioned into a

suitable probability distribution. As our aim is to minimize structure in the residuals, the temporal order becomes important
. Here, we extract ordinal patterns from the time series and derive a (discrete) probability distribution through counting the
occurrence probabilities of each pattern, following Bandt and Pompe (2002). This approach is fully based on the temporal
dynamics in the residuals (i.e. the order within the time series) and largely non-parametric, as only the window length has to
be specified. This parameter is set to ngem,p = 4 throughout the paper, following previous work on ecosystem gross primary

productivity dynamics (Sippel et al., 2016).

In short, the calculation of an entropy as a measure for randomness from a time series (e.g. Shannon’s entropy) requires

artitioning step (also called phase space reconstruction in other contexts). This is a fundamental step in the methodology, and
various methods have been used to arrive at this probability distribution, for instance frequency or histogram-based measures,
procedures based on amplitude statistics, or symbolic dynamics (see e.g Kowalski et al. (2011) for an overview). In recent
years, the Bandt Pompe approach has become popular, because it directly takes sequences in time into account: The technique
hence divides the time series into ordinal sequences (i.e. ordinal patterns, or symbolic sequences), and then computes entro
measures directly from the probability distribution of these ordinal patterns (Bandt and Pompe, 2002). This approach has a
number of advantages, namely that it is robust to noise (no sensitivity to numeric outliers) and to trends or drift in the data, it
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is an (almost) non-parametric method and no prior assumptions about the data are needed (the only parameter that has to be

specified is the embedding dimension, i.e. window length), and allows to disentangle various possible states of the system that

. Zanin et al. (2012) for a review of the method and a

are then encoded in the probability distribution (see e.
The final normalized form the fitness function further used in our work is:

P

max

CEM = \/(1—MEF)2+( )2+ (1 — SE)? (2.3)

Priaz = gN x hng x1 2.4)

where, CEM will-stand-stands from here on for "complexity corrected efficiency in modelling", P is the number of parameters
present in a model structure, P,,, is the maximum numbers of parameters possible for each individual from a GEP run
set-up,g/V ng is the number of genes in a chromosome and #{ is the length of a genetFig—2??-ofsupplH—,_

For assessing the effect of adding the entropy component for the residuals in the CEM fitness function, we introduce as well
the following fitness measure which contains elements regarding only MEF and number of parameters.

P
Pmam

MEF+NP = \/(1 — MEF)2 + ( )2 (2.5)
For all experiments reported in this paper, the optimization is done by minimizing the fitness function values. The best value
that can be reached for all presented fitness functions is 0.

2.3 Parameter optimization

The GEP algorithm does not have a specific treatment of constants in the building of model formulations but mutations can
change both the model structure and constants. However, the scaling of constant values (model parameters) might be a decisive
factor in adequately determining the fitness of a formulation. Without this, a model structure might be discarded regardless of
potentially being a very powerful candidate. Furthermore, model parameters are often very informative regarding a system’s
sensitivity to some modifications of the drivers. These aspects have led to the addition of a final parameter optimization step at
the end of each GEP run.

In order to obtain an optimal set of parameters for the GEP extracted model structures, an approach that would be applicable
in a large set of generated search spaces was necessary. Here we use the “Covariance Matrix Adaptation Evolution Strategy"
(CMA-ES)-{Hansen-etal;2603)-, Hansen et al. (2003)) for optimization. The CMA-ES is a stochastic optimization algorithm
that seeks to minimize a fitness function by estimating and adapting a covariance matrix according to a sampling from a
multivariate normal distribution (Beyer and Schwefel, 2002; Auger and Hansen, 2005). According to Hansen (2006), one of
the main arguments in favour of the CMA-ES approach is that it has shown good results even in the case of ill-posed problems
(Kabanikhin, 2008), which may very well be the case for some of the GEP structures that are automatically generated.

The CMA-ES version used for the final step of optimization is the Hansen Python implementation found at https:#pypi-
pythen-erg/pypifema-https://pypi.python.org/pypi/cma,


https://pypi.python.org/pypi/cma
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3 Experimental design

For exploring the possibility of using GEP in developing relevant model structures for describing the terrestrial carbon fluxes,
two case studies were designed: Firstly, an experiment based on artificially generated data to better understand and present the
general properties and capacities of GEP. Secondly, we explored the use of GEP on real measurements of various respiratory

flux components monitored continuously over two years in an oak forest (Heinemeyer et al., 2011).
3.1 Artificial experiments

These experiments were designed to explore whether our implementation of the GEP method is suitable for symbolic regression
type of problems, and how robust/vulnerable it is across various signal to noise ratios. We explored a set of functions with

increasing levels of non-linearity to generate data points.

flxy) =22 +1 (3.1)

f(x1) =25+ 32145 (3.2)
flo) =e™ 41 (3.3)
fla)=e ™™ —ay (3.4)

f(z1) = 2?2 —4sin(z;) (3.5

f(z1) =22 + 622 + 112, — 6 (3.6)
f(z1,22) = z221 (3.7)
f(z1,22) = zoa1 — 3cos(x;) (3.8)
f(zy,20) =222 4 322 (3.9)
f(x1,29,23) = 227 4 323 + 2sin(x3) (3.10)

2000 data points were randomly generated with 1 € [1,20]; 2 € [1,5];23 € [1,100] and each functional values were com-
puted based on thesethe same initial set of 2000 data points. Out of the 2000 data points, 1000 data points were used for
training, while 1000 data points were reserved for validation. The GEP settings used for each of the 20 runs are given in Table

rescribed function or if (1 — MEF) < 107° at validation, the retrieval

1. If a returned structure was identical to the originall

of the original structure was considered to be a success. For allowing the approaches to do an automatic feature selection, all 3
variables, 1. 22, 23, were used for learning and validation for all 10 functions in the benchmark set.

For investigating the capacity of GEP to reconstruct a simple model used in the ecology field as well, we introduced as well
an artificial test for the “Q1" model that is used in the field for simulating the response of ecosystem respiration to change in
air temperature of 10°C’ at a reference temperature of 15°C’ The formulation we used for the “Q1o” model is:_

Rego =217 719 (3.11)

10
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with R, as ecosystem respiration flux and Ty, the air temperature. Again, we generated 2000 data points for both predictor
and target and we used half for training 100 runs and half for validation. The modelling capacity of the best structure in terms
of fitness value at validation is reported.

In order to investigate the response of the GEP approach to noise contaminated data, we simulated Gaussian noise that scales
with signal amplitude as often observed in the case of terrestrial ecosystem fluxes-(lasstop-et-al52042)-(Lasslop et al., 2012) and
soil respiration (Lavoie et al., 2015)fluxes. The signal-to-noise ratio (SNR, measured as ratios of standard deviations) was var-
ied between 10 and 1 in six steps.

For each of these functions and SNR levels, we sampled 100 validation data points 10 times. 20 GEP runs were performed
and-the-retrieved-on the 1000 training data points and the GEP model structure with the highest MEF-values-at-the-validation

peints-mean MEF value over the 10 validation sets was chosen. H-a-returned-structure-was-identical-to-the-originally-preseribed

As the choice of fitness function was crucial for the construction of structures in a GEP type of approach, we also investigated

in one experiment the effects of minimizing the CEM values (eq. 2.3) as opposed to using only MEF (eq. 2.1) as-aceeptance
eritertaor MEF+NP (eq. 2.5) as fitness function.

3.1.1 Alternative Machine Learning Methods

The prediction performance of the best GEP derived models based on the data in section 3.1 was compared with the prediction
performance of four commonly used state-of-the-art machine learning methods (MEMMLM), i.e Artificial Neural Networks,
ANN, (Yegnanarayana, 2009), Support vector Machines, SVM (Hearst, 1998), Random Forests, RF (Breiman, 2001) and
Kernel Ridge Regressions, KRR (Hoerl and Kennard, 1970). The-tootboxes-

The toolboxes and settings used for generating the predictions of-by the ANN and KRR methods are described by Framontana-et-ak(20+€

found in the “simple R" regression toolbox (Lazaro-Gredilla et al., 2014), the predictions of the SVM were obtained by using
toolbox where the regularization term, the insensitivity tube (tolerated error) and a kernel length scale are automatically
adjusted. Lastly, the RF predictions were given-by-obtained after running the Matlab statistics toolbox implementation with

All the present machine learning approaches have been applied on the same training data sets as those used for building the
GEP models, and their predicted values were compared with the validation sets used for determining the best GEP solution.

3.2 Measured ecosystem CO, fluxes

In the second experiment we tried-assessed the possibility to reverse engineer model structures R.., and its components based
of-only on real measured data. Specifically, we explored GEP derived model structures for various components of terrestrial
ecosystem respiration fluxes eeHeeted-measured in an 80 year old deciduous oak plantation in the Alice Holt forest in SE

England as described in (Heinemeyer et al., 2012; Wilkinson et al., 2012).

11
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3.2.1 Alice Holt in-situ data

The particutar—strength-of-the-Alice Holt data set is-that-componentfluxes—contains observations of R.., were-measured
separately—Rzz—and the total influx of COs to the ecosystem as mediated via photosynthesis (gross primary production,

G PP), and various soil respiration components.
Rec, and GPP were estimated from eddy covariance measurements of the forest net CO; exchange (NEE, Eq. 3.12) 5

Reerand-GP-were obtained from a micro-meteorological measurement tower at the same site that reports half hourly
integrals of net-ecosystem-exchange(NEE--NEE with the eddy covariance (EC) methodology (Moncrieff et al., 1997). The
Reichstein et al. (2005) procedure was used for gap-filling and separation of NEE into GPP and R..,. Given that R,; is a
fraction of R..,, above ground respiration can calculated as the difference between R.., and R,;;. For an in-depth description
of other site conditions and measurements see Heinemeyer et al. (2012).

A multiplexed chamber system was used for measuring-separately measuring soil respiration (/2,4 ) and its components,
using a continuous sampling method at fixed locations during two years at an hourly resolution. In order to partition the 124,
flux into its components, mesh-bags that are not penetrable by roots, but allow for mycorrhizal hyphae development were
installed. Deep steel collars were applied to stop both root and mycorrhizae in-growth. As a result, root respiration (R,,0t) is
given by the difference of I,,;; and the respiration recorded in the mesh bag chambers, mycorrhiza respiration (12,,,.) is given
by subtracting the steel collar flux from the mesh bag chamber flux, and the soil heterotrophic respiration (R0, ) is given by
the CO4 efflux at the steel collar chambersand-. Lastly, soil autotrophic respiration (R0, 15) is estimated as the sum of R,
and R,,,: (Eq. 3.14 and 3.15) .

The above ground respiration (R,po0.) Was

measurements of soil moisture (SW (), air temperature, surface temperature, and soil temperature taken at 2, 10 and 20 cm
depth are present in the dataset.

Ro., = NEE+ GPP (3.12)
Rapove = Reco — Rsoit (3.13)
Rsoit, = Rroot + Bimye 3.14)

Ryoil = Rsoit, + Rsoily, (3.15)

The computation of R,y as difference between R.., and R,;; might be highly uncertain because of the different tech-

niques used to compute the two respiration components, the completely different footprints, and the typical high flux under-
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estimation and low flux overestimation of R.., from EC (Wehr et al., 2016). The limitations of the separation of R., into its
components and the uncertainty of the estimates are further discussed by Heinemeyer et al. (2011), Heinemeyer et al. (2012)
and Wilkinson et al. (2012).

3.2.2 Data processing

We used the following candidate driver variables: soil volumetric moisture measurements, air temperature (from micro-
meteorological station), and temperatures at different soil depths, and GPP. A number of recent studies have shown a tight
linkage between GPP and R, reflecting dynamics of respiratory substrate supply to roots and mycorrhizal fungi from re-
cently assimilated C in plants. (Moyano et al., 2008; Mahecha et al., 2010; Migliavacca et al., 2011, amongst others). We use
G PP obtained from EC measurements at the site, but acknowledge the conceptual problem that R.., and GP P were derived
from the same observations of NEE. In order to minimize the potential spurious correlation between R.., and GPP as well
as redundancy of possible G PP influence with the meteorological drivers, we considered low-frequency variability of GPP
only (i.e. low-pass filtered modes of G PP which corresponds to variability beyond a 60 days periodicity only, see Mahecha
etal., 2010). “Singular Spectrum Analysis" (SSA, Broomhead and King (1986)) as described and implemented by Buttlar et al.
(2014) was used to obtain a smooth G P P signal. The seasonal cycle was extracted with the SSA method as the assumption is
that GPP affects mainly the seasonality of the respiration while the variability at the high frequency is assumed to be more

related to meteorological drivers (e.g. temperature, Mahecha et al., 2010). The SSA method is a tool used mainly in time series

analysis with the purpose of decomposing a time series signal into its independent sum components, such as trends, seasonalit

and high frequency components based on a singular value decomposition of trajectory matrices computed after embedding the
time series (Buttlar et al., 2014).

To reduce the skewness and the search space that the GEP evolution would have to cover in order to construct valuable
solutions (Keene, 1995), we log-transformed the seven target respiration data sets (see Figure 1 in supplemental material) and
applied a back-transformation when reporting the respective model structures. The time series used for the candidate drivers

remain unchanged.
3.23 GEP set-up

For each combination of respiration target and possible drivers, 50 subsets of 500 target time steps each were randomly selected
and used for the training of GEP models using the settings found in Table 1. The 50 subsets of the remaining 113 time steps are
used for cross-validation and the model with the lowest average validation CEM value is finally selected for each respiration
type.

We were particularly interested in determining the general character of each extracted model with respect to the different
respiration fractions. We therefore re-optimized the parameters of all extracted model structures when applying one extracted
model as the candidate function for a different respiration term. For example, the model formulation extracted for R.., is

re-calibrated for all the other types of respiration, creating six parameter sets (one for each respiratory flux) per equation. To
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cross-validate parameter sets, we computed performances for each train—validation data set pair and report averaged MEF
values.

As in the artificial example, we compared the returned GEP solutions predictions performance with that of other common
MLM such as SVN, KRR, ANNs, and RF. All methods were used for generating 50 subsets of 113 prediction values, after
training on the 50 subsets of 500 time steps of observations presented in the start of section 3.2.3. Then, a mean MEF value
was computed for all methods for all respiration components and the best mean MEF values were reported and compared with
those of the GEP extracted models. The comparison is done in terms of MEF as number of model parameters were not available

and CEM could not be computed.
3.2.4 GEP in the context of other known ecological models: Real observational data

A comparison was done between the GEP built models and some common literature respiration models with different structures
and driving variables that were also optimized using CMA-ES. The optimization was performed for each respiration dataset
and its candidate drivers and parameters (Table 2). The structures and prediction performances of the GEP models were then

compared with those of the optimized literature models.

4 Results
4.1 Artificial experiments

In the first artificial experiment the GEP approach is used to verify if it can reconstruct prescribed functions. Following the
training of the 20 independent GEP runs, the initial functions were successfully reconstructed for all 10 equations defined in

section 3.1.

For the model artificial test, the following structure was finally selected:
Rego = 035 x 250070 “-D

MEEF values for the GEP extracted models and for the predictions generated by ANN, RF, KRR and SVM are illustrated in
Fig. 4a. These MEF values were obtained through cross validation against independent, yet equally noise contaminated data
points (the SNR values are given on the x axis in reverse order for visualizing the increase in noise levels). There is a clear
pattern of decreasing MEFs with increasing noise contamination. This was expected, as none of the methods should fit the
noise added to the signal.

Figure 4b shows MEF values equivalent to fig. 4a, but applied to noise-free data points of the validation set, in order to
compare GEP outputs to the “true" structure underlying the artificial data set. In this set-up, the MEF values remained relatively
constant across SNR values above 2. When SNR level was set to 1, predictions for all investigated machine learning methods,

except for GEP predictions, show decreased fitness, with MEF values decreasing to a minimum of 0.8.
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In order to verify the effects of changing the fitness function from MEF to CEM, we compare the distributions of MEF values

for all runs for all studied SNR. Figure 5 exemplifies outputs for equation 3.10; panel a shows a drop of prediction capacity of
the GEP models with noise increase for all types of fitness functions when compared with noise-infused data. This contrasts
the reduced MEF assessed against original data, where a slight drop in MEF with noise increase for the MEF optimization
structures was seen, and where the CEM optimized structures show stability in MEF with noise. The new CEM leads to a

reduced number of returned parameters compared to MEF (Fig.5c), as well.
4.2 Measured ecosystem CO, fluxes

Applying GEP on the Alice Holt data set yielded a series of model structures for each respiration type. The returned model

structures are illustrated in equations 4.2-4.8.

GPPg )

Reco =log (T_19) x e 710 (4.2)
Rabove = 0.9SW (02 x (01GPP:) )
Rooil = 6(1.2T9~;‘0+1.3SWC—3.1) o
Rroot = 8(0'9 T_10 ) ws)
Rypye =1.8T_10 X 6(1'2T§%C_7'4) (4.6)
Ryoi, = (12725, +2.55WC ~4.9) o
- L1GPPs—3.6
Rsoilh, = 6( 0-3+0.6 T_10 (48)

where, GP P is gross primary production that has been smoothed using the SSA method with a 60 day window ; T__1¢
is soil temperature measured at 10 cm depth; and SWC' is volumetric soil water content. The corresponding cross-validation
MEEF values are given in Table 3, indicating a range of capacities for GEP models to represent different respiration types.

Whilst GEP-derived models may differ between respiration types, there are a number of equivalent models for different
respiration components. Rs,;; and R,,;, were described by identical model structures (but distinctive parameter values), and
R0t and Rs,i1, were described by similar (but not identical) models. Overall, the most common selected drivers were 11,
SWC and GPP.

The highest performance in terms of MEF value was recorded for R,;;, and for R.;;, thatis 0.82 and 0.81 respectively. The
lowest capacity of process representation, with an MEF value of 0.28, was recorded for R,y (Table 3), possibly because this
specific component would need to include active versus inactive periods determined by dormancy and leaf fall (i.e. seasonality
in this deciduous forest). A comparison of the predicted values and observed fluxes for all types of respiration can be seen
in Figures 6 and 7. In order to explore the capacity of the GEP models generated for the R.., components to recreate the

larger, across compartmental sum-summed fluxes, we summed the predictions of the models and eempare-compared them with
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the original fluxes —We-find-that-the-global-medellingperformanee-(Fig. 8). Based on a modelling performance comparison
models of the derived-medelsremained-in-a-very-smallrange-of-the-initial trainedfor-the-sum

of the models defined as sum

EP_m o 1o R

exeept GEP models trained on the component fluxes with the original GEP models trained on the summed fluxes, we found
no significant differences. However, we found that the total number of parameters is much larger for the sum models. This can
be a result of the GEP approach eliminating the “low impact " drivers due to complexity pressure. We can see as well that the
sensitivity is-present-onty in-a-certain-compartment—of the sum fluxes to certain drivers can strongly manifest itself only in
certain components which is why the drivers only get selected in the models built for those specific components

The residuals depict some remaining patterns (Fig. 9 and Fig. 2 of suppl.) and the null hypothesis of normal distribution
was rejected for all seven respiration component residuals at 5% significance level with the one-sample Kolmogorov-Smirnov
test. Hence, we might expect additional information that could be extracted from the residuals. In order to check whether the
remaining structure was missed in the first training routine because of imposing a multiplicative form in the models by log-
transforming the target data, we performed GEP runs on the residuals and combined the models. The improvement in overall
modelling performance is minimal, yet model structures become overly complex. The capacity of the GEP approach to retrieve
new information from the residuals is illustrated in Fig. 11 in comparison with that of the other MLM presented in section 3.1.1.
When correlation values were computed between the candidate drivers and the residuals, no significant linear correlations were

found (Fig. 4 of suppl.).
4.2.1 Model transferability

We investigated the capacity of each extracted model structure (equations 4.2-4.8) to represent a component of .., not seen
in the training procedure. This was done by means of new CMA-ES optimization steps. The new prediction performances are
illustrated in Tab. 4.

After optimization, none of the structures show an overall best MEF for all the R.., components (i.e. we clearly cannot
identify an optimal general model). However, we identify certain model structures that tend to perform overall better than
others. This is the case for the R,,,. model (eq. 4.6). It can also be seen that after the individual model optimizations, the
structures for R.., and that for R,,;;, have similar prediction capacities.

The prediction capacity of the GEP generated models in the context of other commonly utilized MLMs was assessed as well.
KRR, ANN, SVM and, RF were used for generating 113 predicted data points as described in section 3.2 (Fig. 10). The predic-
tion performance of GEP, KRR, ANN, SVM and, RF are shown in Fig. 11. Panel a contains the average MEF values computed

for all MLM methods predicted values when compared to the original observations for Reco, Rapoves Fsoils Rroots Bmyes Rsoil, » Rsoily, -

For all other cases, the performance is in the same range for all methods, but the GEP derived models having the lowest mean
MEF values. Panel b shows that when all MLM were trained on the residuals obtained from comparing the GEP outputs with
the observations, the GEP approach has the lowest capacity of capturing new relevant signals and is strongly outperformed by
the rest of the MLM, indicating that amount of information retrievable by GEP with the current fitness and settings is limited

and captured already in the first run.
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4.2.2 Comparing with literature models

Lastly, the GEP generated models were compared with some of the most commonly used literature models for describing
respiration. The resulting MEF values obtained after individual parameter optimization using the CMA-ES procedure for each
literature model are given in Tab. 5. The literature model structure that performed best overall in terms of prediction capacity
measured as MEF is the Water@,o model (Fig. 12). Figure 12 shows as well that certain types of respiration are easier to
represent by all models, including the models GEP generated, whilst other types of respiration are poorly predicted by all
models. Nevertheless, for all respiration types, the highest MEF values are generally recorded by the GEP models.

As the studied literature models performed best in modelling R,;;, we focus on contrasting GEP model results to literature
model outcomes for this ecosystem respiration component. Of all models included, the GEP model and )19 model including
SWC dependency captured seasonal variability best, but no model satisfactorily represented short-term CO5 flux variations
(Fig. 13, panel a). All models show the largest range of residuals for the months May to July in 2008, and June/July in 2009
(Fig. 13, panel b), with the two best-performing models (GEP and W ater@Q) having the narrowest range of absolute residuals.
Monthly mean average errors (MAE) indicate as well a systematic underestimation of soil CO efflux in the first year (Fig. 3

of suppl.).

5 Discussion
5.1 On the GEP method

In this work, the primary reason for the artificial experiments was obtaining a better understanding of the capacity of GEP to
solve symbolic regression types of problems. We put an emphasis on GEP performance in the presence of noise. This aspect
was important, given that monitoring data from terrestrial ecosystem COs effluxes are typically contaminated by sometimes
substantially large random uncertainties and measurement noise. In the case of NEE flux measurements, Lasslop et al. (2008)
and Richardson et al. (2008) show that the measurement error typically scales with the magnitude of the flux, leading us to
simulate that type of situation by adding noise that scales with signal to an already known function, equation 3.10. The results
show that all the studied methods are stable to presence of noise in the training set. These results increase our confidence
in the predictions generated by studied machine learning methods; in particular GEP derived modes can tolerate SNRs of 1.
Considering that the SNR in the R.., observations (if noise is only considered as random error) is probably larger than 4
which is where the curve starts decreasing in Fig. 4, the noise presence in the data should not influence the automated model
construction process and the real signals should be accurately captured when data uncertainties follow the pattern described
here. On the other hand, for Ry,;; and other CO5 fluxes measured with other techniques the magnitude and the distribution of
the uncertainty can be different (Ryan and Law, 2005; Pérez-Priego et al., 2015), and we cannot state what the response of the

present MM is in the presence of different types of uncertainties and measurement noise.
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Our findings illustrate that selection of CEM over MEF as a fitness function for optimization has a minor effect on the global
mean MEF (Fig. 5a). We also notice that due to the-eonstraints-on—applying constraints on the presence of structure in the

residuals and the length of the parameter vector, the final mean number of parameters is lower when CEM is chosen.
5.1.1 Limitations

One of the critical aspects in our work is that GEP, as implemented here, can only represent and derive “n — 1" type of
response functions. We are not able to generate model structures that encode e.g. system-intrinsic dynamics like feedback
loops, which are expected from our current understanding of biogeochemical cycles in terrestrial ecosystems (Ehrenfeld et al.,
2005; Friedlingstein et al., 2006). Hence, we believe GEP is suitable to e.g. understand and describe the sensitivities and non-
linear responses to changes in hydro-meteorological drivers, but fails to represent more complex carbon or water—reserveir
soil water dynamics. Pools and pool transfers cannot be introduced currently in the input, unless the depletioninflow/repletion
outflow equations are known and can be included in the set of functions that can participate in the evolution.

Lagged responses can only be detected if the number of lags from a driver is correctly included in the input, which already
implies sufficient knowledge of their existence and behaviour. Whilst in the current implementation of the GEP algorithm,
shifts in conditions and responses cannot be encoded or detected; these could be addressed with the inclusion of a conditional
operator in the set of functions encoded in the GEP evolution individuals.

Nevertheless, it would be fair to mention that the same limitations can affect the results of the other MLM and empirical

models presented in this paper.
5.2 The value of GEP for modelling ecosystem respiration fluxes

We automatically generated a series of model structures to describe terrestrial COg respiration fluxes (equations 4.2-4.8)
with the GEP approach. Most of these structures (5 out of 7) were of rather low complexityi-e—requiring-, requiring only 4
free parameters (which-is—eertainly-an-—effeet-of-the chosen—ecostfunction-CEM)and allowing for further interpretation. The

most complex structure is found for the R,,,. modelrepresentation, which is in line with previous findings (Shi et al., 2012).

Interestingly, the models derived for R.., and R, are structurally very similar. That is also the case of R,,,; and het-
erotrophic respiration, where the difference lies in the set of parameters and the added presence of an intercept in the for-
mulation of the ., model. This finding suggests a consistency in the response of the [?,,;; components to their drivers,

considering that the separation of the R, into its components might still lack accuracy (e.g. P. J. Hanson, N. T. Edwards and

Andrews, 2000; Kuzyakov, 2006; Subke et al., 2006; Heinemeyer et al., 2011). Hewever;-all-selected-GEP-generated-models
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When we compared the GEP-derived models
with the community established semi-empirical approaches models from a structural point of view, we found that they shared
some key features for temperature dependencies of CO» fluxes, which are typically captured by exponential relationships-, but
reveal some previously unconsidered dynamics as well.

A major difference is-that-when-was in the response of the respiration components to SW Chas-been-chosen-as-driver,GEP
often—alse-identifiesseme-, where the GEP models often chose SW C' as one of the drivers. Moreover, the GEP models often
contained an exponential dependency, i.e. there are only certain parts of the signal that are strongly sensitive to varying SWC.
“Fhis-We believe that the exponential dependency of terrestrial ecosystem respiration components to SW (' is a very intuitive
pattern ;-whieh-that has not yet been reported in the literature, and requires further exploration.

Another difference we found was the strongly seasonal response of the respiration components to G PP, possibly as a proxy
to light and vegetation availability which were not included in the set of candidate predictors.

Considering that GEP identified plausible models, that are very different structurally from previously reported semi-empirical
models, still yielding equivalent or better modelling performance, the validity of the conventional semi-empirical models can
be questioned. Nevertheless, we do believe that there is need for more in-depth analysis for determining whether the GEP.
described processes make actual biological sense and the selected drivers and their interactions represent true processes and
responses.

5.3 Data quality

During our study, it was apparent that the highest MEF values were obtained for all the studied methods in the case of the
respiration types that had direct measured observations and were not derived. It might be the case that when fluxes are obtained
from derivations, the measurement error will also increase, and the partition of clear signal existing in the observations is not

sufficient for constructing a good model with GEP.

5.4 High frequency variability

All GEP generated models underestimated the high respiration fluxes (Fig. 7) and typically did not capture the fast responses.This
henomenon was in some cases a systematic pattern, and sometimes affected only certain times of the year. Similarly, semi-empirical

models struggled to adequately simulate CO; flux peaks and in some cases monthly flux averages (Fig. 6)-13).

A more in-depth comparison of all the GEP and conventional respiration models, based on a time-scale dependent assessment
of model-data mismatch (Mahecha et al., 2010) could help to further elucidate the problem and clarify some of the strengths
and weaknesses of the different modelling approaches, especially when seasonal mismatches appear. Nevertheless, a detailed
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time-scale dependent assessment is beyond the scope of this study, and for such an analysis, the current time series are simpl

t00 short.

The question is whether the GEP method lacks the ability to build models that correctly represent the processes and their fast
dynamic responses, or whether the candidate drivers and the observations used for their representation are simply not sufficient
for generating representative models. In the end, the response of R,,;; and R.., to external drivers might be too complex to

describe solely with the currently available measurements and with the selected drivers.

We believe that the consistent underestimation of fast responses was partly due to surface moisture affecting litter decomposition
and fungal activity, as soil moisture was only monitored over the average 8 cm surface, with the top few centimetres most

likely presenting the highest activity and partly due to some potential processes/drivers like lags between G PP and respiration

Holttd et al., 2011) or phenology (Migliavacca et al., 2015) that were not specifically included in the learnin

Another explanation for missing some of the (high flux) variability could be in our choice of fitness function. As we decided
to penalize during the learning process for structures with many parameters, it is likely that some structures were eliminated
early-on during this process, even though they may be well-suited for describing a given process from a modelling efficiency
point of view. However, this is a case of trade-off between a good fit and structural simplicity, and in our approach, we decided
that simplicity of structure, i.e. the possibility of interpretation is a very important asset.

We suspected-as-well-thatthe-explored as well the possibility of the underestimation of the carbon flux variability was-being
caused by the log-transformations we-did-on-applied to the observations. Thatcould-have-introduced-a-bias-thatIt could have
been the case that the log-transformations excluded interesting components of the model structures by forcing the method to
build multiplicative models. HoweverNevertheless, when the GEP was run again on the residuals, without log-transforming, no

new meaningful information was retrieved, indicating that multiplicative models were sufficient for reconstructing the studied

R, components present in this study.

5.5 Equifinality

Table 4 shows that when optimizing the parameters for all structures, the prediction performance becomes similar, which leads
to the question of equifinality of dynamical systems, where different models that try to capture their structure, might have
different formulations, but represent the same response.

A critical question for the applicability of any ecosystem model is whether the model structure is more important than the
parametrisation of a given “best" model. For this question to be addressed, however, we need a larger sample of ecosystem
types representative for different types of responses where we can explore the importance of the obtained structures and their

parameter sets.
5.6 GEP models in the context of other machine learning methods

The comparison of GEP generated models and machine-learning methods showed a narrow range of predicted fluxes (Fig.
11). The analysis of training all the MLM on the GEP residual output showed that the GEP approach is not able to retrieve

any new meaningful structural components, but that the remaining MLM are much better at reconstructing the signal left in
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the residuals. This indicates that although the GEP is actually a reliable MLM when it comes reconstructing the underlying
R, fluxes and is not prone to over-fitting, it could be that the current set-up of the GEP is not sufficient for an exhaustive
description of those fluxes, or that might be overly strict on complexity of models compared to other MLM. The GEP approach

has, nevertheless, the benefit of producing mathematical model structures that can be the basis for future interpretation.

6 Conclusions and Outlook

Overall, our results suggest that the GEP approach is a potentially powerful tool of reverse engineering, particularly helpful for
building ecological models when there is a minimum of a priori system understanding. We exemplified this conceptually using
artificial data, but also show that GEP always yields as good or better results compared to conventionally used models in the
case of ecosystem respiration. Based on data from a long-term monitoring site of different respiratory fluxes, and using GEP
as a reverse engineering tool, we found new structures for modelling R.., components. The GEP derived models outperform
conventionally used models and generally differ by the way temperature and G PP, but also SW C are interpreted, indicating
that conventional respiration models might have to be revised. At the same time, we found that when the GEP derived models
are mutually compared, there are sufficient structural particularities for each terrestrial respiration type as to not allow for the
formulation of a general R.., law. More research is needed on a larger set of sites to identify widely usable models and for
their interpretation. A particular matter of concern is the apparent equifinality of selected model structures, indicating that many
response functions are yielding predictions of almost similar quality. A study of multiple sites would enable an investigation of
whether specific ecosystem types result in similar model structures, or if-whether response functions apply across contrasting
ecosystem types.

The current study has also revealed methodological aspects that could be improved. In particular, we found the inclusion of a
parameter optimization step very helpful to further test the transferability of model structures. But this approach could be poten-
tially integrated into the GEP evolution. More specifically, we think that the next development of GEP could include the param-
eter optimization as an intermediate step before selection during each evolution generation ¢2)(Ilie et al., under preparation).
In this way, a model structure could be chosen according to not only the current state of parameters but also on its potential

and convergence to a global solution might be achieved faster.

Code and data availability

All code and data used to produce the results of this paper can be provided upon request by contacting Iulia Ilie or Miguel D.

Mahecha.
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Glossary

chromosome individual used in automatically evolving an optimal solution comprised of a set of genes that are connected

with a binary operation (e.g. + X —). 5,6

CMA-ES covariance matrix adaptation evolutionary strategy. 9

evolution the process of producing an optimal solution by GEP through . 5

expression tree binary tree used to represent algebraic expressions. 6

gene set of characters of fixed length that encodes an expression tree. 5

gene head initial section of the string that comprises a GEP gene, containing a combination of characters that map to predictors

and possible functional transformations . 5
gene tail end section of the string that comprises a GEP gene, containing only characters that map to predictors. 5
generation time step of an evolution. 6

genetic operator operator that produces changes in the structure of a chromosome and the expression tree it encodes by

altering the strings representing composing genes (e.g. mutation, inversion, recombination, etc.) . 6
genetic operator rate probability of a genetic manipulation to occur during a generation. 6

GEP gene expression programming, machine learning method that evolves chromosome structures with the purpose of mini-

mizing a cost function. 3
hyper-parameter set of parameters which need to be set for the runs of a machine learning approach. 6

ill-posed problem a problem for which the solutions might not be unique or unstable, also known as an inverse problem. 9

individual GEP entity that is a component of a population during a certain step of the evolution process. Also known as

chromosome. 6
MLM machine learning method that can produce predicted values based on a training set. 11

population total set of chromosomes that participate at a certain step in the evolution of an optimal solution in the GEP

approach.. 6

reproduction process of generating new individuals for a new generation starting from the present generation individuals after

they go through structure modification and fitness based selection. 6

solution finally selected model structure resulting from a GEP run. 3
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Table 1. GEP settings

Parameter

Artificial data

Real observations

Number of chromosomes

Number of genes

Head length

Functions

Terminals

Link function

Max run time

Fitness function

Selection method for replication
Mutation probability

IS and RIS transpositions probabilities
Two-point recombination probability
Inversion probability

One point recombination probability

2000

3

5

+,—, /%2, \ﬂln,exp,sin,cos
T1,T2,T3

+

1200 seconds

CEM

tournament(Coello and Montes, 2002)
0.2

0.05

0.3

0.05

04

2000

2

6

+, —,/,*,:ry,\ﬁln,exp
GPPs,Tair,T-10,SWC
+

1800 seconds

CEM

tournament

0.2

0.05

0.3

0.05

0.4
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Table 2. Respiration model formulations commonly used in the environmental science community

Model Formulation Reference

Arrhenius ax e Fo/RT (Lloyd and Taylor, 1994)
Q10 ¢1 X ¢§P1T+d (Reichstein and Beer, 2008)
Water Q10 b1 X qﬁé#) X Svf,‘g% X Sw%l-s-m (Richardson et al., 2008)
LinGPP (Ro+ kaGPP) x ¢ Trer=To " Ta15) ko ca-a) (Migliavacca et al., 2011)
ExpGPP [Ro+ Ra(1 — eb2GPPY] x ¢ Try =15 ~ 7o) o aktswol-s)  (Migliavacca etal., 2011)
addLinGPP  Ro x ¢ Trey =16 Ta=To)  ahtSWC(-a) 4 1 cpp (Migliavacca et al., 2011)

F+SWC(1—a)

Eo(—=»L 1
addExpGPP Ry xe O(Tref*TO TA-Tp) X %&m + Ra(1— ekQGPP) (Migliavacca et al., 2011)

a,Eo,¢1,02,03,04, Ro, Ra, k, k2 and o are model parameters that can be optimized

Table 3. Modelling performance for all extracted model structures after cross validation over 90 cases.

Respiration type MEF ocMEF Equation

Reco - 0.14 4.2
Rapove 0.28 0.13 4.3
Rsoil 0.13 4.4
Riroot 0.10 4.5
Rye 013 46
Rsoil, 0.13 4.7
Rsoity, 0.11 4.8
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Table 4. Average validation MEF performance for all extracted model structures when re-optimized against all other respiration CO2 flux

observations.

trained for/ opt. for  Reco  Rabove Rsoit  Rroot Rmye Rsoita  Rsoil,

Reco (Bq. 4.2) 0.67
Rapove (Eq. 4.3)

Rsoiu (Eq. 4.4) b 0.82
Ryoot (Eq. 4.5) ! 0.65
Rinye (Eq. 4.6) 0.84
Rgoit, (Eq.4.7) 035 029 [Nk
Rsoit,, (Eq. 4.8) Nk 0.67
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Table S. Average validation MEF performance for CMA-ES optimized selected literature model formulations when compared with respira-

tion CO2 flux observations.

Model formulation  Reco  Rabvove Rsoit Rroot Rmye Rsoita Rsoiy,
Arrhenius 0.07
Water Q10 0.81

LinGPP 0.17 0.70
ExpGPP

addLinGPP ! 0.12
addExpGPP . 0.20

33



compleme ...

X ,v‘A Expert/Existing
: knowledge ~—_ indentifying
setup running  plausible predictors, time lags,
N hyper-parameter suitable cost functions etc
ew

knowledge

- entdd G
Amet e 0y, . .
expet ” Machine learning

-up 2
= o method
. \ generate n
as©

. candidate models
Observations

< [ a
- o &)
= Oy, \
<‘ g’ \\
\
2 o T \‘ Model,
D% “e55 <\ Structure ’ N Foumees
‘ ‘
| .
‘j :
/ Model,
[ L
Model
-

>}
Structure \ Parameters \0\’(\% \((\0
> )\i{\(\‘b’
)
¥

—_— _—l
Existent path Direct approach
-------------- >

Possible path Reverse engineering

Figure 1. Direct approach and reverse engineering in model development for describing dynamical systems. Existing and possible
steps needed in the process of building a model. For the direct approach, the process starts with the building of hypothesis from existing
knowledge, the hypothesis is then subject of abstraction and summarized in a mathematical model that has two components: the structure and
the parameters. The mathematical model can be translated into a computational form that will generate predictions. Depending on how well
the predicted values manage to recreate the available observations, the model’s parameters are calibrated or if the general trends are missed,
there might be need for structural reformulation. On the other hand, in the reverse engineering approach, a machine learning method is used
to generate a set of candidate models that are then compared with the available observations and which according to the prediction capacity
may have to go through structural changes by automatic evolution or through a final parameter adaptation. From the set of evolved models,
the best model in terms of prediction capacity is chosen and its structure will be the basis for hypothesis building, as an expert would try to
explain why a specific structure was automatically evolved and whether the structure of the model can be explained from the studied system
intrinsic processes. If that will be the case, and the structure has not emerged randomly, the conclusions can be compared with the existing

knowledge which can be eitherreconfirmed or new aspects of the studied system might be brought into light.
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Figure 2. The work flow used in solving symbolic regression problems with GEP.. The process of evolving an optimal solution from
observations starts with randomly generating a set number of evolution individuals called chromosomes. The chromosomes are composed of
genes that are sets of strings encoding expression trees that can be translated into mathematical expressions in the subsequent step. Following
the mathematical expression comes the evaluation of each emerging individual (model) against the target variable values and for each one a
fitness values is assigned. If the stopping criterion has not been reached (e.g.. best fitness possible, highest number of generations allowed,
convergence etc.) the best individual in terms of fitness is saved and the remaining set of chromosomes are selected for genetic manipulation.
When the stop criterion is reached, the parameters of the best chromosome is calibrated against the training data with an optimization

approach, the CMA-ES, and the best solution is returned.
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Figure 3. GEP evolution process components.A.
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(a) Validating against noise containing datasets. (b) Validating against noise-free datasets.

Figure 4. Effect of adding noise to original signal on prediction capacity for GEP, KRR, RF, SVM and ANN; The first panel contains
of mean MEF values from 20 independent runs for each increasing level of noise where MEF is computed after learning from a data set of
200 data points and validating against 1000 data points generated from equation 3.10.
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Figure 5. Effects on modelling performance and parameter number caused by choice of fitness function during GEP training for

artificial noisy data generated by equation 3.10, where MEF is defined in equation 2.1 and CEM is defined in equation 2.3.
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Figure 6. Observed and predicted outgoing CO- fluxes. 613 time steps of daily averaged CO» effluxesvfor-effluxes for two years at the
Alice Holt oak forest site. The predicted values are generated with the models extracted by the GEP approach with the settings given in table
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1 for the following types of respiration: Reco, Rabove; Rsoil, Rroot, Rmye; Rsoil, , Rsoit;, - The models are given in equations: 4.2-4.8
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Figure 7. Observed and predicted outgoing CO- fluxes.613 time steps of daily averaged CO effluxes for two years at the Alice Holt
oak forest site. The predicted values are generated with the models extracted by the GEP approach with the settings given in table 1 for the

following types of respiration: Reco, Rabove, Rsoits Rroot, Rmyc, Rsoil,  Rsoit;, - The models are given in equations: 4.2-4.8

40



Reco=Rabove+Rsoll Rabove=Reco-Rsoil RsoilzRSoiIa+RSoiIh
N - N - <
& S 6 S Py
~— o
X 7 X5 X 3 . g5
= 6 = o o = K
ON 50:'0@@ 5 ® o @ O ON4®°‘8°°£°°° OOOOOQ,O s ONZ . o
O 4 O 3 %ﬂo o8 O o o
[+ o
E 3 cofP o B 5 o <10 B Py o
5 2 s} 00®° o g 1
T 1 -1 o0 o8 5
£ 0 o -~ £ 0
* o12345678%tmuas | Y 0123456789 S0 1 2 3 4 5
Observed CO, flux (gCday "m-2) Observed CO, flux (gCday *m-2) Observed CO, flux (gCday ‘m-2)
. %
RSoil =Rroot+Rmyc Reco=Rabove+Rroot+Rmyc+RSoil,
‘TE' 4 MEF= 0.79 o 13MEF= 054
ol R%= 0.81 £ 12 R%= 0.56
— > —
g 3] ¥= 0.84 x+ 0.1? g 100" 0.54 x+ 1.40
Q o (@] 9
(=] 0L o o))
:: o ®» ® ;’ 8
3 o P %0 2 7 o
= 0o® = @ o @ 8
Q" % Xl o' 5 e
(@) ° O 4
- 1 © S 3 2 03% o
] () [}
k3] 5 2
: P
o g 1 2 3 2| % 0123456780910111213
Observed C02 flux (ngay_lm—Z) Observed Co, flux (gCday "m-2)
1

Figure 8. Observed versus predicted R, components fluxes, where predicted values are computed as derived fluxes.
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Figure 9. Residuals computed for the GEP models after training on log-transformed data.
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Figure 10. Observed C'O- fluxes and one set of 113 predicted values given by the some common machine learning methods (MLM)

after training on 500 data points.
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Figure 11. Machine learning methods (MLM) prediction performance for all respirations components (left) and for the resid-
uals (right) resulting from the GEP trained models. The MEF values obtained for validation by all the MLM methods for
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Figure 12. MEF validation values for literature models and for the best GEP model in terms of MEF at each respiration level. Each

Reco flux component is shown in a separate colour.
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Figure 13.

of the two studied years and residual values (B) of the total soil daily CO- outgoing fluxes as simulated by the investigated literature
models and the GEP emerged model. The fluxes shown here are the real flux measured at the site and the predicted fluxes generated
according to the GEP model and some of the models used in the environmental science community. The center of the plots in the second row

is -1. The scale of the fluxes is given in gC/day%m2/g§X.
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Supplemental Materials:

Supplemental Materials: Reverse engineering model structures for soil and ecosystem respiration:
the potential of gene expression programming

Table 1. FheKarvatanguagetranstation-Standard error of

MEF at validation values for all MLM for different SNR values when

the moementMEF values are computed against the noisy data.
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Table 2. Standard error of the MEF at validation values for all MLM for different SNR values when the MEF values are computed against
the clear data.
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GEP models for all log-transformed respirations types time series, before back-transformation.

GPP,
log (Reco) = T ® 4 log (log (T_10)) (1.1)
—10
1og (Rapove) = 0.1T_19 + 0.410g (0.8V SWC) (1.2)
log (Reoir) = 1.2T% +1.3SWC — 3.1 (1.3)
1.2GPP, —8.1
1og (Ryoot) = 0.912CPP ~ 81 (1.4)
T_10
log (Rmye) = 1.11og (1.7T_10) + 1.2T515 ¢ — 7.4 (1.5)
log (Rsoit,) = 1.2T%7, +2.55WC — 4.9 (1.6)
1.1GPP, — 3.6
10g (Rsoit,) = —0.3 +0.6 —————"— (1.7)

T 10
Figure 1 in supplemental material illustrates the change in the shape of the PDF estimated for each respiration type after
log-transforming. For all time series, the skewness is visibly is reduced.
From Fig. 4 it is worth mentioning the apparent correlation, although weak in terms of R? value, of the R,y residuals
with GPP;, even when this was not chosen as a driver, indicating that the relation was not strong enough for an explicit
model inclusion but it could show a dependency to a driver for which GP P acts as a proxy such as phenology, or substrate

availability. Such weak correlations are present as well between R, and R, residuals and Tg;,.
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Figure 1. Change in estimated density function of observations before and after log-transforming for all studied respiration types.
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Figure 2. Residuals computed for the GEP models after training on log-transformed data.
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Figure 3. Monthly averaged error values for some literature models for and the GEP generated model for daily soil CO2 efflux in the

two studied years. The center of the plots is -1. The scale of the fluxes is given in ¢C/m>/day.
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Figure 4. Candidate driver linear correlations with GEP model residuals.
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