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Abstract. The shallow water equations provide a useful analogue of the fully compressible Eu-

ler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby

waves and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable

that numerical models have discrete analogues of these properties. Two prototypical examples of

such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy5

conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserv-

ing scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids; and

the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme

to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical

polygonal grids in a manner that allows both total energy and potential enstrophy conservation, by10

combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete

Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). Detailed results

of the schemes applied to standard test cases are deferred to Part 2 of this series of papers.

1 Introduction

Consider the motion of a (multi-component) fluid on a rotating spheroid under influence of gravity15

and radiation. This is the fundamental subject of inquiry for geophysical fluid dynamics, covering

fields such as weather prediction, climate dynamics and planetary atmospheres. Central to our cur-

rent understanding of these subjects is the use of numerical models to solve the otherwise intractable

equations (such as the fully compressible Euler equations) that result. As a first step towards devel-

oping a numerical model for simulating geophysical fluid dynamics, schemes are usually developed20
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for the rotating shallow water equations (RSWs). The RSWs provide a useful analogue of the fully

compressible Euler equations since they have similar conservation laws, many of the same types of

waves and a similar (quasi-) balanced state. It is desirable that a numerical model posses as least

some these same properties (see Figure 1, and the discussion in Staniforth and Thuburn (2012)).

In fact, there exists some evidence (Dubinkina and Frank (2007)) that schemes without the ap-25

propriate conservation properties can fail to correctly capture long-term statistical behaviour, at least

for simplified models without any dissipative effects. However, questions remain as to the relative

importance of various conservation properties for a full atmospheric model, especially in the pres-

ence of forcing and dissipation (Thuburn (2008)). This subject deserves further study, but a key first

step is the development of a numerical scheme that posses the relevant conserved quantities; and is30

capable of being run at realistic resolutions on the types of grids that are used in operational weather

and climate models.

A pioneering scheme developed over 30 years ago possesses many of these properties (includ-

ing both total energy and potential enstrophy conservation): the 1981 Arakawa and Lamb scheme

(AL81, Arakawa and Lamb (1981)). Unfortunately, this scheme is restricted to logically square, or-35

thogonal grids (an orthogonal grid has a dual grid with edges orthogonal to the primal grid edges)

such as the lat-lon or conformal cubed-sphere grid. These grids are not quasi-uniform under re-

finement of resolution, and this leads to clustering at typical target resolutions for next generation

weather and climate models (such as 2-3km for weather; and 10-15km for climate). Such clustering

will introduce strong CFL limits, and in the case of the lat-lon grid requires polar filtering (which is40

not scalable on current computational architectures) in order to take practical time steps. For these

reasons, it is desirable to be able to use quasi-uniform grids such as the icosahedral grid (orthogonal

but non-square) or gnomic cubed-sphere (square but non-orthogonal). In addition to the restriction

to logically square, orthogonal grids, the AL81 scheme also suffers from poor wave dispersion prop-

erties when the Rossby radius is underresolved (Randall (1994)). In fact, the unavoidable averaging45

required for the Coriolis term in a C grid scheme is expected to lead to poor wave dispersion prop-

erties for an underresolved Rossby radius regardless of the specific discretization employed.

Recently, there has been an effort to extend the AL81 scheme to more general grids, using tools

from discrete exterior calculus (commonly referred to as the TRiSK scheme, Thuburn et al. (2009),

Ringler et al. (2010), Thuburn and Cotter (2012), Weller (2013), Thuburn et al. (2013)). This has lead50

to the development of a family of schemes on general non-orthogonal (spherical) polygonal meshes

that posses all of the desirable properties of AL81 except for: extra modes branches on non quadri-

lateral meshes, which are unavoidable for C grid schemes; and lack of either total energy or potential

enstrophy conservation. It is possible to obtain one or the other, but not both at the same time. Along

different lines, Salmon (Salmon (2004)) showed that AL81 and other doubly-conservative schemes55

(such as Takano and Wurtele (1982)) are all members of another family of schemes on logically
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square orthogonal meshes. This was done using tools from Hamiltonian methods, which are an area

of active research in atmospheric model development.

Rather than using finite differences, it is also possible to extend the AL81 scheme to arbitrary grids

by using compatible finite elements (see McRae and Cotter (2014) and Cotter and Thuburn (2014)).60

Methods based on compatible finite elements are capable of achieving most of the properties listed

in Figure 1, and with the appropriate selection of spaces and careful mass lumping can have good

linear properties as well (see Cotter and Shipton (2012), Staniforth et al. (2013) and Melvin et al.

(2014)). However, these methods require the solution of elliptic problems at every time step, and so

it is still useful to investigate a finite difference based approach.65

As an alternative to the AL81 scheme that preserves many of its valuable mimetic properties,

but has good wave dispersion properties independent of Rossby radius, Randall (1994) introduced a

scheme for uniform square grids based on the vorticity-divergence formulation (termed the Z grid) of

the continuous equations. Subsequently, this approach was extended to arbitrary (spherical) orthog-

onal polygonal grids with a triangular dual in Heikes and Randall (1995a) and Heikes and Randall70

(1995b), which included the important case of an icosahedral-hexagonal grid. Although this scheme

possesses many of the desirable properties from AL81, it does not conserve total energy or potential

enstrophy. However, a similar Z grid scheme based on a Helmholtz decomposition of the momen-

tum instead of the wind that does conserve both total energy and potential enstrophy was developed

by Salmon (Salmon (2007),Salmon (2005)) using techniques from Hamiltonian mechanics (specif-75

ically, Nambu brackets). The idea of using Hamiltonian mechanics to derive conservative models

for atmospheric dynamical cores has seen a great deal of interest and progress in the past 10 years

(see (Gassmann and Herzog (2008),Gassmann (2013),Sommer and Névir (2009),Nevir and Som-

mer (2009)Dubos and Tort (2014),Dubos et al. (2015),Tort et al. (2015),Salmon (1988),Shepherd

(2003)).). With the recent development of Hamiltonian formulations for essentially all of the equa-80

tion sets and vertical coordinates used in atmospheric dynamics, it seems likely that this approach

will continue to be employed in the future. Unfortunately, the scheme in S07 is defined only for pla-

nar grids, and in the key case of general polygonal grids no expression for discrete Hamiltonian or

Casimirs was given. This precludes its further development for implementation into an operational

dynamical core.85

This work combines the discrete exterior calculus approach from Thuburn and Cotter (2012) and

the Hamiltonian approach from Salmon (2004) to extend AL81 to general non-orthgonal (spherical)

polygonal grids in a manner that conserves both total energy and potential enstrophy; and to extend

S07 to arbitrary (spherical) orthogonal polygonal grids. The extension of AL81 is done through the

development of a new Q (the discretization of qk̂×, which is also known as the nonlinear poten-90

tial vorticity flux) operator, using tools from Hamiltonian methods. S07 is extended by combining

the Nambu bracket based approach from Salmon (2007) with the discrete exterior calculus tools in-

troduced in Thuburn and Cotter (2012). It should be noted that this work deals only with spatially
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Figure 1. A diagram of some desirable model properties for the shallow water equations, organized thematically

into groups. Similar considerations apply for the Euler, hydrostatic primitive and other equation sets used in

atmospheric models. There is vigorous discussion in the literature and between model designers about the

importance of various properties for different applications (such as weather forecasting or long-term climate

prediction). The schemes presented here satisfy all of these properties, with the exception of accuracy. There are

additional desirable model properties, such as consistent physics-dynamics coupling, compatible and accurate

tracer advection, and tractable treatment of acoustic waves that are not presented.

conservative discretization. Conservation errors introduced due to time discretization are typically

much smaller than those due to space discretization. However, the extension of this approach to fully95

conservative discretization would be a useful contribution.

The remainder of this paper is structured as follows: Section 2 introduces the rotating shallow

water equations in both their familiar vector-invariant form and the less familiar Hamiltonian forms.

Section 3 presents a family of C grid numerical schemes that posses many of the desirable prop-

erties, and discusses the specific member of this family introduced here. Section 4 introduces the100

new operator Q that enables the conservation of both total energy and potential enstrophy in the

C grid scheme. Section 5 presents the Z grid scheme and discusses its key mimetic and conserva-

tion properties. Section 6 discusses an implementation of these schemes, and shows some limited

results. Finally, some conclusions (Section 7) are drawn. The appendices discuss various ancillary

topics such as the computational grid used (Appendix A), the specific discrete operators employed105

(Appendices B, C and D), and the discrete variables used in the C and Z grid schemes (Appendices

E and F).
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2 Rotating Shallow Water Equations

The rotating shallow water equations (RSWs) for both planar and spherical domains are presented

below in several forms: the vector invariant formulation, the vorticity-divergence formulation, the110

symplectic Hamiltonian formulation based on the vector-invariant form and both Poisson bracket

and Nambu bracket formulations based on the vorticity-divergence formulations. Although all of

these formulations are equivalent in the continuous case, they lead to very different discretizations.

2.1 Vector Invariant Formulation

The mass continuity equation for the RSWs is expressed in vector invariant form as:115

∂h

∂t
+∇ · (F ) = 0 (1)

where h is the fluid height and u is the fluid velocity. Similarly, the momentum equation is expressed

as:

∂u

∂t
+ qk× (F ) +∇Φ = 0 (2)

where F = hu is the mass flux, q = η
h is the potential vorticity, η = ζ + f is the absolute vorticity,120

ζ = k̂ ·∇×u is the relative vorticity, f is the Coriolis force, Φ = gh+K + ghs is the Bernoulli

function, hs is the topography height, g is gravity and K = u·u
2 is the kinetic energy.

2.2 Poisson Bracket Formulation (Vector Invariant)

As discussed in Salmon (2004), let the HamiltonianH be given by

H=

∫
Ω

1

2

(
h|u|2

)
+

1

2
gh(h+ 2hs)dΩ (3)125

and let x= (h,u). Note that Ω denotes the entire domain of interest- restricted here to either a

doubly periodic plane or the sphere. Therefore, there are no boundary condition to consider. The

Hamiltonian formulation can be used in the presence of boundaries, but it becomes more complicated

and is not treated here. The time evolution of an arbitrary functional F can be written as

dF
dt

= {F ,H} (4)130

where the Poisson bracket {F ,H} (which is a bilinear, antisymmetric operator that satifies the Jacobi

identity) is

{F ,H}=

∫
Ω

dΩ

(
δH
δu
·∇δF

δh
− δF
δu
·∇δH

δh
+ qk̂ ·

(
δH
δu
× δF
δu

))
(5)

It is useful to split this into two separate brackets as

{F ,H}= {F ,H}R + {F ,H}Q (6)135
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where

{F ,H}R =

∫
Ω

dΩ

(
δH
δu
·∇δF

δh
− δF
δu
·∇δH

δh

)
=

∫
Ω

dΩ

(
δH
δh

(∇ · δF
δu

)− δF
δh

(∇ · δH
δu

)

)
(7)

encompasses the gradient and divergence terms; and

{F ,H}Q =

∫
Ω

dΩ

(
qk̂ ·

(
δH
δu
× δF
δu

))
(8)

encompasses the nonlinear PV flux term. The functional derivatives δH
δx of the Hamiltonian are given140

by

δH
δx

=

Φ

F

 (9)

This formulation is useful for development of a scheme that possesses discrete conservation proper-

ties, as discussed below. A functional derivative of some functional F [x] is defined as

δF
δx

= lim
ε→0

F [x+ εφ]−F [x]

ε
(10)145

2.3 Conserved Quantities

Since the rotating shallow water equations form a (non-canonical) Hamiltonian system, we know

from Noether’s theorem and other considerations (such as the singular nature of the symplectic

operator) that there are at least two categories of conserved quantities: Hamiltonian and Casimirs.

2.3.1 Energy (Hamiltonian)150

The first is simply the Hamiltonian itself. In this case, the Hamiltonian is the total energy of the

system. Conservation of the Hamiltonian arises due to the skew-symmetric nature of the Poisson

bracket. In particular, using (4) the evolution ofH is given by

dH
dt

= {H,H}=−{H,H}= 0 (11)

since {,} is skew-symmetric. For the rotating shallow water equations, the Hamiltonian is the total155

energy of the system. The elegant derivation of energy conservation and its simplicity (relying ONLY

on the skew-symmetry of {,}) motivates the use of the Hamiltonian formulation for development of

numerical schemes that conserve energy.

2.3.2 Casimirs

The second category of conserved quantities consists of Casimir invariants. Since the rotating shal-160

low water equations are a non-canonical Hamiltonian system, the Poisson bracket {,} is singular

and thus it possesses Casimir invariants C that satisfy

{F ,C}= 0 (12)
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for any functional F . Note that from above, this implies that

dC
dt

= 0 (13)165

For the rotating shallow water equations, the Casimirs take the form

C =

∫
Ω

hF (q)dΩ (14)

where F (q) is an arbitrary function of the potential vorticity and

δC
δx

=
(
F (q)−qF ′(q)

∇⊥F ′(q)

)
(15)

with ∇⊥ the skew-gradient operator. On the plane it is k×∇, and it has a coordinate-independent170

definition on more general manifolds such as the sphere. Important cases for F include F = 1 (mass

conservation), F = q (circulation or mass-weighted potential vorticity) and F = q2

2 (potential en-

strophy).

2.4 Vorticity-Divergence Formulation

By taking the divergence (∇·) and curl (∇⊥·) of (2), we obtain the vorticity-divergence form of the175

equations:

∂ζ

∂t
=−∇ · (ηu) =−∇ · (hqu) (16)

∂µ

∂t
= ∇⊥ · (ηu)−∇2Φ = ∇⊥ · (hqu)−∇2Φ (17)

where µ= ∇ ·u is the divergence. The mass flux can then be split into rotational and divergent180

components (ie a Helmholtz decomposition) as:

hu= (hu)div + (hu)rot = ∇χ+∇⊥ψ (18)

where (hu)div = ∇χ and (hu)rot = ∇⊥ψ. The streamfunction ψ and velocity potential χ can be

related to the vorticity and divergence as

ζ = η− f = ∇ · (h−1∇ψ) +J(h−1,χ) (19)185

µ= ∇ · (h−1∇χ) +J(ψ,h−1) (20)

where J(a,b) = ∇ · (a∇T b) = ∇T · (a∇b) is the Jacobian operator. The Hemholtz decomposition

connects the vorticity-divergence formulation and the vector invariant formulations. In the preceding,

we have neglected the possibility of a harmonic component (a component A for which ∇2A= 0),190
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which works because the harmonic component on the sphere is zero. On the doubly periodic plane,

it would be possible to have a constant harmonic component. Finally, (1) and (2) can be re-written

in terms of χ and ψ directly as

∂h

∂t
=−∇2χ (21)

195

∂ζ

∂t
= J(q,ψ)−∇ · (q∇χ) (22)

∂µ

∂t
= J(q,χ) +∇ · (q∇ψ)−∇2Φ (23)

2.5 Poisson Bracket Formulation (Vorticity-Divergence)

As shown in Salmon (2007), the preceding equations (21), (22) and (23) can be also be written in200

terms of a Poisson bracket. Let x= (h,ζ,µ) and define the Hamiltonian

H=

∫
Ω

1

2h

(
|∇χ|2 + |∇ψ|2 + 2J(χ,ψ)

)
+

1

2
gh(h+ 2hs)dΩ (24)

Note that

δH=

∫
Ω

dΩ(−ψδζ −χδµ+ Φδh) (25)

where205

Φ =K + gh=
|∇χ|2 + |∇ψ|2 + 2J(χ,ψ)

2h2
+ gh+ ghs (26)

which gives

δH
δx

=
(

Φ
−ψ
−χ

)
(27)

(this is the functional derivative of the Hamiltonian with respect to x). Also define a Poisson bracket

(which is bilinear, anti-symmetric and satisfies the Jacobi identity) as210

{A,B}= {A,B}µµ + {A,B}ζζ + {A,B}µζh (28)

where

{A,B}ζζ =

∫
Ω

dΩqJ(Aζ ,Bζ) (29)

{A,B}µµ =

∫
Ω

dΩqJ(Aµ,Bµ) (30)215
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{A,B}ζµh =

∫
Ω

dΩq(∇Aµ ·∇Bζ −∇Aζ ·∇Bµ) + (∇Aµ ·∇Bh−∇Ah ·∇Bµ) (31)

for arbitrary functionals A and B. As before, the time evolution of an arbitrary functional A is then

given by

dA
dt

= {A,H} (32)220

It is easy to see that (21), (22) and (23) are recovered when A is set equal to h,ζ or µ, respectively.

Note that each of the brackets (29), (30) and (31) are anti-symmetric, and that the Casimirs C =∫
Ω
hF (q)dΩ satisfy {A,C}= 0 (where F is an arbitrary function and A is an arbitrary functional)

independently for each bracket.

The use of the Poisson (and Nambu) bracket formulation of the shallow water equations is mo-225

tivated by the intimate connection between these formulations and the conserved quantities. As is

well-known, the conservation of energyH rests solely on the anti-symmetry of the Poisson bracket,

and a numerical scheme that retains this feature will automatically conserve energy. However, po-

tential enstrophy is a Casimir, and therefore developing a numerical scheme using the Poisson for-

mulation that conserves it requires that the discrete potential enstrophy lies in the null space of the230

resulting discrete bracket. This can be difficult, especially on arbitrary grids, and this motivates the

use of a continuous formulation that does not contain a null space, which is discussed below.

2.6 Nambu Bracket Formulation (Vorticity-Divergence)

Fortunately, there is a closely related formulation of the shallow water equations in terms of Nambu

brackets (see Salmon (2007)):235

{F ,H,Z}ζζζ =

∫
Ω

dΩZζJ(Fζ ,Hζ) (33)

{F ,H,Z}µµζ =

∫
Ω

dΩZζJ(Fµ,Hµ) (34)

{F ,H,Z}µζh =

∫
Ω

dΩ

(
∇Zh ·∇Fµ ·∇Hζ ·

1

∇q
−∇Zh ·∇Fζ ·∇Hµ ·

1

∇q

)
+ cyc(F ,H,Z)

(35)240

where cyc is a cyclic permutation, Z =
∫

Ω
dΩh q

2

2 is the potential enstrophy, and the multipart dot

product is simply the product of the individual components, summed over each basis (for example,

in 2D doubly periodic flow the first term is ∂xZh∂xFδ∂xHζ
∂xq

). The time evolution of an arbitrary

functional A is now given by

dA
dt

= {A,H,Z}= {A,H,Z}ζζζ + {A,H,Z}µµζ + {A,H,Z}µζh (36)245
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These brackets are useful because they are triply anti-symmetric (which ensures the conservation of

H and Z) and non-degenerate (they have no Casimirs). In fact, discrete conservation of both total

energy and potential enstrophy requires only the triply anti-symmetric nature is retained. It is also

possible to generalize these brackets to ANY Casimir (as shown in Salmon (2005)), but since we are

interested mostly in potential enstrophy conservation this is not necessary. These brackets will form250

the basis of the Z grid discretization method discussed below.

3 C Grid Scheme

Following Thuburn and Cotter (2012), the prognostic variables for the C grid scheme are the fluid

height integrated over a primal grid cell (equivalent to the mass in that grid cell) M and the wind

integrated over a dual edge (equivalent to the circulation along a dual edge) Û . Letting x= (M,Û),255

the vector-invariant Poisson bracket can be discretized in a manner that preserves its anti-symmetric

character (which ensures total energy conservation) and a subset of the Casimir invariants (specif-

ically: mass, potential vorticity and potential enstrophy). Combined with a choice for the discrete

Hamiltonian, this constitutes a complete discretization for the nonlinear rotating shallow water equa-

tions. Ideally, one would use a Nambu bracket formulation of the vector invariant shallow water260

equations rather than the Poisson bracket formulation in order to avoid the difficulties associated

with developing a discretization that has the correct Casimirs, since in the Nambu bracket case only

anti-symmetry must be enforced. Unfortunately, the only known Nambu bracket for the vector in-

variant shallow water equations possesses intractable singularities and is not suitable as the basis

for developing a discretization (Salmon (2005)). In what follows, uppercase letters will denote the265

entire (column) vector of degrees of freedom, while lowercase letters will denote a specific degree

of freedom. A hat on a variable indicates that the quantity is defined on the dual grid.

Specifically, the brackets (7) and (8) are discretized using the operators from Appendices C and B

as:

{A,B}R =−
(
δA
δM

)T
D2

δB
δÛ
−
(
δA
δÛ

)T
D̄1

δB
δM

(37)270

{A,B}Q =

(
δA
δÛ

)T
Q
δB
δÛ

(38)

where the functional derivatives are simply the partial derivatives with respect to the appropriate

quantity. Note that these discrete brackets are only bilinear and anti-symmetric, they do not satisfy

the Jacobi identity. In addition, they posses only a subset of the Casimirs of the continuous brackets.275

Therefore they should be properly be termed quasi-Poisson brackets. The brackets given in (37) and

(38) are essentially a generalization of the brackets introduced in S04 from uniform square grids to

arbitrary polygonal grids, using the operators from Thuburn and Cotter (2012). The Hamiltonian H
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is discretized as:

H=
1

2
gMT I(M + 2B) +

1

2
ÛTHĈ (39)280

where g is the acceleration due to gravity, B is the topographic height integrated over a primal grid

cell, Ĉ =MeÛ is the mass flux on dual edges and Me = φIM , with φ an interpolation operator.

Taking functional derivatives yields

δH
δx

=

Φ̂

F

 (40)

where Φ̂ is the Bernoulli function sampled at dual vertices and F is the mass flux integrated over285

primal edges. Computing actual values yields: Φ̂ = I(K+gM+gB) with K = φT Û∗HÛ2 , where K

is the kinetic energy integrated over primal grid cells and F = HĈ. A detailed description of these

discrete variables and their staggering on the computational grid can be found in Appendix E, and a

diagram of their staggering is in Figure 2. The resulting discrete evolution equations are

∂M

∂t
+D2F = 0 (41)290

∂Û

∂t
−QF + D̄1Φ̂ = 0 (42)

In fact, by making alternative choices for F , Q and Φ̂ (along with the operators discussed below) it

is possible to recover a wide range of C grid schemes present in the literature (such as Ringler et al.

(2010), Thuburn et al. (2013) and Weller (2013)), see Eldred (2015) for more details). The operators295

D2, D1, D̄1, D̄2, I, J, R, W and H are defined in Appendices B and C (and can also be found in a

general form in Thuburn and Cotter (2012)). The novelty of the current scheme is a new definition

of Q, such that the properties of total energy conservation, potential enstrophy conservation and

steady geostrophic modes hold simultaneously. This is the subject of Section 4. A potential vorticity

equation can be obtained from (42) by taking D̄2 to yield:300

∂(M̂ ∗Q)

∂t
− D̄2QF = 0 (43)

where D̄2D̄1 = 0 has been used to eliminate the gradient term, and D̄2Û = Γ̂ is the relative vorticity

integrated over dual grid cells, and Υ̂ = Γ̂+f = M̂ ∗Q where M̂ = RM is the mass integrated over

dual grid cells, Υ̂ is the absolute vorticity integrated over dual grid cells, f is the Coriolis parameter

integrated over dual grid cells and Q is the potential vorticity sampled at primal grid vertices.305

3.1 Relationship to Discrete Exterior Calculus

As discussed in Thuburn and Cotter (2012), these operators have an interpretation in terms of discrete

exterior calculus. In fact, D2, D1, D̄2, D̄1 are discrete exterior derivatives, I, J and H are Hodge

stars and the various prognostic and diagnostic quantities can be interpreted as discrete differential

forms. This connection is further explored in Eldred (2015).310
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3.2 Linearized Scheme

As is well-known, the linearized version of a Hamiltonian system about a steady state can be found

by evaluating the brackets at that state and using the quadratic approximation to the associated

pseudo-energy as the Hamiltonian (Shepherd (1993)). Following this procedure and letting the Cori-

olis parameter f be a constant, B = 0 and assuming a background state of x= (H,0), we obtain315

{A,B}R =−
(
δA
δM

)T
D2

δB
δÛ
−
(
δA
δÛ

)T
D̄1

δB
δM

(44)

{A,B}Q =

(
δA
δÛ

)T
W

δB
δÛ

(45)

for the brackets (where W = Qqv=1 is the linearized version of Q) and320

H=
1

2
gMT I(M + 2B) +

1

2
HÛTHÛ (46)

for the Hamiltonian, which has associated functional derivatives of

δH
δx

=

 gIM

HHÛ

 (47)

The resulting evolution equations are

∂M

∂t
+HD2HÛ = 0 (48)325

∂Û

∂t
− fWHÛ + gD̄1IM = 0 (49)

3.3 Properties of Scheme

This scheme has many important properties, including:

1. Mass and potential vorticity conservation: Both massM and mass-weighted potential vorticity330

M̂ ∗Q are conserved in both a local (flux-form) and global (integral) sense.

2. No spurious vorticity production: By construction, D2D1 = 0 and there is no spurious pro-

duction of vorticity due to the gradient term in the wind equation.

3. Linear stability (pressure gradient force and Coriolis force conserve energy): This is due to

the fact that I, J and H are all symmetric positive-definite; DT
2 =−D̄1; D̄2

T =D1 and W =335

−WT .
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Figure 2. A subset of discrete variables and their staggering on the computational grid for the C grid scheme. A

subscript i indicates quantities defined at primal grid cells or dual grid vertices, a subscript e indicates quantities

defined at primal or dual grid edges, and a subscript v indicates quantities defined at primal grid vertices or

dual grid cells. The prognostic (red) quantities are the mass integrated over primal grid cells mi and the wind

integrated along dual grid edges ue, the other quantities are diagnostic (blue). More details can be found in

Appendix E

.

4. Steady geostrophic modes: By construction, −RD2 = WD̄2 (noting that W is the same for

all members of this family), which gives steady geostrophic modes.

5. PV Compatibility: again by construction −RD2 = WD̄2 with Qqv=c→ cW, and therefore

the potential vorticity equation is compatible with the diagnostic mass equation (a constant PV340

field remains constant). Note that this is same as the condition required for steady geostrophic

modes.

6. Other conservation properties: see below for a discussion on total energy and potential enstro-

phy conservation.

Table 1 shows a summary of the required properties in order for the resulting scheme to have all of345

the mimetic and conservation properties discussed above.

3.3.1 Total Energy Conservation

Following S04, total energy will be conserved for any choice ofH if the discrete brackets retain their

anti-symmetric character. This requires that DT
2 =−D̄1, and that Q =−QT . The first condition is

satisfied by construction of the discrete derivative operators D2 and D̄1. The second condition is350

satisfied only for certain choices of Q. One example is Q = 1
2Q

eW+ 1
2WQe (as used in Ringler

et al. (2010)), where Qe is any function that, given the set of qv at primal vertices, computes a

unique Qe at primal edges (such as Qe = 1
2

∑
v∈V E(e) qv). Flexibility in the choice of Qe allows a

wide variety of stabilization methods such as CLUST or APVM (Weller (2012) and Weller et al.

(2012)). Unfortunately, this choice does not conserve potential enstrophy.355
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Table 1. Summary of required operator properties for obtaining the desirable mimetic properties along with

total energy and potential enstrophy conservation. A example of operators that satisfy these properties can be

found in Appendix C. More details can be found in Thuburn and Cotter (2012) or Eldred (2015). Note that

the mapping column indicates which types of quantities the operator accepts as inputs, and what it produces as

output, with p or d denoting the primal and dual grids; while the number (0,1,2) denotes the geometric entity

the quantity is integrated over. For example, the R operator takes as input quantities integrated over primal grid

cells, and produces as output quantities integrated over dual grid cells.

Operator Properties Notes Mapping

I Symmetric Positive Definite Hodge Star p2 ->d0

J Symmetric Positive Definite Hodge star d2 ->p0

H Symmetric Positive Definite Hodge star d1 ->p1

W RD2 = D̄2W

W =−WT

Interior product (contraction) p1 ->d1

R Identity operator p2 ->d2

Q

Q =−QT

Q→ q0Q when qv = q0 is constant

−D̄1R
T q2v

2
+QD1qv = 0 ∀qv

Interior product (contraction) p1 ->d1

D2 D2D1 = 0 and DT
2 =−D̄1 Exterior Derivative p1 ->p2

D̄2 D̄2D̄1 = 0 and D̄2
T =D1 Exterior Derivative d1 ->d2

D1 D2D1 = 0 and DT
2 =−D̄1 Exterior Derivative p0 ->p1

D̄1 D̄2D̄1 = 0 and D̄2
T =D1 Exterior Derivative d0 ->d1

φ see text see text see text

3.3.2 Potential Enstrophy Conservation

Following S04, potential enstrophy is a Casimir and therefore will be conserved when

{Z,A}= 0 (50)

holds for any choice of functional A. Define potential enstrophy as

Z =
1

2
(Q)T Υ̂ =

1

2
(

Υ̂

M̂
)T Υ̂ (51)360

Its functional derivatives are

δZ
δx

=

−RQ∗Q
2

D1Q

 (52)

Using the chain rule for functional derivatives, it suffices to show that equation (50) holds for A=∑
imi and A=

∑
eue. Therefore equation (50) reduces to

D2D1Q= 0 (53)365
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−D̄1R
Q ∗Q

2
+QD1Q= 0 (54)

which must hold for any choice of Q. The first of these is again satisfied by construction for D2 and

D1. The second is much trickier, and is the main subject of section 4. One example is Q =QeW

(as used in Ringler et al. (2010)), where Qe = 1
2

∑
v∈V E(e) qv . Unfortunately, this choice does not370

conserve total energy. It would be possible to explore alternative definitions of Z , but these would

lead to different, less natural stencils for Q.

3.4 Arakawa and Lamb 1981

In the case of a uniform square grid, the C scheme grid above reduces to the well-known Arakawa

and Lamb 1981 total energy and potential enstrophy scheme (modified to prognosemi and ue if their375

choice of Q is used. Unfortunately, the definition of Q presented in AL81 works only for logically

square, orthogonal grids. For more general, non-orthogonal polygonal grids, a new operator Q must

be found. This is the subject of the next section.

3.5 Hollingsworth Instability

Since this is an extension of Arakawa and Lamb 1981 scheme, it seems extremely likely that the380

proposed scheme will suffer from the Hollingsworth instability, especially if applied in a height

coordinate framework using a Lorenz staggering in the vertical (as discussed in Bell et al. (2016)

and Hollingsworth et al. (1983)). However, other similar schemes have been able to mitigate the

Hollingsworth instability when used with an isentropic or Lagrangian vertical coordinate, or when

a Charney-Phillips staggering is used in the vertical. On a uniform square grid using AL81, it is385

possible to rigorously modify the kinetic energy stencil to eliminate the non-cancellation error that is

at the heart of the instability. Furthermore, this modification can be done in such a way as to conserve

total energy, by expressing it as a modification to the Hamiltonian H itself and then deriving the

associated consistent mass flux Fe. A similar modification of the kinetic energy stencil for a similar

C grid scheme on non-square grids (Gassmann (2013)) has been shown to mitigate the Hollingsworth390

instability even without rigorous elimination of the non-cancellation error. Therefore, given the many

possible mitigation strategies, the possible presence of the instability is not expected to prevent use

of this scheme in a model solving the hydrostatic or non-hydrostatic equations.

4 Operator Q

The principal novelty of the new C grid scheme is the specification of a Q operator that simultane-395

ously conserves total energy and potential enstrophy, and also supports PV compatibility. Previous

work found choices for Q that conserved either total energy or potential enstrophy, but not both.
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Figure 3. A diagram of the stencil of Q when applied to an edge e (green). The nonlinear PV flux QFe at

edge e (green) is a linear combination of the mass fluxes Fe at the edges e′ ∈ ECP (e) (red), where the weights

αe,e′,v are themselves a linear combination of the potential vorticity qv at vertices v ∈ V C(i) (blue) and i is

the cell shared between edges e (green) and e′ (red). By choosing the weights αe,e′,v appropriately, an operator

Q can be found that simultaneously conserves both total energy and potential enstrophy; and supports steady

geostrophic modes.

The key lies in S04, showing that the AL81 approach could be extended to more general stencils

(although retaining a logically square, orthogonal grid). This work takes the Salmon 2004 approach

in a different direction, keeping the same stencil as AL81 but considering a general polygonal grid.400

4.1 Definition of Q

Loosely following S04, define Q as

QFe =
∑

e′∈ECP (e)

∑
v∈V C(i)

qvαe,e′,vFe (55)

where i is the primal grid cell covered by both e and e′. A diagram of this operator is shown in Figure

3. An equivalent alternative form for Q given in terms of the Poisson bracket that closely mimics405

the one found in S04 can be found in (Eldred (2015)). It is easy to see that in the case of a logically

square orthogonal grid, this approach reduces to the same stencil considered by AL81. At this point,

the coefficients αe,e′,v are undetermined.

4.2 Linear System for α

It remains to determine the coefficients αe,e′,v in a manner such that the resulting operator Q con-410

serves both total energy and potential enstrophy, and satisfies PV consistency.

4.2.1 Requirements introduced by energy conservation

Following S04, in order for Q to be energy conserving then Q =−QT . In terms of the coefficients,

this implies that αe,e′,v =−αe′,e,v , or in other words, they are anti-symmetric under an interchange

of e and e′.415
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Figure 4. A diagram of the stencil v ∈ CV E(e) = V E(i1)∪V E(i2) with (i1, i2) = CE(e), which is simply

the union of all vertices v (blue) in the cells on either side of edge e (green).

4.2.2 Requirements introduced by potential enstrophy conservation

From (54), in order for Q to conserve potential enstrophy −D̄1R
Q∗Q

2 +QD1Q= 0 must hold for

any choice of Q. Expanding this out yields

∑
e′∈ECP (e)

 ∑
v∈EV C(e,e′)

αe,e′,vqv

 ∑
v′∈V E(e′)

te′,v′q
′
v =

∑
i∈CE(e)

(−ne,i)
∑

v∈V C(i)

Ri,v
q2
v

2
(56)

for every e, which must hold for any choice of qv . For a given edge e, the vertices in question are420

v ∈ CV E(e) (shown in Figure 4) where CV E(e) = V E(i1)∪V E(i2) and (i1, i2) = CE(e). Both

the left and right hand side of these equations are a quadratic form in this set of vertices, and for this

to hold for arbitrary qv the coefficients in these two quadratic forms must be equal. These coefficients

are linear combinations of the α’s, and therefore the equality of these quadratic forms implies a set

of linear equations for the α’s.425

Specifically, for each grid cell i with ne edges and nv vertices (note that ne = nv for a polygonal

grid cell, but it is useful to keep distinct notation to ease exposition), there are ne
nv(nv+1)

2 equations

(coefficients in the quadratic forms) and nv
ne(ne−1)

2 unknowns (the coefficients αe,e′,v). Since nv =

ne, this is therefore an overdetermined system, and the coefficient will be found through a least

squares procedure. The equations come from equating the coefficients in the two quadratic forms:430

there are nv(nv+1)
2 independent vertex pairs, and ne edges. The unknowns are the coefficients αe,e′,v

that are associated with the grid cell: there are ne(ne−1)
2 independent unique edge pairs, and nv

vertices. Note that this has already taken into account the fact that αe,e′,v =−αe′,e,v (hence the

wording unique edge pair) which reduces the number of independent coefficients in half. Letting

v and v′ loop over the vertices in the cell (they are the unique members of V C(i)×V C(i)), the435

equations are given by

Av,v =
∑

e′∈EV E(v,e,i)

αe,e′,vte′,vsgn(e,e′) (57)
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Bv,v =
∑
i

ne,i
Ri,v

2
=
Ri,v

2
(58)

where the sum for Bv,v occurs only when v ∈ V E(e); and440

Av,v′ =
∑

e′∈EV E(v′,e,i)

αe,e′,vte′,v′sgn(e,e′) +
∑

e′∈EV E(v,e,i)

αe,e′,v′te′,vsgn(e,e′) (59)

Bv,v′ = 0 (60)

where e loops over each edge in i and EV E(v,e, i) = EC(i)∩EV (v)− e; and sgn(e,e′) = 1 =

−sgn(e′,e) (which ensures that the scheme is also energy conservative). A diagram of EV E(v,e, i)445

is provided in Figure 5. Note that coefficients in one cell are coupled with adjacent cells when

v ∈ V E(e) or v′ ∈ V E(e); that is to say, the equations involve coefficients that are associated with

other grid cells. On a non-uniform mesh, this means that the entire set of coefficients must be solved

for at the same time.

The solution procedure outlined above gives a large matrix system450

Aα= b (61)

where each row in A represents an equation obtained by equating coefficients in the quadratic forms,

andα is the vector of unknown coefficients. This system can be solved (via a least-squares approach)

to yield a set of coefficients α such that Q conserves potential enstrophy, provided the system can

be solved exactly. This procedure is essentially identical to the one employed in S04. In addition,455

the coefficients can be computed once, and then stored for later use. Unfortunately, the system that

results directly from this procedure is impractical to solve for realistic non-uniform meshes: it is too

large and ill-conditioned. For example, on an icosahedral-hexagonal mesh with O(1 million) grid

cells, there will be O(90 million) coupled coefficients that need to be solved for.

4.3 Practical Solution460

Instead, following Thuburn et al. (2009), the coefficients can be uncoupled by defining

Bv,v = (
Ri,v

2
+C)ne,i (62)

Bv,v′ = Cne,i (63)

when v ∈ V E(e) or v′ ∈ V E(e), where C =−1/6. This will produce an independent subsystem465

for each grid cell, with for example 90 unknowns on a hexagonal grid cell and 24 unknowns on a
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Figure 5. A diagram of the stencil EV E(v,e, i) = EC(i)∩EV (v)− e. Consider the set (v,e, i) denoted

in green: then EV E(v,e, i) are the two red edges. Now consider the set (v,e, i) denoted in blue: then

EV E(v,e, i) is the brown edge.

square grid cell. When this procedure is applied to a uniform square grid it reproduces the AL81

scheme, and on a uniform hexagonal grid it produces a total energy and potential enstrophy conserv-

ing scheme (not shown, verified numerically). In all cases, including the non-uniform meshes tested

(icosahedral and cubed-sphere grids), the least squares problem is solved exactly, in the sense that the470

coefficients exactly satisfy the relationships for potential enstrophy and total energy conservation.

Since each subsystem is still overdetermined, this implies the existence of an associated solvability

condition. It seems likely that the solvability condition is the key to writing down an explicit formula

for the coefficients in terms of Ri,v and ne,i. Unfortunately, we were unable to derive such a con-

dition. However, this does not prevent the numerical solution of the least square problems, which is475

sufficient for practical use of the scheme. We were able to solve the systems on cubed-sphere meshes

with up to 884736 grid cells and on icosahedral-hexagonal meshes with up to 655363 grid cells in a

few hours using an unoptimized, serial algorithm on a laptop computer. Furthermore, the uncoupled

nature of the problem (one small independent least-squares problem per grid cell) would facilitate

trivial parallelism if needed for larger meshes.480

4.3.1 PV Compatibility

The astute reader will note that nothing has been said yet about enforcing PV compatibility (Qqv=c =

cW. It was originally believed that PV compatibility would have to added as additional equations

in the matrix-vector system. However, it was found that enforcing potential enstrophy conservation

(even using the uncoupled form) was sufficient to ensure that Q was PV compatible. This corre-485

sponds with the results of S04 (Salmon (2004)), who did not explicitly add PV compatibility, yet

all of his schemes had this property. The reasons behind this result are not yet understood. If PV

compatibility had to be added explicitly, it would simply mean that∑
v∈V C(i)

αe,e′,v = we,e′ (64)
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for every edge pair (e,e′); which could be easily added to the independent system of equations490

solved in each grid cell. Although enforcing Qqv=c = cW ensures PV compatibility, it also requires

the use of the W operator from Thuburn et al. (2009). Therefore, Q will share the same limitations,

including inconsistency on general grids. The consequences of this are explored more in Eldred and

Randall (20016a).

5 Z Grid Scheme495

Unlike the C grid scheme, the Z grid scheme starts with Nambu brackets rather than Poisson brackets.

This greatly simplifies the derivation, since only the triply anti-symmetric nature of the brackets must

be retained to ensure total energy and potential enstrophy conservation: there is no consideration of

Casimirs. Start by defining a set of collocated discrete variables

x= (hi, ζi,µi) (65)500

which are pointwise values of h, ζ and µ at primal grid centers. We will also use the More details

about the grid, discrete operators and discrete variables can be found in Appendices A,D and F.

5.1 Functional Derivatives

The functional derivative of a general functionalF with respect to discrete variable xi is then defined

as505

δF
δxi

= Fxi =
1

Ai

∂F
∂xi

(66)

where Ai is the area of primal grid cell i. The diagnostic variables Φi, χi, ψi and qi are defined

through the functional derivatives of the discrete HamiltonianH and discrete Potential Enstrophy Z
as:

Φi ≡
δH
δhi

=Hh (67)510

−ψi ≡
δH
δζi

=Hζ (68)

−χi ≡
δH
δµi

=Hµ (69)

515

qi ≡
δZ
δζi

= Zζ (70)

At this point the discrete HamiltonianH and discrete Potential Enstrophy Z are left unspecified.
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5.2 Discrete Nambu Brackets

Following Salmon (2007), the general discretization starts from the Nambu brackets (33), (34) and

(35) for the shallow water equations in vorticity-divergence form. As long as these brackets retain520

their triply anti-symmetric structure when discretized, total energy and potential enstrophy will be

automatically conserved for any definition of the total energy and potential enstrophy (with one

caveat explained below). In addition, the bracket structure ensures that this conservation is local

as well as global. That is, the evolution of a conserved quantity can be written in flux-form for

each grid cell, where cancellation of fluxes between adjacent cells leads to the global integral being525

invariant. This is in contrast to a method that conserves the global integral, but cannot be written in

flux-form for each grid cell. In what follows below, we will consider only the case where Z is the

potential enstrophy, although this approach could be easily generalized to arbitrary Casimirs (see

Salmon (2005) for an example of this on a uniform square grid). In discretizing the Nambu bracket,

the operators D1, D2, D̄1 and D̄2 from the C grid scheme are needed. In addition to these, the530

additional operators J(A,B), K, Xv and Xe are also needed, and they are given in Appendix D.

5.2.1 Jacobian Brackets

Loosely following S07, the {F ,H,Z}ζζζ bracket can be discretized as

{F ,H,Z}ζζζ =
1

3

∑
edges

1

2
(D1(Zζ)v)J(Fζ ,Hζ) + cyc(F ,H,Z) (71)

Note that this bracket is triply anti-symmetric (due to the cyclic permutation), as required. The535

{F ,H,Z}µµζ bracket can be similarly discretized as

{F ,H,Z}µµζ =
∑
edges

1

2
(D1(Zζ)v)J(Fµ,Hµ) (72)

This bracket is only doubly anti-symmetric (in H and F due to the anti-symmetry of J), but it will

conserve Z as well provided that δZ
δµi

= 0 (since J(A,B) = 0 when either A= 0 or B = 0). These

brackets are essentially those encountered when discretizing the Arakawa Jacobian, as detailed in540

Salmon (2005).

5.2.2 Mixed Bracket

The mixed bracket is trickier since it contains an apparent singularity ( 1
∇q ). On closer inspection,

in the continuous case this singularity cancels out when combined with the functional derivative

of the potential enstrophy. This is the caveat mentioned above- the discrete mixed bracket must be545

constructed such that the apparent singularity cancels out with the discrete functional derivative of

the potential enstrophy. With this in mind, the general form of the discrete mixed bracket is chosen

as:

{F ,H,Z}µζh =
∑
edges

D̄1(Zh)

D̄1qi

le

de

[
(D̄1Fµ)(D̄1Hζ)− (D̄1Fζ)(D̄1Hµ)

]
+ cyc(F ,H,Z) (73)
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where, from before, qi ≡ δZ
δζi

. The quantities le and de are the edge lengths on the primal and dual550

grid, as defined in Appendix A. This bracket is triply anti-symmetric (again due to the cyclic permu-

tation), and the apparent singularity will cancel if Z is chosen with care.

5.2.3 Conservation

Since the {F ,H,Z}ζζζ and {F ,H,Z}µζh brackets are triply anti-symmetric, and the {F ,H,Z}ζµµ
bracket is doubly anti-symmetric, both total energy and potential enstrophy will be conserved for any555

choice ofH and Z; provided that the caveats mentioned above are obeyed. Those are:

1. δZ
δµi

= 0 (ensures that the {F ,H,Z}ζµµ bracket conserves potential enstrophy)

2. Z chosen such that the apparent singularity ( D̄1(Zh)
D̄1qi

term + cyc(F ,H,Z) terms) in the {F ,H,Z}µζh
bracket cancels out

These are fairly minimal requirements, and many reasonable choices for Z satisfy them.560

5.3 Discrete Hamiltonian and Helmholtz Decomposition

The Hamiltonian H can be split into three parts: HFD, HJ and HPE , where the first two are the

kinetic energy due to flux-divergence terms and Jacobian terms, and the last is the potential energy.

In the continuous system we have

H=HFD +HJ +HPE (74)565

where

HFD =

∫
Ω

dΩ
1

2h
[∇χ ·∇χ+∇ψ ·∇ψ] (75)

HJ =

∫
Ω

dΩ
2J(χ,ψ)

2h
=

∫
Ω

dΩ
J(χ,ψ)− J(ψ,χ)

2h
(76)

570

HPE =

∫
Ω

dΩ
1

2
gh(h+ 2hs) (77)

These can be discretized as

HFD =
1

2

∑
edges

le

de

(D̄1χi)
2

he
+
le

de

(D̄1ψi)
2

he
(78)

HPE =
1

2

∑
cells

Aighi(hi + bi) (79)575

HJ =
1

2

∑
edges

(D1
1

hv
)J(χi,ψi) (80)
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5.4 Helmholtz Decompositions and Bernoulli Function

By taking variations ofH we obtain

δHPE =
∑
cells

gAi(hi + bi)δhi (81)580

δHFD =−1

2

∑
edges

le

de

(D̄1χi)
2 + (D̄1ψi)

2

h2
e

δhe−
∑
edges

le

de

(D̄1χi)(D̄1δχi)

he
+
∑
edges

le

de

(D̄1ψi)(D̄1δψi)

he

(82)

δHJ =
1

2

∑
edges

D1
1

h2
v

δhvJ(χi,ψi) +
1

2

∑
edges

D1
1

hv
δJ(χi,ψi) (83)

After a lot of algebra, these can be grouped (half of each term involving δhi goes to Φi and half to585

µi/ζi) to obtain

δH=−χiδµi +−ψiδζi + Φiδhi (84)

where (using the definition of functional derivative)

Φi =
δH
δhi

=
1

Ai
g(hi + bi) +

1

4

1

Ai
K
le

de

(D̄1χi)
2 + (D̄1ψi)

2

h2
e

+
C

2

1

Ai
KD1

1

h2
v

J(χi,ψi) (85)

590

µi =
1

Ai
D2

1

he

le

de
D̄1χi−

1

2

1

Ai
D2(D1

1

hv
)ψe (86)

ζi =
1

Ai
D2

1

he

le

de
D̄1ψi +

1

2

1

Ai
D2(D1

1

hv
)χe (87)

The latter two equations (86 and 87) are the discrete version of the Helmholtz decomposition, and

form a pair of non-singular elliptic equations. They can be combined into a single equation as595

A

χi
ψi

=

FDH −JA
JA FDH

χi
ψi

=

µi
ζi

 (88)

where, for example, FDHχi = 1
Ai
D2

1
he

le
deD̄1χi and JAψi = 1

2
1
Ai
D2(D1

1
hv

)ψe. Note that (with-

out the 1
Ai

factors) FDH is symmetric and JA is anti-symmetric, which means that A =−AT (ie

A itself is skew-symmetric). Also note that when hi =H is a constant (and therefore he =H), they

reduce to600

µi =
1

H

1

Ai
D2

le

de
D̄1χi =

1

H
Lχi (89)

ζi =
1

H

1

Ai
D2

le

de
D̄1ψi =

1

H
Lψi (90)

where L = 1
Ai
D2

le
deD̄1, which is the expected linearization behaviour.
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5.5 Discrete Potential Enstrophy605

A natural definition of the discrete potential enstrophy is

Z =
1

2

∑
cells

Ai
η2
i

hi
(91)

where ηi = ζi + fi. Taking variations of this yields

δZ
δµi

= 0 = Zµ (92)

610

δZ
δhi

=−1

2

η2
i

h2
i

= Zh (93)

δZ
δζi

=
ηi
hi

= Zζ (94)

Then the natural definition for qi = ηi
hi

works, and the above simplifies to

Z =
1

2

∑
cells

Aihiq
2
i (95)615

δZ
δhi

=−1

2
q2
i (96)

δZ
δζi

= qi (97)

By plugging these back into the {F ,H,Z}µζh bracket, it is seen that this choice of Z also ensures620

that the singularity cancels.

5.6 Independence between choices for H/Z and Nambu Brackets

As noted before, the mimetic and conservation properties of the discrete scheme are completely in-

dependent of the choice of discrete Hamiltonian H, provided the Hamiltonian is positive definite

and produces invertible elliptic equations for the Helmholtz decomposition. If the resulting ellip-625

tic equations were singular, then the scheme would have a computational mode (as discussed in

Salmon (2007)). Additionally, the discrete Helmholtz decomposition should also simplify to a pair

of uncoupled Poisson problems when linearized. The mimetic and conservation properties are also

independent of the specific choice of Z , provided that the singularity in the mixed bracket cancels

and Zµ = 0. The given choices of H and Z were selected to have these properties, and also cor-630

respond with those in S07 for the special cases of a uniform planar square grid and an orthogonal

polygonal planar grid with a triangular dual.
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5.7 Discrete Evolution Equations

By setting F = (hi, ζi,µi) in turn, the following evolution equations are obtained:

∂hi
∂t

=−Lχi (98)635

∂ζi
∂t

= Jζ(qi,ψi)−FD(qi,χi) (99)

∂µi
∂t

=−LΦi +Jδ(qi,χi) +FD(qi,ψi) (100)

where L is the Laplacian, FD is the Flux-Divergence and J is the Jacobian. On an icosahedral640

hexagonal-pentagonal grid these operators are the same as those from Heikes and Randall (1995a),

and will therefore share the same limitations as those operators, such as the inconsistency of the Ja-

cobian on general grids. The consequences of this are explored more in Eldred and Randall (20016a).

The differences between the schemes arise from the use of different arguments to the operators (qi

instead of ηi) and the use of different definitions for χi and ψi (which in turns induces a different645

Poisson problem and different expression for Φi).

5.7.1 Laplacian and Flux-Div Operators

The Laplacian and Flux-Divergence operators (which come from the mixed bracket) can be written

as

Lαi =
1

Ai
D2

le

de
D̄1αi (101)650

FD(αi,βi) =
1

Ai
D2αe

le

de
D̄1βi (102)

where αe =
∑
i∈CE(e)

αi
2 .

5.7.2 Jacobian Operators

The Jacobian operators (which come from the Jacobian brackets) can be written as655

Jδ(qi,χi) =− 1

Ai
D2[(D1qv)(χe)] (103)

Jζ(qi,ψi) =
−1

3

1

Ai
D2[(D1qv)(ψe)] +

1

3

1

Ai
D2[(D1ψv)(qe)] (104)

Note that on a polygonal grid with a purely triangular dual (including the important case of an

icosahedral grid), Jδ = Jζ .660
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5.8 Linearized Version

Under the assumption of linear variations around a state of rest (hi =H , ζi = µi = 0, qi = f
H ) on a

f-plane, this scheme reduces to:

∂hi
∂t

=−Lχi =−Hµi (105)

665

∂ζi
∂t

=− f
H

Lχi =−fµi (106)

∂µi
∂t

=−gLhi +
f

H
Lψi =−gLhi + fζi (107)

where the Helmholtz equations given by (89) and (90) have been used to simplify the scheme (to the

point that it no longer requires solving any elliptic equations). In the case of a uniform square grid670

(uniform hexagonal grid) this scheme is identical to the one studied in Randall (1994) (Nickovic

(2002)), and it shares the same excellent linear wave properties found for those schemes.

5.9 Relation to Salmon Schemes

For the cases of a uniform planar square grid and a general orthogonal planar polygonal grid with

triangular dual, the general discretization scheme presented above reduces to the schemes given in675

S07. However, this discretization scheme is more general, and it also makes specific choices for the

total energyH and potential enstrophy Z when using a general polygonal grid.

5.10 Properties of Scheme

The discrete scheme as outlined above posses the following (among others) key properties:

1. Linear stability (Coriolis and pressure gradient forces conserve energy): Provided that L = LT680

(which is satisfied for the L given above, and the majority of discrete Laplacians), the scheme

will conserve energy in the linear case.

2. No spurious vorticity production: By construction, the pressure gradient term does not produce

spurious vorticity since the curl is taken in the continuous system, prior to discretization.

3. Conservation: By construction, this scheme conserves mass, potential vorticity, total energy685

and potential enstrophy in both a local (flux-form) sense and global (integral) sense.

4. PV compatibility and consistency: By inspection, the mass-weighted potential vorticity equa-

tion is a flux-form equation that ensures both local and global conservation of mass-weighted

potential vorticity. In addition, an initially uniform potential vorticity field will remain uni-

form. This rests on the fact that Jζ(qi,ψi) = 0 and FD(qi,χi) = cLχi when qi = c is con-690

stant.
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5. Steady geostrophic modes: Since the same divergence µi appears in both the linearized vor-

ticity and continuity equations, the scheme posses steady geostrophic modes.

6. Linear properties (dispersion relations, computational modes): As expected, the scheme pos-

sesses the same linear mode properties on uniform planar grids as those presented in Randall695

(1994) and Nickovic (2002); and it does not have any computational modes. More details of

the linear mode properties of the scheme on both uniform planar and quasi-uniform spherical

grids can be found in a forthcoming paper Eldred and Randall (20016b).

7. Accuracy: Unfortunately, as shown in Heikes et al. (2013), the Jacobian operator as given is

inconsistent on general grids. Even more unfortunately, the fix proposed in that paper breaks700

key properties of the Jacobian necessary to retain total energy and potential enstrophy con-

servation. Surprisingly, as shown in Eldred and Randall (20016a), the inconsistency of the

Jacobian operator does not appear to cause issues in the test cases that were run. More details

on possible fixes to the accuracy issue are discussed in Eldred and Randall (20016a).

6 Implementation and Results705

6.1 Implementation

To test the utility of the C and Z grid schemes developed above, they were implemented in a combina-

tion of Python as a driver language along with Fortran kernels for the numerics. Although only tested

on quasi-uniform grids that admit a structured approach, for simplicity the code uses an unstructured

mesh with indirect addressing. Due to this highly unoptimized implementation, no cost comparisons710

were made with other codes; instead, we simply note that both the C and Z grid schemes are struc-

turally similar to other schemes used in existing models such as MPAS, Dynamico and UZIM; and

can be expected to share similar performance characteristics.

6.2 Results

As a short preview of the more detailed results in Eldred (2015) and Eldred and Randall (20016a),715

a run of the Galewksy et. al (Galewksy et al. (2004)) test case using the C and Z grid scheme is

presented below. 3rd order Adams-Bashford time stepping was used, and no dissipation beyond the

inherent damping in the time scheme was applied. The C grid scheme was run on both a cubed-

sphere grid (with 884736 grid cells, approximately 26km resolution, ∆t= 15s) and an icosahedral

grid (with 655362 grid cells, approximately 34km resolution, ∆t= 22.5s), while the Z grid scheme720

was run only on the icosahedral grid. The absolute vorticity at Day 6 for all three schemes is shown in

Figure 6, and the results from both the C and Z grid schemes are broadly similar to both each other

and to other results in the literature. Some differences can be found in the inactive region of the

jet, especially when comparing the cubed-sphere to the icosahedral grid simulations. It is believed
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Figure 6. A plot of the absolute vorticity from the Galewsky et. al test case at Day 6 for the C grid scheme

on a cubed-sphere grid (top panel), C grid scheme an icosahedral grid (middle panel) and Z grid scheme on an

icosahedral grid (bottom panel). The developed region of the jet is very similar for all three schemes, and is

quite similar to other results in the literature. Some differences can be seen in the undeveloped region of the jet.

that these differences are due to the underlying grid structure, since the the C and Z grid scheme725

on the icosahedral grid produce the same pattern for the inactive region (and a very similar C grid

scheme on the cubed-sphere that conserves only enstrophy produces an extremely similar pattern to

the fully conservative C grid scheme on the cubed-sphere, as shown in Eldred (2015)). In contrast

to the results in Weller (2013), we did not encounter any issues in using the C grid scheme on the

cubed-sphere grid. Plots of the time series of total energy and potential enstrophy are available in730

Eldred and Randall (20016a) and Eldred (2015), and verify that the schemes are conserving both

energy and potential enstrophy in the spatial semi-discretization limit.

7 Conclusions

This paper presents an extension of AL81 to arbitrary non-orthogonal (spherical) polygonal grids in

a manner that preserves almost all of the desirable properties of that scheme (including both total735

energy and potential enstrophy conservation) through a new Q operator. Unfortunately, on non-

quadrilateral grids such as the icosahedral grid there will be extra branches of the dispersion rela-

tionship due to a mismatch in the number of degrees of freedom in the wind and mass fields inherent

to the C grid approach. Switching from a C grid type staggering (to an A grid staggering, for exam-
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ple) is undesirable for many reasons, foremost among them being the natural association of physical740

variables with geometric entities in a staggered grid as suggested by exterior calculus and differen-

tial geometry (see Tonti (2014) and Blair Perot and Zusi (2014)). Fortunately, other than these extra

mode branches on the icosahedral grid the proposed C grid scheme does not posses any additional

computational modes. Furthermore, extensive testing has thus far been unable to show negative im-

pacts from this extra mode branch, especially when running full-physics simulations with realistic745

topography and initial conditions (John Thuburn and Bill Skamarock, personal communication).

This work has also presented an extension of the total energy and potential enstrophy conserving

Z grid scheme in S07 from planar grids to arbitrary orthogonal (spherical) polygonal grids, using the

same toolkit of Nambu brackets and Hamiltonian methods. The restriction to orthogonal grids rather

than more general non-orthogonal grids (such as a cubed-sphere) is a drawback. However, the major750

motivations for using a cubed-sphere grid are the ability to properly balance degrees of freedom

when using a staggered C grid methods (and therefore avoid spurious branches of the dispersion

relationship), a tensor-product grid structure for spectral or finite element type methods (which en-

sures a diagonal mass matrix for spectral element methods and efficient implementation of finite

element methods) and higher-order finite volume methods (enabling easy dimension splitting), and755

an underlying piecewise continuous coordinate system for higher-order finite volume methods (al-

lowing extended stencils). None of these considerations apply to a Z grid method, so the restriction

to icosahedral grids is not anticipated to be a significant hurdle.

A detailed comparison of the two schemes, including an analysis of the accuracy of the operators

used and results from a variety of test cases can be found in second part of this series Eldred and760

Randall (20016a). In addition, an analysis of the linear mode properties of these two schemes on

various quasi-uniform grids is undertaken in the third part of this paper series Eldred and Randall

(20016b).

8 Code Availability

The schemes described in this manuscript have been implemented in a Python/Fortran mixed lan-765

guage code, and are freely available at https://bitbucket.org/chris_eldred/phd_thesis under a GNU

Lesser General Public License Version 3.

Appendix A: Discrete Grid

The schemes described above are designed to work on arbitrary (spherical) polygonal grids along

with an associated dual grid. In the case of the C grid scheme, the grid can be either orthogonal or770

non-orthgonal, while the Z grid scheme is restricted to orthogonal grids. A description of the grid

framework is given in what follows.
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Figure 7. The geometric quantities on a planar grid. Primal grid edge lengths are denoted as de, dual grid edge

lengths are denoted as le, the area associated with an edge by Ae, the overlap between primal grid cell i and

edge e by Aie and the overlap between dual grid cell v and edge e by Aiv . Note that the same definitions can

be used on a spherical grid, provided the appropriate measures are used (such as geodesic lengths for distances,

and spherical polygonal areas for areas). See Weller (2013) for more details.

A1 General Non-Orthogonal Polygonal Grid

Consider a (primal) conformal grid constructed of polygons (or spherical polygons). A dual grid is

constructed such that there is a unique one to one relationship between elements of the primal grid775

and element of the dual grid: primal grid cells are associated with dual grid vertices, primal grid

edges are associated with dual grid edges and primal grid vertices are associated with dual grid cells.

This grid configuration covers the majority of grids that are used in current and upcoming atmo-

spheric dynamical cores, including cubed-sphere and icosahedral grids (both hexagonal-pentagonal

and triangular variants). Once the dual grid vertices have been placed, there are several important780

geometric quantities that are needed in order to construct the discrete operators (shown graphically

in Figure 7). Specifically, we need the primal cell areaAi, the dual cell areaAv , the distance between

primal grid centers le, the distance between dual grid centers de and the overlap areas Aiv and Aie.

On a planar grid, these are easily defined using the standard Euclidean metric and formulas. On a

spherical grid, distances must be calculated using geodesic arcs; and areas are calculated by subdi-785

viding into spherical triangles as needed and then applying the relevant spherical area formulas. See

the discussion in Weller (2013) for more details.

Appendix B: Discrete Derivative Operators

Following Thuburn and Cotter (2012), a set of discrete derivative operators can be defined as:

D1 =
∑

v∈V E(e)

te,v (B1)790

D̄1 =
∑

i∈CE(e)

−ne,i (B2)
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D2 =
∑

e∈EC(i)

ne,i (B3)

795

D̄2 =
∑

e∈EV (v)

te,v (B4)

where ne,i is an indicator that is 1 when e is oriented out of a primal grid cell and -1 when e is

oriented into a primal grid cell, and te,v is an indicator that is 1 when e is oriented into a dual grid

cell and -1 when e is oriented out of a dual grid cell. D2 is the divergence, D̄2 is the curl, D1 is

the skew-gradient and D̄1 is the gradient; and by the Gauss theorem these are exact (since they800

operate on integrated quantities). By construction, these satisfy D2D1 = 0, D̄2D̄1 = 0, DT
2 =−D̄1

and D̄2
T =D1 for arbitrary polygonal grids. These identities are the discrete analogues of ∇·∇⊥ =

0, ∇⊥ ·∇ = 0, and adjointness between divergence and gradient; and curl and skew-gradient. The

operators can also be identified as the discrete exterior derivative operators from discrete exterior

calculus.805

Appendix C: Specific Choices for Various C Grid Operators

In order to close the C grid scheme presented in Section 3, specific choices must be made for I, J,

H, R, φ and W. The ones used here (and in Ringler et al. (2010) and Thuburn et al. (2013)) are:

I =
1

Ai
(C1)

810

HO =
∑

i∈CE(e)

le

de
(C2)

HNO =
∑

e′ 6=e∈S(e)

He,e′ (C3)

J =
1

Av
(C4)815

φ=
∑

i∈CE(e)

Aie
Ae

(C5)

R =
∑

i∈CV (v)

Aiv
Ai

(C6)
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and820

W =
∑

e′∈ECP (e)

We,e′ (C7)

where I, J and H0 are diagonal matrices, HO is used on orthogonal grids such as the icosahedral

grid and HNO is used on non-orthogonal grids such as the cubed-sphere grid. The details of the con-

struction of this operator, including the stencil S(e) and the weights He,e′ , can be found in Thuburn

et al. (2013)). The weights We,e′ are chosen such that W =−WT and −RD2 = D̄2W (the details825

for this operator can be found in Thuburn et al. (2009)). I, H and J transform quantities between the

primal and the dual grids, and are in fact what are known as discrete Hodge star operators. R is a

discrete analogue of the identity operator that maps quantities integrated over primal cells to quanti-

ties integrated over dual cells, while W can in fact be identified as a discrete analogue of the interior

product (or contraction) operator. On an orthogonal grid, the choices given for I, J, H correspond830

to the Voronoi hodge star from discrete exterior calculus.

Appendix D: Specific Choices for Various Z Grid Operators

For the Z grid scheme, the following operators are needed:

K =
∑

e∈EC(i)

(D1)

which is the sum of edges for a given grid cell, and835

J(A,B) = ne,2A2B1 +ne,1A1B2 (D2)

which is used to build a discrete Jacobian operator. Note that J(A,B) is anti-symmetric (J(A,B) =

−J(B,A)) and satisfies J(A,0) = J(B,0) = J(A,A) = 0. In addition, two different interpolations

(from cell centers to vertices and to edges, respectively) are defined:

Xv =
∑

i∈CV (v)

CXi (D3)840

Xe =
∑

i∈CE(e)

1

2
Xi (D4)

where C is a constant given by 1
n , where n is the size of CV (v) (equal to 4 for quadrilateral dual

grid cells and 3 for triangular dual grid cells).

Appendix E: Discrete Variables for the C Grid Scheme845

Table 2 gives the discrete variables used in the C grid scheme, their type (which indicates the stagger-

ing on the grid), and their diagnostic equation (where applicable). For the type, the first designator
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indicates the location on the grid type (primal or dual) and the second designator indicates the degree

of the geometric entity the quantity is integrated over (0,1 or 2). For example, C is a quantity on the

dual grid integrated over edges.

Table 2. List of discrete C grid variables and their diagnostic equations

Variable Type Equation Description

M p-2 Prognostic Mass

Û d-1 Prognostic Wind

B p-2 Constant Topography

f d-2 Constant Coriolis Force

Ĉ d-1 C =Me ∗ Û Dual Mass Flux

F p-1 F = HĈ Primal Mass Flux

Q p-0 M̂ ∗Q= Υ̂ Potential Vorticity

Γ̂ d-2 Γ̂ = D̄2Û Relative Vorticity

Υ̂ d-2 Υ̂ = Γ̂ + f Absolute Vorticity

Φ̂ d-0 Φ̂ = I(K + gM + gB) Bernoulli Function

M̂ d-2 M̂ = RM Dual Mass

K p-2 K = φT Û∗HÛ
2

Kinetic Energy

850

Appendix F: Discrete Variables for the Z Grid Scheme

Table 3 gives the discrete variables used in the Z grid scheme and their type (either prognostic or

diagnostic).

Table 3. List of discrete Z grid variables and their diagnostic equations

Variable Type Description

hi Prognostic Fluid Height

ζi Prognostic Relative Vorticity

µi Prognostic Divergence

ηi = ζi + fi Diagnostic Absolute Vorticity

qi = ηi/hi Diagnostic Potential Vorticity

Φi =Ki + ghi Diagnostic Bernoulli Function

Ki Diagnostic Kinetic Energy

χi Diagnostic Velocity Potential

ψi Diagnostic Streamfunction
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