
1 Response to Reviewer 11

In the following, we denote comments by the reviewer in bold and our own re-2

ponses in standard fonts.3

The manuscript proposes to automatically derive model structures using4

Gene Expression Programming (GEP) introduced by Ferreira (2001). The5

authors apply GEP to different components of terrestrial CO2 fluxes mea-6

sured in an 80 year old deciduous oak plantation in the Alice Holt forest in7

SE England. The goal is to compare automatically derived model structures8

with predictions by other machine learning methods and from other pub-9

lished models of ecosystem respiration. The paper is in the scope of the jour-10

nal and the topic could be interesting for a broad audience of geoscientists.11

In the present form, I cannot recommend publishing and ask the authors to12

thoroughly review their manuscript taking the below mentioned points into13

account. Additionally, the manuscript would benefit from a proofreading by14

a native speaker.15

We would like to thank the reviewer for the evaluation and detailed comments16

on our manuscript. We further provide responses for the posed questions and de-17

tails on how we revised the manuscript. Please note that our UK based co-authors18

had revised the original paper, and have been involved as well in the submission19

of the revised manuscript.20

We would like to mention that all page and line numbers for specifying changes21

in the manuscript are given based on the difference mark-up file. Major com-22

ments23

1. The goals stated in the introduction are scattered over page 3 (ll. 34, ll.24

2325, ll. 2830). Please state them clearly at the end of the introduction.25

• The section was re-organized as suggested by the reviewer in the re-26

vised manuscript. The goals of this study are now concisely stated (p427

ll 11-19).28

2. GEP is the key part of the manuscript. It is not a standard modelling29

framework and needs a clear introduction. In the present form, Section30

2.1 is difficult to understand for someone not familiar with GEP. Please31

define clearly what is a gene, a chromosome and an expression tree and32

how they are related. Use examples for illustration. The original paper33

by Ferreira (2001) is written for a broad readership and can serve as an34
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example. How are the mathematical statements coded in chromosomes35

evaluated to generate predictions?36

• Thank you for pointing this out here. We included a figure explain-37

ing the most important processes of the GEP evolution in the revised38

version of the manuscript (Fig. 3).39

We described more carefully what we understand here as “gene”, “chro-40

mosome” and an “expression tree” and added the definitions in the41

glossary. We agree that this is absolutely key to the readers (Section42

2.1).43

3. The use of the fitness measures is inconsistent throughout the manuscript.44

In section 2.2 you derive a composite fitness measure CEM and state45

that this is your final normalized form of the fitness function (eq. 2.3).46

However, later in the results you report MEF or MEF+NP (that was47

never property introduced). Explain clearly which function was used48

to measure the fitness. Also p. 8 l. 45 shows that CEM is apparently not49

your final fitness function.50

• We apologize that we have not been sufficiently clear in our descrip-51

tions: CEM=MEF+NP+SE (modelling efficiency +number of param-52

eters+ signal complexity measure) is the final fitness function used for53

optimizing the solutions for all GEP results presented in this paper.54

The MEF values are reported for quantifying the model-data misfit55

which is more natural to “read”.56

More explanations on MEF+NP were added to the revised manuscript57

as well. This function is a fitness function similar to CEM, but where58

the entropy component is missing. This function was introduced in59

the manuscript in order to better illustrate the effect of each fitness60

function component for the final GEP solutions performance (p 9 ll61

11-15).62

4. What were the functions that were coded in GEP and could thus form63

algebraic expressions? How did you chose them?64

• Usually in genetic programming type of approaches, the identification65

of input functions depends on the type of problem which we try to66

solve. If we tackle symbolic regressions, as is the case here, most of-67

ten a set of primitive functions is proposed, such as addition, multipli-68

cation, exponential and so on. More complex functions could increase69
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model complexity too much and risk over fitting. We added a more70

detailed explanation in the revised manuscript (p 5 ll 18-23).71

5. Section 3.1.1: You state the the machine learning methods (Artificial72

Neural Networks, Support Vector Machines, Random Forests and Ker-73

nel Ridge Regression) were used without tuning the hyperparameters.74

I have a serious objection here. While some of the hyperparameters75

could be safely set to default values, others have to be tuned and do76

affect the performance of those models (e.g. the C2 cost parameter of77

Support Vector Machines). I recommend that you consult the techni-78

cal literature here and tune hyperparameters for a fair comparison. A79

good point to start is the book by Kuhn and Johnson (2013).80

• We are sorry for the confusion here: we wrote that “All the runs were81

performed with default settings” e.g. regarding the choice of their82

Kernels. But we did, of course allow the hyper parameters to vary and83

adjusted them in a cross-validation approach as described in Camps-84

Valls2012.85

The only approach run with default settings was the RF approach from86

the Matlab statistics toolbox implementation.87

The paragraph should say:88

“The toolboxes and settings used for generating the predictions of the89

ANN and KRR methods are described by Tramontana2016 and found90

in the “simpleR” regression toolbox Lazaro-Gredilla2014, the pre-91

dictions of the SVM were obtained by using the “LIBSVM” library92

Chang2011 from the “simpleR” regression toolbox where the regular-93

ization term, the insensitivity tube (tolerated error) and a kernel length94

scale are automatically adjusted. Lastly, the RF predictions were given95

by the Matlab statistics toolbox implementation running with default96

settings. ”97

Was corrected in the manuscript (p 8 ll 20-25).98

6. Which predictors did you use for the machine learning methods on the99

artificial data?100

• Thank you for pointing this aspect out. All the machine learning meth-101

ods (GEP, KRR, ANN, SVM and RF) learn based on the same input102

data set for all artificial problems, which contains 3 candidate variables103
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(x1, x2 and x3), which means that all methods are allowed to perform104

a feature selection as well. We apologize that this was no made clear105

in the manuscript but we have now corrected that p7 l25-26.106

7. p. 9 l. 2932 You state that you log-transformed the fluxes before mod-107

elling and back-transformed the model structures. Did you also back-108

transform the predictions? At least in standard regression, back-transformations109

need particular attention. When back-transforming from the log trans-110

formation, the variance of the residuals has to be considered in order to111

avoid a bias. Please explain what and how you back-transformed. How112

did you take care of a possible bias?113

• For the GEP solutions, we trained on log-transformed target data. That114

gave us a set of solutions. But of course, in order to obtain the initial115

fluxes an exponential function was applied to these solutions. From116

the exponential functions we obtained predictions which are further117

compared with the original target data and MEF values were reported.118

So, yes - we back-transformed the resulting structures.119

• For the remaining machine learning approaches (ANN, SVM, RF and120

KRR) the exponential is applied directly to the predictions obtained121

after learning from the log-transformed target and the resulting pre-122

dicted fluxes are compared with the original target by means of MEF.123

• We don’t exactly understand the issue of the bias - it would actually124

matter during the optimization as the cost-function deals with the log-125

transformed data. But after back transforming, the data are in original126

space and the evaluation with the MEF should be fine. This means127

also that the model selection should be unbiassed.128

8. Fig 8 shows a lot of dynamics in residuals from the GEP approach.129

Because you are dealing with time series, reporting MEF only is not130

satisfactory. A more in depth comparison of the different models at131

different time scales is appropriate (e.g. Mahecha et al., 2010). Which132

temporal patterns can be well reproduced by the different models?133

• We agree that reporting only MEF values is a bit superficial. However,134

Figure 13 reveals that model-data miss-match is not only an issue of a135

certain fast time scale, but clearly also occurs on seasonal time scales.136
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The Mahecha2010 approach is very useful if we would be able to ad-137

ditionally deal with e.g. trends etc. But for this kind of analysis the138

time-series are simply too short. These aspects and more are discussed139

in section 5.4.140

9. From Fig 10 we learn that the machine learning algorithms performed141

better than GEP. In Section 5.2 you state that GEP underestimates high142

fluxes as do the published semi-empirical models. So what is the advan-143

tage of using a GEP approach? What can we learn from it? I suggest144

that you restructure your discussion such that this aspect becomes re-145

ally clear. In the present form Section 5.2 is somehow lost.146

• Thank you for pointing this out. Indeed, this discussion is at the heart147

of our philosophical approach: We argue that if GEP identifies struc-148

turally very different models that, however, yield equivalent model149

performance, it puts at question the validity of the conventional semi-150

empirical models. GEP models reveal that certain dynamics that are151

typically unconsidered in approaches of this kind, for instance the ex-152

ponential influence of SWC to respiration components or the seasonal153

influence of GPP. This section of the discussion was restructured in154

the revised manuscript for increased clarification of where we see the155

added value of such an approach (section 5.2, p 19 ll 4-16).156

Detailed comments157

• p. 3 l. 14 Explain briefly symbolic regression here and in more details158

in the method section (p. 4 ll. 9ff). C3159

A symbolic regression is a type of regression where not only the parameters160

of a known (linear) function are optimized based on data, but where the161

functional form itself is also constructed based on data as a combination of162

basic linear and non-linear mathematical functions. Further expanded in the163

method section.164

• p. 4 l. 1417 You state that the variables and functions are subsequently165

mapped to a set of characters, then that the mapping process generates166

sets of strings. . . And then in the next sentence the mapped letters are167

randomly combined . . . . This is confusing. State clearly what is the al-168

phabet used to map functions and variables. They cannot be randomly169

combined: a binary function has to have two inputs, for example, and170
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this is taken care of in the coding sequence. The initial chromosomes171

are generated randomly, however, the genes must be valid mathemati-172

cal expressions.173

The input variables and functions are indeed mapped to characters that are174

combined into strings which encode the mathematical expressions. The va-175

lidity of encoded mathematical expression is insured by the internal trans-176

lation language and by the equation: tail=head*2+1. Thus although each177

of the sections, head and tail are generated based on random selection from178

the input characters sets (functions+variables sets for head and variables for179

tail), there are still rules that insure validity of mathematical expressions180

(except for cases where a solution can only be deemed invalid by evaluating181

the expression, such as division by 0, etc)182

• p. 4 l. 32 explain individual.183

The individual is a component of the evolution population which encodes184

a specific mathematical expression. It is the same as chromosome. Added185

better definition in glossary.186

• p. 5 l. 1 How is the hyper-parameter tuned?187

The hyper-parameter has either some commonly used default values in the188

community, especially for the genetic operators rations, or some values that189

have been empirically established with experience, depending on the prob-190

lem we are looking at.191

• p. 5 l. 89 How is the population diversity related to stochastic bias?192

Once diversity is insured in the evolution population, we can be more confi-193

dent that a certain solution does not appear just by chance, as it would have194

to be good enough to beat a larger pool of solutions.195

• p. 6 l. 2 and eq. 2.2 inconsistent names: SE or S[P]?196

SE is the name we use for the Shannon entropy. S[P] is changed as well to197

SE in the manuscript.198

• Give more details on the calculation of the permutation entropy (Bandt199

and Pompe, 2002). A reader not familiar with the method should be200

able to understand what you calculated.201

In short, the calculation of an entropy as a measure for randomness from202

a time series (e.g. Shannon’s entropy) requires to determine a probability203
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distribution that underlies the time series (or dynamical system), which is204

usually done by a partitioning step (also called phase space reconstruction205

in other contexts). This is a fundamental step in the methodology, and var-206

ious methods have been used to arrive at this probability distribution, for207

instance frequency or histogram-based measures, procedures based on am-208

plitude statistics, or symbolic dynamics (see e.g Kowalski et al 2011 for an209

overview). In recent years, the Bandt Pompe approach has become popu-210

lar, because it directly takes sequences in time into account: The technique211

hence divides the time series into ordinal sequences (i.e. ordinal patterns,212

or symbolic sequences), and then computes entropy measures directly from213

the probability distribution of these ordinal patterns Bandt2002. This ap-214

proach has a number of advantages, namely that it is robust to noise (no215

sensitivity to numeric outliers) and to trends or drift in the data, it is an216

(almost) non-parametric method and no prior assumptions about the data217

are needed (the only parameter that has to be specified is the embedding218

dimension, i.e. window length), and allows to disentangle various possible219

states of the system that are then encoded in the probability distribution (see220

e.g. Zanin2012 for a review of the method and applications). We described221

the method in more detail, and give a few examples of its application in the222

revised manuscript (p 8 l 26– p 9 l 3).223

224

• Eq. 2.3. I dont understand the last term in your derivation of CEM.225

Why 1 SE? The permutation entropy varies between 0 and log(n!), n226

being the order of permutation (n = 4 in your case). Did you normalise227

SE by its maximum?228

SE is indeed normalized by its maximum; hence SE varies between 0 and229

1, where 1 indicates no correlated structure in the residuals. Furthermore,230

the best CEM value can take, and towards which the optimized values tend231

to is 0.232

• Is CEM maximized or minimized?233

Throughout the entire paper, the optimization is done by minimization of234

the fitness function value.235

• p. 6 l. 22 Why are model parameters constant values? This term for an236

entity being optimized is confusing.237
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GEP as a method does not offer a specific optimization of parameters, as it238

evolves entire mathematical formulations. So until there is a special treat-239

ment in terms of optimisation for the parameters, they are considered con-240

stants. Once a final solution is reached, a specific optimization algorithm is241

used for242

• p. 7 l. 26 and Tab1: You never explained head and tail of genes.243

We apologise for the slip. Added to glossary.244

• p. 9 l. 25 Explain briefly how the Singular Spectrum Analysis works245

and give references to the original publications (Broomhead and King,246

1986, for example).247

The SSA method is a very useful tool used mainly in time series analysis248

with the purpose of decomposing an original time series into the sum of its249

components, such as trends, seasonality and high frequency components.250

More details and the references are added to the revised manuscript (p 13 ll251

16-18).252

• p. 10 l. 12 I dont understand how your split you data in training and253

test data sets. According to p. 8 l. 21 you have two years of hourly254

observations. So what are the 500 target time steps and why are there255

613 time steps in total? How did you calculate the subsets?256

Thank you for pointing this aspect out. It seems that we have not been clear257

enough in the description. Data is available with hourly resolution, however,258

we use daily means for model constructions. So for two years, we should259

have 732 data points, but after filtering we are left with a gapped set of 613260

observations. Those 613 d.p. are split into two sets of 500 and 113 d.p 50261

times. For each of this split we then learn a model and the best over-all at262

validation is finally selected and presented in the results section. Section is263

revised for clarity.264

• p. 12 l. 2022 What do you mean by a component of Reco not seen in the265

training procedure? Which components were not modelled?266

Each component was separately modelled and a solution is built with GEP.267

Then, the parameters of each of these solutions are re-calibrated using CMA-268

ES for the rest of the components for a fair comparison of modelling capac-269

ity.270
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• p. 14 l. 10 Which water reservoir do you refer to? Soil water? Then271

reservoir is misleading.272

Indeed we refer to soil water. We apologize for the confusion and water273

reservoir has been changed to soil water in throughout the revised manuscript.274

• p. 16 l. 13 You state that GEP is not prone to overfitting. How did you275

analyse this?276

This was concluded for the results of the increase of signal to noise ratio ex-277

ercise, as the MEF values of the solutions reconstructed when compared to278

original, noise free data do not change significantly with addition of noise.279

• What are the error bars in Fig3(a), (b) and fig4 (c)? The error bars are the280

standard errors of the mean MEF values at validation computed over the 10281

validation sets (p11 ll8-10). Unfortunately, not visible enough at the scale282

of the plot. For that, two tables with the concrete values given in the plots283

was added to the supplementary material of the revised manuscript.284

• Fig3(c) is not necessary.285

Removed from manuscript as suggested.286

• Fig12 is never discussed in the text.287

The figure is mentioned in p. 15 l 5. However we agree that it needs more288

clarification in the manuscript.289
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1 Response to Reviewer 21

In the following, we denote comments by the reviewer in bold and our own re-2

ponses in standard fonts.3

Review of Reverse engineering model structures for soil and ecosystem4

respiration: the potential of gene expression programming5

We would like to thank the reviewer for the evaluation and detailed comments6

on our manuscript. We further provide responses for the posed questions and7

details on how we revised the manuscript.8

Please note that all page and line numbers for specifying changes in the manuscript9

are given based on the difference mark-up file.10

In this manuscript Ilie et al. explore the use of gene expression program-11

ming (GEP) to select empirical models for soil and ecosystem respiration.12

The authors make a case that GEP is a technique for reverse engineering13

model structures by elucidating underlying mechanisms, rather than depend-14

ing on hypothesis-driven experiments to identify these mechanisms.15

• Indeed, this is our main motivation. But clearly also other methods for16

reverse engineering may be usable.17

I have several concerns about the conceptual framework the authors used18

to present GEP. I am convinced that GEP is an interesting and worthwhile19

approach to automate model selection. However, I think it is over-reaching20

to suggest that GEP can reverse engineer model development. It seems to me21

that the value of GEP is simply to automate the process of exploring a large22

number of regression models. I am not convinced that GEP reorganizes the23

model development process, because regression already is often the first step24

in model development.25

• Thank you for challenging our fundamental ideas. The motivation of this26

work was indeed to automatize model development. And we believe that27

a GEP type of approach can help in such an endeavour. But we also agree28

that GEP is basically doing a selection after rejecting a large number of29

potential regression models. And this is still very different from classical30

model building. Although the analyst still has a crucial role in identifying31

plausible models, and controlling/selecting the parameters of the GEP ap-32

proach, the cost function and driving variables; the algorithm can assist the33

analyst by identifying model structures that can be deemed plausible in the34
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first place given the signals present in the data. The proposal of the regres-35

sion model structure is not made directly by the analyst and rather by the36

algorithm. The points discussed here were added to the revised manuscript37

(p 3 ll 18-26.).38

Further, I find that the claim that GEP minimizes human influence and per-39

ception bias to be strong, as the authors seemingly arbitrarily select the driv-40

ing variables for the model, regardless of how the model’s functional form is41

derived. From other work we know that selecting a single soil temperature42

at 5 cm soil depth can give a very different model from selecting a temper-43

ature from 15 cm soil depth (Graf et al., Biogeosciences doi:10.5194/bg-5-44

1175-2008). Similarly selecting to use VWC rather than a parameter like45

matric potential could be the difference between being able to predict rapid46

increases in flux with rainfall and not.47

• We have provided an initial series of candidate predictors among and GEP48

automatically does a feature selection. Hence the model development re-49

mains a more objective approach. Moreover, GEP is meant to select not50

only the driver but also the model. Therefore, GEP should be able to deal51

with cases as the one suggested by the reviewer: different Tsoil measure-52

ment depth can lead to different models. And this was clearly illustrated in53

the analysis with artificial data. Nevertheless, we agree with the fundamen-54

tal argument of the reviewer, namely that the initial selection of variables55

is done by humans and by the availability of data (because we will never56

have ”perfect” driving variables...), but this plagues all types of modelling57

approaches, not only reverse (p 3 ll 18-22).58

In the end, the functions selected by GEP suffer from the same problems59

as previously used formulae shown in Table 2. All of these functions tend to60

underestimate large fluxes (hot spots and hot moments). While the form of61

the functions may hold-up from training datasets to prediction datasets, the62

specific parametrizations often do not. I believe the authors have done a good63

job discussing limitations of GEP, and empirical approaches in general, in64

section 5.1.1. We know biogeochemical fluxes integrate multiple pools, reser-65

voir dynamics and lags, and these are difficult to detect using semi-empirical66

models. The largest gains recently in representing soil respiration have come67

from simulating enzyme kinetics and solute diffusion (e.g. DAMM model) as68

well as simulating microbial growth dynamics. These advances have come69

from implementing expert knowledge, not from expediting regression model70

selection.71
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• We agree that we cannot show yet or beat expert knowledge as encoded72

e.g. in the DAMM model. Still, we believe that our paper is a first step in73

this direction. And therefore it is important to showcase this opportunity to74

the relevant scientific community. The field of reverse engineering is young75

and cannot look back to half a century of experimental and conceptual work76

aiming at understanding soil respiration modelling.77

Overall I would recommend that this manuscript be rejected in the cur-78

rent form, and the authors re-evaluate the presentation of the GEP method79

both in terms of creating certainty within the biogeosciences community that80

the approach is effective and accessible, as well as readily applicable to field81

data as was demonstrated with the data from Alice Holt.82

• We do believe that our model approach is readily applicable and a novel tool83

offering the same accuracy as classical semi-empirical models but crucial84

with new opportunities of interpretation.85

As was mentioned, I believe the GEP method has considerable potential, but86

as the manuscript is currently written my concern is that it will pass un-87

noticed by the community as a whole due to poor accessibility rather than88

scientific merit.89

• We disagree with this comment, aligning with the other reviewer and also90

with the overall statement of the strong potential of this novel approach.91

However, the important step is to get this approach integrated into the mod-92

elling community (which is rather small) and allow it to be tested and mod-93

ified. We do believe that a more general approach and presentation actually94

will promote its wider usage.95

General Comments:96

1. I do not agree with Figure 1, that model development starts with ex-97

pert knowledge. Expert knowledge does not come about on its own,98

but comes from observations, and regressions are critical to making99

sense of observations. By helping to identify which variables among100

a large number of potential explanatory variables correlate to a phe-101

nomenon, regression-type analyses lead to the second step in the scien-102

tific process: manipulative experiments to confirm hypothesized cause-103

and-effect relationships. Demonstrating cause-and-effect relationships104

limits the number of processes that need to be represented in models. I105

am not convinced that GEP provides a short-cut to this process.106
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• We thank the reviewer for his valuable point-of view. Maybe the ques-107

tion is rather what one would call “expert knowledge”? We do see ob-108

servation as one key element of expert knowledge (Fig 1 now includes109

” including observations”) , leading to a first empirically driven (i.e.110

regression style) approach to model formulation. Yet, once a model111

could not be immediately rejected it is propagated and used time and112

again and refined with including more processes etc. This is a tedious113

process. And here we see that GEP offers a considerable potential in-114

deed. Maybe we have overstated the value of GEP in the manuscript115

and we revised it accordingly ( p3 ll 19-26), but once again - our mo-116

tivation was thinking and exploring methods that elegantly bypass this117

approach. For instance, several of the co-authors have worked on the118

(Migliavacca et al 2011) paper to build a better model for ecosystem119

respiration in deciduous forests and come to the conclusion that this120

should be a job realized by a computer. Figure 1 was changed in the121

manuscript in order to capture and illustrate the points discussed here122

as well.123

2. Section 3.1 and 4.1, which outline artificial experiments with the GEP124

method could be strengthened considerably if the authors were to use a125

simple, mechanistic model of soil or ecosystem respiration rather than126

a seemingly random set of algebraic expressions. Using such a respi-127

ration model would allow the authors to attempt to recover the model128

basis functions and, if successful, enhance the readers confidence with129

respect to the data from the site at Alice Holt.130

• In this sections we mean to show the capacity of GEP to reconstruct131

functions from relatively simple example in order to shortly explore132

the effects of increasing non-linearity and number of variables. As133

ecological models tend to be more complex and the increase in non-134

linearity and complexity would no be so clear we chose to stick to135

some known genetic programming benchmark functions.136

Nevertheless we agree with the reviewer that adding a known ecolog-137

ical respiration model structure in the set of functions to be recon-138

structed would give more confidence in the application of GEP to eco-139

logical modelling. Thus the Q10 model is added to the GEP benchmark140

function set. (p 4 l 25 and p 10 ll 27-28).141
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3. I am concerned about the evaluations of GEP presented in Figs. 3 and142

4. Fig 3 compares alternate machine learning techniques by comparing143

the MEF of the final model selected by each approach. It seems to144

me also important to compare the actual model structures, not just the145

fitness score. Did all the techniques recover the original models? If not,146

is variation in the MEF meaningful?147

• In this study, GEP is the only approach which gives a readable model148

structure back. SVM, ANN, RF and KRR lack that property. Thus the149

comparison is done on the accuracy of predictions, by comparing the150

modelling scores and residuals.151

4. Figure 4c suggests that GEP was only able to recover about 30-55% of152

the correct number of parameters. If so, it seems GEP did NOT do a153

good job of recovering the original models.154

• We agree that at first glance, it would seem bad that the model re-155

trieval with GEP based on the 3 different fitness functions gives a156

lower number of parameters than the initial number. However con-157

sidering the high values of MEF when validating against original data,158

MEF> 0.96, we can draw the conclusion that the GEP performed a159

feature selection, eliminating “low impact” parameters and returned a160

more simple equivalent solution.161

5. Another major concern is the exercise shown in figure 7. The authors162

have examined whether summing predicted component fluxes gives pre-163

dicted total fluxes that resemble observations. This is an interesting164

idea, but ultimately not that useful for two reasons:165

(a) The observed fluxes were not independently measured, e.g. Rauto166

was not measured independently, but was calculated by measuring167

the total flux (Rsoil) minus RH. I think you want to test whether168

all the variability simulated for the components can explain the169

variability observed for the total flux, but you dont have a measure170

of the component fluxes independent from the total flux.171

(b) We would like to see that the predictions for total flux are no worse172

than the predictions for the component fluxes. But in several cases173

the prediction for component fluxes are pretty poor. E.g. Pre-174

dictions for RECO wont turn out any better than predictions for175

Rabove, which themselves were poor. Thats not so interesting.176
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(a) We agree that because of learning from derived fluxes, it would be177

hard make a clear statement regarding the capacity of GEP to learn the178

variability of the studied sum and component fluxes.179

(b) We believe that nevertheless the exercise is useful as it shows that180

when we use GEP to learn models for each of the flux, sometimes181

the low-complexity pressure in the fitness functions make that the fi-182

nal solution has a lower number of parameters and a slightly lower183

modelling capacity as well. However we see that when we sum up184

the models of the component fluxes and compare the predictions of185

these derived models with the original data, although the models have186

become more complex, the model performance is not significantly im-187

proved. This give us more confidence to state that the more simple188

models retrieved by GEP in the first place have a sufficient capacity to189

capture the meaningful information present in the data as well.190

6. The manuscript is figure heavy, consider condensing figures or remov-191

ing. For example can Figures 5 and 9 be combined in an effective way?192

Are there other figures that may be unnecessary to the reader if they193

were described in the text or in a table?194

• Although we agree that the manuscript contains many figures, we be-195

lieve most are necessary (or at least helpful) for reflecting the full pic-196

ture presented in the text.197

Specific comments:198

• Abstract is long, introduces a lot of terminology. Consider distilling199

to the most important take-homes, and make more approachable for a200

general audience.201

The abstract was be shortened and simplified as suggested.202

• p.3 l. 8. The rationale for reordering should also be to try more options,203

things that people might miss204

We would like to thank the reviewer for pointing this out. We agree that the205

increase in the option pool is a large aspect of our approach and somehow206

we believed that it would be self-explanatory, however it makes sense to207

state clearly as well. The aspect is added to the manuscript (p 3 l 13-15).208
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• p. 3. L. 30. Why would we expect the functions to be portable across209

scales? Provide an ecological justification, otherwise this is not an in-210

teresting or useful exercise.211

We believe that this would be more of a wider discussion of the way in212

which scaling of ecological models is at all interesting and relevant (Urban213

2005).214

What we started exploring here is whether a larger grain model would be215

capable to capture some very strongly influential divers, even by losing spe-216

cific information and if such processes indeed appear across scales.217

• p. 3. L. 22-35. When reading initially I found it difficult to understand218

what hypotheses the authors were testing. I think all of this information219

is there but needs to be re-organized to make it stand out to the reader.220

Hypotheses and scope of the paper have been re-organized for clarity as it221

was suggested by other referee as well (p4 ll 11-19).222

• p.4 ll. 5.No need to introduce the conclusions. Consider shortening this223

to reduce repetition.224

Thank you for you suggestion. Paragraph removed.225

• 2.1 This section was not clearly written, I suggest more careful editing226

by co-authors. Please avoid including extra words in parantheses, they227

add complexity without clarity.228

Section 2.1 was re-written for more flow clarity in the revised manuscript229

as suggested.230

• p.4 ll.15. Is the process of mapping operations to strings relevant to231

model fitting? I dont think so. Either this is excessive detail about the232

internal workings of GEP, or you need to explain how this is relevant.233

The process is relevant as it is one of the characteristics of the GEP ap-234

proach. We apologize for not making this clear in the manuscript already,235

however this aspect and the effects of mapping have been explained in more236

detail in the method section (2.1) of the revised manuscript (p 5 ll 24-27).237

• p. 4. L. 20, what do you mean by solution The final selected model?238

Or the respiration predicted by that model? Genes and chromosomes239

should be presented in quotations initially.240
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Solution is the final selected model structure. Quotations are added as sug-241

gested.242

• p. 4 l. 30 I think you can shorten this paragraph to one sentence,243

simply state that in each generation, the best variants of a chromosome244

are determined by a fitness function described below.245

The paragraph could be shortened, however the suggested line is not accu-246

rate as in a generation, there is only a variant for each chromosome , and247

the fitness function determines the ranking of all chromosomes in that gen-248

eration.249

• p. 4 l. 32, what is an individual? Do chromosomes make up individuals?250

An individual is a chromosome that encodes a mathematical formulation,251

made up by a set of strings called genes.252

• p. 5, l. 1 What is a hyper-parameter? Again, please try to avoid paren-253

thetical phrases in this paragraph.254

A hyper-parameter is a set of parameters which need to be set for the runs of255

a certain approach. Definition is added to glossary and further parentheses256

are avoided.257

• p. 5, ll. 12 upon request rather than on demand.258

Changed as suggested.259

• p. 5, l. 11-14 most of this information doesnt appear useful, for exam-260

ple, does it actually matter that the cluster had 51 nodes? If someone261

ran it on a cluster with 12 nodes would it also work but be slower?262

Either explain the relevance of these details or remove them.263

The description of the system on which all experiments should be relevant264

as the results might be influenced by the hardware set-up, due to the initial-265

ization of the random seed, speed of solution return and so on. Nevertheless,266

all non-necessary specification are removed.267

• p. 5, ll. 31 Consider omitting derived from information-theoretic con-268

siderations.269

Thank you for the suggestion. Omitted.270
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• p. 6, ll. 20-25. I didnt understand the reason for this additional opti-271

mization. This sounds very much like ordinary regression model selec-272

tion; does this undermine the unique value of GEP? The original GEP273

gives a solution in the form of a general mathematical structure. For accu-274

rate scaling a further parameter optimization would be recommended. The275

value of GEP lays in the capacity of constructing the structure based on the276

on information found in the input data.277

• p. 6, ll. 27 Scaling noise with signal amplitude: This is good to include!278

This has been shown for soil respiration too (Lavoie et al. 2015, JGR-279

Biogeosciences, doi: 10.1002/2014JG002773)280

Thank you for providing the reference. Added to paragraph.281

• Section 3.2.1 The first two paragraphs are repetitive in describing com-282

putation of GPP.Consider omitting or shortening the section on soil flux283

measurements, since these methods were reported previously. Section284

3.2.1 re-organized and shortened as suggested.285

• Section 3.2.4 This paragraph can be removed to shorten. Figure 3c,286

consider omitting. It is repetitive, and the manuscript already has a287

large number of figures.288

Figure 3c removed. However we believe that the paragraph is needed for289

anticipating the comparison done on real observation between established290

models for terrestrial respiration in the community and the GEP based mod-291

els.292

• p.12, l. 7 Sentence starting We find that the global modelling perfor-293

mance. . . Please reword, I dont understand this statement.294

Reworded for clarity as suggested (p 16 ll 1-8).295

• Figure 12, is there a reason that this is presented in a polar plot? It296

seems on first glance that it could equally be presented as a 4-pane set297

of cartesian time series plots.298

By using polar plots, we reveal that the seasonal biases of the studied fluxes299

and the capacity of the models to capture/or not some of the variations in300

specific times of the year. But yes, it is a matter of taste as well.301
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Abstract.

Accurate modelling

:::::::
Accurate

::::::
model

::::::::::::
representation

:
of land-atmosphere carbon fluxes is essential for future climate projections. However, the

exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from ex-

periments,
:

complemented with a steadily evolving body of mechanistic theory provides the main basis for developing the5

respective
::::
such

:
models. The strongly increasing availability of measurements may complicate the traditional hypothesis driven

path to developing mechanistic models, but it may facilitate new ways of identifying suitable model structures using machine

learningas well. Here
:
.
:::::
Here, we explore the potential to derive model formulations automatically from data based on

:
of

:
gene

expression programming (GEP) . GEP automatically (re)combines various mathematical operators to model formulations that

are further evolved, eventually identifying the most suitable
::
to

::::::
derive

::::::
relevant

::::::
model

:::::::::::
formulations

:::::
based

:::::
solely

:::
on

:::
the

::::::
signals10

::::::
present

::
in

::::
data

::
by

:::::::::::
automatically

::::::::
applying

::::::
various

:::::::::::
mathematical

:::::::::::::
transformations

::
to

::::::::
potential

::::::::
predictors

::::
and

::::::::
repeatedly

::::::::
evolving

::
the

::::::::
resulting

::::::
model structures. In contrast to most other machine learning regression techniques, the GEP approach generates

::::::::
“readable"

:
models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially gen-

erated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed

functions with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (Random15

Forests, Support Vector Machines, Artificial Neural Networks, and Kernel Ridge Regressions). The case of real observations

explores
:::::
Based

:::
on

:::
real

:::::::::::
observations

:::
we

:::::::
explore

:::
the

::::::::
responses

::
of

:::
the

:
different components of terrestrial respiration at an oak

forest in south-east England. We find that
:::
the GEP retrieved models are often better in prediction than

:::::
some established res-
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piration models. Furthermore, the structure of the GEP models offers new insights to driver selection and interactions. We

:::::
Based

:::
on

::::
their

:::::::::
structures,

:::
we

:
find previously unconsidered exponential dependencies of respiration on seasonal ecosystem

carbon assimilation and water dynamics. However, we also
::
We

:
noticed that the GEP models are only partly portable across

respiration components; equifinality issues possibly preventing the identification of a “general” terrestrial respiration model

:::::::
possibly

::::::::
prevented

::
by

::::::::::
equifinality

:::::
issues. Overall, GEP is a promising tool to uncover

::
for

:::::::::
uncovering

:
new model structures for5

terrestrial ecology in the data rich era, complementing the traditional approach of model building
::::
more

:::::::::
traditional

:::::::::
modelling

:::::::::
approaches.

Highlights

– We explore if the process of model building for describing ecosystem CO2 fluxes can beautomatized
:
,
::
to

:
a
:::::
large

::::::
extent,

::::::::
automated

:
.10

– We show that Gene Expression Programming combined with parameter optimization can be a useful algorithm to auto-

matically derive models from ecological time series.

– We propose alternative models for the influence of key environmental variables on various respiratory fluxes CO2 in an

oak forest.

– Conventional ecosystem response functions can be revised by new models identified with GEP.15

1 Introduction

One prerequisite to understand and anticipate the global consequences of anthropogenic climate change is an accurate quanti-

tative description of the terrestrial carbon cycle (Bonan, 2008; Heimann and Reichstein, 2008; Luo et al., 2015). However, the

description of the mechanisms underlying the total terrestrial efflux of CO2 (Peng et al., 2014a), often referred to as “terrestrial

ecosystem respiration" (Reco), varies across the scientific literature and existing global models. This is partly because Reco does20

not originate from a single process but is the sum of fluxes from different autotrophic and heterotrophic respiration processes

that operate across different temporal and spatial scales and compartments (e.g. soil depths). Hence, it is experimentally very

difficult to disentangle the main abiotic and biotic factors driving respiratory processes at the ecosystem level (Trumbore, 2006)

and to derive suitable models for the individual respiration processes. In the remaining manuscript we use the term “model" as

an equivalent of “response functions" i.e. some analytic description of how environmental drivers influence ecosystem fluxes.25

Traditionally, respiration models have been based on some theoretical considerations but largely remain empirical in nature

(e.g. Reichstein and Beer, 2008; Gilmanov et al., 2010; Hoffmann et al., 2015). Conventional model building (Fig. 1) is primar-

ily hypothesis driven and capitalizes both on some understanding of the system and reported scaled experiments (Migliavacca

et al., 2012; Richardson et al., 2008). Gupta et al. (2012) describe this common paradigm of model development as a four

step approach involving a) observational, b) conceptual, c) mathematical and, d) computational phases (see also e.g. Bennett30
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et al., 2010; Williams et al., 2009). During the observational phase, the system under scrutiny is monitored and observations are

assembled, ideally representing process responses to hypothesized driving variables. Based on these observations, a conceptual

model is proposed, which is subsequently guiding the formulations of mathematical representations of the system states and

dependencies. The mathematical description then provides the basis for computational models that are used for simulations

(Jakeman et al., 2006). Model-data integration may additionally lead to iterative structural revisions or parameter optimiza-5

tions (Williams et al., 2009). This conventional approach to model development is also characteristic to
::
of

::::::::
different

::::
kinds

:::
of

ecological model buildingof different kind, including the development of biogeochemical models (Williams et al., 2009).

The fundamental question addressed in this paper is whether models can be constructed more objectively, i.e. reducing the

need for human intuition and expert knowledge. Specifically, we
:::
We explore the possibility of reverse engineering offering an

automated alternative to model development for predicting terrestrial carbon fluxes (Fig. 1). In reverse engineering, the work10

flow is fundamentally different (Bongard and Lipson, 2007): a) database set-up phase, b) computational phase, c) mathematical

phase and a d) conceptual phase (Gupta et al., 2012). The rationale behind reordering the key phases is
:::::
firstly to minimize the

human influence and perception biases that might shape the formulation of new hypotheses,
::::

and
::::::::
secondly

::
to

::::::::
increase

:::
the

::::::
chance

:::
for

:::::
novel

:::::
model

:::::::::
structures

::
to

:::::::::::
automatically

:::::::
emerge

::::
from

:::
the

::::::::
available

::::
data

:::
and

::::
that

::::::
would

:::
not

::
be

:::
so

:::::::
obvious

::::
from

::
a

:::::
direct

:::::::
analysis. Reverse engineering is aiming at identifying some mathematical representation of a system that is to a large15

degree independent from a priori conceptualizations; in the current case, the respiratory response of terrestrial ecosystems

to environmental drivers. Reverse engineering leaves the model construction up to an algorithm and is therefore a way to

empirically learn from observations with minimal user input. Therefore, reverse engineering is related

::
Of

:::::::
course,

:::::
expert

::::::::::
knowledge

::::
still

:::
has

::
a

::::
large

::::::::
influence

:::
on

:::
the

:::::::::
modelling

:::::::
process,

:::
as

::::
only

::
a
::::::
certain

:::
set

::
of

::::::::
variables

::::
can

::
be

::::::::
measured

::::
and

::::
even

:
a
:::::::
smaller

:::::
subset

::
is
::::::
indeed

::::::::
available

:::
for

:::::
model

::::::::::::
development,

:::::
which

:::::::
includes

:::
the

:::::::::
restriction

::
to

::
a
::::::
certain20

:::::::
plausible

:::::::
number

::
of

::::
time

::::
lags,

:::
and

:::::
hence

:::
full

:::::::::
objectivity

::
of

::::::::
automatic

::::::
model

::::::::::
development

::::::
cannot

::
be

:::::
truly

::::::::
achieved.

::::::::::
Furthermore,

:::::
expert

:::::::::
knowledge

::::::
comes

::::
into

::::
play

:::::
when

:::
the

:::::::::
algorithm

::
is

:::
set

:::
for

:::::::
running,

:::
by

::::::
tuning

:::
the

:::
set

::
of

::::::::::
parameters

::::::::
according

:::
to

:::
the

:::::::
problem

::::::
needed

::
to
:::

be
::::::
solved

::::
and

::
as

:::::
well

::::::
during

:::
the

::::::::::
observation

:::::::::
collection

:::
and

::::::
during

::::
the

::::
final

:::::::
decision

:::
on

:::::::
whether

::::
the

::::::::::::::
solution returned

::
by

:::
the

:::::::::
algorithm

:::::::
actually

::::::
makes

:::::
sense

::
at

::
all

::::
and

:::::::
whether

::
it
:::
can

:::
be

::::::
further

:::::
used.

:::::::::::
Nevertheless,

:::
we

:::::::
believe

:::
that

:::
by

::::::
shifting

:::
the

:::::::
moment

:::::
when

:::
the

::::::
analyst

:::::
make

:::
the

:::::::
decision

::::::::
regarding

:::
the

:::::::
selected

::::::
model,

::
a

:::::
larger

:::::
degree

:::
of

:::::::::
objectivity

::
in25

::::::::
modelling

::
is

::::::::
achieved.

::::::
Reverse

:::::::::::
engineering

::
is

::::
close

:
to machine learning based regression techniques, where various candidate model formula-

tions and specifications are explored in order to minimize the prediction error. The fundamental difference
::::
from

::::::
typical

::::::
model

:::::::
building is that reverse engineering typically provides a symbolic regression, that is, the resulting structures are ideally directly

readable as mathematical functions (i.e. response functions) and can be interpreted. Further, one can scientifically
::::
The

:::::::
readable30

:::::::
character

::
of
:::

the
::::::::
returned

:::::::
solutions

::::::
allows

::
to

:
consider the applicability of the derived structures in other system domains (Ash-

worth et al., 2012).

Here, we focus on the “Gene Expression Programming" (GEP, Ferreira, 2001) reverse engineering approach. GEP is an

evolutionary algorithm that evolves
:::::::::
constructs mathematical response functions. The structural designof GEP allows for its

use
::
In

::
its

::::::::
essence,

::::
GEP

::::::::
basically

::::::::
converges

::
to

::
a
:::::::::::
solution after

::::::::
rejecting

:
a
:::::
large

::::::
number

::
of
::::::::

potential
:::::::::
regression

::::::
models

::::
over

::
a35
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:::::
certain

:::::::
amount

::
of

:::::::::::
evolutionary

:::::
steps.

::::
Due

::
to

::
its

::::::::
structural

::::::
design,

:::::
GEP

:::
can

::
be

:::::::
applied in a wide range of empirical modelling

problems (Peng et al., 2014b; Khatibi et al., 2013; Traore and Guven, 2013), including (soil) hydrology (Fernando et al., 2009;

Hashmi and Shamseldin, 2014). To the best of our knowledge the potential of GEP has not yet been explored for modelling

biogeochmical
:::::::::::::
biogeochemical fluxes in terrestrial ecosystems.

We seek to understand as well whether automating model development can provide new insights in understanding the5

dynamics of terrestrial respiration processes. We investigate if automatically derived model structures differ substantially from

models conventionally used in the study of Reco and its components or, if they are consistent with established theory. We base

our study on data from a long-term monitoring experiment of Reco components i.e. above ground respiration, root respiration,

mycorrhiza respiration, soil autotrophic, and soil heterotrophic respiration. The monitoring was done separately but in a time-

synchronized way over two years and is described in detail by Heinemeyer et al. (2012). The10

:::
The

:::::::::::
fundamental

:::::::
question

:::::::::
addressed

::
in

::::
this

:::::
paper

::
is

:::::::
whether

:::::::::
regression

:::::::
models

:::
can

:::
be

::::::::::
constructed

::::
more

::::::::::
objectively

:::
by

::::::
leaving

:::
the

::::
task

::
of

:::::::::
proposing

:
a
::::
final

:::::::::
regression

:::::
model

:::
to

::
an

::::::::
algorithm

::::::
rather

::::
than

::::::
directly

:::
to

::
an

:::::::
analyst.

:::
The

:::::
need

:::
for

::::::
human

:::::::
intuition

::::::
during

:::
the

:::::
actual

:::::::
process

::
of

:::::::::::
constructing

:
a
:::::::::
regression

::::::
model

:::::::
becomes

::::::::
reduced,

::::
and

:::
the

::::
input

:::
of

:::::
expert

::::::::::
knowledge

::::
shifts

:::::::
towards

:::::::::
identifying

:::::
input

::::::::
variables,

::::::::::
parameters,

:
a
:::::::
suitable

::::
cost

:::::::
function

:::
and

::::::
model

::::::::::
plausibility.

::::
With

:::
the

::::::
current

:::::
study

::::
we

:::::::::
investigate

::
as

::::
well

::
if
::::::::::::
automatically

:::::::
derived

:::::
model

:::::::::
structures

:::::
differ

:::::::::::
substantially

::::
from

:::::::
models15

::::::::::::
conventionally

::::
used

::
in

:::
the

:::::
study

::
of

:::::
Reco :::

and
:::
its

::::::::::
components

::
or,

::
if
::::
they

:::
are

:::::::::
consistent

::::
with

:::::::::
established

::::::
theory.

::::
The

:
separation

of Reco into its components also allowed
::
us to test the portability of individual model structures across different respiration

components. In this sense, we investigate whether a generic “respiration" response can be derived, or if specific formulations

for a range of respiration components are required.

Our study is structured as follows: First20

1.1
:::::

Study
::::::::
structure

::::
First,

:
we introduce the GEP methodology and explore its performance for symbolic regression type of problems using an

artificial experiment under varying degrees of noise contamination designed to resemble Reco. Second, we apply GEP to model

the various respiration observations provided by Heinemeyer et al. (2012). This is an exceptionaldata record, as typically only

integrated measurements of either soil (Heinemeyer et al., 2012)25

:::
The

:::::::::::
observational

::::::
record

::::::::
provided

::
by

:::::::::::::::::::::::
Heinemeyer et al. (2012) is

::::::::::
exceptional,

:::::::
because

::::::::::::
measurements

::
of

::::
soil or ecosystem

respiration are
:::
that

:::
are

:::::::
typically

:::::
only

:::::::::
integrated,

::
are

::::
here

:
continuously and regularly measured, and the components measured

offer a perfect test case for the GEP methodology.

For both the artificial experiment and real world observations, we systematically confront the prediction error of GEP with

other state-of-the-art machine learning regression approaches. In addition, we adjust the modelling approach such that the30

objective function (or fitness function) accounts not only for absolute or relative error, but also reduces structure in the residuals.

The discussion focuses on the comparison of the various GEP derived models, their equifinality, and performance compared to

widely used literature models. Conclusions and outlook focus on the potential of the discussed GEP approach for the further

applications in this branch of research.
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2 Method

We rely on the GEP method (Ferreira, 2001) which automatically derives model structures from
::::::::
constructs

:::::
model

:::::::::
structures

:::::
based

::
on a set of given observations. As the models we want to obtain are mathematical structures, their extraction

::::::::::
construction

can be achieved by solving a symbolic regression (Kotanchek et al., 2013) type of problem.
:::
That

:::
is,

::
we

:::
are

:::
not

::::
only

:::::::::
interested

::
in

::::::::::
determining

::
an

:::::::
optimal

:::
set

::
of

::::::::::
parameters

::
for

::
a
::::::
known

:::::::::
regression,

:::
but

:::::
here,

:::
we

::::
want

:::
to

:::::::
discover

:::
the

::::::::
symbolic

::::
form

:::
of

:::
the5

::::::::
regression

:::::
itself

::
by

::::::::::
identifying

::
the

:::::
most

::::::::
important

:::::::::
predictors

:::
and

::::
their

:::::::::
functional

::::::::::::::
transformations. The general GEP approach

in solving symbolic regressions is presented in the following section and is illustrated in Fig. 2.

2.1 Gene Expression Programming, GEP

In GEP the structure building process starts with a set of possible explanatory variables and a set of elementary functions that

are given as input (
:::
The

:::::::
process

::
of

:::::::
finding

:::
the

::::
most

:::::::
suitable

::::::
model

::::::::
structure

:::::
based

:::
on

:::::
signal

:::::::
present

::
in

::::
data

::
in

:::::
GEP

:::::
starts10

::::
with

::
an

:::::
initial

:::::::::
generation

::
of

::
n
:::::::
possible

::::::
model

::::::::
structures

::::
(Fig.

::::
3a).

:::::
These

::::
can

::
be

:::::
called

::::::::::::::::::
evolution individuals

:::
and

::
in

:::::
GEP,

::::
they

::
are

:::::::
known

::
as

::::::::::::::
“chromosomes".

::::
The

:::::::::::
chromosomes

::::
are

::::::::
composed

:::
of

:
a
:::
set

:::::::
number

::
of

:::::::
“genes"

::::
that

:::
are

:::::::::
connected

::
by

::
a
::::::
binary

:::::::::::
mathematical

:::::::
operator.

:::::
Each

::::
gene

::
is
::::::::

encoded
::
in

:
a
::::::

string
::::
with

:
a
:::
set

:::::
fixed

:::::
length

::::
that

:::::::
contains

:::::::
specific

:::::::::
characters

:::
that

:::::
map

::
to

:::::
either

:
a
:::
set

::
of

:::::::
possible

:::::::::
predictors, e.g. sin,+,−,×). The variables and functions are subsequently mapped to a set of characters

(e. g. a,b,c,+,−) according to an internal coding language called “ Karva language
::::::::::::::::::::::::
A = {a,b}→Am = {x1,x2}::

or
::
a

::
set

:::
of15

::::
their

:::::::
possible

::::::::
functional

::::::::::::::
transformations,

::::
e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
F = {+,−,L,E}→ Fm = {addition,substraction,logarithm,exponential},

::::
(see

:::
Fig.

::::
3a).

:::
The

::::::
choice

::
of

:::::
input

::::::::
functions

:::::
used

:::
for

::::::::
applying

:::::::::::
mathematical

:::::::::::::
transformations

:::
on

:::
the

:::::::::
predictors

:::::::
depends

:::
on

:::
the

::::
type

:::
of

:::::::
problem

:::
we

:::
try

::
to

:::::
solve

::::
with

:::::
GEP.

:::::
When

:::
the

::::::::
problem

::
is

:
a
::::::::

symbolic
:::::::::

regression
:::::

type
::
of

::::::::
problem,

::
as

:::::
here,

::::
most

:::::
often

::
a
:::
set

::
of

::::::::
primitive

::::::::
functions

::
is

::::::::
proposed;

:::::
such

::
as

::::::::
addition,

::::::::::::
multiplication,

::::::::::
exponential

::::
and

:::
so

:::
on.

:::::
More

:::::::
complex

:::::::::
functions

:::::
could20

:::::::
increase

:::::
model

::::::::::
complexity

:::
too

:::::
much

:::
and

::::
risk

::::
over

::::::
fitting.

::::::::
However

::
if

::::
there

:::
are

:::::::
already

::::::
known

::::::::
functional

:::::::::::::
transformations

:::
of

:::::
certain

:::::::::
predictors

::::
that

:::::
could

::
be

::::
part

::
of

:::
the

::::
final

::::::
desired

::::::::
solution,

:::
the

::::
user

:::
can

:::::
define

::
a

::::
new

:::::::
function

:::
and

::::::::
introduce

::
it

::
in

:::
the

:::
set

::
of

::::
input

:::::::::
functions.

:::
All

:::::
genes

:::
are

:::::
made

::
up

:::
of

:
a
::
“

::::::::
gene head"(Ferreira, 2006). The mapping process generates sets of strings that represent the

basis for a manipulative evolutionof operations. The mapped letters are randomly combined into fixed lengthstrings called25

“genes
:
,
:::::::::
containing

:
a
:::::::::::
combination

::
of

:::::::::
characters

:::::::
mapping

:::
to

::::
both

::::::::
predictors

::::
and

::::::::
functional

::::::::::::::
transformations

:::
and

::
a

:
“
:::::::
gene tail"

:
,

::::
with

::::::::
characters

::::
that

::::
map

::::
only

::
to

:::::::::
predictors.

::::
The

::::
gene

:::::
length

::
is
:::::
given

:::
by

::::::::::
gl = hl + tl,:::::

where
::::::::::::::::::::::
tl = (fmax− 1)×hl + 1,

::::
with

::
gl

::
as

::::
gene

::::::
length,

::
hl::::

head
::::::
length,

::
tl:::

tail
::::::
length

:::
and

:::::
fmax::

as
:::
the

:::::::::
maximum

:::::
parity

::
of

:
a
:::::::::
functional

:::::::::::::
transformation.

::
As

:::
in

:::::::
biology

::::::::
evolution,

:::::::::
regardless

:::
of

:::
the

::::::
actual

::::::
length,

:::
the

:::::
GEP

:::::
genes

:::::
have

:::::
active

::::::::
sections

::
of

:::::::
variable

::::::
length

::::::
called

:::::
“open

::::::
reading

:::::::
frames"

:
(Fig. ?? of suppl. ). The

:::::
ORF)

::::
that

:::
can

::::::
encode

:::::::
various

:::::::::
expression

::::
trees

::::::
which

:::
can

:::
be

::::::::
evaluated

::::
into30

:::::::::::
mathematical

::::::::::
expressions

::::::::::::::
(Ferreira, 2006).

:::
The

:::::::
lengths

::
of

:::
the

:::::
ORFs

::::
are

:::::::::
determined

::::
only

:::::
after

:::
the

:::::::
encoded

:::::::::
expression

:::::
trees

::
are

:::::::::
translated

:::::
using

::
an

:::::::
internal

::::::
reading

::::::::
language

::::
(see

:::
Fig.

::::
3b).

::::::::::::::::::
Ferreira (2001) argues

:::::
that,

:::
the

:::::
power

::
of

:::::
GEP

:::
lies

::
in

::
its

:
use of
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fixed length linear strings for representing expression trees (ET) of varied shapes and sizes ,
:::
that simplifies the evolutionary

processof GEP (Ferreira, 2001).

A set number of genes is aggregated into a chromosome with the help of a binary function (e.g. +,−,×). The resulting

chromosomes can be translated into expression trees encoding mathematical structures. The chromosomes are the objects

involved in the evolution (extraction) of the final solution . The total sum of combinations of functions and variables, i.e.5

mathematical structures formed during an evolution time ,
::::
and

:::::
helps

::::
reach

::
a
::::
final

:::::::
solution

:::::
faster.

:

:::
The

:::::
total

::::::
number

:::
of

::::::::::::
chromosomes

:::::::::
generated

::::
over

::::
each

:::::::::
evolution

:
step make up a generation

::
the

:::::
GEP

::::::::::
population.

::::
The

:::::::
evolution

:::::
steps

:::
are

::::
also

::::::
known

::
as

::::::::::::
“generations". The maximum number of generations needed to reach

::::::
allowed

::
to

:::
run

:::::
until

:::::::
reaching a solution is often used as a stopping criterion.

One deciding factors in constructing a model during
::
of

:::
the

::::::
crucial

::::::::::
components

::
of

::::::
model

:::::::::
developing

::::::
within an evolutionary10

algorithm is the selection process. Since
::
In

:::::
GEP, the chromosomes can be translated into mathematical expressions that can

be evaluated, “fitness values" (i.e. measures of model performance) are assigned to each chromosome during each generation.

Depending on the fitness function, the fitness values can be crucial as they give a measure of how distant each of
:::
and

::
a
:::::::
distance

:::::::
between the current structure based predictions is from the observations. The fitness measures are assigned to the chromosomes

:::
and

:::
the

::::::
original

:::::
target

::
is
:::::::::
computed.

::::
The

::::::::
measures

::
are

::::::
known

::
as

:::::::
“fitness

::::::
values"

::::
and

:::
are

:::::::
assigned

::
to

::
all

:::
the

::::::::::::
chromosomes

::
in

:::
the15

:::::::::
population

::
at

::::
each

:::::::::
generation by means of a fitness function that is optimized

:::::::::
predefined

:::::
fitness

::::::::
function.

::::
The

::::::::
evolution

::
of

:::
the

::::
final

:::::::
solution

::::
with

::::
GEP

::
is

::::
done

::::::
based

::
on

:::::::::
optimizing

:::
the

::::::
fitness

:::::::
function

::::::
values

::::
after

::::
each

:::::::::
generation, usually by minimizing

prediction error. Based on
:
,
:::
but

:::::
more

:::::::
complex

::::::
criteria

:::
can

:::
be

:::::
taken

:::
into

:::::::
account

::
as

::::
well.

:

::::
Once

:::
all the fitness values

::::
have

::::
been

::::::::
computed

::::
and

:::::::
assigned, the chromosomes in a generation are sorted and a selection for

a new time step generation is made.
::::
from

::::
best

::
to

:::::
worst

::
fit.

:
20

The best chromosome , which is also replicated once for the subsequent generation , and the remaining selected chromosomes

can go through a set of genetic manipulations that produce new individuals with new associated fitness measures. The manipulation rate is

an important
:
If
:::
no

::::
stop

::::::
criteria

:::
has

:::::
been

::::
met,

::::::::::
preparations

:::
for

:::
the

:::::::::::::
reproduction of

::::
new

::::::::::::
chromosomes

:::
for

:::
the

::::
next

:::::::::
generation

::
are

::::::
made.

::::
The

:::::::::::
chromosome

::::
with

:::
the

::::
best

::::::
fitness

:::::
value

::
is

:::::::::
reproduced

::::::::::
unchanged

::
in

:::
the

::::
first

:::::::
position

::
of

:::
the

::::
new

::::::::::
generation.

:::
For

:::::
filling

:::
the

:::::::::
remaining

:::
n-1

:::::::::
positions,

::::::::::::
chromosomes

:::
are

:::::::
selected

::::
from

:::
the

::::::
entire

:::::::::
population

:::
for

:::
the

::::
new

:::::::::
generation

::::
with

::
a25

:::::::::
tournament

:::::::::
procedure,

:::
n-1

::::::
times.

::
In

:::::::::
tournament

::::::::
selection,

::
2
:::::::::::
chromosomes

:::
are

:::::::::
randomly

::::::
selected

:::::
from

:::
the

:::::
entire

:::::::::
population

:::
and

:::
the

:::::::::::::
individual with

:::
the

:::::
better

:::::
fitness

:::::
value

:::
one

::::
goes

::::::::
through.

:::
For

:::::::
insuring

:::
that

:::::
novel

:::::::
material

::
is

:::::::::
introduced

::
in

:::
the

::::
pool

::
of

:::::::
possible

::::::
model

::::::::
structures,

::::
and

:::
n-1

:::::
newly

:::::::
selected

::::::::::::
chromosomes

::
are

:::::::
subject

::
to

::::::::::::::
genetic operators,

:::::
such

::
as:

::::::::
mutation,

:::::::::::::
recombination,

:::::::::::
transposition

:::
and

::::::::
inversion

::
as

::::::::
presented

::
in

::::
Fig.

:::
3d,

:::
that

::::
can30

::::
fully

::::::
change

:::
the

:::::::
encoded

:::::::::::
mathematical

::::::::::
expressions

::::
(see

::::
Fig.

:::
3c).

:

::::
Once

:::
the

::::::::::
population

::
of

::::::::::::
chromosomes

::
is
:::::

ready
::::

for
:::
the

::::
new

::::::::::
generation,

:::
the

::::::::
evolution

:::::::::
procedure

::
is

:::::::
repeated

:::::
until

::
a

::::
stop

:::::::
criterion

::
is

:::::::
reached,

::::
such

::
as

::::
best

:::::
fitness

:::::::::
achieved,

::::::::
maximum

:::::::
number

::
of

::::::::::
unimproved

::::::::::
generations

::
is

:::::::
reached,

::::
time

:::::
limit,

:::
etc.

:::
The

::::::::::::::::::::
hyper-parameter needed

:::
for

::
a
::::
GEP

::::
run

:::
has

:::::
either

:::::::::::
components

::::
with

::::::::::::
recommended

::::::
default

:::::::
values,

::::::::
especially

::::
for

:::
the

:::::::::::::::::
genetic operator rates

:::::::::
considered

:::::
when

::::::::
applying

:::
the

:::::::
available

::::::
genetic

::::::::
operators

::::::::::::::
(Ferreira, 2006),

::
or

:::
has

:::::::::::
components

::
for

::::::
which35
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::
the

::::::
values

::::
have

:::::
been

:::::::::
established

::::::::::
empirically

::::
after

:::::::::
experience

::
in
::::::::
working

::::
with

:::
the

::::
GEP

::::::::
approach.

::::
The

:::::
latter

:::::::
typically

:::::::
depend

::
on

:::
the

:::::::::::
requirements

::
of

:::
the

:::::::
problem

::::::
looked

::
to

:::::
solve.

:

::::
Such

::
is

:::
the

::::
case

::
for

::::::
setting

:::
the

:::::
length

:::
the

::::
gene

:::::
head,

::
or

:::
the

:::::::
number

::
of

:::::
genes

::
in

:
a
:::::::::::
chromosome

:::
that

::::
can

::
be

:::::
lower

::
if

::
the

:::::::
interest

:
is
:::
in

::::::::
obtaining

::::
more

::::::::
compact

::::::::
solutions,

::::
with

::::::
larger

:::::
values

::::::::
possibly

::::::
leading

::
to

::
a
:::
fast

:::::::::
expansion

::
of

:::::::
solution

::::::
length

:::::
which

::::
can

:::::
easily

::::::
over-fit

:::
the

:::::
initial

::::::
target.

::::::
When

:::
the

::::::
lengths

::
of

:::
the

::::::::::::
chromosomes

:::
are

::::
kept

:::
too

::::
low,

:::
the

:::::::::
structures

::
in

:::
the

:::::::::
population

::::
can5

::::::::::
convergence

:::
too

::::
soon

::
to

::
a

::::::
unique

:::::::
solution

:::
that

:::::
might

::::
lack

:::
the

:::::
ability

:::
to

::::::
capture

:::::::::
meaningful

::::::
signals

:::::::
present

::
in

:::
the

::::::
training

:::::
data,

:::
due

::
to

:::
low

::::::::
diversity

::
of

:::
the

:::::::
encoded

:::::::::
expression

:::::
trees.

:::::::
Another

::::::::
important

:::::::::
component

:::
of

:::
the hyper-parameter (Tab. 1) in GEP (as in other genetic programming approaches) since

it is decisive in the amount of new individuals created from a generation to the other. For example, if the
::
to

::
set

::
is
:::
the

:
mutation

rate (one of genetic variation operators) is too large, it can become disruptive and lead to loss of the information acquired along10

the previous evolutionary time steps and reduce the convergence of the algorithm. Conversely, if the rate is too low, one may

not identify new relevant model structures in due time. The process of selection and genetic manipulation is repeated until a

stopping criterion is reached (i.e. best fitness achieved, maximum number of unimproved generations is reached, etc.), and a

solution in the form of a mathematical structure is returned.

The current implementation of the GEP approach does not contain an explicit population diversity management component15

. However in
:::::
which

:::::
could

:::::::
increase

:::
the

:::::::::
confidence

:::
that

::
a
::::::
certain

:::::::
solution

:::
did

:::
not

:::
just

::::::
appear

:::
by

::::::
chance,

:::
but

::::
that

:
it
::::
was

:::::::
actually

::::::
selected

::::
over

::
a
:::::
larger

::::
pool

::
of

:::::::
possible

::::::
model

:::::::
structure

:::::
types.

:::
In order to reduce stochastic bias and avoid getting stuck in local

optima and produce over-fit
:::
that

::::::
would

:::::::
produce

::::::::
over-fitted

:
results, we chose a

::
the

:
practical approach of multi-start (multiple

runs with the same settings) as proposed by Ferreira (2006).

The
::::::
version

::
of

:::
the

:
GEP method presented in this paper was implemented by the first author in the C++ language and20

is available on demand
:::::
freely

:::::::
available

:::::
upon

:::::::
request. All the experiments reported in this work were executed on a cluster

containing 51 nodes, running SuSE SLES 11 SP1 and StorNEXT (global file system running on the IO nodes) . In summary

:::
and

:::
that

::::::::
contains 868 CPU cores, 14.5 TB RAM, 1.2 PB file space. All the nodes are attached via GB LAN and OPENLAVA

3.1 is used as queueing system
:::
The

:::::
large

:::::::::::
performance

:::::::
capacity

::
of

:::
the

::::::
cluster

:::::::
allowed

:::
for

:::::::
multiple

:::::::
parallel

::::
runs

:::
and

::::::
speed

::
in

:::::::
reaching

:::
the

::::
final

::::::::
solutions.25

2.2 Fitness measure

In our study, the fitness measure is reported in terms of
::
the

:
Nash–Sutcliffe modelling efficiency (MEF) coefficient (Nash and

Sutcliffe, 1970; Bennett et al., 2010) which is often used in the context of quantifying the performance of terrestrial biosphere

models (Mitchell et al., 2009; Migliavacca et al., 2015). The MEF is computed as

MEF = 1−

n∑
i=1

(oi− pi)
2

n∑
i=1

(oi− ō)2
(2.1)30

where oi is the observed value at step i and pi is the predicted value at step i and ō is the mean of observed values. MEF

values range between −∞ and 1, where an MEF value of 1 corresponds to the case where the predicted and observed values
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are identical. A negative MEF value means that the predictions are worse than the mean of the observations in recreating the

observed signal. MEF=0 indicates that the models prediction are as good as a prediction by ō.

::::::
During

:::
the

::::
GEP

:::::::
learning

:::::::
process,

:::::::
however

:::
we

:::
use

:::
the

::::::::
(1-MEF)

:::::::
measure

::
as

:::
we

::::
want

::
to

::::::::
minimize

:::
the

::::::
fitness

:::::::
function

::::::
values.

Although the MEF metric offers a straightforward interpretation, it does not take
:::
the number of parameters of the models5

into account. In real-world applications, it might be desirable to derive models with lower number of
::::
fewer

:
parameters if those

are not (much) worse in terms of prediction capacity than models with higher number of free terms. Thus, we include in our

cost (fitness) function a normalized term related to number of parameters (ratio of current number of parameters to maxim

::::::::
maximum

:
number of possible parameters given the GEP run settings).

Moreover, any systematic signature in the model residuals (the differences of model predictions and observations) needs to be10

reduced as the latter should ideally only represent uncorrelated noise. To meet this criterion, we complement the fitness function

with a term related to the information content (entropy) in the residual time series, i. e. derived from information-theoretic

considerations. .
:

Entropy values would thus be maximized for data without structure (i.e. white noise), and lower entropy

values would be obtained for structured data, e.g. correlated stochastic or deterministic processes (Rosso et al., 2007) . The

information content in a time series is typically quantified by the Shannon Entropy (SE, C. E. Shannon (1948)) , i.e. a term of15

the form

SSE
::

P (X)
:::

= −
N∑
i=1

pi ln [pi] . (2.2)

Here, P = {pi; i = 1, . . . ,N}
:::::::::::::::::::
X = {pi; i = 1, . . . ,N} denotes a probability distribution with

∑N
i=1 pi = 1 and N possible

states. To calculate Shannon’s entropy measure from a time series, the series thus has to be adequately partitioned into a

suitable probability distribution. As our aim is to minimize structure in the residuals, the temporal order becomes important20

. Here, we extract ordinal patterns from the time series and derive a (discrete) probability distribution through counting the

occurrence probabilities of each pattern, following Bandt and Pompe (2002). This approach is fully based on the temporal

dynamics in the residuals (i.e. the order within the time series) and largely non-parametric, as only the window length has to

be specified. This parameter is set to ndemb = 4 throughout the paper, following previous work on ecosystem gross primary

productivity dynamics (Sippel et al., 2016).25

::
In

:::::
short,

:::
the

:::::::::
calculation

:::
of

::
an

:::::::
entropy

::
as

::
a
:::::::
measure

:::
for

::::::::::
randomness

:::::
from

::
a

::::
time

:::::
series

::::
(e.g.

:::::::::
Shannon’s

::::::::
entropy)

:::::::
requires

::
to

::::::::
determine

::
a
::::::::::
probability

::::::::::
distribution

::::
that

::::::::
underlies

:::
the

:::::
time

:::::
series

:::
(or

:::::::::
dynamical

::::::::
system),

::::::
which

::
is

::::::
usually

:::::
done

:::
by

::
a

:::::::::
partitioning

::::
step

::::
(also

::::::
called

:::::
phase

:::::
space

::::::::::::
reconstruction

::
in

::::
other

:::::::::
contexts).

::::
This

:
is
::
a
::::::::::
fundamental

::::
step

::
in

:::
the

:::::::::::
methodology,

::::
and

::::::
various

:::::::
methods

::::
have

:::::
been

::::
used

::
to

:::::
arrive

::
at

:::
this

::::::::::
probability

::::::::::
distribution,

:::
for

:::::::
instance

::::::::
frequency

:::
or

:::::::::::::
histogram-based

:::::::::
measures,

:::::::::
procedures

:::::
based

:::
on

:::::::::
amplitude

::::::::
statistics,

::
or

::::::::
symbolic

::::::::
dynamics

::::
(see

::::
e.g

:::::::::::::::::::::
Kowalski et al. (2011) for

::
an

::::::::::
overview).

::
In

::::::
recent30

:::::
years,

:::
the

:::::
Bandt

::::::
Pompe

::::::::
approach

:::
has

:::::::
become

:::::::
popular,

:::::::
because

:
it
:::::::
directly

::::
takes

:::::::::
sequences

::
in

::::
time

::::
into

:::::::
account:

:::
The

:::::::::
technique

:::::
hence

::::::
divides

:::
the

::::
time

:::::
series

::::
into

::::::
ordinal

:::::::::
sequences

:::
(i.e.

::::::
ordinal

::::::::
patterns,

::
or

::::::::
symbolic

::::::::::
sequences),

:::
and

::::
then

::::::::
computes

:::::::
entropy

:::::::
measures

:::::::
directly

:::::
from

:::
the

:::::::::
probability

::::::::::
distribution

:::
of

::::
these

:::::::
ordinal

:::::::
patterns

::::::::::::::::::::::
(Bandt and Pompe, 2002).

::::
This

::::::::
approach

:::
has

::
a

::::::
number

::
of

::::::::::
advantages,

:::::::
namely

:::
that

::
it

::
is

:::::
robust

::
to

:::::
noise

:::
(no

:::::::::
sensitivity

::
to

:::::::
numeric

:::::::
outliers)

::::
and

::
to

:::::
trends

:::
or

::::
drift

::
in

:::
the

::::
data,

::
it
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:
is
:::
an

:::::::
(almost)

:::::::::::::
non-parametric

::::::
method

::::
and

:::
no

::::
prior

:::::::::::
assumptions

:::::
about

:::
the

::::
data

:::
are

::::::
needed

::::
(the

::::
only

::::::::
parameter

::::
that

:::
has

::
to

:::
be

:::::::
specified

::
is

:::
the

:::::::::
embedding

::::::::::
dimension,

:::
i.e.

::::::
window

:::::::
length),

:::
and

::::::
allows

::
to

::::::::::
disentangle

::::::
various

:::::::
possible

:::::
states

::
of

:::
the

::::::
system

::::
that

::
are

::::
then

::::::::
encoded

::
in

:::
the

:::::::::
probability

::::::::::
distribution

:::
(see

::::
e.g.

::::::::::::::::::
Zanin et al. (2012) for

:
a
::::::
review

::
of

:::
the

:::::::
method

:::
and

:::::::::::
applications).

:

The final normalized form the fitness function further used in our work is:

CEM =

√
(1−MEF)2 + (

P

Pmax
)2 + (1−SE)2 (2.3)5

Pmax = gN ×hng × l
::::

(2.4)

where, CEM will stand
:::::
stands

:
from here on for

:
"complexity corrected efficiency in modelling

:
", P is the number of parameters

present in a model structure, Pmax is the maximum numbers of parameters possible for each individual from a GEP run

set-up,gN
::
ng:is the number of genes in a chromosome and h

:
l is the length of a gene(Fig. ?? of suppl. ). .

:
10

:::
For

::::::::
assessing

:::
the

:::::
effect

::
of

::::::
adding

:::
the

::::::
entropy

:::::::::
component

:::
for

:::
the

::::::::
residuals

::
in

:::
the

:::::
CEM

:::::
fitness

::::::::
function,

:::
we

::::::::
introduce

::
as

::::
well

::
the

:::::::::
following

:::::
fitness

:::::::
measure

::::::
which

:::::::
contains

::::::::
elements

::::::::
regarding

::::
only

::::
MEF

::::
and

::::::
number

:::
of

:::::::::
parameters.

:

MEF+NP =

√
(1−MEF)2 + (

P

Pmax
)2

:::::::::::::::::::::::::::::::

(2.5)

:::
For

::
all

::::::::::
experiments

::::::::
reported

::
in

:::
this

:::::
paper,

:::
the

:::::::::::
optimization

::
is

::::
done

::
by

::::::::::
minimizing

:::
the

::::::
fitness

:::::::
function

::::::
values.

:::
The

::::
best

:::::
value

:::
that

:::
can

:::
be

::::::
reached

:::
for

:::
all

::::::::
presented

:::::
fitness

::::::::
functions

::
is
::
0.

:
15

2.3 Parameter optimization

The GEP algorithm does not have a specific treatment of constants in the building of model formulations but mutations can

change both the model structure and constants. However, the scaling of constant values (model parameters) might be a decisive

factor in adequately determining the fitness of a formulation. Without this, a model structure might be discarded regardless of

potentially being a very powerful candidate. Furthermore, model parameters are often very informative regarding a system’s20

sensitivity to some modifications of the drivers. These aspects have led to the addition of a final parameter optimization step at

the end of each GEP run.

In order to obtain an optimal set of parameters for the GEP extracted model structures, an approach that would be applicable

in a large set of generated search spaces was necessary. Here we use the “Covariance Matrix Adaptation Evolution Strategy"

(CMA-ES) (Hansen et al., 2003) ,
::::::::::::::::::
Hansen et al. (2003)) for optimization. The CMA-ES is a stochastic optimization algorithm25

that seeks to minimize a fitness function by estimating and adapting a covariance matrix according to a sampling from a

multivariate normal distribution (Beyer and Schwefel, 2002; Auger and Hansen, 2005). According to Hansen (2006), one of

the main arguments in favour of the CMA-ES approach is that it has shown good results even in the case of ill-posed problems

(Kabanikhin, 2008), which may very well be the case for some of the GEP structures that are automatically generated.

The CMA-ES version used for the final step of optimization is the Hansen Python implementation found at https://pypi.30

python.org/pypi/cma. https://pypi.python.org/pypi/cma.
:

9
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3 Experimental design

For exploring the possibility of using GEP in developing relevant model structures for describing the terrestrial carbon fluxes,

two case studies were designed: Firstly, an experiment based on artificially generated data to better understand and present the

general properties and capacities of GEP. Secondly, we explored the use of GEP on real measurements of various respiratory

flux components monitored continuously over two years in an oak forest (Heinemeyer et al., 2011).5

3.1 Artificial experiments

These experiments were designed to explore whether our implementation of the GEP method is suitable for symbolic regression

type of problems, and how robust/vulnerable it is across various signal to noise ratios. We explored a set of functions with

increasing levels of non-linearity to generate data points.

f(x1) = 2x1 + 1 (3.1)10

f(x1) = x2
1 + 3x1 + 5 (3.2)

f(x1) = ex1 + 1 (3.3)

f(x1) = e−x1 −x1 (3.4)

f(x1) = x2
1− 4sin(x1) (3.5)

f(x1) = x3
1 + 6x2

1 + 11x1− 6 (3.6)15

f(x1,x2) = x2x1 (3.7)

f(x1,x2) = x2x1− 3cos(x1) (3.8)

f(x1,x2) = 2x2
1 + 3x2

2 (3.9)

f(x1,x2,x3) = 2x2
1 + 3x2

2 + 2sin(x3) (3.10)

2000 data points were randomly generated with x1 ∈ [1,20];x2 ∈ [1,5];x3 ∈ [1,100] and each functional values were com-20

puted based on these
:::
the

:::::
same

:::::
initial

:::
set

::
of

:::::
2000

::::
data

::::::
points. Out of the 2000 data points, 1000 data points were used for

training, while 1000 data points were reserved for validation. The GEP settings used for each of the 20 runs are given in Table

1.
:
If
::
a
:::::::
returned

:::::::
structure

::::
was

:::::::
identical

::
to
:::
the

:::::::::
originally

::::::::
prescribed

::::::::
function

::
or

:
if
:::::::::::::::::
(1−MEF)≤ 10−5

::
at

:::::::::
validation,

:::
the

:::::::
retrieval

::
of

:::
the

::::::
original

::::::::
structure

:::
was

::::::::::
considered

::
to

::
be

:
a
:::::::
success.

::::
For

:::::::
allowing

:::
the

:::::::::
approaches

::
to
:::
do

::
an

:::::::::
automatic

::::::
feature

::::::::
selection,

::
all

::
3

::::::::
variables,

::::::::
x1,x2,x3,

:::::
were

::::
used

:::
for

:::::::
learning

:::
and

:::::::::
validation

::
for

:::
all

::
10

::::::::
functions

::
in
:::
the

::::::::::
benchmark

:::
set.

:
25

:::
For

::::::::::
investigating

:::
the

::::::::
capacity

::
of

::::
GEP

::
to

:::::::::
reconstruct

::
a
::::::
simple

:::::
model

::::
used

::
in

:::
the

:::::::
ecology

::::
field

::
as

:::::
well,

:::
we

:::::::::
introduced

::
as

::::
well

::
an

:::::::
artificial

:::
test

:::
for

:::
the

::::::
“Q10"

:::::
model

::::
that

::
is

::::
used

::
in

:::
the

::::
field

:::
for

:::::::::
simulating

:::
the

:::::::
response

::
of

:::::::::
ecosystem

:::::::::
respiration

::
to
:::::::
change

::
in

::
air

::::::::::
temperature

::
of

:::::
10oC

::
at

::
a

::::::::
reference

::::::::::
temperature

::
of

:::::
15oC

:::
The

::::::::::
formulation

:::
we

::::
used

:::
for

:::
the

::::::
“Q10"

:::::
model

::
is:

:

Reco = 2(0.1Tair−1.5)

:::::::::::::::::
(3.11)
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::::
with

::::
Reco::

as
:::::::::
ecosystem

:::::::::
respiration

::::
flux

:::
and

::::
Tair,

:::
the

:::
air

::::::::::
temperature.

::::::
Again,

:::
we

::::::::
generated

:::::
2000

::::
data

:::::
points

:::
for

::::
both

::::::::
predictor

:::
and

:::::
target

:::
and

:::
we

::::
used

::::
half

:::
for

:::::::
training

:::
100

::::
runs

:::
and

::::
half

:::
for

:::::::::
validation.

:::
The

:::::::::
modelling

:::::::
capacity

::
of
:::
the

::::
best

::::::::
structure

::
in

:::::
terms

::
of

:::::
fitness

:::::
value

::
at

::::::::
validation

::
is
::::::::
reported.

In order to investigate the response of the GEP approach to noise contaminated data, we simulated Gaussian noise that scales

with signal amplitude as often observed in the case of terrestrial ecosystem fluxes (Lasslop et al., 2012)
::::::::::::::::::::
(Lasslop et al., 2012) and5

:::
soil

:::::::::
respiration

:::::::::::::::::::::
(Lavoie et al., 2015)fluxes. The signal-to-noise ratio (SNR, measured as ratios of standard deviations) was var-

ied between 10 and 1 in six steps.

For each of these functions and SNR levels,
::
we

:::::::
sampled

::::
100

::::::::
validation

::::
data

::::::
points

::
10

::::::
times. 20 GEP runs were performed

and the retrieved
::
on

:::
the

:::::
1000

::::::
training

::::
data

::::::
points

:::
and

:::
the

::::
GEP

:
model structure with the highest MEF values at the validation

points
:::::
mean

::::
MEF

:::::
value

::::
over

:::
the

::
10

:::::::::
validation

:::
sets

:
was chosen. If a returned structure was identical to the originally prescribed10

function or if (1−MEF)≤ 1e05 at validation, the retrieval of the original structure was considered to be a success.

As the choice of fitness function was crucial for the construction of structures in a GEP type of approach, we also investigated

in one experiment the effects of minimizing the CEM values (eq. 2.3) as opposed to using
:::
only

:
MEF (eq. 2.1) as acceptance

criteria
:
or

:::::::::
MEF+NP

:::
(eq.

::::
2.5)

::
as

::::::
fitness

:::::::
function.

3.1.1 Alternative Machine Learning Methods15

The prediction performance of the best GEP derived models
:::::
based

::
on

:::
the

::::
data

::
in

::::::
section

:::
3.1

:
was compared with the prediction

performance of four commonly used state-of-the-art machine learning methods (MLM
::::
MLM), i.e Artificial Neural Networks,

ANN, (Yegnanarayana, 2009), Support vector Machines, SVM (Hearst, 1998), Random Forests, RF (Breiman, 2001) and

Kernel Ridge Regressions, KRR (Hoerl and Kennard, 1970). The toolboxes

:::
The

::::::::
toolboxes

::::
and

::::::
settings used for generating the predictions of

::
by the ANN and KRR methods are described by Tramontana et al. (2016)

:::::::::::::::::::::::
Tramontana et al. (2016) and20

:::::
found

::
in

:::
the

::::::
“simple

:::
R"

:::::::::
regression

:::::::
toolbox

::::::::::::::::::::::::
(Lazaro-Gredilla et al., 2014), the predictions of the SVM were obtained by using

the LIBSVM package (Chang and Lin, 2011) and
:::::::::
“LIBSVM"

::::::
library

::::::::::::::::::::::::
(Chang and Lin, 2011) from

:::
the

:::::::::
“simpleR"

:::::::::
regression

::::::
toolbox

::::::
where

:::
the

::::::::::::
regularization

:::::
term,

:::
the

:::::::::::
insensitivity

::::
tube

:::::::::
(tolerated

:::::
error)

::::
and

:
a
::::::

kernel
::::::
length

:::::
scale

:::
are

::::::::::::
automatically

:::::::
adjusted.

::::::
Lastly,

:
the RF predictions were given by

:::::::
obtained

::::
after

:::::::
running the Matlab statistics toolbox implementation

::::
with

::::::
default

:::::::
settings.25

:::
All

:::
the

::::::
present

:::::::
machine

:::::::
learning

::::::::::
approaches

::::
have

::::
been

:::::::
applied

::
on

:::
the

:::::
same

::::::
training

::::
data

::::
sets

::
as

:::::
those

::::
used

:::
for

:::::::
building

:::
the

::::
GEP

:::::::
models,

:::
and

::::
their

::::::::
predicted

::::::
values

:::::
were

::::::::
compared

::::
with

:::
the

:::::::::
validation

:::
sets

:::::
used

:::
for

::::::::::
determining

:::
the

::::
best

::::
GEP

:::::::
solution.

All the runs were performed with default settings.

3.2 Measured ecosystem CO2 fluxes

In the second experiment we tried
::::::
assessed

:::
the

:::::::::
possibility

:
to reverse engineer model structures Reco and its components based30

on
:::
only

:::
on

:::
real

:
measured data. Specifically, we explored GEP derived model structures for various components of terrestrial

ecosystem respiration fluxes collected
:::::::
measured

:
in an 80 year old deciduous oak plantation in the Alice Holt forest in SE

England as described in (Heinemeyer et al., 2012; Wilkinson et al., 2012).
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3.2.1 Alice Holt in-situ data

The particular strength of the Alice Holt data set is that component fluxes
:::::::
contains

::::::::::
observations

:
of Reco were measured

separately. Reco and the total influx of CO2 to the ecosystem as mediated via photosynthesis (gross primary production,

GPP )
:
,
:::
and

:::::::
various

:::
soil

:::::::::
respiration

:::::::::::
components.

::::
Reco:::

and
::::::
GPP

:
were estimated from eddy covariance measurements of the forest net CO2 exchange (NEE, Eq. 3.12) ,5

and the various soil respiration components were measured separately for two years with hourly time resolution for total

soil respiration (Rsoil), root respiration (Rroot), mycorrhiza respiration (Rmyc), soil autotrophic respiration (Rsoila ) and soil

heterotrophic respiration (Rsoilh ) and above ground respiration (Rabove) estimated by difference (Eq. 3.13). Additionally, we

have access to derived measurements of GPP , as well as direct measurements of soil moisture (SWC), air temperature,

surface temperature, and soil temperature taken at 2, 10 and 20 cm depth.10

Reco and GPP were obtained from a micro-meteorological measurement tower at the same site that reports half hourly

integrals of net ecosystem exchange (NEE )
::::
NEE

:
with the eddy covariance (EC) methodology (Moncrieff et al., 1997). The

Reichstein et al. (2005) procedure was used for gap-filling and separation of NEE into GPP and Reco. Given that Rsoil is a

fraction of Reco, above ground respiration can calculated as the difference between Reco and Rsoil. For an in-depth description

of other site conditions and measurements see Heinemeyer et al. (2012).15

A multiplexed chamber system was used for measuring
::::::::
separately

:::::::::
measuring

:::
soil

:::::::::
respiration

:
(Rsoil :

)
:::
and

:::
its

::::::::::
components,

using a continuous sampling method at fixed locations
:::::
during

::::
two

:::::
years

::
at

::
an

::::::
hourly

::::::::
resolution. In order to partition the Rsoil

flux into its components, mesh-bags that are not penetrable by roots, but allow for mycorrhizal hyphae development were

installed. Deep steel collars were applied to stop both root and mycorrhizae in-growth. As a result,
:::
root

:::::::::
respiration

::
(Rroot:) is

given by the difference of Rsoil and the respiration recorded in the mesh bag chambers,
:::::::::
mycorrhiza

:::::::::
respiration

:
(Rmyc:

)
:
is given20

by subtracting the steel collar flux from the mesh bag chamber flux, and the
:::
soil

:::::::::::
heterotrophic

:::::::::
respiration

::
(Rsoilh )

:
is given by

the CO2 efflux at the steel collar chambersand
:
.
::::::
Lastly,

:::
soil

::::::::::
autotrophic

:::::::::
respiration (Rsoila is

:
)
:
is
:::::::::
estimated

::
as the sum of Rmyc

and Rroot (Eq. 3.14 and 3.15) .

:::
The

:::::
above

:::::::
ground

:::::::::
respiration

:::::::
(Rabove)

::::
was

:::::
given

::
as

::::
well

::::
and

::::
was

::::::::
estimated

:::
by

::::::::
difference

::::
(Eq.

:::::
3.13).

::::::::::::
Additionally,

:::::
direct

:::::::::::
measurements

:::
of

:::
soil

::::::::
moisture

:::::::
(SWC),

:::
air

:::::::::::
temperature,

::::::
surface

:::::::::::
temperature,

:::
and

::::
soil

::::::::::
temperature

:::::
taken

::
at

::
2,

:::
10

:::
and

:::
20

:::
cm25

::::
depth

:::
are

:::::::
present

::
in

:::
the

::::::
dataset.

:

Reco = NEE +GPP (3.12)

Rabove = Reco−Rsoil (3.13)

Rsoila = Rroot +Rmyc (3.14)

Rsoil = Rsoila +Rsoilh (3.15)30

The computation of Rabove as difference between Reco and Rsoil might be highly uncertain because of the different tech-

niques used to compute the two respiration components, the completely different footprints, and the typical high flux under-
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estimation and low flux overestimation of Reco from EC (Wehr et al., 2016). The limitations of the separation of Reco into its

components and the uncertainty of the estimates are further discussed by Heinemeyer et al. (2011), Heinemeyer et al. (2012)

and Wilkinson et al. (2012).

3.2.2 Data processing

We used the following candidate driver variables: soil volumetric moisture measurements, air temperature (from micro-5

meteorological station), and temperatures at different soil depths, and GPP . A number of recent studies have shown a tight

linkage between GPP and Rsoil, reflecting dynamics of respiratory substrate supply to roots and mycorrhizal fungi from re-

cently assimilated C in plants. (Moyano et al., 2008; Mahecha et al., 2010; Migliavacca et al., 2011, amongst others). We use

GPP obtained from EC measurements at the site, but acknowledge the conceptual problem that Reco and GPP were derived

from the same observations of NEE. In order to minimize the potential spurious correlation between Reco and GPP as well10

as redundancy of possible GPP influence with the meteorological drivers, we considered low-frequency variability of GPP

only (i.e. low-pass filtered modes of GPP which corresponds to variability beyond a 60 days periodicity only, see Mahecha

et al., 2010). “Singular Spectrum Analysis"
:::::
(SSA,

::::::::::::::::::::::::
Broomhead and King (1986)) as described and implemented by Buttlar et al.

(2014) was used to obtain a smooth GPP signal. The seasonal cycle was extracted with the SSA method as the assumption is

that GPP affects mainly the seasonality of the respiration while the variability at the high frequency is assumed to be more15

related to meteorological drivers (e.g. temperature, Mahecha et al., 2010).
:::
The

::::
SSA

:::::::
method

::
is

:
a
::::
tool

::::
used

::::::
mainly

::
in

::::
time

:::::
series

::::::
analysis

::::
with

:::
the

:::::::
purpose

::
of

:::::::::::
decomposing

::
a

::::
time

:::::
series

:::::
signal

:::
into

:::
its

::::::::::
independent

::::
sum

::::::::::
components,

::::
such

:::
as

:::::
trends,

::::::::::
seasonality

:::
and

::::
high

::::::::
frequency

:::::::::::
components

:::::
based

::
on

:
a
:::::::
singular

:::::
value

::::::::::::
decomposition

:::
of

::::::::
trajectory

:::::::
matrices

::::::::
computed

::::
after

::::::::::
embedding

:::
the

::::
time

:::::
series

:::::::::::::::::
(Buttlar et al., 2014).

To reduce the skewness and the search space that the GEP evolution would have to cover in order to construct valuable20

solutions (Keene, 1995), we log-transformed the seven target respiration data sets (see Figure 1 in supplemental material) and

applied a back-transformation when reporting the respective model structures. The time series used for the candidate drivers

remain unchanged.

3.2.3 GEP set-up

For each combination of respiration target and possible drivers, 50 subsets of 500 target time steps each were randomly selected25

and used for the training of GEP models using the settings found in Table 1. The 50 subsets of the remaining 113 time steps are

used for cross-validation and the model with the lowest average validation CEM value is finally selected for each respiration

type.

We were particularly interested in determining the general character of each extracted model with respect to the different

respiration fractions. We therefore re-optimized the parameters of all extracted model structures when applying one extracted30

model as the candidate function for a different respiration term. For example, the model formulation extracted for Reco is

re-calibrated for all the other types of respiration, creating six parameter sets (one for each respiratory flux) per equation. To
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cross-validate parameter sets, we computed performances for each train–validation data set pair and report averaged MEF

values.

As in the artificial example, we compared the returned GEP solutions predictions performance with that of other common

MLM such as SVN, KRR, ANNs, and RF. All methods were used for generating 50 subsets of 113 prediction values, after

training on the 50 subsets of 500 time steps of observations presented in the start of section 3.2.3. Then, a mean MEF value5

was computed for all methods for all respiration components and the best mean MEF values were reported and compared with

those of the GEP extracted models. The comparison is done in terms of MEF as number of model parameters were not available

and CEM could not be computed.

3.2.4 GEP in the context of other known ecological models: Real observational data

A comparison was done between the GEP built models and some common literature respiration models with different structures10

and driving variables that were also optimized using CMA-ES. The optimization was performed for each respiration dataset

and its candidate drivers and parameters (Table 2). The structures and prediction performances of the GEP models were then

compared with those of the optimized literature models.

4 Results

4.1 Artificial experiments15

In the first artificial experiment the GEP approach is used to verify if it can reconstruct prescribed functions. Following the

training of the 20 independent GEP runs, the initial functions were successfully reconstructed for all 10 equations defined in

section 3.1.

:::
For

:::
the

:::
Q10::::::

model
:::::::
artificial

::::
test,

:::
the

::::::::
following

::::::::
structure

:::
was

::::::
finally

:::::::
selected:

:

Reco = 0.35× 2.5(0.01Tair)

:::::::::::::::::::::
(4.1)20

::::
with

:
a
::::::::
validation

:::::
MEF

:::::
value

::::::
> 0.99.

:

MEF values for the GEP extracted models and for the predictions generated by ANN, RF, KRR and SVM are illustrated in

Fig. 4a. These MEF values were obtained through cross validation against independent, yet equally noise contaminated data

points (the SNR values are given on the x axis in reverse order for visualizing the increase in noise levels). There is a clear

pattern of decreasing MEFs with increasing noise contamination. This was expected, as none of the methods should fit the25

noise added to the signal.

Figure 4b shows MEF values equivalent to fig. 4a, but applied to noise-free data points of the validation set, in order to

compare GEP outputs to the “true" structure underlying the artificial data set. In this set-up, the MEF values remained relatively

constant across SNR values above 2. When SNR level was set to 1, predictions for all investigated machine learning methods,

except for GEP predictions, show decreased fitness, with MEF values decreasing to a minimum of 0.8.30
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Figure ?? compares the two validation approaches described above - SNR is now represented by a colour code. This figure

suggests that we may not expect MEF values of '0.9 under real scenarios (where no noise-free validation is possible).

In order to verify the effects of changing the fitness function from MEF to CEM, we compare the distributions of MEF values

for all runs for all studied SNR. Figure 5 exemplifies outputs for equation 3.10; panel a shows a drop of prediction capacity of

the GEP models with noise increase for all types of fitness functions when compared with noise-infused data. This contrasts5

the reduced MEF assessed against original data, where a slight drop in MEF with noise increase for the MEF optimization

structures was seen, and where the CEM optimized structures show stability in MEF with noise. The new CEM leads to a

reduced number of returned parameters compared to MEF (Fig.5c), as well.

4.2 Measured ecosystem CO2 fluxes

Applying GEP on the Alice Holt data set yielded a series of model structures for each respiration type. The returned model10

structures are illustrated in equations 4.2-4.8.

Reco = log(T−10)× e
(GPPs

T−10
) (4.2)

Rabove = 0.9SWC0.2× e(0.1GPPs) (4.3)

Rsoil = e(1.2T
0.4
−10+1.3SWC−3.1) (4.4)

Rroot = e
(0.9 1.2GPPs−8.1

T−10
) (4.5)15

Rmyc = 1.8T−10× e(1.2T
SWC
−10 −7.4) (4.6)

Rsoila = e(1.2T
0.5
−10+2.5SWC−4.9) (4.7)

Rsoilh = e
(−0.3+0.6 1.1GPPs−3.6

T−10
) (4.8)

where, GPPs is gross primary production that has been smoothed using the SSA method with a 60 day window ; T−10

is soil temperature measured at 10 cm depth; and SWC is volumetric soil water content. The corresponding cross-validation20

MEF values are given in Table 3, indicating a range of capacities for GEP models to represent different respiration types.

Whilst GEP-derived models may differ between respiration types, there are a number of equivalent models for different

respiration components. Rsoil and Rsoila were described by identical model structures (but distinctive parameter values), and

Rroot and Rsoilh were described by similar (but not identical) models. Overall, the most common selected drivers were T−10,

SWC and GPP .25

The highest performance in terms of MEF value was recorded for Rsoila and for Rsoil, that is 0.82 and 0.81 respectively. The

lowest capacity of process representation, with an MEF value of 0.28, was recorded for Rabove (Table 3), possibly because this

specific component would need to include active versus inactive periods determined by dormancy and leaf fall (i.e. seasonality

in this deciduous forest). A comparison of the predicted values and observed fluxes for all types of respiration can be seen

in Figures 6 and 7. In order to explore the capacity of the GEP models generated for the Reco components to recreate the30

larger, across compartmental sum
:::::::
summed fluxes, we summed the predictions of the models and compare

::::::::
compared

:
them with

15



the original fluxes . We find that the global modelling performance
::::
(Fig.

:::
8).

:::::
Based

:::
on

:
a
:::::::::
modelling

:::::::::::
performance

::::::::::
comparison

::
of

:::
the

::::::
models

:::::::
defined

::
as

::::
sum

::::::
models

:
of the derived models remained in a very small range of the initial trained for the sum

fluxes GEP models (Fig. 8), indicating that the larger fluxes actually exhibit sensitivity to some of the non-selected drivers ,

except
::::
GEP

::::::
models

::::::
trained

:::
on

:::
the

:::::::::
component

::::::
fluxes

::::
with

:::
the

:::::::
original

::::
GEP

::::::
models

:::::::
trained

::
on

:::
the

::::::::
summed

::::::
fluxes,

::
we

::::::
found

::
no

:::::::::
significant

::::::::::
differences.

::::::::
However,

:::
we

:::::
found

:::
that

:::
the

::::
total

:::::::
number

::
of

:::::::::
parameters

::
is

:::::
much

:::::
larger

:::
for

:::
the

::::
sum

::::::
models.

::::
This

::::
can5

::
be

:
a
:::::
result

::
of

:::
the

:::::
GEP

::::::::
approach

:::::::::
eliminating

:::
the

:::::
“low

:::::
impact

::
”
::::::
drivers

:::
due

::
to
::::::::::
complexity

::::::::
pressure.

:::
We

:::
can

:::
see

::
as

::::
well

:
that the

sensitivity is present only in a certain compartment.
::
of

:::
the

::::
sum

:::::
fluxes

::
to

::::::
certain

:::::::
drivers

:::
can

:::::::
strongly

::::::::
manifest

::::
itself

:::::
only

::
in

:::::
certain

:::::::::::
components

:::::
which

::
is

::::
why

:::
the

::::::
drivers

::::
only

:::
get

:::::::
selected

::
in

:::
the

::::::
models

::::
built

:::
for

:::::
those

::::::
specific

::::::::::
components

:

The residuals depict some remaining patterns (Fig
:
. 9 and Fig

:
. 2 of suppl.) and the null hypothesis of normal distribution

was rejected for all seven respiration component residuals at 5% significance level with the one-sample Kolmogorov-Smirnov10

test. Hence, we might expect additional information that could be extracted from the residuals. In order to check whether the

remaining structure was missed in the first training routine because of imposing a multiplicative form in the models by log-

transforming the target data, we performed GEP runs on the residuals and combined the models. The improvement in overall

modelling performance is minimal, yet model structures become overly complex. The capacity of the GEP approach to retrieve

new information from the residuals is illustrated in Fig. 11 in comparison with that of the other MLM presented in section 3.1.1.15

When correlation values were computed between the candidate drivers and the residuals, no significant linear correlations were

found (Fig. 4 of suppl.).

4.2.1 Model transferability

We investigated the capacity of each extracted model structure (equations 4.2-4.8) to represent a component of Reco not seen

in the training procedure. This was done by means of new CMA-ES optimization steps. The new prediction performances are20

illustrated in Tab. 4.

After optimization, none of the structures show an overall best MEF for all the Reco components (i.e. we clearly cannot

identify an optimal general model). However, we identify certain model structures that tend to perform overall better than

others. This is the case for the Rmyc model (eq. 4.6). It can also be seen that after the individual model optimizations, the

structures for Reco and that for Rsoila have similar prediction capacities.25

The prediction capacity of the GEP generated models in the context of other commonly utilized MLMs was assessed as well.

KRR, ANN, SVM and, RF were used for generating 113 predicted data points as described in section 3.2 (Fig. 10). The predic-

tion performance of GEP, KRR, ANN, SVM and, RF are shown in Fig. 11. Panel a contains the average MEF values computed

for all MLM methods predicted values when compared to the original observations for Reco,Rabove,Rsoil,Rroot,Rmyc,Rsoila ,Rsoilh .

For all other cases, the performance is in the same range for all methods, but the GEP derived models having the lowest mean30

MEF values. Panel b shows that when all MLM were trained on the residuals obtained from comparing the GEP outputs with

the observations, the GEP approach has the lowest capacity of capturing new relevant signals and is strongly outperformed by

the rest of the MLM, indicating that amount of information retrievable by GEP with the current fitness and settings is limited

and captured already in the first run.
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4.2.2 Comparing with literature models

Lastly, the GEP generated models were compared with some of the most commonly used literature models for describing

respiration. The resulting MEF values obtained after individual parameter optimization using the CMA-ES procedure for each

literature model are given in Tab. 5. The literature model structure that performed best overall in terms of prediction capacity

measured as MEF is the WaterQ10 model (Fig. 12). Figure 12 shows as well that certain types of respiration are easier to5

represent by all models, including the models GEP generated, whilst other types of respiration are poorly predicted by all

models. Nevertheless, for all respiration types, the highest MEF values are generally recorded by the GEP models.

As the studied literature models performed best in modelling Rsoil, we focus on contrasting GEP model results to literature

model outcomes for this ecosystem respiration component. Of all models included, the GEP model and Q10 model including

SWC dependency captured seasonal variability best, but no model satisfactorily represented short-term CO2 flux variations10

(Fig. 13, panel a). All models show the largest range of residuals for the months May to July in 2008, and June/July in 2009

(Fig. 13, panel b), with the two best-performing models (GEP and WaterQ10) having the narrowest range of absolute residuals.

Monthly mean average errors (MAE) indicate
::
as

::::
well

:
a systematic underestimation of soil CO2 efflux in the first year (Fig. 3

of suppl.).

5 Discussion15

5.1 On the GEP method

In this work, the primary reason for the artificial experiments was obtaining a better understanding of the capacity of GEP to

solve symbolic regression types of problems. We put an emphasis on GEP performance in the presence of noise. This aspect

was important, given that monitoring data from terrestrial ecosystem CO2 effluxes are typically contaminated by sometimes

substantially large random uncertainties and measurement noise. In the case of NEE flux measurements, Lasslop et al. (2008)20

and Richardson et al. (2008) show that the measurement error typically scales with the magnitude of the flux, leading us to

simulate that type of situation by adding noise that scales with signal to an already known function, equation 3.10. The results

show that all the studied methods are stable to presence of noise in the training set. These results increase our confidence

in the predictions generated by studied machine learning methods; in particular GEP derived modes can tolerate SNRs of 1.

Considering that the SNR in the Reco observations (if noise is only considered as random error) is probably larger than 425

which is where the curve starts decreasing in Fig
:
.
:
4, the noise presence in the data should not influence the automated model

construction process and the real signals should be accurately captured when data uncertainties follow the pattern described

here. On the other hand, for Rsoil and other CO2 fluxes measured with other techniques the magnitude and the distribution of

the uncertainty can be different (Ryan and Law, 2005; Pérez-Priego et al., 2015), and we cannot state what the response of the

present MLM is in the presence of different types of uncertainties and measurement noise.30
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Our findings illustrate that selection of CEM over MEF as a fitness function for optimization has a minor effect on the global

mean MEF (Fig. 5a). We also notice that due to the constraints on
:::::::
applying

::::::::::
constraints

:::
on

:::
the presence of structure in the

residuals and the length of the parameter vector, the final mean number of parameters is lower when CEM is chosen.

5.1.1 Limitations

One of the critical aspects in our work is that GEP, as implemented here, can only represent and derive “n→ 1" type of5

response functions. We are not able to generate model structures that encode e.g. system-intrinsic dynamics like feedback

loops, which are expected from our current understanding of biogeochemical cycles in terrestrial ecosystems (Ehrenfeld et al.,

2005; Friedlingstein et al., 2006). Hence, we believe GEP is suitable to e.g. understand and describe the sensitivities and non-

linear responses to changes in hydro-meteorological drivers, but fails to represent more complex carbon or water reservoir

:::
soil

:::::
water dynamics. Pools and pool transfers cannot be introduced currently in the input, unless the depletion

:::::
inflow/repletion10

::::::
outflow

:
equations are known and can be included in the set of functions that can participate in the evolution.

Lagged responses can only be detected if the number of lags from a driver is correctly included in the input, which already

implies sufficient knowledge of their existence and behaviour. Whilst in the current implementation of the GEP algorithm,

shifts in conditions and responses cannot be encoded or detected; these could be addressed with the inclusion of a conditional

operator in the set of functions encoded in the GEP evolution individuals.15

Nevertheless, it would be fair to mention that the same limitations can affect the results of the other MLM and empirical

models presented in this paper.

5.2 The value of GEP for modelling ecosystem respiration fluxes

We
:::::::::::
automatically

:
generated a series of model structures to describe terrestrial CO2 respiration fluxes (equations 4.2-4.8)

::::
with

:::
the

::::
GEP

::::::::
approach. Most of these structures (5 out of 7) were of rather low complexityi.e. requiring

:
,
::::::::
requiring

::::
only

:
420

free parameters (which is certainly an effect of the chosen cost function CEM)
:::
and

::::::::
allowing

:::
for

::::::
further

:::::::::::
interpretation. The

most complex structure is found for the Rmyc model
:::::::::::
representation, which is in line with previous findings (Shi et al., 2012).

Nevertheless, there is need for more in-depth analysis for determining whether the described processes make actual biological

sense and the selected drivers and their interactions represent real processes and responses.

Interestingly, the models derived for Reco and Rsoil are structurally very similar. That is also the case of Rroot and het-25

erotrophic respiration, where the difference lies in the set of parameters and the added presence of an intercept in the for-

mulation of the Rsoilh model. This finding suggests a consistency in the response of the Rsoil components to their drivers,

considering that the separation of the Rsoil into its components might still lack accuracy (e.g. P. J. Hanson, N. T. Edwards and

Andrews, 2000; Kuzyakov, 2006; Subke et al., 2006; Heinemeyer et al., 2011). However, all selected GEP generated models

led to an underestimation of the high respiration fluxes (Fig. 7) and typically do not capture the peaks (fast responses). This30

phenomenon is in some cases a systematic pattern, and sometimes affects only certain times of the year. We suspect that is partly

due to surface moisture affecting litter decomposition and fungal activity, as soil moisture was only monitored over the average

8 cm surface but the top few centimetres were most likely the most active and partly due to some potential processes/drivers
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like lags between GPP and respiration (Hölttä et al., 2011) or phenology (Migliavacca et al., 2015) that were not specifically

included in the learning process.

However, semi-empirical models similarly struggle to adequately simulate CO2 flux peaks and in some cases monthly flux

averages (Fig. 13). Structurally, the GEP-derived models share some key features
:::::
When

::
we

:::::::::
compared

:::
the

::::::::::
GEP-derived

:::::::
models

with the
:::::::::
community

::::::::::
established semi-empirical approaches

::::::
models

::::
from

::
a
::::::::
structural

:::::
point

::
of

::::
view,

:::
we

::::::
found

:::
that

::::
they

::::::
shared5

::::
some

::::
key

::::::
features

:
for temperature dependencies of CO2 fluxes, which are typically captured by exponential relationships.

:
,
:::
but

:::::
reveal

:::::
some

::::::::
previously

::::::::::::
unconsidered

::::::::
dynamics

::
as

::::
well.

:

A major difference is that when
:::
was

::
in

:::
the

::::::::
response

::
of

:::
the

:::::::::
respiration

::::::::::
components

::
to

:
SWChas been chosen as driver, GEP

often also identifies some
:
,
:::::
where

:::
the

::::
GEP

:::::::
models

::::
often

::::::
chose

:::::
SWC

::
as

::::
one

::
of

:::
the

:::::::
drivers.

::::::::
Moreover,

:::
the

:::::
GEP

::::::
models

:::::
often

::::::::
contained

::
an

:
exponential dependency, i.e. there are only certain parts of the signal that are strongly sensitive to varying SWC.10

This
:::
We

::::::
believe

::::
that

:::
the

:::::::::
exponential

:::::::::::
dependency

::
of

::::::::
terrestrial

:::::::::
ecosystem

:::::::::
respiration

::::::::::
components

::
to
::::::
SWC

:
is a very intuitive

pattern , which
:::
that

:
has not yet been reported in the literature,

:
and requires further exploration.

:::::::
Another

::::::::
difference

:::
we

:::::
found

::::
was

::
the

:::::::
strongly

::::::::
seasonal

:::::::
response

::
of

:::
the

:::::::::
respiration

::::::::::
components

::
to

::::::
GPP ,

:::::::
possibly

::
as

::
a

:::::
proxy

::
to

::::
light

:::
and

:::::::::
vegetation

:::::::::
availability

::::::
which

::::
were

:::
not

::::::::
included

::
in

:::
the

::
set

::
of

:::::::::
candidate

:::::::::
predictors.

::::::::::
Considering

:::
that

::::
GEP

::::::::
identified

::::::::
plausible

:::::::
models,

:::
that

:::
are

::::
very

:::::::
different

:::::::::
structurally

:::::
from

::::::::
previously

:::::::
reported

:::::::::::::
semi-empirical15

::::::
models,

::::
still

:::::::
yielding

:::::::::
equivalent

::
or

:::::
better

:::::::::
modelling

:::::::::::
performance,

:::
the

:::::::
validity

::
of

:::
the

:::::::::::
conventional

::::::::::::
semi-empirical

::::::
models

::::
can

::
be

::::::::::
questioned.

:::::::::::
Nevertheless,

:::
we

:::
do

::::::
believe

::::
that

:::::
there

::
is

::::
need

:::
for

:::::
more

:::::::
in-depth

::::::::
analysis

:::
for

::::::::::
determining

:::::::
whether

:::
the

:::::
GEP

::::::::
described

::::::::
processes

:::::
make

:::::
actual

:::::::::
biological

:::::
sense

:::
and

:::
the

:::::::
selected

:::::::
drivers

:::
and

::::
their

::::::::::
interactions

::::::::
represent

::::
true

::::::::
processes

::::
and

::::::::
responses.

:

5.3 Data quality20

During our study, it was apparent that the highest MEF values were obtained for all the studied methods in the case of the

respiration types that had direct measured observations and were not derived. It might be the case that when fluxes are obtained

from derivations, the measurement error will also increase, and the partition of clear signal existing in the observations is not

sufficient for constructing a good model with GEP.

5.4 High frequency variability25

For some of the modelled respiration components (e. g. Reco) a large amount of high frequency variability present in the

observations was lost

:::
All

::::
GEP

::::::::
generated

::::::
models

:::::::::::::
underestimated

::
the

::::
high

:::::::::
respiration

:::::
fluxes

:::::
(Fig.

::
7)

:::
and

:::::::
typically

:::
did

:::
not

::::::
capture

:::
the

::::
fast

::::::::::::
responses.This

::::::::::
phenomenon

::::
was

::
in

::::
some

:::::
cases

:
a
:::::::::
systematic

::::::
pattern,

::::
and

:::::::::
sometimes

::::::
affected

::::
only

::::::
certain

:::::
times

::
of

:::
the

::::
year.

::::::::
Similarly,

:::::::::::::
semi-empirical

::::::
models

::::::::
struggled

::
to

:::::::::
adequately

:::::::
simulate

:::::
CO2 :::

flux
:::::
peaks

::::
and

::
in

::::
some

:::::
cases

:::::::
monthly

::::
flux

:::::::
averages

:
(Fig. 6).

:::
13).

:
30

:
A
:::::
more

:::::::
in-depth

::::::::::
comparison

::
of

::
all

:::
the

::::
GEP

:::
and

:::::::::::
conventional

:::::::::
respiration

:::::::
models,

:::::
based

::
on

:
a
:::::::::
time-scale

::::::::
dependent

::::::::::
assessment

::
of

:::::::::
model-data

:::::::::
mismatch

:::::::::::::::::::::::
(Mahecha et al., 2010) could

::::
help

::
to
::::::
further

::::::::
elucidate

:::
the

::::::::
problem

:::
and

::::::
clarify

:::::
some

::
of

:::
the

::::::::
strengths

:::
and

::::::::::
weaknesses

::
of

:::
the

:::::::
different

:::::::::
modelling

::::::::::
approaches,

:::::::::
especially

:::::
when

:::::::
seasonal

::::::::::
mismatches

::::::
appear.

:::::::::::
Nevertheless,

::
a
:::::::
detailed
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::::::::
time-scale

:::::::::
dependent

:::::::::
assessment

::
is
:::::::
beyond

::
the

::::::
scope

::
of

:::
this

:::::
study,

::::
and

:::
for

::::
such

::
an

::::::::
analysis,

:::
the

::::::
current

::::
time

:::::
series

:::
are

::::::
simply

:::
too

:::::
short.

The question is whether the GEP method lacks the ability to build models that correctly represent the processes and their
:::
fast

dynamic responses, or whether the candidate drivers and the observations used for their representation are simply not sufficient

for generating representative models. In the end, the response of Rsoil and Reco to external drivers might be too complex to5

describe solely with the currently available measurements and with the selected drivers.

:::
We

::::::
believe

:::
that

:::
the

::::::::
consistent

::::::::::::::
underestimation

::
of

:::
fast

::::::::
responses

:::
was

::::::
partly

:::
due

::
to

::::::
surface

:::::::
moisture

::::::::
affecting

::::
litter

::::::::::::
decomposition

:::
and

::::::
fungal

:::::::
activity,

::
as

::::
soil

:::::::
moisture

::::
was

::::
only

:::::::::
monitored

::::
over

:::
the

:::::::
average

::
8
:::
cm

:::::::
surface,

::::
with

:::
the

::::
top

:::
few

::::::::::
centimetres

:::::
most

:::::
likely

::::::::
presenting

:::
the

::::::
highest

:::::::
activity

:::
and

:::::
partly

::::
due

::
to

::::
some

::::::::
potential

::::::::::::::
processes/drivers

:::
like

::::
lags

:::::::
between

:::::
GPP

::::
and

:::::::::
respiration

::::::::::::::::::
(Hölttä et al., 2011) or

:::::::::
phenology

::::::::::::::::::::::::
(Migliavacca et al., 2015) that

:::::
were

:::
not

:::::::::
specifically

::::::::
included

::
in

:::
the

:::::::
learning

:::::::
process.10

Another explanation for missing some of the (high flux) variability could be in our choice of fitness function. As we decided

to penalize during the learning process for structures with many parameters, it is likely that some structures were eliminated

early-on during this process, even though they may be well-suited for describing a given process from a modelling efficiency

point of view. However, this is a case of trade-off between a good fit and structural simplicity, and in our approach, we decided

that simplicity of structure, i.e. the possibility of interpretation is a very important asset.15

We suspected as well that the
:::::::
explored

::
as

::::
well

:::
the

:::::::::
possibility

::
of

:::
the underestimation of the carbon flux variability was

:::::
being

caused by the log-transformations we did on
::::::
applied

::
to

:
the observations. That could have introduced a bias that

:
It
:::::

could
:::::

have

::::
been

:::
the

::::
case

:::
that

:::
the

:::::::::::::::::
log-transformations excluded interesting components of the model structures by forcing the method to

build multiplicative models. However
::::::::::
Nevertheless, when the GEP was run again on the residuals, without log-transforming, no

new meaningful information was retrieved, indicating that multiplicative models were sufficient for reconstructing the studied20

Reco components
:::::
present

::
in
::::
this

:::::
study.

5.5 Equifinality

Table 4 shows that when optimizing the parameters for all structures, the prediction performance becomes similar, which leads

to the question of equifinality of dynamical systems, where different models that try to capture their structure, might have

different formulations, but represent the same response.25

A critical question for the applicability of any ecosystem model is whether the model structure is more important than the

parametrisation of a given “best" model. For this question to be addressed, however, we need a larger sample of ecosystem

types representative for different types of responses where we can explore the importance of the obtained structures and their

parameter sets.

5.6 GEP models in the context of other machine learning methods30

The comparison of GEP generated models
::
and

:
machine-learning methods showed a narrow range of predicted fluxes (Fig.

11). The analysis of training all the MLM on the GEP residual output showed that the GEP approach is not able to retrieve

any new meaningful structural components, but that the remaining MLM are much better at reconstructing the signal left in

20



the residuals. This indicates that although the GEP is actually a reliable MLM when it comes reconstructing the underlying

Reco fluxes and is not prone to over-fitting, it could be that the current set-up of the GEP is not sufficient for an exhaustive

description of those fluxes, or that might be overly strict on complexity of models compared to other MLM. The GEP approach

has, nevertheless, the benefit of producing mathematical model structures that can be
:::
the basis for future interpretation.

6 Conclusions and Outlook5

Overall, our results suggest that the GEP approach is a potentially powerful tool of reverse engineering, particularly helpful for

building ecological models when there is a minimum of a priori system understanding. We exemplified this conceptually using

artificial data, but also show that GEP always yields as good or better results compared to conventionally used models in the

case of ecosystem respiration. Based on data from a long-term monitoring site of different respiratory fluxes, and using GEP

as a reverse engineering tool, we found new structures for modelling Reco components. The GEP derived models outperform10

conventionally used models and generally differ by the way temperature and GPP , but also SWC are interpreted, indicating

that conventional respiration models might have to be revised. At the same time, we found that when the GEP derived models

are mutually compared, there are sufficient structural particularities for each terrestrial respiration type as to not allow for the

formulation of a general Reco law. More research is needed on a larger set of sites to identify widely usable models and for

their interpretation. A particular matter of concern is the apparent equifinality of selected model structures, indicating that many15

response functions are yielding predictions of almost similar quality. A study of multiple sites would enable an investigation of

whether specific ecosystem types result in similar model structures, or if whether response functions apply across contrasting

ecosystem types.

The current study has also revealed methodological aspects that could be improved. In particular, we found the inclusion of a

parameter optimization step very helpful to further test the transferability of model structures. But this approach could be poten-20

tially integrated into the GEP evolution. More specifically, we think that the next development of GEP could include the param-

eter optimization as an intermediate step before selection during each evolution generation (?)
:::::::::::::::::::::::
(Ilie et al., under preparation).

In this way, a model structure could be chosen according to not only the current state of parameters but also on its potential

and convergence to a global solution might be achieved faster.

Code and data availability25

All code and data used to produce the results of this paper can be provided upon request by contacting Iulia Ilie or Miguel D.

Mahecha.
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Glossary

chromosome individual used in automatically evolving an optimal solution comprised of a set of genes that are connected

with a binary operation (e.g. +×−). 5, 6

CMA-ES covariance matrix adaptation evolutionary strategy. 9

evolution the process of producing an optimal solution by GEP through . 55

expression tree binary tree used to represent algebraic expressions. 6

gene set of characters of fixed length that encodes an expression tree. 5

gene head initial section of the string that comprises a GEP gene, containing a combination of characters that map to predictors

and possible functional transformations . 5

gene tail end section of the string that comprises a GEP gene, containing only characters that map to predictors. 510

generation time step of an evolution. 6

genetic operator operator that produces changes in the structure of a chromosome and the expression tree it encodes by

altering the strings representing composing genes (e.g. mutation, inversion, recombination, etc.) . 6

genetic operator rate probability of a genetic manipulation to occur during a generation. 6

GEP gene expression programming, machine learning method that evolves chromosome structures with the purpose of mini-15

mizing a cost function. 3

hyper-parameter set of parameters which need to be set for the runs of a machine learning approach. 6

ill-posed problem a problem for which the solutions might not be unique or unstable, also known as an inverse problem. 9

individual GEP entity that is a component of a population during a certain step of the evolution process. Also known as

chromosome. 620

MLM machine learning method that can produce predicted values based on a training set. 11

population total set of chromosomes that participate at a certain step in the evolution of an optimal solution in the GEP

approach.. 6

reproduction process of generating new individuals for a new generation starting from the present generation individuals after

they go through structure modification and fitness based selection. 625

solution finally selected model structure resulting from a GEP run. 3
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Table 1. GEP settings

Parameter Artificial data Real observations

Number of chromosomes 2000 2000

Number of genes 3 2

Head length 5 6

Functions +,−,/,∗,xy,√, ln,exp,sin,cos +,−,/,∗,xy,√, ln,exp

Terminals x1,x2,x3 GPPs,TAir,T−10,SWC

Link function + +

Max run time 1200 seconds 1800 seconds

Fitness function CEM CEM

Selection method for replication tournament(Coello and Montes, 2002) tournament

Mutation probability 0.2 0.2

IS and RIS transpositions probabilities 0.05 0.05

Two-point recombination probability 0.3 0.3

Inversion probability 0.05 0.05

One point recombination probability 0.4 0.4

0a,E0,φ1,φ2,φ3,φ4,R0,R2,k,k2 and α are model parameters that can be optimized
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Respiration model formulations commonly used in the environmental science community ModelFormulationReferenceArrhenius

a× e−E0/RT (Lloyd and Taylor, 1994) Q10 φ1×φ
(
T−Tref

10
)

2 (Reichstein and Beer, 2008)

Water Q10 φ1×φ
(
T−Tref

10
)

2 × SWC
SWC+φ3

× φ4
SWC+φ4

(Richardson et al., 2008)

LinGPP (R0 + k2GPP )× e
E0(

1
Tref−T0

− 1
TA−T0

)
× αk+SWC(1−α)

k+SWC(1−α) (Migliavacca et al., 2011)

ExpGPP [R0 +R2(1− ek2GPP )]× e
E0(

1
Tref−T0

− 1
TA−T0

)
× αk+SWC(1−α)

k+SWC(1−α) (Migliavacca et al., 2011)

addLinGPPR0× e
E0(

1
Tref−T0

− 1
TA−T0

)
× αk+SWC(1−α)

k+SWC(1−α) + k2GPP (Migliavacca et al., 2011)

addExpGPPR0× e
E0(

1
Tref−T0

− 1
TA−T0

)
× αk+SWC(1−α)

k+SWC(1−α) +R2(1− ek2GPP )(Migliavacca et al., 2011)

Table 2. Respiration model formulations commonly used in the environmental science community

Model Formulation Reference

Arrhenius a× e−E0/RT (Lloyd and Taylor, 1994)

Q10 φ1×φ
(
T−Tref

10
)

2 (Reichstein and Beer, 2008)

Water Q10 φ1×φ
(
T−Tref

10
)

2 × SWC
SWC+φ3

× φ4
SWC+φ4

(Richardson et al., 2008)

LinGPP (R0 + k2GPP )× e
E0(

1
Tref−T0

− 1
TA−T0

)
× αk+SWC(1−α)

k+SWC(1−α) (Migliavacca et al., 2011)

ExpGPP [R0 +R2(1− ek2GPP )]× e
E0(

1
Tref−T0

− 1
TA−T0

)
× αk+SWC(1−α)

k+SWC(1−α) (Migliavacca et al., 2011)

addLinGPP R0× e
E0(

1
Tref−T0

− 1
TA−T0

)
× αk+SWC(1−α)

k+SWC(1−α) + k2GPP (Migliavacca et al., 2011)

addExpGPP R0× e
E0(

1
Tref−T0

− 1
TA−T0

)
× αk+SWC(1−α)

k+SWC(1−α) +R2(1− ek2GPP ) (Migliavacca et al., 2011)
a,E0,φ1,φ2,φ3,φ4,R0,R2,k,k2 and α are model parameters that can be optimized

Table 3. Modelling performance for all extracted model structures after cross validation over 90 cases.

Respiration type MEF σMEF Equation

Reco 0.56 0.14 4.2

Rabove 0.28 0.13 4.3

Rsoil 0.81 0.13 4.4

Rroot 0.59 0.10 4.5

Rmyc 0.42 0.13 4.6

Rsoila 0.82 0.13 4.7

Rsoilh 0.51 0.11 4.8
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Table 4. Average validation MEF performance for all extracted model structures when re-optimized against all other respiration CO2 flux

observations.

trained for/ opt. for Reco Rabove Rsoil Rroot Rmyc Rsoila Rsoilh

Reco (Eq. 4.2) 0.56 0.25 0.77 0.51 -0.06 0.67 0.42

Rabove (Eq. 4.3) 0.56 0.27 0.69 0.52 0.01 0.62 0.47

Rsoil (Eq. 4.4) 0.50 0.13 0.81 0.35 0.29 0.82 0.40

Rroot (Eq. 4.5) 0.34 0.22 0.61 0.57 0.03 0.65 0.51

Rmyc (Eq. 4.6) 0.54 0.16 0.81 0.50 0.43 0.84 0.51

Rsoila (Eq. 4.7) 0.50 0.13 0.81 0.35 0.29 0.82 0.40

Rsoilh (Eq. 4.8) 0.55 0.23 0.76 0.53 -0.03 0.67 0.51
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Table 5. Average validation MEF performance for CMA-ES optimized selected literature model formulations when compared with respira-

tion CO2 flux observations.

Model formulation Reco Rabove Rsoil Rroot Rmyc Rsoila Rsoilh

Arrhenius 0.41 0.15 0.65 0.50 0.07 0.61 0.38

Q10 0.47 0.19 0.69 0.52 0.09 0.62 0.46

Water Q10 0.50 0.20 0.79 0.55 0.40 0.81 0.43

LinGPP 0.55 0.25 0.74 0.57 0.17 0.70 0.49

ExpGPP 0.58 0.30 0.76 0.57 0.20 0.72 0.54

addLinGPP 0.55 0.27 0.73 0.56 0.12 0.67 0.48

addExpGPP 0.56 0.27 0.73 0.54 0.20 0.69 0.49
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Figure 1. Direct approach and reverse engineering in model development for describing dynamical systems. Existing and possible

steps needed in the process of building a model. For the direct approach, the process starts with the building of hypothesis from existing

knowledge, the hypothesis is then subject of abstraction and summarized in a mathematical model that has two components: the structure and

the parameters. The mathematical model can be translated into a computational form that will generate predictions. Depending on how well

the predicted values manage to recreate the available observations, the model’s parameters are calibrated or if the general trends are missed,

there might be need for structural reformulation. On the other hand, in the reverse engineering approach, a machine learning method is used

to generate a set of candidate models that are then compared with the available observations and which according to the prediction capacity

may have to go through structural changes by automatic evolution or through a final parameter adaptation. From the set of evolved models,

the best model in terms of prediction capacity is chosen and its structure will be the basis for hypothesis building, as an expert would try to

explain why a specific structure was automatically evolved and whether the structure of the model can be explained from the studied system

intrinsic processes. If that will be the case, and the structure has not emerged randomly, the conclusions can be compared with the existing

knowledge which can be either reconfirmed or new aspects of the studied system might be brought into light.
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Fitness based selection 

and saving of best individual

NO

YES

Return

 best solution

Figure 2. The work flow used in solving symbolic regression problems with GEP.. The process of evolving an optimal solution from

observations starts with randomly generating a set number of evolution individuals called chromosomes. The chromosomes are composed of

genes that are sets of strings encoding expression trees that can be translated into mathematical expressions in the subsequent step. Following

the mathematical expression comes the evaluation of each emerging individual (model) against the target variable values and for each one a

fitness values is assigned. If the stopping criterion has not been reached (e.g.. best fitness possible, highest number of generations allowed,

convergence etc.) the best individual in terms of fitness is saved and the remaining set of chromosomes are selected for genetic manipulation.

When the stop criterion is reached, the parameters of the best chromosome is calibrated against the training data with an optimization

approach, the CMA-ES, and the best solution is returned.
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(b) Validating against noise-free datasets.

Figure 4.
:::::
Effect

::
of

::::::
adding

::::
noise

::
to

:::::::
original

:::::
signal

::
on

::::::::
prediction

:::::::
capacity

:::
for

::::
GEP,

:::::
KRR,

::::
RF,

::::
SVM

:::
and

:::::
ANN.

::::
The

:::
first

::::
panel

:::::::
contains

::
the

:::::::
evolution

::
of

::::
mean

::::::::
modelling

::::::::
efficiency

:::::
(MEF)

:::::
values

::::
from

::
20

:::::::::
independent

::::
runs

::
for

::::
each

::::::::
increasing

:::
level

::
of

:::::
noise.

::::
MEF

::
is

:::::::
computed

::::
after

::::::
learning

::::
from

:
a
::::
data

::
set

::
of

:::
200

::::
data

:::::
points

:::
and

::::::::
validating

:::::
against

::::
1000

::::
data

:::::
points

::::::::
containing

:::::
noise.

:::
The

:::::
second

:::::
panel

:::::
shows

::
the

::::::::
evolution

:
of
:::::

mean
::::
MEF

:::::
values

::::
from

::
20

::::::::::
independent

:::
runs

:::
for

::::
each

::::::::
increasing

::::
level

::
of

::::
noise

:::::
where

::::
MEF

::
is

:::::::
computed

::::
after

::::::
learning

::::
from

::
a
:::
data

:::
set

::
of

:::
200

:::
data

:::::
points

:::
and

::::::::
validating

:::::
against

::::
1000

::::
data

:::::
points

:::::::
generated

::::
from

:::::::
equation

::::
3.10.

Effect of adding noise to original signal on prediction capacity for GEP, KRR, RF, SVM and ANN. The first panel contains the

evolution of mean MEF values from 20 independent runs for each increasing level of noise. MEF is computed after learning from a data set

of 200 data points and validating against 1000 data points containing noise. The second panel shows the evolution of mean MEF values

from 20 independent runs for each increasing level of noise where MEF is computed after after learning from a data set of 200 data points

and validating against 1000 data points generated from equation 3.10. Panel c shows the compared individual MEF evolutions of the studied

machine learning methods with noise.
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(a) Mean MEF when validation against noisy data after

20 GEP runs with different fitness functions.

(b) Mean MEF when validation against noise-free data

after 20 GEP runs with different fitness functions.

(c) Ratio of predicted number of parameters to true num-

ber of parameters after 20 GEP runs with different fit-

ness functions.

Figure 5. Effects on modelling performance and parameter number caused by choice of fitness function during GEP training for

artificial noisy data generated by equation 3.10, where MEF is defined in equation 2.1 and CEM is defined in equation 2.3.
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Figure 6. Observed and predicted outgoing CO2 fluxes. 613 time steps of daily averaged CO2 effluxesvfor
::::::
effluxes

:::
for two years at the

Alice Holt oak forest site. The predicted values are generated with the models extracted by the GEP approach with the settings given in table

1 for the following types of respiration: Reco,Rabove,Rsoil,Rroot,Rmyc,Rsoila ,Rsoilh . The models are given in equations: 4.2-4.8
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Figure 7. Observed and predicted outgoing CO2 fluxes.613 time steps of daily averaged CO2 effluxes for two years at the Alice Holt

oak forest site. The predicted values are generated with the models extracted by the GEP approach with the settings given in table 1 for the

following types of respiration: Reco,Rabove,Rsoil,Rroot,Rmyc,Rsoila ,Rsoilh . The models are given in equations: 4.2-4.8
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Figure 8. Observed versus predicted Reco components fluxes, where predicted values are computed as derived fluxes.
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Figure 9. Residuals computed for the GEP models after training on log-transformed data.
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Figure 10. Observed CO2 fluxes and one set of 113 predicted values given by the some common machine learning methods (MLM)

after training on 500 data points.
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Figure 11. Machine learning methods (MLM) prediction performance for all respirations components (left) and for the resid-

uals (right) resulting from the GEP trained models. The MEF values obtained for validation by all the MLM methods for

Reco,Rabove,Rsoil,Rroot,Rmyc,Rsoila ,Rsoilh
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Figure 12. MEF validation values for literature models and for the best GEP model in terms of MEF at each respiration level. Each

Reco flux component is shown in a separate colour.
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Figure 13. DailyRsoil fluxes illustrated in the context of the two studied years and residual values of the total soil daily CO2 outgoing

fluxes as simulated by the investigated literature models and the GEP emerged model.
::::

Daily
::::
Rsoil:::::

fluxes
:::
(A)

::::::::
illustrated

::
in

:::
the

::::::
context

:
of
:::

the
::::
two

::::::
studied

::::
years

:::
and

:::::::
residual

:::::
values

:::
(B)

::
of

:::
the

::::
total

:::
soil

::::
daily

::::
CO2:::::::

outgoing
:::::
fluxes

::
as

::::::::
simulated

:::
by

::
the

::::::::::
investigated

::::::::
literature

:::::
models

::::
and

:::
the

::::
GEP

::::::::
emerged

:::::
model. The fluxes shown here are the real flux measured at the site and the predicted fluxes generated

according to the GEP model and some of the models used in the environmental science community. The
::::
center

::
of

:::
the

::::
plots

::
in

::
the

::::::
second

:::
row

:
is
:::
-1.

:::
The scale of the fluxes is given in gC/day/m2

:::
/day.
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::::::::::::
Supplemental

:::::::::
Materials:

Supplemental Materials: Reverse engineering model structures for soil and ecosystem respiration:
the potential of gene expression programming

Table 1. The Karva language translation
::::::
Standard

:::::
error of a function containing a and b as variables and sin,+, and ∗ as elementary

functions. The mathematical structure can be translated into Karva coded genes and the genes expressed into expression trees that can be

easily interpreted by machines. The dark coloured section of the gene (string) represents the active component of the gene that is translatable

into mathematical expressions, the light coloured section is inactive
::::
MEF at

:::::::
validation

:::::
values

:::
for

::
all

:::::
MLM

:::
for

::::::
different

::::
SNR

:::::
values

:::::
when

the moment
:::

MEF
:::::
values

:::
are

:::::::
computed

::::::
against

:::
the

::::
noisy

:::
data.

::::
SNR

::::
GEP

::::
KRR

::
RF

::::
SVM

::::
ANN

:::
9.82

:::
0.00

:::
0.00

:::
0.02

:::
0.00

:::
0.00

:

:::
8.18

:::
0.00

:::
0.00

:::
0.02

:::
0.02

:::
0.00

:

:::
7.01

:::
0.00

:::
0.00

:::
0.02

:::
0.01

:::
0.00

:

:::
6.14

:::
0.00

:::
0.00

:::
0.02

:::
0.01

:::
0.00

:

:::
5.45

:::
0.00

:::
0.00

:::
0.02

:::
0.02

:::
0.01

:

:::
4.46

:::
0.00

:::
0.00

:::
0.02

:::
0.01

:::
0.00

:

:::
3.27

:::
0.01

:::
0.01

:::
0.02

:::
0.01

:::
0.01

:

:::
2.73

:::
0.01

:::
0.01

:::
0.02

:::
0.01

:::
0.01

:

:::
2.34

:::
0.02

:::
0.01

:::
0.02

:::
0.01

:::
0.01

:

:::
1.96

:::
0.02

:::
0.02

:::
0.02

:::
0.02

:::
0.01

:

:::
1.75

:::
0.02

:::
0.02

:::
0.02

:::
0.03

:::
0.02

:

:::
1.40

:::
0.05

:::
0.03

:::
0.02

:::
0.02

:::
0.02

:

:::
1.23

:::
0.03

:::
0.03

:::
0.02

:::
0.03

:::
0.03

:

:::
1.09

:::
0.04

:::
0.03

:::
0.03

:::
0.04

:::
0.03

:

:::
1.00

:::
0.04

:::
0.03

:::
0.02

:::
0.03

:::
0.03

:

1



Table 2.
::::::
Standard

::::
error

::
of

:::
the

::::
MEF

::
at

:::::::
validation

:::::
values

:::
for

::
all

:::::
MLM

:::
for

::::::
different

::::
SNR

:::::
values

:::::
when

:::
the

::::
MEF

:::::
values

:::
are

:::::::
computed

::::::
against

::
the

::::
clear

::::
data.

::::
SNR

::::
GEP

::::
KRR

::
RF

::::
SVM

::::
ANN

:::
9.82

::::
3e-07

::::
4e-05

::::
2e-02

::::
4e-03

::::
4e-03

:

:::
8.18

::::
3e-07

::::
6e-05

::::
2e-02

::::
2e-02

::::
2e-03

:

:::
7.01

::::
3e-07

::::
4e-05

::::
2e-02

::::
1e-02

::::
2e-03

:

:::
6.14

::::
2e-06

::::
7e-05

::::
2e-02

::::
2e-02

::::
2e-03

:

:::
5.45

::::
2e-06

::::
1e-04

::::
2e-02

::::
2e-02

::::
4e-03

:

:::
4.46

::::
6e-06

::::
1e-04

::::
2e-02

::::
2e-02

::::
2e-03

:

:::
3.27

::::
9e-06

::::
2e-03

::::
2e-02

::::
1e-02

::::
3e-03

:

:::
2.73

::::
4e-05

::::
4e-04

::::
2e-02

::::
1e-02

::::
6e-03

:

:::
2.34

::::
4e-05

::::
6e-04

::::
2e-02

::::
9e-03

::::
3e-03

:

:::
1.96

::::
8e-05

::::
1e-03

::::
2e-02

::::
1e-02

::::
3e-03

:

:::
1.75

::::
2e-04

::::
8e-04

::::
1e-02

::::
1e-02

::::
5e-03

:

:::
1.40

::::
8e-04

::::
1e-03

::::
1e-02

::::
2e-02

::::
5e-03

:

:::
1.23

::::
1e-04

::::
2e-03

::::
1e-02

::::
2e-02

::::
4e-03

:

:::
1.09

::::
4e-03

::::
3e-03

::::
1e-02

::::
2e-02

::::
5e-03

:

:::
1.00

::::
7e-04

::::
3e-03

::::
1e-02

::::
5e-02

::::
6e-03

:

GEP models for all log-transformed respirations types time series, before back-transformation.

log(Reco) =
GPPs

T−10
+ log(log(T−10)) (1.1)

log(Rabove) = 0.1T−10 + 0.4log(0.8
√
SWC) (1.2)

log(Rsoil) = 1.2T 0.4
−10 + 1.3SWC − 3.1 (1.3)

log(Rroot) = 0.9
1.2GPPs− 8.1

T−10
(1.4)5

log(Rmyc) = 1.1log(1.7T−10) + 1.2TSWC
−10 − 7.4 (1.5)

log(Rsoila) = 1.2T 0.5
−10 + 2.5SWC − 4.9 (1.6)

log(Rsoilh) =−0.3 + 0.6
1.1GPPs− 3.6

T−10
(1.7)

Figure 1 in supplemental material illustrates the change in the shape of the PDF estimated for each respiration type after

log-transforming. For all time series, the skewness is visibly is reduced.10

From Fig. 4 it is worth mentioning the apparent correlation, although weak in terms of R2 value, of the Rmyc residuals

with GPPs, even when this was not chosen as a driver, indicating that the relation was not strong enough for an explicit

model inclusion but it could show a dependency to a driver for which GPPs acts as a proxy such as phenology, or substrate

availability. Such weak correlations are present as well between Rsoil and Rsoilh residuals and Tair.
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Figure 1. Change in estimated density function of observations before and after log-transforming for all studied respiration types.
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Figure 2. Residuals computed for the GEP models after training on log-transformed data.
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Figure 4. Candidate driver linear correlations with GEP model residuals.
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